
Workgroup: ASDF

Internet-Draft: draft-ietf-asdf-sdf-18

Published: 29 February 2024

Intended Status: Standards Track

Expires: 1 September 2024

Authors: M. Koster, Ed.

KTC

C. Bormann, Ed.

Universität Bremen TZI

A. Keränen

Ericsson

Semantic Definition Format (SDF) for Data and Interactions of Things

Abstract

The Semantic Definition Format (SDF) is a format for domain experts

to use in the creation and maintenance of data and interaction

models that describe Things, i.e., physical objects that are

available for interaction over a network. An SDF specification

describes definitions of SDF Objects/SDF Things and their associated

interactions (Events, Actions, Properties), as well as the Data

types for the information exchanged in those interactions. Tools

convert this format to database formats and other serializations as

needed.

The present revision (-18) adds security considerations, a few

editorial cleanups, discusses JSON pointer encodings, and adds

sockets to the CDDL for easier future extension.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-asdf-sdf/.

Discussion of this document takes place on the A Semantic Definition

Format for Data and Interactions of Things (ASDF) Working Group

mailing list (mailto:asdf@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/asdf/. Subscribe at https://

www.ietf.org/mailman/listinfo/asdf/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-wg-asdf/SDF.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-asdf-sdf/
https://datatracker.ietf.org/doc/draft-ietf-asdf-sdf/
mailto:asdf@ietf.org
https://mailarchive.ietf.org/arch/browse/asdf/
https://mailarchive.ietf.org/arch/browse/asdf/
https://www.ietf.org/mailman/listinfo/asdf/
https://www.ietf.org/mailman/listinfo/asdf/
https://github.com/ietf-wg-asdf/SDF
https://github.com/ietf-wg-asdf/SDF

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 1 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology and Conventions

2. Overview

2.1. Example Definition

2.2. Elements of an SDF model

2.2.1. sdfObject

2.2.2. sdfProperty

2.2.3. sdfAction

2.2.4. sdfEvent

2.2.5. sdfData

2.2.6. sdfThing

2.3. Member names: Given Names and Quality Names

2.3.1. Given Names and Quality Names

2.3.2. Hierarchical Names

2.3.3. Extensibility of Given Names and Quality Names

3. SDF structure

3.1. Information block

3.2. Namespaces block

3.3. Definitions block

3.4. Top-level Affordances and sdfData

4. Names and namespaces

4.1. Structure

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

4.2. Contributing global names

4.3. Referencing global names

4.4. sdfRef

4.4.1. Resolved models

4.5. sdfRequired

4.6. Common Qualities

4.7. Data Qualities

4.7.1. sdfType

4.7.2. sdfChoice

5. Keywords for definition groups

5.1. sdfObject

5.2. sdfProperty

5.3. sdfAction

5.4. sdfEvent

5.5. sdfData

6. High Level Composition

6.1. Paths in the model namespaces

6.2. Modular Composition

6.2.1. Use of the "sdfRef" keyword to re-use a definition

6.3. sdfThing

7. IANA Considerations

7.1. Media Type

7.2. Content-Format

7.3. IETF URN Sub-namespace for Unit Names (urn:ietf:params:unit)

7.4. Registries

7.4.1. Quality Name Prefixes

7.4.2. sdfType Values

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Formal Syntax of SDF

Appendix B. json-schema.org Rendition of SDF Syntax

Appendix C. Data Qualities inspired by json-schema.org

C.1. type "number", type "integer"

C.2. type "string"

C.3. type "boolean"

C.4. type "array"

C.5. type "object"

C.6. Implementation notes

Appendix D. Composition Examples

D.1. Outlet Strip Example

D.2. Refrigerator-Freezer Example

Acknowledgements

Contributors

Authors' Addresses

Thing:

Grouping:

sdfThing:

Affordance:

1. Introduction

The Semantic Definition Format (SDF) is a format for domain experts

to use in the creation and maintenance of data and interaction

models that describe Things, i.e., physical objects that are

available for interaction over a network. An SDF specification

describes definitions of SDF Objects/SDF Things and their associated

interactions (Events, Actions, Properties), as well as the Data

types for the information exchanged in those interactions. Tools

convert this format to database formats and other serializations as

needed.

The present revision (-18) adds security considerations, a few

editorial cleanups, discusses JSON pointer encodings, and adds

sockets to the CDDL for easier future extension.

SDF is designed to be an extensible format. The present document

constitutes the base specification for SDF; we speak of "base SDF"

for short. In addition, SDF extensions can be defined, some of which

may make use of extension points specifically defined for this in

base SDF. One area for such extensions would be refinements of SDF's

abstract interaction models into protocol bindings for specific

ecosystems (e.g., [I-D.bormann-asdf-sdf-mapping]). For other

extensions, it may be necessary to indicate in the SDF document that

a specific extension is in effect; see Section 3.1 for details of

the features quality that can be used for such indications. With

extension points and feature indications available, base SDF does

not define a "version" concept for the SDF format itself (as opposed

to version indications within SDF documents indicating their own

evolution, see Section 3.1).

1.1. Terminology and Conventions

A physical item that is also available for interaction over

a network.

An sdfThing or sdfObject, i.e., (directly or indirectly)

a combination of Affordances.

A grouping of Groupings as well as potentially Affordance

declarations (Property, Action, and Event declarations).

An element of an interface offered for interaction, for

which information is available (directly or indirectly) that

indicates how it can or should be used. The term is used here for

the digital (network-directed) interfaces of a Thing only; it

¶

¶

¶

¶

¶

¶

Quality:

Entry:

Block:

Group:

Class Name Keyword:

Class:

Property:

Action:

Event:

Object, sdfObject:

might also have physical affordances such as buttons, dials, and

displays.

A metadata item in a definition or declaration which says

something about that definition or declaration. A quality is

represented in SDF as an entry in a JSON map (JSON object) that

serves as a definition or declaration.

A key-value pair in a map. (In JSON maps, sometimes also

called "member".)

One or more entries in a JSON map that is part of an SDF

specification; these entries together serve a specific function.

An entry in the main JSON map representing the SDF document,

and in certain nested definitions, that has a Class Name Keyword

as its key and a map of named definition entries (Definition

Group) as a value.

One of sdfThing, sdfObject, sdfProperty,

sdfAction, sdfEvent, or sdfData; the Classes for these type

keywords are capitalized and prefixed with sdf.

Abstract term for the information that is contained in

groups identified by a Class Name Keyword.

An affordance that can potentially be used to read,

write, and/or observe state (current/stored information) on an

sdfObject. (Note that Entries are often called properties in

other environments; in this document, the term Property is

specifically reserved for affordances, even if the map key

"properties" might be imported from a data definition language

with the other semantics.)

An affordance that can potentially be used to perform a

named operation on an sdfObject.

An affordance that can potentially be used to obtain

information about what happened to an sdfObject.

A grouping containing only Affordance

declarations (Property, Action, and Event declarations); the main

"atom" of reusable semantics for model construction. sdfObjects

are similar to sdfThings but do not allow nesting, i.e., they

cannot contain other Groupings (sdfObjects or sdfThings). (Note

that JSON maps are often called JSON objects due to JSON's

JavaScript heritage; in the context of SDF, the term Object as

the colloquial shorthand for sdfObject, is specifically reserved

for the above grouping, even if the type name "object" is

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Element:

Definition:

Declaration:

SDF Document:

SDF Model:

Protocol Binding:

Augmentation Mechanism:

imported from a data definition language with the other

semantics.)

A part or an aspect of something abstract; used here in

its usual English definition. (Occasionally, also used

specifically for the elements of JSON arrays.)

An entry in a Definition Group; the entry creates a new

semantic term for use in SDF models and associates it with a set

of qualities. Unless it is also a Declaration, a definition just

defines a term, it does not create a component item within the

enclosing definition.

A definition within an enclosing definition, intended

to create a component item within that enclosing definition.

Every declaration can also be used as a definition for reference

in a different place.

Container for SDF Definitions, together with data

about the SDF Document itself (information block). Represented as

a JSON text representing a single JSON map, which is built from

nested maps.

Definitions and declarations that model the digital

interaction opportunities offered by one or more kinds of Things,

represented by sdfObjects and sdfThings. An SDF Model can be

fully contained in a single SDF Document, or it can be built from

an SDF Document that references definitions and declarations from

additional SDF documents.

A companion document to an SDF Model that defines

how to map the abstract concepts in the model into the protocols

in use in a specific ecosystem. Might supply URL components,

numeric IDs, and similar details. Protocol Bindings are one case

of an Augmentation Mechanism.

A companion document to a base SDF Model

that provides additional information ("augments" the base

specification), possibly for use in a specific ecosystem or with

a specific protocol ("Protocol Binding"). No specific

Augmentation Mechanisms are defined in base SDF. A simple

mechanism for such augmentations has been discussed as a "mapping

file" [I-D.bormann-asdf-sdf-mapping].

The term "byte" is used in its now-customary sense as a synonym for

"octet".

¶

¶

¶

¶

¶

¶

¶

¶

¶

Conventions:

The singular form is chosen as the preferred one for the keywords

defined here.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Overview

2.1. Example Definition

We start with an example for the SDF definition of a simple

sdfObject called "Switch" (Figure 1).

¶

*

¶

¶

¶

Figure 1: A simple example of an SDF document

This is a model of a switch. The state value declared in the

sdfProperty group, represented by a Boolean, will be true for "on"

and will be false for "off". The actions on or off declared in the

sdfAction group are redundant with setting the value and are in the

example to illustrate that there are often different ways of

achieving the same effect. The action toggle will invert the value

of the sdfProperty value, so that 2-way switches can be created;

having such action will avoid the need for first retrieving the

current value and then applying/setting the inverted value.

{

 "info": {

 "title": "Example document for SDF (Semantic Definition Format)",

 "version": "2019-04-24",

 "copyright": "Copyright 2019 Example Corp. All rights reserved.",

 "license": "https://example.com/license"

 },

 "namespace": {

 "cap": "https://example.com/capability/cap"

 },

 "defaultNamespace": "cap",

 "sdfObject": {

 "Switch": {

 "sdfProperty": {

 "value": {

 "description":

"The state of the switch; false for off and true for on.",

 "type": "boolean"

 }

 },

 "sdfAction": {

 "on": {

 "description":

"Turn the switch on; equivalent to setting value to true."

 },

 "off": {

 "description":

"Turn the switch off; equivalent to setting value to false."

 },

 "toggle": {

 "description":

"Toggle the switch; equivalent to setting value to its complement."

 }

 }

 }

 }

}

¶

The sdfObject group lists the affordances of Things modeled by this

sdfObject. The sdfProperty group lists the property affordances

described by the model; these represent various perspectives on the

state of the sdfObject. Properties can have additional qualities to

describe the state more precisely. Properties can be annotated to be

read, write or read/write; how this is actually done by the

underlying transfer protocols is not described in the SDF model but

left to companion protocol bindings. Properties are often used with

RESTful paradigms [I-D.irtf-t2trg-rest-iot], describing state. The

sdfAction group is the mechanism to describe other interactions in

terms of their names, input, and output data (no data are used in

the example), as in a POST method in REST or in a remote procedure

call. The example toggle is an Action that changes the state based

on the current state of the Property named value. (The third type of

affordance is Events, which are not described in this example.)

In the JSON representation, note how (with the exception of the info

group) maps that have keys taken from the SDF vocabulary (info,

namespace, sdfObject) alternate in nesting with maps that have keys

that are freely defined by the model writer (Switch, value, on,

etc.); the latter usually use the named<> production in the formal

syntax of SDF (Appendix A), while the former SDF-defined vocabulary

items are often, but not always, called qualities.

2.2. Elements of an SDF model

The SDF language uses six predefined Class Name Keywords for

modeling connected Things which are illustrated in Figure 2.

¶

¶

¶

sdfThing

sdfObject

sdfProperty sdfActionsdfEvent

sdfData

hasObject

0+

hasThing0+

hasProperty

0+

hasAction

0+

hasEvent

0+

hasProperty

0+

hasAction

0+

hasEvent

0+

hasInputData

0+

hasOutputData

0+

hasOutputData

0+

isInstanceOf

1

Figure 2: Main classes used in SDF models

The six main Class Name Keywords are discussed below.

2.2.1. sdfObject

sdfObjects, the items listed in an sdfObject definition group, are

the main "atom" of reusable semantics for model construction. The

concept aligns in scope with common definition items from many IoT

modeling systems, for example ZigBee Clusters [ZCL], OMA SpecWorks

LwM2M Objects [OMA], and OCF Resource Types [OCF].

An sdfObject definition contains a set of sdfProperty, sdfAction,

and sdfEvent definitions that describe the interaction affordances

associated with some scope of functionality.

For the granularity of definition, sdfObject definitions are meant

to be kept narrow enough in scope to enable broad reuse and

interoperability. For example, defining a light bulb using separate

sdfObject definitions for on/off control, dimming, and color control

affordances will enable interoperable functionality to be configured

for diverse product types. An sdfObject definition for a common on/

off control may be used to control may different kinds of Things

that require on/off control.

¶

¶

¶

¶

¶

The presence of one or both of the optional qualities "minItems" and

"maxItems" defines the sdfObject as an array, i.e., all the

affordances defined for the sdfObject exist a number of times,

indexed by a number constrained to be between minItems and maxItems,

inclusive, if given. (Note: Setting "minItems" to zero and leaving

out "maxItems" puts the minimum constraints on that array.)

2.2.2. sdfProperty

sdfProperty is used to model elements of state within Things modeled

by the enclosing grouping.

A named definition entry in an sdfProperty may be associated with

some protocol affordance to enable the application to obtain the

state variable and, optionally, modify the state variable.

Additionally, some protocols provide for in-time reporting of state

changes. (These three aspects are described by the qualities

readable, writable, and observable defined for an sdfProperty.)

Definitions in sdfProperty groups include the definitions from

sdfData groups, however, they actually also declare that a Property

with the given qualities potentially is present in the containing

sdfObject.

For definitions in sdfProperty and sdfData, SDF provides qualities

that can constrain the structure and values of data allowed in the

interactions modeled by them, as well as qualities that associate

semantics to these data, such as engineering units and unit scaling

information.

For the data definition within sdfProperty or sdfData, SDF borrows

some vocabulary proposed for the drafts 4 [JSO4] [JSO4V] and 7

[JSO7] [JSO7V] of the json-schema.org "JSON Schema" format

(collectively called JSO here), enhanced by qualities that are

specific to SDF. Details about the JSO-inspired vocabulary are in

Appendix C. For base SDF, data are constrained to be of simple types

(number, string, Boolean), JSON maps composed of named data, and

arrays of these types. Syntax extension points are provided that can

be used to provide richer types in a future extension of this

specification (possibly more of which can be borrowed from json-

schema.org).

Note that sdfProperty definitions (and sdfData definitions in

general) are not intended to constrain the formats of data used for

communication over network interfaces. Where needed, data

definitions for payloads of protocol messages are expected to be

part of the protocol binding.

¶

¶

¶

¶

¶

¶

¶

2.2.3. sdfAction

The sdfAction group contains declarations of Actions, model

affordances that, when triggered, have more effect than just

reading, updating, or observing Thing state, often resulting in some

outward physical effect (which, itself, cannot be modeled in SDF).

From a programmer's perspective, they might be considered to be

roughly analogous to method calls.

Actions may have data parameters; these are modeled as a single item

of input data and output data, each. (Where multiple parameters need

to be modeled, an "object" type can be used to combine these

parameters into one.) Actions may be long-running, that is to say

that the effects may not take place immediately as would be expected

for an update to an sdfProperty; the effects may play out over time

and emit action results. Actions may also not always complete and

may result in application errors, such as an item blocking the

closing of an automatic door.

One idiom for giving an action initiator status and control about

the ongoing action is to provide a URI for an ephemeral "action

resource" in the sdfAction output data, allowing the action to

deliver immediate feedback (including errors that prevent the action

from starting) and the action initiator to use the action resource

for further observation or modification of the ongoing action

(including canceling it). Base SDF does not provide any tailored

support for describing such action resources; an extension for

modeling links in more detail (for instance,

[I-D.bormann-asdf-sdftype-link]) may be all that is needed to fully

enable modeling them.

Actions may have (or lack) qualities of idempotence and side-effect

safety.

Base SDF only provides data constraint modeling and semantics for

the input and output data of definitions in sdfAction groups. Again,

data definitions for payloads of protocol messages, and detailed

protocol settings for invoking the action, are expected to be part

of the protocol binding.

2.2.4. sdfEvent

The sdfEvent group contains declarations of Events, which can model

affordances that inform about "happenings" associated with a Thing

modeled by the enclosing sdfObject; these may result in a signal

being stored or emitted as a result.

Note that there is a trivial overlap with sdfProperty state changes,

which may also be defined as events but are not generally required

to be defined as such. However, Events may exhibit certain ordering,

¶

¶

¶

¶

¶

¶

consistency, and reliability requirements that are expected to be

supported in various implementations of sdfEvent that do distinguish

sdfEvent from sdfProperty. For instance, while a state change may

simply be superseded by another state change, some events are

"precious" and need to be preserved even if further events follow.

Base SDF only provides data constraint modeling and semantics for

the output data of Event affordances. Again, data definitions for

payloads of protocol messages, and detailed protocol settings for

invoking the action, are expected to be part of the protocol

binding.

2.2.5. sdfData

Definitions in sdfData groups do not themselves specify affordances.

These definitions are provided separately from those in sdfProperty

groups to enable common modeling patterns, data constraints, and

semantic anchor concepts to be factored out for data items that make

up sdfProperty items and serve as input and output data for

sdfAction and sdfEvent items. The sdfData definitions only spring to

life by being referenced in one of these contexts (directly or

indirectly via some other sdfData definitions).

It is a common use case for such a data definition to be shared

between an sdfProperty item and input or output parameters of an

sdfAction or output data provided by an sdfEvent. sdfData

definitions also enable factoring out extended application data

types such as mode and machine state enumerations to be reused

across multiple definitions that have similar basic characteristics

and requirements.

2.2.6. sdfThing

Back at the top level, the sdfThing group enables definition of

models for complex devices that will use one or more sdfObject

definitions. Like sdfObject, sdfThing groups also allow for

including interaction affordances, sdfData, as well as "minItems"

and "maxItems" qualities. Therefore, they can be seen as a superset

of sdfObject groups, additionally allowing for composition.

As a result, an sdfThing directly or indirectly contains a set of

sdfProperty, sdfAction, and sdfEvent definitions that describe the

interaction affordances associated with some scope of functionality.

A definition in an sdfThing group can refine the metadata of the

definitions it is composed of: other definitions in sdfThing groups

or definitions in sdfObject groups.

¶

¶

¶

¶

¶

¶

¶

2.3. Member names: Given Names and Quality Names

SDF documents are JSON maps that mostly employ JSON maps as member

values, which in turn mostly employ JSON maps as their member

values, and so on. This nested structure of JSON maps creates a

tree, where the edges are the member names (map keys) used in these

JSON maps. (In certain cases, where member names are not needed,

JSON arrays may be interspersed in this tree.)

2.3.1. Given Names and Quality Names

For any particular JSON map in an SDF document, the set of member

names that are used is either of:

A set of "Quality Names", where the entries in the map are

Qualities. Quality Names are defined by the present specification

and its extensions, together with specific semantics to be

associated with the member value given with a certain Quality

Name.

A set of "Given Names", where the entries in the map are separate

entities (definitions, declarations, etc.) that each have names

that are chosen by the SDF document author in order that these

names can be employed by a user of that model.

In a path from the root of the tree to any leaf, Quality Names and

Given Names roughly alternate (with the information block,

Section 3.1, as a prominent exception).

The meaning of the JSON map that is the member value associated with

a Given Name is derived from the Quality Name that was used as the

member name associated to the parent. In the CDDL grammar given in

Appendix A, JSON maps with member names that are Given Names are

defined using the CDDL generic rule reference named<membervalues>,

where membervalues is in turn the structure of the member values of

the JSON map, i.e., the value of the member named by the Given Name.

As quality-named maps and given-named maps roughly alternate in a

path down the tree, membervalues is usually a map built from Quality

Names as keys.

2.3.2. Hierarchical Names

From the outside of a specification, Given Names are usually used as

part of a hierarchical name that looks like a JSON pointer

[RFC6901], itself generally rooted in (used as the fragment

identifier in) an outer namespace that looks like an https:// URL

(see Section 4).

¶

¶

*

¶

*

¶

¶

¶

¶

As Quality Names and Given Names roughly alternate in a path into

the model, the JSON pointer part of the hierarchical name also

alternates between Quality Names and Given Names.

Note that the actual Given Names may need to be encoded when

specified via the JSON pointer fragment identifier syntax, and that

there are two layers of such encoding: tilde encoding of ~ and / as

per Section 3 of [RFC6901], and then percent encoding of the tilde-

encoded name into a valid URI fragment as per Section 6 of

[RFC6901]. For example, when a model is using the Given Name

(with an embedded slash and a space) for an sdfObject, that

sdfObject may need to be referenced as

To sidestep potential interoperability problems, it is probably wise

to avoid characters in Given Names that need such encoding (Quality

Names are already defined in such a way that they never do).

2.3.3. Extensibility of Given Names and Quality Names

In SDF, both Quality Names and Given Names are extension points.

This is more obvious for Quality Names: Extending SDF is mostly done

by defining additional qualities. To enable non-conflicting third

party extensions to SDF, qualified names (names with an embedded

colon) can be used as Quality Names.

A nonqualified Quality Name is composed of ASCII letters, digits,

and $ signs, starting with a lower case letter or a $ sign (i.e.,

using a pattern of "[a-z$][A-Za-z$0-9]*"). Names with $ signs are

intended to be used for functions separate from most other names;

for instance, in this specification $comment is used for the comment

quality (the presence or absence of a $comment quality does not

change the meaning of the SDF model). Names that are composed of

multiple English words can use the "lowerCamelCase" convention

[CamelCase] for indicating the word boundaries; no other use is

intended for upper case letters in quality names.

A qualified Quality Name is composed of a Quality Name Prefix, a :

(colon) character, and a nonqualified Quality Name. Quality Name

Prefixes are registered in the "Quality Name Prefixes" sub-registry

in the "SDF Parameters" registry (Section 7.4.1); they are composed

of lower case ASCII letters and digits, starting with a lower case

ASCII letter (i.e., using a pattern of "[a-z][a-z0-9]*").

Given Names are not restricted by the formal SDF syntax. To enable

non-surprising name translations in tools, combinations of ASCII

¶

¶

 warning/danger alarm¶

¶

 #/sdfObject/warning~1danger%20alarm¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6901#section-3
https://rfc-editor.org/rfc/rfc6901#section-6

alphanumeric characters and - (ASCII hyphen/minus) are preferred,

typically employing kebab-case for names constructed out of multiple

words [KebabCase]. ASCII hyphen/minus can then unambiguously be

translated to an ASCII _ underscore character and back depending on

the programming environment. Some styles also allow a dot . in given

names. Given Names are often sufficiently self-explanatory that they

can be used in place of the label quality if that is not given. In

turn, if a given name turns out too complicated, a more elaborate

label can be given and the given name kept simple. Base SDF does not

address internationalization of given names.

Further, to enable Given Names to have a more powerful role in

building global hierarchical names, an extension is planned that

makes use of qualified names for Given Names. So, until that

extension is defined, Given Names with (one or more) embedded colons

are reserved and MUST NOT be used in an SDF document.

All names in SDF are case-sensitive.

3. SDF structure

SDF definitions are contained in SDF documents, together with data

about the SDF document itself (information block). Definitions and

declarations from additional SDF documents can be referenced;

together with the definitions and declarations in the referencing

SDF document they build the SDF model expressed by that SDF

document.

Each SDF document is represented as a single JSON map. This map has

three blocks: the information block, the namespaces block, and the

definitions block.

3.1. Information block

The information block contains generic metadata for the SDF document

itself and all included definitions. To enable tool integration, the

information block is optional in the grammar of SDF; most processes

for working with SDF documents will have policies that only SDF

documents with an info block can be processed. It is therefore

RECOMMENDED that SDF validator tools emit a warning when no

information block is found.

The keyword (map key) that defines an information block is "info".

Its value is a JSON map in turn, with a set of entries that

represent qualities that apply to the included definition.

Qualities of the information block are shown in Table 1.

¶

¶

¶

¶

¶

¶

¶

¶

Quality Type Required Description

title string no
A short summary to be displayed

in search results, etc.

description string no
Long-form text description (no

constraints)

version string no
The incremental version of the

definition

modified string no Time of the latest modification

copyright string no
Link to text or embedded text

containing a copyright notice

license string no
Link to text or embedded text

containing license terms

features
array of

strings
no List of extension features used

$comment string no
Source code comments only, no

semantics

Table 1: Qualities of the Information Block

The version quality is used to indicate version information about

the set of definitions in the SDF document. The version is

RECOMMENDED to be lexicographically increasing over the life of a

model: a newer model always has a version string that string-

compares higher than all previous versions. This is easily achieved

by following the convention to start the version with an [RFC3339]

date-time or, if new versions are generated less frequently than

once a day, just the full-date (i.e., YYYY-MM-DD); in many cases,

that will be all that is needed (see Figure 1 for an example). This

specification does not give a strict definition for the format of

the version string but each using system or organization should

define internal structure and semantics to the level needed for

their use. If no further details are provided, a date-time or full-

date in this field can be assumed to indicate the latest update time

of the definitions in the SDF document.

The modified quality can be used with a value using [RFC3339] date-

time (with Z for time-zone) or full-date format to express time of

the latest revision of the definitions.

The license string is preferably either a URI that points to a web

page with an unambiguous definition of the license, or an [SPDX]

license identifier. (As an example, for models to be handled by the

One Data Model liaison group, this license identifier will typically

be "BSD-3-Clause".)

The features quality can be used to list names of critical (i.e.,

cannot be safely ignored) SDF extension features that need to be

understood for the definitions to be properly processed. Extension

feature names will be specified in extension documents.

¶

¶

¶

¶

3.2. Namespaces block

The namespaces block contains the namespace map and the

defaultNamespace setting.

The namespace map is a map from short names for URIs to the

namespace URIs themselves.

The defaultNamespace setting selects one of the entries in the

namespace map by giving its short name. The associated URI (value of

this entry) becomes the default namespace for the SDF document.

Quality Type Required Description

namespace map no

Defines short names mapped to

namespace URIs, to be used as

identifier prefixes

defaultNamespace string no

Identifies one of the prefixes in

the namespace map to be used as a

default in resolving identifiers

Table 2: Namespaces Block

The following example declares a set of namespaces and defines cap

as the default namespace. By convention, the values in the namespace

map contain full URIs without a fragment identifier, and the

fragment identifier is then added, if needed, where the namespace

entry is used.

If no defaultNamespace setting is given, the SDF document does not

contribute to a global namespace (all definitions remain local to

the model and are not accessible for re-use by other models). As the

defaultNamespace is set by giving a namespace short name, its

presence requires a namespace map that contains a mapping for that

namespace short name.

If no namespace map is given, no short names for namespace URIs are

set up, and no defaultNamespace can be given.

3.3. Definitions block

The Definitions block contains one or more groups, each identified

by a Class Name Keyword (there can only be one group per keyword;

the actual grouping is just a shortcut and does not carry any

specific semantics). The value of each group is a JSON map, the keys

¶

¶

¶

¶

"namespace": {

 "cap": "https://example.com/capability/cap",

 "zcl": "https://zcl.example.com/sdf"

},

"defaultNamespace": "cap"

¶

¶

¶

of which serve for naming the individual definitions in this group,

and the corresponding values provide a set of qualities (name-value

pairs) for the individual definition. (In short, we speak of the map

entries as "named sets of qualities".)

Each group may contain zero or more definitions. Each identifier

defined creates a new type and term in the target namespace.

Declarations have a scope of the definition block they are directly

contained in.

A definition may in turn contain other definitions. Each definition

is a named set of qualities, i.e., it consists of the newly defined

identifier and a set of key-value pairs that represent the defined

qualities and contained definitions.

An example for an sdfObject definition is given in Figure 3:

Figure 3: Example sdfObject definition

This example defines an sdfObject "foo" that is defined in the

default namespace (full address: #/sdfObject/foo), containing a

property that can be addressed as #/sdfObject/foo/sdfProperty/bar,

with data of type boolean.

Often, definitions are also declarations: the definition of the

entry "bar" in the property "foo" means that data corresponding to

the "foo" property in a property interaction offered by Thing can

have zero or one components modeled by "bar". Entries within

sdfProperty, sdfAction, and sdfEvent, in turn within sdfObject or

sdfThing entries, are declarations; entries within sdfData are not.

Similarly, sdfObject or sdfThing entries within an sdfThing

definition specify that the interactions offered by a Thing modeled

by this sdfThing include the interactions modeled by the nested

sdfObject or sdfThing.

3.4. Top-level Affordances and sdfData

Besides their placement within an sdfObject or sdfThing, affordances

(i.e., sdfProperty, sdfAction, and sdfEvent) as well as sdfData can

¶

¶

¶

¶

"sdfObject": {

 "foo": {

 "sdfProperty": {

 "bar": {

 "type": "boolean"

 }

 }

 }

}

¶

¶

also be placed at the top level of an SDF document. Since they are

not associated with an sdfObject or sdfThing, these kinds of

definitions are intended to be re-used via the sdfRef mechanism (see

Section 4.4).

4. Names and namespaces

SDF documents may contribute to a global namespace, and may

reference elements from that global namespace. (An SDF document that

does not set a defaultNamespace does not contribute to a global

namespace.)

4.1. Structure

Global names look exactly like https:// URIs with attached fragment

identifiers.

There is no intention to require that these URIs can be

dereferenced. (However, as future extensions of SDF might find a use

for dereferencing global names, the URI should be chosen in such a

way that this may become possible in the future. See also

[I-D.bormann-t2trg-deref-id] for a discussion of dereferenceable

identifiers.)

The absolute URI of a global name should be a URI as per Section 3

of [RFC3986], with a scheme of "https" and a path (hier-part in

[RFC3986]). For base SDF, the query part should not be used (it

might be used in extensions).

The fragment identifier is constructed as per Section 6 of

[RFC6901].

4.2. Contributing global names

The fragment identifier part of a global name defined in an SDF

document is constructed from a JSON pointer that selects the element

defined for this name in the SDF document.

The absolute URI part is a copy of the default namespace, i.e., the

default namespace is always the target namespace for a name for

which a definition is contributed. When emphasizing that name

definitions are contributed to the default namespace, we therefore

also call it the "target namespace" of the SDF document.

For instance, in Figure 1, definitions for the following global

names are contributed:

https://example.com/capability/cap#/sdfObject/Switch

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

https://rfc-editor.org/rfc/rfc3986#section-3
https://rfc-editor.org/rfc/rfc6901#section-6

https://example.com/capability/cap#/sdfObject/Switch/sdfProperty/

value

https://example.com/capability/cap#/sdfObject/Switch/sdfAction/on

https://example.com/capability/cap#/sdfObject/Switch/sdfAction/

off

Note the #, which separates the absolute-URI part (Section 4.3 of

[RFC3986]) from the fragment identifier part.

4.3. Referencing global names

A name reference takes the form of the production curie in

[W3C.NOTE-curie-20101216] (note that this excludes the production

safe-curie), but also limiting the IRIs involved in that production

to URIs as per [RFC3986] and the prefixes to ASCII characters

[RFC0020].

A name that is contributed by the current SDF document can be

referenced by a Same-Document Reference as per Section 4.4 of

[RFC3986]. As there is little point in referencing the entire SDF

document, this will be a # followed by a JSON pointer. This is the

only kind of name reference to itself that is possible in an SDF

document that does not set a default namespace.

Name references that point outside the current SDF document need to

contain curie prefixes. These then reference namespace declarations

in the namespaces block.

For example, if a namespace prefix is defined:

Then this reference to that namespace:

references the global name:

Note that there is no way to provide a URI scheme name in a curie,

so all references to outside of the document need to go through the

namespace map.

*

¶

* ¶

*

¶

¶

¶

¶

¶

¶

"namespace": {

 "foo": "https://example.com/"

}

¶

¶

"sdfRef": "foo:#/sdfData/temperatureData"¶

¶

"https://example.com/#/sdfData/temperatureData"¶

¶

https://rfc-editor.org/rfc/rfc3986#section-4.3
https://rfc-editor.org/rfc/rfc3986#section-4.4

Name references occur only in specific elements of the syntax of

SDF:

copying elements via sdfRef values

pointing to elements via sdfRequired value elements

4.4. sdfRef

In a JSON map establishing a definition, the keyword sdfRef is used

to copy all of the qualities and enclosed definitions of the

referenced definition, indicated by the included name reference,

into the newly formed definition. (This can be compared to the

processing of the $ref keyword in [JSO7].)

For example, this reference:

creates a new definition "temperatureProperty" that contains all of

the qualities defined in the definition at /sdfData/temperatureData.

The sdfRef member need not be the only member of a map. Additional

members may be present with the intention to override parts of the

referenced map or to add new qualities or definitions.

When processing sdfRef, if the target definition contains also

sdfRef (i.e., is based on yet another definition), that MUST be

processed as well.

More formally, for a JSON map that contains an sdfRef member, the

semantics is defined to be as if the following steps were performed:

The JSON map that contains the sdfRef member is copied into a

variable named "patch".

The sdfRef member of the copy in "patch" is removed.

the JSON pointer that is the value of the sdfRef member is

dereferenced and the result is copied into a variable named

"original".

The JSON Merge Patch algorithm [RFC7396] is applied to patch

the contents of "original" with the contents of "patch".

The result of the Merge Patch is used in place of the value of

the original JSON map.

¶

* ¶

* ¶

¶

¶

"temperatureProperty": {

 "sdfRef": "#/sdfData/temperatureData"

}

¶

¶

¶

¶

¶

1.

¶

2. ¶

3.

¶

4.

¶

5.

¶

Note that the formal syntaxes given in Appendices A and B generally

describe the result of applying a merge-patch; the notations are not

powerful enough to describe, for instance, the effect of null values

given with the sdfRef to remove members of JSON maps from the

referenced target. Nonetheless, the syntaxes also give the syntax of

the sdfRef itself, which vanishes during the resolution; in many

cases therefore even merge-patch inputs will validate with these

formal syntaxes.

Given the example (Figure 1), and the following definition:

The resulting definition of the "BasicSwitch" sdfObject would be

identical to the definition of the "Switch" sdfObject except it

would not contain the "toggle" Action.

¶

¶

{

 "info": {

 "title": "Example light switch using sdfRef"

 },

 "namespace": {

 "cap": "https://example.com/capability/cap"

 },

 "defaultNamespace": "cap",

 "sdfObject": {

 "BasicSwitch": {

 "sdfRef": "cap:#/sdfObject/Switch",

 "sdfAction": {

 "toggle": null

 }

 }

 }

}

¶

¶

4.4.1. Resolved models

A model where all sdfRef references are processed as described in

Section 4.4 is called a resolved model.

For example, given the following sdfData definitions:

{

 "info": {

 "title": "Example light switch using sdfRef"

 },

 "namespace": {

 "cap": "https://example.com/capability/cap"

 },

 "defaultNamespace": "cap",

 "sdfObject": {

 "BasicSwitch": {

 "sdfProperty": {

 "value": {

 "description":

"The state of the switch; false for off and true for on.",

 "type": "boolean"

 }

 },

 "sdfAction": {

 "on": {

 "description":

"Turn the switch on; equivalent to setting value to true."

 },

 "off": {

 "description":

"Turn the switch off; equivalent to setting value to false."

 }

 }

 }

 }

}

¶

¶

¶

After resolving the definitions would look as follows:

4.5. sdfRequired

The keyword sdfRequired is provided to apply a constraint that

defines for which declarations the corresponding data are mandatory

in a Thing modeled by the current definition.

The value of sdfRequired is an array of references, each indicating

one or more declarations that are mandatory to be represented.

References in this array can be SDF names (JSON Pointers), or one of

two abbreviated reference formats:

a text string with a "referenceable-name", i.e., an affordance

name or grouping name. All affordance declarations that are

directly (i.e., not nested further in another grouping) in the

same grouping and that carry this name (there can be multiple

"sdfData": {

 "Coordinate" : {

 "type": "number", "unit": "m"

 },

 "X-Coordinate" : {

 "sdfRef" : "#/sdfData/Coordinate",

 "description":

"Distance from the base of the Thing along the X axis."

 },

 "Non-neg-X-Coordinate" : {

 "sdfRef": "#/sdfData/X-Coordinate",

 "minimum": 0

 }

}

¶

¶

"sdfData": {

 "Coordinate" : {

 "type": "number", "unit": "m"

 },

 "X-Coordinate" : {

 "description":

"Distance from the base of the Thing along the X axis.",

 "type": "number", "unit": "m"

 },

 "Non-neg-X-Coordinate" : {

 "description":

"Distance from the base of the Thing along the X axis.",

 "minimum": 0, "type": "number", "unit": "m"

 }

}

¶

¶

¶

¶

*

ones, one per affordance type) are declared to be mandatory to be

represented. The same applies for groupings made mandatory within

groupings containing them.

the Boolean value true. The affordance/grouping itself that

carries the sdfRequired keyword is declared to be mandatory to be

represented.

Note that referenceable-names are not subject to the encoding JSON

pointers require as discussed in Section 2.3.2. To ensure that

referenceable-names are reliably distinguished from JSON pointers,

they are defined such that they cannot contain ":" or "#" characters

(see rule referenceable-name in Appendix A). (If these characters

are indeed contained in a Given Name, a JSON pointer needs to be

formed instead in order to reference it in "sdfRequired",

potentially requiring further path elements as well as JSON pointer

encoding. The need for this is best avoided by choosing Given Names

without these characters.)

The example in Figure 4 shows two required elements in the sdfObject

definition for "temperatureWithAlarm", the sdfProperty

"currentTemperature", and the sdfEvent "overTemperatureEvent". The

example also shows the use of JSON pointer with "sdfRef" to use a

pre-existing definition in this definition, for the "alarmType" data

(sdfOutputData) produced by the sdfEvent "overTemperatureEvent".

¶

*

¶

¶

¶

Figure 4: Using sdfRequired

In Figure 4, the same sdfRequired can also be represented in short

form:

Or, for instance "overTemperatureEvent" could carry

"sdfObject": {

 "temperatureWithAlarm": {

 "sdfRequired": [

"#/sdfObject/temperatureWithAlarm/sdfProperty/currentTemperature",

"#/sdfObject/temperatureWithAlarm/sdfEvent/overTemperatureEvent"

],

 "sdfData":{

 "temperatureData": {

 "type": "number"

 }

 },

 "sdfProperty": {

 "currentTemperature": {

"sdfRef": "#/sdfObject/temperatureWithAlarm/sdfData/temperatureData"

 }

 },

 "sdfEvent": {

 "overTemperatureEvent": {

 "sdfOutputData": {

 "type": "object",

 "properties": {

 "alarmType": {

 "sdfRef": "cap:#/sdfData/alarmTypes/quantityAlarms",

 "const": "OverTemperatureAlarm"

 },

 "temperature": {

"sdfRef": "#/sdfObject/temperatureWithAlarm/sdfData/temperatureData"

 }

 }

 }

 }

 }

 }

}

¶

 "sdfRequired": ["currentTemperature", "overTemperatureEvent"]¶

¶

 "overTemperatureEvent": {

 "sdfRequired": [true],

 "...": "..."

 }

¶

4.6. Common Qualities

Definitions in SDF share a number of qualities that provide metadata

for them. These are listed in Table 3. None of these qualities are

required or have default values that are assumed if the quality is

absent. If a label is required for an application and no label is

given in the SDF model, the last part (reference-token, Section 3 of

[RFC6901]) of the JSON pointer to the definition can be used.

Quality Type Description

description string long text (no constraints)

label string short text (no constraints)

$comment string source code comments only, no semantics

sdfRef sdf-pointer (see Section 4.4)

sdfRequired
pointer-

list

(see Section 4.5, used in affordances or

groupings)

Table 3: Common Qualities

4.7. Data Qualities

Data qualities are used in sdfData and sdfProperty definitions,

which are named sets of data qualities (abbreviated as named-sdq).

Appendix C lists data qualities inspired by the various proposals at

json-schema.org; the intention is that these (information model

level) qualities are compatible with the (data model) semantics from

the versions of the json-schema.org proposal they were imported

from.

Table 4 lists data qualities defined specifically for the present

specification.

Quality Type Description Default

(common) Section 4.6

unit string unit name (note 1) N/A

nullable boolean

indicates a null value

is available for this

type

true

contentFormat string

content type (IANA

media type string plus

parameters), encoding

(note 2)

N/A

sdfType
string

(Section 4.7.1)

sdfType enumeration

(extensible)
N/A

sdfChoice

named set of data

qualities

(Section 4.7.2)

named alternatives N/A

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6901#section-3

Quality Type Description Default

enum array of strings

abbreviation for

string-valued named

alternatives

N/A

Table 4: SDF-defined Qualities of sdfData

Note that the quality unit was called units in earlier drafts

of SDF. The unit name SHOULD be as per the SenML Units Registry

or the Secondary Units Registry in [IANA.senml] as specified by

Sections 4.5.1 and 12.1 of [RFC8428] and Section 3 of

[RFC8798], respectively.

Exceptionally, if a registration in these registries cannot be

obtained or would be inappropriate, the unit name can also be a

URI that is pointing to a definition of the unit. Note that SDF

processors are not expected to (and normally SHOULD NOT)

dereference these URIs (see also [I-D.bormann-t2trg-deref-id]);

they may be useful to humans, though. A URI unit name is

distinguished from a registered unit name by the presence of a

colon; any registered unit names that contain a colon (at the

time of writing, none) can therefore not be used in SDF.

For use by translators into ecosystems that require URIs for

unit names, the URN sub-namespace "urn:ietf:params:unit" is

provided (Section 7.3); URNs from this sub-namespace MUST NOT

be used in a unit quality, in favor of simply notating the unit

name (such as kg instead of urn:ietf:params:unit:kg).

The contentFormat quality follows the Content-Format-Spec as

defined in Section 6 of [RFC9193], allowing for expressing both

numeric and string based Content-Formats.

4.7.1. sdfType

SDF defines a number of basic types beyond those provided by JSON or

JSO. These types are identified by the sdfType quality, which is a

text string from a set of type names defined by the "sdfType values"

sub-registry in the "SDF Parameters" registry (Section 7.4.2). The

sdfType name is composed of lower case ASCII letters, digits, and -

(ASCII hyphen/minus) characters, starting with a lower case ASCII

letter (i.e., using a pattern of "[a-z][-a-z0-9]*"), typically

employing kebab-case for names constructed out of multiple words

[KebabCase].

To aid interworking with JSO implementations, it is RECOMMENDED that

sdfType is always used in conjunction with the type quality

inherited from [JSO7V], in such a way as to yield a common

representation of the type's values in JSON.

1.

¶

¶

¶

2.

¶

¶

¶

https://rfc-editor.org/rfc/rfc8428#senml-units
https://rfc-editor.org/rfc/rfc8798#secondary-units
https://rfc-editor.org/rfc/rfc8428#section-4.5.1
https://rfc-editor.org/rfc/rfc8428#section-12.1
https://rfc-editor.org/rfc/rfc8798#section-3
https://rfc-editor.org/rfc/rfc9193#section-6

Values for sdfType that are defined in this specification are shown

in Table 5. This table also gives a description of the semantics of

the sdfType, the conventional value for type to be used with the

sdfType value, and a conventional JSON representation for values of

the type.

sdfType Description type JSON Representation

byte-

string

A sequence of zero

or more bytes
string

base64url without padding

(Section 3.4.5.2 of [RFC8949])

unix-

time

A point in civil

time (note 1)
number

POSIX time (Section 3.4.2 of

[RFC8949])

Table 5: Values defined in base SDF for the sdfType quality

(1) Note that the definition of unix-time does not imply the

capability to represent points in time that fall on leap seconds.

More date/time-related sdfTypes are likely to be added in the

sdfType value registry.

(In earlier drafts of this specification, a similar concept was

called subtype.)

4.7.2. sdfChoice

Data can be a choice of named alternatives, called sdfChoice. Each

alternative is identified by a name (string, key in the outer JSON

map used to represent the overall choice) and a set of dataqualities

(each in an inner JSON map, the value used to represent the

individual alternative in the outer JSON map). Dataqualities that

are specified at the same level as the sdfChoice apply to all

choices in the sdfChoice, except those specific choices where the

dataquality is overridden at the choice level.

sdfChoice merges the functions of two constructs found in [JSO7V]:

enum

What would have been

in earlier drafts of this specification, is often best

represented as:

¶

¶

¶

¶

¶

* ¶

¶

"enum": ["foo", "bar", "baz"]¶

¶

"sdfChoice": {

 "foo": { "description": "This is a foonly"},

 "bar": { "description":

"As defined in the second world congress"},

 "baz": { "description": "From zigbee foobaz"}

}

¶

https://rfc-editor.org/rfc/rfc8949#section-3.4.5.2
https://rfc-editor.org/rfc/rfc8949#section-3.4.2

This allows the placement of other dataqualities such as

description in the example.

If an enum needs to use a data type different from text string,

what would for instance have been:

in earlier drafts of this specification, is represented as:

where the string names obviously would be chosen in a way that is

descriptive for what these numbers actually stand for; sdfChoice

also makes it easy to add number ranges into the mix.

(Note that const can also be used for strings as in the previous

example, for instance, if the actual string value is indeed a

crucial element for the data model.)

anyOf

JSO provides a type union called anyOf, which provides a choice

between anonymous alternatives.

What could have been in JSO:

can be more descriptively notated in SDF as:

¶

¶

"type": "number",

"enum": [1, 2, 3]

¶

¶

"type": "number",

"sdfChoice": {

 "a-better-name-for-alternative-1": { "const": 1 },

 "alternative-2": { "const": 2 },

 "the-third-alternative": { "const": 3 }

}

¶

¶

¶

* ¶

¶

¶

"anyOf": [

 {"type": "array", "minItems": 3, "maxItems": "3",

 "items": {"$ref": "#/sdfData/rgbVal"}},

 {"type": "array", "minItems": 4, "maxItems": "4",

 "items": {"$ref": "#/sdfData/cmykVal"}}

]

¶

¶

"sdfChoice": {

 "rgb": {"type": "array", "minItems": 3, "maxItems": "3",

 "items": {"sdfRef": "#/sdfData/rgbVal"}},

 "cmyk": {"type": "array", "minItems": 4, "maxItems": "4",

 "items": {"sdfRef": "#/sdfData/cmykVal"}}

}

¶

Note that there is no need in SDF for the type intersection

construct allOf or the peculiar type-xor construct oneOf found in

[JSO7V].

As a simplification for users of SDF models who are accustomed to

the JSO enum keyword, this is retained, but limited to a choice of

text string values, such that

is syntactic sugar for

In a single definition, the keyword enum cannot be used at the same

time as the keyword sdfChoice, as the former is just syntactic sugar

for the latter.

5. Keywords for definition groups

The following SDF keywords are used to create definition groups in

the target namespace. All these definitions share some common

qualities as discussed in Section 4.6.

5.1. sdfObject

The sdfObject keyword denotes a group of zero or more sdfObject

definitions. sdfObject definitions may contain or include

definitions of Properties, Actions, Events declared for the

sdfObject, as well as data types (sdfData group) to be used in this

or other sdfObjects.

The qualities of an sdfObject include the common qualities,

additional qualities are shown in Table 6. None of these qualities

are required or have default values that are assumed if the quality

is absent.

Quality Type Description

(common) Section 4.6

sdfProperty property
zero or more named property definitions for

this sdfObject

sdfAction action
zero or more named action definitions for

this sdfObject

sdfEvent event
zero or more named event definitions for this

sdfObject

¶

¶

"enum": ["foo", "bar", "baz"]¶

¶

"sdfChoice": {

 "foo": { "const": "foo"},

 "bar": { "const": "bar"},

 "baz": { "const": "baz"}

}

¶

¶

¶

¶

¶

Quality Type Description

sdfData
named-

sdq

zero or more named data type definitions that

might be used in the above

minItems number
(array) Minimum number of multiplied

affordances in array

maxItems number
(array) Maximum number of multiplied

affordances in array

Table 6: Qualities of sdfObject

5.2. sdfProperty

The sdfProperty keyword denotes a group of zero or more Property

definitions.

Properties are used to model elements of state.

The qualities of a Property definition include the data qualities

(and thus the common qualities), see Section 4.7, additional

qualities are shown in Table 7.

Quality Type Description Default

(data) Section 4.7

readable boolean Reads are allowed true

writable boolean Writes are allowed true

observable boolean
flag to indicate asynchronous

notification is available
true

Table 7: Qualities of sdfProperty

5.3. sdfAction

The sdfAction keyword denotes a group of zero or more Action

definitions.

Actions are used to model commands and methods which are invoked.

Actions have parameter data that are supplied upon invocation.

The qualities of an Action definition include the common qualities,

additional qualities are shown in Table 8.

Quality Type Description

(common) Section 4.6

sdfInputData map
data qualities of the input data for an

Action

sdfOutputData map
data qualities of the output data for an

Action

sdfData
named-

sdq

zero or more named data type definitions

that might be used in the above

¶

¶

¶

¶

¶

¶

Table 8: Qualities of sdfAction

sdfInputData defines the input data of the action. sdfOutputData

defines the output data of the action. As discussed in

Section 2.2.3, a set of data qualities with type "object" can be

used to substructure either data item, with optionality indicated by

the data quality required.

5.4. sdfEvent

The sdfEvent keyword denotes zero or more Event definitions.

Events are used to model asynchronous occurrences that may be

communicated proactively. Events have data elements which are

communicated upon the occurrence of the event.

The qualities of sdfEvent include the common qualities, additional

qualities are shown in Table 9.

Quality Type Description

(common) Section 4.6

sdfOutputData map
data qualities of the output data for an

Event

sdfData
named-

sdq

zero or more named data type definitions

that might be used in the above

Table 9: Qualities of sdfEvent

sdfOutputData defines the output data of the action. As discussed in

Section 2.2.4, a set of data qualities with type "object" can be

used to substructure the output data item, with optionality

indicated by the data quality required.

5.5. sdfData

The sdfData keyword denotes a group of zero or more named data type

definitions (named-sdq).

An sdfData definition provides a reusable semantic identifier for a

type of data item and describes the constraints on the defined type.

It is not itself a declaration, i.e., it does not cause any of these

data items to be included in an affordance definition.

The qualities of sdfData include the data qualities (and thus the

common qualities), see Section 4.7.

¶

¶

¶

¶

¶

¶

¶

¶

6. High Level Composition

The requirements for high level composition include the following:

The ability to represent products, standardized product types,

and modular products while maintaining the atomicity of

sdfObjects.

The ability to compose a reusable definition block from

sdfObjects, for example a single plug unit of an outlet strip

with on/off control, energy monitor, and optional dimmer

sdfObjects, while retaining the atomicity of the individual

sdfObjects.

The ability to compose sdfObjects and other definition blocks

into a higher level sdfThing that represents a product, while

retaining the atomicity of sdfObjects.

The ability to enrich and refine a base definition to have

product-specific qualities and quality values, such as unit,

range, and scale settings.

The ability to reference items in one part of a complex

definition from another part of the same definition, for example

to summarize the energy readings from all plugs in an outlet

strip.

6.1. Paths in the model namespaces

The model namespace is organized according to terms that are defined

in the SDF documents that contribute to the namespace. For example,

definitions that originate from an organization or vendor are

expected to be in a namespace that is specific to that organization

or vendor.

The structure of a path in a namespace is defined by the JSON

Pointers to the definitions in the SDF documents in that namespace.

For example, if there is an SDF document defining an sdfObject

"Switch" with an action "on", then the reference to the action would

be "ns:/sdfObject/Switch/sdfAction/on" where ns is the namespace

prefix (short name for the namespace).

6.2. Modular Composition

Modular composition of definitions enables an existing definition

(could be in the same or another SDF document) to become part of a

new definition by including a reference to the existing definition

within the model namespace.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

6.2.1. Use of the "sdfRef" keyword to re-use a definition

An existing definition may be used as a template for a new

definition, that is, a new definition is created in the target

namespace which uses the defined qualities of some existing

definition. This pattern will use the keyword sdfRef as a quality of

a new definition with a value consisting of a reference to the

existing definition that is to be used as a template.

In the definition that uses sdfRef, new qualities may be added and

existing qualities from the referenced definition may be overridden.

(Note that JSON maps do not have a defined order, so the SDF

processor may see these overrides before seeing the sdfRef.)

Note that if the referenced definition contains qualities or

definitions that are not valid in the context where the sdfRef is

used (for instance, if an sdfThing definition would be added in an

sdfObject definition), the resulting model, when resolved, may be

invalid.

As a convention, overrides are intended to be used only for further

restricting the set of data values, as shown in Figure 5: any value

for a cable-length also is a valid value for a length, with the

additional restriction that the length cannot be smaller than 5 cm.

(This is labeled as a convention as it cannot be checked in the

general case; a quality of implementation consideration for a tool

might be to provide at least some form of checking.) Note that a

description is provided that overrides the description of the

referenced definition; as this quality is intended for human

consumption there is no conflict with the intended goal.

Figure 5

¶

¶

¶

¶

"sdfData":

 "length" : {

 "type": "number",

 "minimum": 0,

 "unit": "m"

 "description": "There can be no negative lengths."

 }

...

 "cable-length" : {

 "sdfRef": "#/sdfData/length"

 "minimum": 5e-2,

 "description": "Cables must be at least 5 cm."

 }

6.3. sdfThing

An sdfThing is a set of declarations and qualities that may be part

of a more complex model. For example, the sdfObject declarations

that make up the definition of a single socket of an outlet strip

could be encapsulated in an sdfThing, which itself could be used in

a declaration in the sdfThing definition for the outlet strip (see

Figure 6 in Appendix D.1 for an example SDF model).

sdfThing definitions carry semantic meaning, such as a defined

refrigerator compartment and a defined freezer compartment, making

up a combination refrigerator-freezer product. An sdfThing may be

composed of sdfObjects and other sdfThings. It can also contain

sdfData definitions, as well as declarations of interaction

affordances itself, such as a status (on/off) for the refrigerator-

freezer as a whole (see Figure 7 in Appendix D.2 for an example SDF

model illustrating these aspects).

The qualities of sdfThing are shown in Table 10. Analogous to

sdfObject, the presence of one or both of the optional qualities

"minItems" and "maxItems" defines the sdfThing as an array.

Quality Type Description

(common) Section 4.6

sdfThing thing

sdfObject object

sdfProperty property
zero or more named property definitions for

this thing

sdfAction action
zero or more named action definitions for

this thing

sdfEvent event
zero or more named event definitions for this

thing

sdfData
named-

sdq

zero or more named data type definitions that

might be used in the above

minItems number
(array) Minimum number of multiplied

affordances in array

maxItems number
(array) Maximum number of multiplied

affordances in array

Table 10: Qualities of sdfThing

7. IANA Considerations

RFC Ed.: throughout this section, please replace RFC XXXX with this

RFC number, and remove this note.

¶

¶

¶

¶

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

File extension(s):

Windows Clipboard Name:

Macintosh file type code(s):

Macintosh Universal Type Identifier code:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author/Change controller:

Provisional registration:

7.1. Media Type

IANA is requested to add the following Media-Type to the "Media

Types" registry.

Name Template Reference

sdf+json application/sdf+json RFC XXXX, Section 7.1

Table 11: Media Type Registration for SDF

application

sdf+json

none

none

binary (JSON is UTF-8-encoded text)

Section 8 of RFC XXXX

none

Section 7.1 of RFC XXXX

Tools for data and

interaction modeling in the Internet of Things and related

environments

A JSON Pointer fragment

identifier may be used, as defined in Section 6 of [RFC6901].

n/a

.sdf.json

"Semantic Definition Format (SDF) for

Data and Interactions of Things"

n/a

org.ietf.sdf-json

conforms to public.text

ASDF WG

mailing list (asdf@ietf.org), or IETF Applications and Real-Time

Area (art@ietf.org)

COMMON

none

IETF

no

7.2. Content-Format

This document adds the following Content-Format to the "CoAP

Content-Formats", within the "Constrained RESTful Environments

(CoRE) Parameters" registry, where TBD1 comes from the "IETF Review"

256-999 range.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6901#section-6

Registry name:

Specification:

Repository:

Index value:

Prefix:

Contact:

Content Type Content Coding ID Reference

application/sdf+json - TBD1 RFC XXXX

Table 12: SDF Content-format Registration

// RFC Ed.: please replace TBD1 with the assigned ID, remove the

requested range, and remove this note.

// RFC Ed.: please replace RFC XXXX with this RFC number and remove

this note.

7.3. IETF URN Sub-namespace for Unit Names (urn:ietf:params:unit)

IANA is requested to register the following value in the

"IETF URN Sub-namespace for Registered Protocol Parameter Identifiers"

registry in [IANA.params], following the template in [RFC3553]:

unit

RFC XXXX

combining the symbol values from the SenML Units

Registry and the Secondary Units Registry in [IANA.senml] as

specified by Sections 4.5.1 and 12.1 of [RFC8428] and Section 3

of [RFC8798], respectively (which by the registration policy are

guaranteed to be non-overlapping).

Percent-encoding (Section 2.1 of [RFC3986]) is

required of any characters in unit names as required by ABNF rule

"pchar" in Section 3.3 of [RFC3986], specifically at the time of

writing for the unit names "%" (deprecated in favor of "/"),

"%RH", "%EL".

7.4. Registries

IANA is requested to create an "SDF Parameters" registry, with the

sub-registries defined in this Section.

7.4.1. Quality Name Prefixes

IANA is requested to create a "Quality Name Prefixes" sub-registry

in the "SDF Parameters" registry, with the following template:

A name composed of lower case ASCII letters and digits,

starting with a lower case ASCII letter (i.e., using a pattern of

"[a-z][a-z0-9]*").

A contact point for the organization that assigns quality

names with this prefix.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/params#params-1
https://www.iana.org/assignments/senml#senml-units
https://www.iana.org/assignments/senml#secondary-units
https://rfc-editor.org/rfc/rfc8428#section-4.5.1
https://rfc-editor.org/rfc/rfc8428#section-12.1
https://rfc-editor.org/rfc/rfc8798#section-3
https://rfc-editor.org/rfc/rfc3986#section-2.1
https://rfc-editor.org/rfc/rfc3986#section-3.3

Name:

Description:

type:

JSON Representation

Reference:

Quality Name Prefixes are intended to be registered by organizations

that intend to define quality names constructed with an

organization-specifix prefix (Section 2.3.3).

The registration policy is Expert Review as per Section 4.5 of

[BCP26]. The instructions to the Expert are to ascertain that the

organization will handle quality names constructed using their

prefix in a way that roughly achieves the objectives for an IANA

registry that support interoperability of SDF models employing these

quality names, including:

Stability, "stable and permanent";

Transparency, "readily available", "in sufficient detail"

(Section 4.6 of [BCP26]).

The Expert will take into account that other organizations operate

in different ways than the IETF, and that as a result some of these

overall objectives will be achieved in a different way and to a

different level of comfort.

The "Quality Name Prefixes" sub-registry starts out empty.

7.4.2. sdfType Values

IANA is requested to create a "sdfType values" sub-registry in the

"SDF Parameters" registry, with the following template:

A name composed of lower case ASCII letters, digits and -

(ASCII hyphen/minus) characters, starting with a lower case ASCII

letter (i.e., using a pattern of "[a-z][-a-z0-9]*").

A short description of the information model level

structure and semantics

The value of the quality "type" to be used with this sdfType

A short description of a JSON representation

that can be used for this sdfType. This MUST be consistent with

the type.

A more detailed specification of meaning and use of

sdfType.

sdfType values are intended to be registered to enable modeling

additional SDF-specific types (see Section 4.7.1).

The registration policy is Specification Required as per Section 4.6

of [BCP26]. The instructions to the Expert are to ascertain that the

specification provides enough detail to enable interoperability

¶

¶

* ¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8126#section-4.5
https://rfc-editor.org/rfc/rfc8126#section-4.6
https://rfc-editor.org/rfc/rfc8126#section-4.6

between implementations of the sdfType being registered, and that

names are chosen with enough specificity that ecosystem-specific

sdfTypes will not be confused with more generally applicable ones.

The initial set of registrations is described in Table 13.

Name Description type
JSON

Representation
Reference

byte-

string

A sequence of

zero or more

bytes

string
base64url

without padding

Section 3.4.5.2

of [RFC8949]

unix-

time

A point in

civil time
number POSIX time

Section 3.4.2 of

[RFC8949]

Table 13: Initial set of sdfType values

8. Security Considerations

Some wider security considerations applicable to Things are

discussed in [RFC8576]. Section 5 of [RFC8610] gives an overview

over security considerations that arise when formal description

techniques are used to govern interoperability; analogs of these

security considerations can apply to SDF.

The security considerations of underlying building blocks such as

those detailed in Section 10 of [RFC3629] apply. SDF uses JSON as a

representation language; for a number of cases [RFC8259] indicates

that implementation behavior for certain constructs allowed by the

JSON grammar is unpredictable. Implementations need to be robust

against invalid or unpredictable cases on input, preferably by

rejecting input that is invalid or that would lead to unpredictable

behavior, and need to avoid generating these cases on output.

Implementations of model languages may also exhibit performance-

related availability issues when the attacker can control the input,

see Section 4.1 of [I-D.ietf-jsonpath-base] for a brief discussion.

SDF may be used in two processes that are often security relevant:

model-based validation of data that is intended to be described by

SDF models, and model-based augmentation of these data with

information obtained from the SDF models that apply.

Implementations need to ascertain the provenance and applicability

of the SDF models they employ operationally in such security

relevant ways. Implementations that make use of the composition

mechanisms defined in this document need to do this for each of the

components they combine into the SDF models they employ.

Essentially, this process needs to undergo the same care and

scrutiny as any other introduction of source code into a build

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-3.4.5.2
https://rfc-editor.org/rfc/rfc8949#section-3.4.2
https://rfc-editor.org/rfc/rfc8610#section-5
https://rfc-editor.org/rfc/rfc3629#section-10
https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-base-21#section-4.1

[BCP26]

[IANA.params]

[IANA.senml]

environment; the possibility of supply-chain attacks on the modules

imported needs to be considered.

Specifically, implementations might rely on model-based input

validation for enforcing certain properties of the data structure

ingested (which, if not validated, could lead to malfunctions such

as crashes and remote code execution). These implementations need to

be particularly careful about the data models they apply, including

their provenance and potential changes of these properties that

upgrades to the referenced modules may (inadvertently or as part of

an attack) cause. More generally speaking, implementations should

strive to be robust against expected and unexpected limitations of

the model-based input validation mechanisms and their

implementations.

Similarly, implementations that rely on model-based augmentation may

generate false data from their inputs; this is an integrity

violation in any case but also can possibly be exploited for further

attacks.

In applications that dynamically acquire models and obtain modules

from module references in these, the security considerations of

dereferenceable identifiers apply (see [I-D.bormann-t2trg-deref-id]

for a more extensive discussion of dereferenceable identifiers).

There may be confidentiality requirements on SDF models, both on

their content and on the fact that a specific model is used in a

particular Thing or environment. The present specification does not

discuss model discovery or define an access control model for SDF

models, nor does it define a way to obtain selective disclosure

where that may be required. It is likely that these definitions

require additional context from underlying ecosystems and the

characteristics of the protocols employed there; this is therefore

left as future work (e.g., for documents such as

[I-D.bormann-asdf-sdf-mapping]).

9. References

9.1. Normative References

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

IANA, "Uniform Resource Name (URN) Namespace for IETF

Use", <https://www.iana.org/assignments/params>.

IANA, "Sensor Measurement Lists (SenML)", <https://

www.iana.org/assignments/senml>.

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.iana.org/assignments/params
https://www.iana.org/assignments/senml
https://www.iana.org/assignments/senml

[RFC0020]

[RFC2119]

[RFC3339]

[RFC3553]

[RFC3629]

[RFC3986]

[RFC4122]

[RFC6901]

[RFC7396]

[RFC8174]

[RFC8259]

Cerf, V., "ASCII format for network interchange", STD 80,

RFC 20, DOI 10.17487/RFC0020, October 1969, <https://

www.rfc-editor.org/rfc/rfc20>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/rfc/rfc3339>.

Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An

IETF URN Sub-namespace for Registered Protocol

Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June

2003, <https://www.rfc-editor.org/rfc/rfc3553>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/rfc/rfc3629>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

rfc/rfc4122>.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,

"JavaScript Object Notation (JSON) Pointer", RFC 6901,

DOI 10.17487/RFC6901, April 2013, <https://www.rfc-

editor.org/rfc/rfc6901>.

Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7396,

DOI 10.17487/RFC7396, October 2014, <https://www.rfc-

editor.org/rfc/rfc7396>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/rfc/

rfc8259>.

https://www.rfc-editor.org/rfc/rfc20
https://www.rfc-editor.org/rfc/rfc20
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3339
https://www.rfc-editor.org/rfc/rfc3553
https://www.rfc-editor.org/rfc/rfc3629
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc4122
https://www.rfc-editor.org/rfc/rfc4122
https://www.rfc-editor.org/rfc/rfc6901
https://www.rfc-editor.org/rfc/rfc6901
https://www.rfc-editor.org/rfc/rfc7396
https://www.rfc-editor.org/rfc/rfc7396
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259

[RFC8428]

[RFC8610]

[RFC8798]

[RFC8949]

[RFC9165]

[RFC9193]

[SPDX]

[W3C.NOTE-curie-20101216]

[CamelCase]

[ECMA-262]

[I-D.bormann-asdf-sdf-mapping]

Jennings, C., Shelby, Z., Arkko, J., Keranen, A., and C.

Bormann, "Sensor Measurement Lists (SenML)", RFC 8428,

DOI 10.17487/RFC8428, August 2018, <https://www.rfc-

editor.org/rfc/rfc8428>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Bormann, C., "Additional Units for Sensor Measurement

Lists (SenML)", RFC 8798, DOI 10.17487/RFC8798, June

2020, <https://www.rfc-editor.org/rfc/rfc8798>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/rfc/

rfc8949>.

Bormann, C., "Additional Control Operators for the

Concise Data Definition Language (CDDL)", RFC 9165, DOI

10.17487/RFC9165, December 2021, <https://www.rfc-

editor.org/rfc/rfc9165>.

Keränen, A. and C. Bormann, "Sensor Measurement Lists

(SenML) Fields for Indicating Data Value Content-Format",

RFC 9193, DOI 10.17487/RFC9193, June 2022, <https://

www.rfc-editor.org/rfc/rfc9193>.

"SPDX License List", <https://spdx.org/licenses/>.

Birbeck, M., Ed. and S. McCarron, Ed.,

"CURIE Syntax 1.0", W3C NOTE NOTE-curie-20101216, W3C

NOTE-curie-20101216, 16 December 2010, <https://

www.w3.org/TR/2010/NOTE-curie-20101216/>.

9.2. Informative References

"Camel Case", December 2014, <http://wiki.c2.com/?

CamelCase>.

Ecma International, "ECMAScript 2020 Language

Specification", ECMA Standard ECMA-262, 11th Edition,

June 2020, <https://www.ecma-international.org/wp-

content/uploads/ECMA-262.pdf>.

Bormann, C. and J. Romann, "Semantic

Definition Format (SDF): Mapping files", Work in

https://www.rfc-editor.org/rfc/rfc8428
https://www.rfc-editor.org/rfc/rfc8428
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc8798
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc9165
https://www.rfc-editor.org/rfc/rfc9165
https://www.rfc-editor.org/rfc/rfc9193
https://www.rfc-editor.org/rfc/rfc9193
https://spdx.org/licenses/
https://www.w3.org/TR/2010/NOTE-curie-20101216/
https://www.w3.org/TR/2010/NOTE-curie-20101216/
http://wiki.c2.com/?CamelCase
http://wiki.c2.com/?CamelCase
https://www.ecma-international.org/wp-content/uploads/ECMA-262.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-262.pdf

[I-D.bormann-asdf-sdftype-link]

[I-D.bormann-t2trg-deref-id]

[I-D.ietf-jsonpath-base]

[I-D.irtf-t2trg-rest-iot]

[JSO4]

[JSO4V]

[JSO7]

Progress, Internet-Draft, draft-bormann-asdf-sdf-

mapping-03, 3 December 2023, <https://

datatracker.ietf.org/doc/html/draft-bormann-asdf-sdf-

mapping-03>.

Bormann, C., "An sdfType for Links", Work in Progress,

Internet-Draft, draft-bormann-asdf-sdftype-link-02, 3

December 2023, <https://datatracker.ietf.org/doc/html/

draft-bormann-asdf-sdftype-link-02>.

Bormann, C. and C. Amsüss, "The

"dereferenceable identifier" pattern", Work in Progress,

Internet-Draft, draft-bormann-t2trg-deref-id-02, 19

December 2023, <https://datatracker.ietf.org/doc/html/

draft-bormann-t2trg-deref-id-02>.

Gössner, S., Normington, G., and C.

Bormann, "JSONPath: Query expressions for JSON", Work in

Progress, Internet-Draft, draft-ietf-jsonpath-base-21, 24

September 2023, <https://datatracker.ietf.org/doc/html/

draft-ietf-jsonpath-base-21>.

Keränen, A., Kovatsch, M., and K. Hartke,

"Guidance on RESTful Design for Internet of Things

Systems", Work in Progress, Internet-Draft, draft-irtf-

t2trg-rest-iot-13, 25 January 2024, <https://

datatracker.ietf.org/doc/html/draft-irtf-t2trg-rest-

iot-13>.

Galiegue, F., Zyp, K., and G. Court, "JSON Schema: core

definitions and terminology", Work in Progress, Internet-

Draft, draft-zyp-json-schema-04, 31 January 2013,

<https://datatracker.ietf.org/doc/html/draft-zyp-json-

schema-04>. This is the base specification for json-

schema.org "draft 4".

Zyp, K. and G. Court, "JSON Schema: interactive and non

interactive validation", Work in Progress, Internet-

Draft, draft-fge-json-schema-validation-00, 31 January

2013, <https://datatracker.ietf.org/doc/html/draft-fge-

json-schema-validation-00>. This is the validation

specification for json-schema.org "draft 4".

Wright, A. and H. Andrews, "JSON Schema: A Media Type for

Describing JSON Documents", Work in Progress, Internet-

Draft, draft-handrews-json-schema-01, 19 March 2018,

<https://datatracker.ietf.org/doc/html/draft-handrews-

https://datatracker.ietf.org/doc/html/draft-bormann-asdf-sdf-mapping-03
https://datatracker.ietf.org/doc/html/draft-bormann-asdf-sdf-mapping-03
https://datatracker.ietf.org/doc/html/draft-bormann-asdf-sdf-mapping-03
https://datatracker.ietf.org/doc/html/draft-bormann-asdf-sdftype-link-02
https://datatracker.ietf.org/doc/html/draft-bormann-asdf-sdftype-link-02
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-deref-id-02
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-deref-id-02
https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-base-21
https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-base-21
https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-rest-iot-13
https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-rest-iot-13
https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-rest-iot-13
https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-04
https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-04
https://datatracker.ietf.org/doc/html/draft-fge-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-fge-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-01

[JSO7V]

[KebabCase]

[OCF]

[OMA]

[RFC8576]

[RFC9485]

[ZCL]

json-schema-01>. This is the base specification for json-

schema.org "draft 7".

Wright, A., Andrews, H., and G. Luff, "JSON Schema

Validation: A Vocabulary for Structural Validation of

JSON", Work in Progress, Internet-Draft, draft-handrews-

json-schema-validation-01, 19 March 2018, <https://

datatracker.ietf.org/doc/html/draft-handrews-json-schema-

validation-01>. This is the validation specification for

json-schema.org "draft 7".

"Kebab Case", August 2014, <http://wiki.c2.com/?

KebabCase>.

"OCF Resource Type Specification", <https://

openconnectivity.org/specs/

OCF_Resource_Type_Specification.pdf>.

"OMA LightweightM2M (LwM2M) Object and Resource

Registry", <http://www.openmobilealliance.org/wp/omna/

lwm2m/lwm2mregistry.html>.

Garcia-Morchon, O., Kumar, S., and M. Sethi, "Internet of

Things (IoT) Security: State of the Art and Challenges",

RFC 8576, DOI 10.17487/RFC8576, April 2019, <https://

www.rfc-editor.org/rfc/rfc8576>.

Bormann, C. and T. Bray, "I-Regexp: An Interoperable

Regular Expression Format", RFC 9485, DOI 10.17487/

RFC9485, October 2023, <https://www.rfc-editor.org/rfc/

rfc9485>.

"The ZigBee Cluster Library", Elsevier, Zigbee Wireless

Networking pp. 239-271, DOI 10.1016/

b978-0-7506-8597-9.00006-9, 2008, <https://doi.org/

10.1016/b978-0-7506-8597-9.00006-9>.

Appendix A. Formal Syntax of SDF

This appendix describes the syntax of SDF using CDDL [RFC8610].

This appendix shows the framework syntax only, i.e., a syntax with

liberal extension points. Since this syntax is nearly useless in

finding typos in an SDF specification, a second syntax, the

validation syntax, is defined that does not include the extension

points. The validation syntax can be generated from the framework

syntax by leaving out all lines containing the string EXTENSION-

POINT; as this is trivial, the result is not shown here.

¶

¶

https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-01
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-01
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-01
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-01
http://wiki.c2.com/?KebabCase
http://wiki.c2.com/?KebabCase
https://openconnectivity.org/specs/OCF_Resource_Type_Specification.pdf
https://openconnectivity.org/specs/OCF_Resource_Type_Specification.pdf
https://openconnectivity.org/specs/OCF_Resource_Type_Specification.pdf
http://www.openmobilealliance.org/wp/omna/lwm2m/lwm2mregistry.html
http://www.openmobilealliance.org/wp/omna/lwm2m/lwm2mregistry.html
https://www.rfc-editor.org/rfc/rfc8576
https://www.rfc-editor.org/rfc/rfc8576
https://www.rfc-editor.org/rfc/rfc9485
https://www.rfc-editor.org/rfc/rfc9485
https://doi.org/10.1016/b978-0-7506-8597-9.00006-9
https://doi.org/10.1016/b978-0-7506-8597-9.00006-9

This appendix makes use of CDDL "features" as defined in Section 4

of [RFC9165]. Features whose names end in "-ext" indicate extension

points for further evolution.¶

https://rfc-editor.org/rfc/rfc9165#section-4

start = sdf-syntax

sdf-syntax = {

 ; info will be required in most process policies

 ? info: sdfinfo

 ? namespace: named<text>

 ? defaultNamespace: text

 ; Thing is a composition of objects that work together in some way

 ? sdfThing: named<thingqualities>

 ; Object is a set of Properties, Actions, and Events that together

 ; perform a particular function

 ? sdfObject: named<objectqualities>

 ; Includes Properties, Actions, and Events as well as sdfData

 paedataqualities

 EXTENSION-POINT<"top-ext">

}

sdfinfo = {

 ? title: text

 ? description: text

 ? version: text

 ? copyright: text

 ? license: text

 ? modified: modified-date-time

 ? features: [

 * (any .feature "feature-name") ; EXTENSION-POINT

]

 optional-comment

 EXTENSION-POINT<"info-ext">

}

; Shortcut for a map that gives names to instances of X

; (has keys of type text and values of type X)

named<X> = { * text => X }

; EXTENSION-POINT is only used in framework syntax

EXTENSION-POINT<f> = (* (quality-name .feature f) => any)

quality-name = text .regexp "([a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*"

sdf-pointer = global / same-object / true

global = text .regexp ".*[:#].*" ; rough CURIE or JSON Pointer syntax

same-object = referenceable-name

referenceable-name = text .regexp "[^:#]*"

; per se no point in having an empty list, but used for sdfRequired

; in odmobject-multiple_axis_joystick.sdf.json

pointer-list = [* sdf-pointer]

optional-comment = (

 ? $comment: text ; source code comments only, no semantics

)

commonqualities = (

 ? description: text ; long text (no constraints)

 ? label: text ; short text (no constraints); default to key

 optional-comment

 ? sdfRef: sdf-pointer

 ; applies to qualities of properties, of data:

 ? sdfRequired: pointer-list

)

arraydefinitionqualities = (

 ? "minItems" => uint

 ? "maxItems" => uint

)

paedataqualities = (

 ; Property represents the state of an instance of an object

 ? sdfProperty: named<propertyqualities>

 ; Action invokes an application layer verb associated with an object

 ? sdfAction: named<actionqualities>

 ; Event represents an occurrence of event associated with an object

 ? sdfEvent: named<eventqualities>

 ; Data represents a piece of information that can be the state of a

 ; property or a parameter to an action or a signal in an event

 ? sdfData: named<dataqualities>

)

; for building hierarchy

thingqualities = {

 commonqualities

 ? sdfObject: named<objectqualities>

 ? sdfThing: named<thingqualities>

 paedataqualities

 arraydefinitionqualities

 EXTENSION-POINT<"thing-ext">

}

; for single objects, or for arrays of objects

objectqualities = {

 commonqualities

 paedataqualities

 arraydefinitionqualities

 EXTENSION-POINT<"object-ext">

}

parameter-list = dataqualities

actionqualities = {

 commonqualities

 ? sdfInputData: parameter-list ; sdfRequiredInputData applies here

 ? sdfOutputData: parameter-list ; sdfRequired applies here

 ; zero or more named data type definitions that might be used above

 ? sdfData: named<dataqualities>

 EXTENSION-POINT<"action-ext">

}

eventqualities = {

 commonqualities

 ? sdfOutputData: parameter-list ; sdfRequired applies here

 ; zero or more named data type definitions that might be used above

 ? sdfData: named<dataqualities>

 EXTENSION-POINT<"event-ext">

}

sdftype-name = text .regexp "[a-z][-a-z0-9]*" ; EXTENSION-POINT

dataqualities = {

 commonqualities

 jsonschema

 ? "unit" => text

 ? nullable: bool

 ? "sdfType" => "byte-string" / "unix-time"

 / (sdftype-name .feature "sdftype-ext") ; EXTENSION-POINT

 ? contentFormat: text

 EXTENSION-POINT<"data-ext">

}

propertyqualities = {

 ? observable: bool

 ? readable: bool

 ? writable: bool

 ~dataqualities

}

allowed-types = number / text / bool / null

 / [* number] / [* text] / [* bool]

 / {* text => any}

 / (any .feature "allowed-ext") ; EXTENSION-POINT

compound-type = (

 "type" => "object"

 ? required: [+text]

 ? properties: named<dataqualities>

)

optional-choice = (

 ? (("sdfChoice" => named<dataqualities>)

 // ("enum" => [+ text])) ; limited to text strings

)

jsonschema = (

 ? (("type" => "number" / "string" / "boolean" / "integer" / "array")

 // compound-type

 // (type: text .feature "type-ext") ; EXTENSION-POINT

)

 ; if present, all other qualities apply to all choices:

 optional-choice

 ; the next three should validate against type:

 ? const: allowed-types

 ? default: allowed-types

 ; number/integer constraints

 ? minimum: number

 ? maximum: number

 ? exclusiveMinimum: number

 ? exclusiveMaximum: number

 ? multipleOf: number

 ; text string constraints

 ? minLength: uint

 ? maxLength: uint

 ? pattern: text ; regexp

 ? format: "date-time" / "date" / "time"

 / "uri" / "uri-reference" / "uuid"

 / (text .feature "format-ext") ; EXTENSION-POINT

 ; array constraints

 ? minItems: uint

 ? maxItems: uint

 ? uniqueItems: bool

 ? items: jso-items

)

jso-items = {

 ? sdfRef: sdf-pointer ; import limited to subset allowed here...

 ? description: text ; long text (no constraints)

 optional-comment

 ; leave commonqualities out for non-complex data types,

 ; but need the above three.

 ; no further nesting: no "array"

 ? ((type: "number" / "string" / "boolean" / "integer")

 // compound-type

 // (type: text .feature "itemtype-ext") ; EXTENSION-POINT

)

 ; if present, all other qualities apply to all choices

 optional-choice

 ; jso subset

 ? minimum: number

 ? maximum: number

 ? format: text

 ? minLength: uint

 ? maxLength: uint

 EXTENSION-POINT<"items-ext">

 }

modified-date-time = text .abnf modified-dt-abnf

modified-dt-abnf = "modified-dt" .det rfc3339z

; RFC 3339 sans time-numoffset, slightly condensed

rfc3339z = '

 date-fullyear = 4DIGIT

 date-month = 2DIGIT ; 01-12

 date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on

 ; month/year

 time-hour = 2DIGIT ; 00-23

 time-minute = 2DIGIT ; 00-59

 time-second = 2DIGIT ; 00-58, 00-59, 00-60 based on leap sec

 ; rules

 time-secfrac = "." 1*DIGIT

 DIGIT = %x30-39 ; 0-9

 partial-time = time-hour ":" time-minute ":" time-second

 [time-secfrac]

 full-date = date-fullyear "-" date-month "-" date-mday

 modified-dt = full-date ["T" partial-time "Z"]

'

¶

Appendix B. json-schema.org Rendition of SDF Syntax

This appendix describes the syntax of SDF defined in Appendix A, but

using a version of the description techniques advertised on json-

schema.org [JSO7] [JSO7V].

The appendix shows both the validation and the framework syntax.

Since most of the lines are the same between these two files, those

lines are shown only once, with a leading space, in the form of a

unified diff. Lines leading with a - are part of the validation

syntax, and lines leading with a + are part of the framework syntax.

¶

¶

 {

- "title": "sdf-validation.cddl -- Generated: 2024-02-29T07:42:35Z",

+ "title": "sdf-framework.cddl -- Generated: 2024-02-29T07:42:52Z",

 "$schema": "http://json-schema.org/draft-07/schema#",

 "$ref": "#/definitions/sdf-syntax",

 "definitions": {

 "sdf-syntax": {

 "type": "object",

 "properties": {

 "info": {

 "$ref": "#/definitions/sdfinfo"

 },

 "namespace": {

 "type": "object",

 "additionalProperties": {

 "type": "string"

 }

 },

 "defaultNamespace": {

 "type": "string"

 },

 "sdfThing": {

 "type": "object",

 "additionalProperties": {

 "$ref": "#/definitions/thingqualities"

 }

 },

 "sdfObject": {

 "type": "object",

 "additionalProperties": {

 "$ref": "#/definitions/objectqualities"

 }

 },

 "sdfProperty": {

 "$ref": "#/definitions/sdfProperty-"

 },

 "sdfAction": {

 "$ref": "#/definitions/sdfAction-"

 },

 "sdfEvent": {

 "$ref": "#/definitions/sdfEvent-"

 },

 "sdfData": {

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 }

 },

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "additionalProperties": false

 },

 "sdfinfo": {

 "type": "object",

 "properties": {

 "title": {

 "type": "string"

 },

 "description": {

 "type": "string"

 },

 "version": {

 "type": "string"

 },

 "copyright": {

 "type": "string"

 },

 "license": {

 "type": "string"

 },

 "modified": {

 "$ref": "#/definitions/modified-date-time"

 },

 "features": {

- "type": "array",

- "maxItems": 0

+ "type": "array"

 },

 "$comment": {

 "type": "string"

 }

 },

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "additionalProperties": false

 },

 "modified-date-time": {

 "type": "string"

 },

 "thingqualities": {

 "type": "object",

 "properties": {

 "description": {

 "type": "string"

 },

 "label": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "sdfRequired": {

 "$ref": "#/definitions/pointer-list"

 },

 "sdfObject": {

 "type": "object",

 "additionalProperties": {

 "$ref": "#/definitions/objectqualities"

 }

 },

 "sdfThing": {

 "type": "object",

 "additionalProperties": {

 "$ref": "#/definitions/thingqualities"

 }

 },

 "sdfProperty": {

 "$ref": "#/definitions/sdfProperty-"

 },

 "sdfAction": {

 "$ref": "#/definitions/sdfAction-"

 },

 "sdfEvent": {

 "$ref": "#/definitions/sdfEvent-"

 },

 "sdfData": {

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 },

 "minItems": {

 "$ref": "#/definitions/uint"

 },

 "maxItems": {

 "$ref": "#/definitions/uint"

 }

 },

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "additionalProperties": false

 },

 "sdf-pointer": {

 "anyOf": [

 {

 "$ref": "#/definitions/global"

 },

 {

 "$ref": "#/definitions/same-object"

 },

 {

 "$ref": "#/definitions/true"

 }

]

 },

 "global": {

 "type": "string",

 "pattern": "^[^\\n\\r]*[:#][^\\n\\r]*$"

 },

 "same-object": {

 "$ref": "#/definitions/referenceable-name"

 },

 "referenceable-name": {

 "type": "string",

 "pattern": "^[^:#]*$"

 },

 "true": {

 "type": "boolean",

 "const": true

 },

 "pointer-list": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/sdf-pointer"

 }

 },

 "objectqualities": {

 "type": "object",

 "properties": {

 "description": {

 "type": "string"

 },

 "label": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "sdfRequired": {

 "$ref": "#/definitions/pointer-list"

 },

 "sdfProperty": {

 "$ref": "#/definitions/sdfProperty-"

 },

 "sdfAction": {

 "$ref": "#/definitions/sdfAction-"

 },

 "sdfEvent": {

 "$ref": "#/definitions/sdfEvent-"

 },

 "sdfData": {

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 },

 "minItems": {

 "$ref": "#/definitions/uint"

 },

 "maxItems": {

 "$ref": "#/definitions/uint"

 }

 },

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "additionalProperties": false

 },

 "propertyqualities": {

 "anyOf": [

 {

 "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "properties": {

 "type": {

 "$ref": "#/definitions/type-"

 },

 "sdfChoice": {

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 },

 "observable": {

 "type": "boolean"

 },

 "readable": {

 "type": "boolean"

 },

 "writable": {

 "type": "boolean"

 },

 "description": {

 "type": "string"

 },

 "label": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "sdfRequired": {

 "$ref": "#/definitions/pointer-list"

 },

 "const": {

 "$ref": "#/definitions/allowed-types"

 },

 "default": {

 "$ref": "#/definitions/allowed-types"

 },

 "minimum": {

 "type": "number"

 },

 "maximum": {

 "type": "number"

 },

 "exclusiveMinimum": {

 "type": "number"

 },

 "exclusiveMaximum": {

 "type": "number"

 },

 "multipleOf": {

 "type": "number"

 },

 "minLength": {

 "$ref": "#/definitions/uint"

 },

 "maxLength": {

 "$ref": "#/definitions/uint"

 },

 "pattern": {

 "type": "string"

 },

 "format": {

 "$ref": "#/definitions/format-"

 },

 "minItems": {

 "$ref": "#/definitions/uint"

 },

 "maxItems": {

 "$ref": "#/definitions/uint"

 },

 "uniqueItems": {

 "type": "boolean"

 },

 "items": {

 "$ref": "#/definitions/jso-items"

 },

 "unit": {

 "type": "string"

 },

 "nullable": {

 "type": "boolean"

 },

 "sdfType": {

 "$ref": "#/definitions/sdfType-"

 },

 "contentFormat": {

 "type": "string"

 }

 },

 "additionalProperties": false

 },

 {

 "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

+ "properties": {

+ "type": {

+ "type": "string",

+ "const": "object"

+ },

+ "required": {

+ "type": "array",

+ "items": {

+ "type": "string"

+ },

+ "minItems": 1

+ },

+ "properties": {

+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"

+ },

+ "sdfChoice": {

+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"

+ },

+ "observable": {

+ "type": "boolean"

+ },

+ "readable": {

+ "type": "boolean"

+ },

+ "writable": {

+ "type": "boolean"

+ },

+ "description": {

+ "type": "string"

+ },

+ "label": {

+ "type": "string"

+ },

+ "$comment": {

+ "type": "string"

+ },

+ "sdfRef": {

+ "$ref": "#/definitions/sdf-pointer"

+ },

+ "sdfRequired": {

+ "$ref": "#/definitions/pointer-list"

+ },

+ "const": {

+ "$ref": "#/definitions/allowed-types"

+ },

+ "default": {

+ "$ref": "#/definitions/allowed-types"

+ },

+ "minimum": {

+ "type": "number"

+ },

+ "maximum": {

+ "type": "number"

+ },

+ "exclusiveMinimum": {

+ "type": "number"

+ },

+ "exclusiveMaximum": {

+ "type": "number"

+ },

+ "multipleOf": {

+ "type": "number"

+ },

+ "minLength": {

+ "$ref": "#/definitions/uint"

+ },

+ "maxLength": {

+ "$ref": "#/definitions/uint"

+ },

+ "pattern": {

+ "type": "string"

+ },

+ "format": {

+ "$ref": "#/definitions/format-"

+ },

+ "minItems": {

+ "$ref": "#/definitions/uint"

+ },

+ "maxItems": {

+ "$ref": "#/definitions/uint"

+ },

+ "uniqueItems": {

+ "type": "boolean"

+ },

+ "items": {

+ "$ref": "#/definitions/jso-items"

+ },

+ "unit": {

+ "type": "string"

+ },

+ "nullable": {

+ "type": "boolean"

+ },

+ "sdfType": {

+ "$ref": "#/definitions/sdfType-"

+ },

+ "contentFormat": {

+ "type": "string"

+ }

+ },

+ "additionalProperties": false

+ },

+ {

+ "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

+ "properties": {

+ "type": {

+ "type": "string"

+ },

+ "sdfChoice": {

+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"

+ },

+ "observable": {

+ "type": "boolean"

+ },

+ "readable": {

+ "type": "boolean"

+ },

+ "writable": {

+ "type": "boolean"

+ },

+ "description": {

+ "type": "string"

+ },

+ "label": {

+ "type": "string"

+ },

+ "$comment": {

+ "type": "string"

+ },

+ "sdfRef": {

+ "$ref": "#/definitions/sdf-pointer"

+ },

+ "sdfRequired": {

+ "$ref": "#/definitions/pointer-list"

+ },

+ "const": {

+ "$ref": "#/definitions/allowed-types"

+ },

+ "default": {

+ "$ref": "#/definitions/allowed-types"

+ },

+ "minimum": {

+ "type": "number"

+ },

+ "maximum": {

+ "type": "number"

+ },

+ "exclusiveMinimum": {

+ "type": "number"

+ },

+ "exclusiveMaximum": {

+ "type": "number"

+ },

+ "multipleOf": {

+ "type": "number"

+ },

+ "minLength": {

+ "$ref": "#/definitions/uint"

+ },

+ "maxLength": {

+ "$ref": "#/definitions/uint"

+ },

+ "pattern": {

+ "type": "string"

+ },

+ "format": {

+ "$ref": "#/definitions/format-"

+ },

+ "minItems": {

+ "$ref": "#/definitions/uint"

+ },

+ "maxItems": {

+ "$ref": "#/definitions/uint"

+ },

+ "uniqueItems": {

+ "type": "boolean"

+ },

+ "items": {

+ "$ref": "#/definitions/jso-items"

+ },

+ "unit": {

+ "type": "string"

+ },

+ "nullable": {

+ "type": "boolean"

+ },

+ "sdfType": {

+ "$ref": "#/definitions/sdfType-"

+ },

+ "contentFormat": {

+ "type": "string"

+ }

+ },

+ "additionalProperties": false

+ },

+ {

+ "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

+ "properties": {

+ "type": {

+ "$ref": "#/definitions/type-"

+ },

+ "enum": {

+ "type": "array",

+ "items": {

+ "type": "string"

+ },

+ "minItems": 1

+ },

+ "observable": {

+ "type": "boolean"

+ },

+ "readable": {

+ "type": "boolean"

+ },

+ "writable": {

+ "type": "boolean"

+ },

+ "description": {

+ "type": "string"

+ },

+ "label": {

+ "type": "string"

+ },

+ "$comment": {

+ "type": "string"

+ },

+ "sdfRef": {

+ "$ref": "#/definitions/sdf-pointer"

+ },

+ "sdfRequired": {

+ "$ref": "#/definitions/pointer-list"

+ },

+ "const": {

+ "$ref": "#/definitions/allowed-types"

+ },

+ "default": {

+ "$ref": "#/definitions/allowed-types"

+ },

+ "minimum": {

+ "type": "number"

+ },

+ "maximum": {

+ "type": "number"

+ },

+ "exclusiveMinimum": {

+ "type": "number"

+ },

+ "exclusiveMaximum": {

+ "type": "number"

+ },

+ "multipleOf": {

+ "type": "number"

+ },

+ "minLength": {

+ "$ref": "#/definitions/uint"

+ },

+ "maxLength": {

+ "$ref": "#/definitions/uint"

+ },

+ "pattern": {

+ "type": "string"

+ },

+ "format": {

+ "$ref": "#/definitions/format-"

+ },

+ "minItems": {

+ "$ref": "#/definitions/uint"

+ },

+ "maxItems": {

+ "$ref": "#/definitions/uint"

+ },

+ "uniqueItems": {

+ "type": "boolean"

+ },

+ "items": {

+ "$ref": "#/definitions/jso-items"

+ },

+ "unit": {

+ "type": "string"

+ },

+ "nullable": {

+ "type": "boolean"

+ },

+ "sdfType": {

+ "$ref": "#/definitions/sdfType-"

+ },

+ "contentFormat": {

+ "type": "string"

+ }

+ },

+ "additionalProperties": false

+ },

+ {

+ "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

+ "properties": {

+ "type": {

+ "type": "string",

+ "const": "object"

+ },

+ "required": {

+ "type": "array",

+ "items": {

+ "type": "string"

+ },

+ "minItems": 1

+ },

+ "properties": {

+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"

+ },

+ "enum": {

+ "type": "array",

+ "items": {

+ "type": "string"

+ },

+ "minItems": 1

+ },

+ "observable": {

+ "type": "boolean"

+ },

+ "readable": {

+ "type": "boolean"

+ },

+ "writable": {

+ "type": "boolean"

+ },

+ "description": {

+ "type": "string"

+ },

+ "label": {

+ "type": "string"

+ },

+ "$comment": {

+ "type": "string"

+ },

+ "sdfRef": {

+ "$ref": "#/definitions/sdf-pointer"

+ },

+ "sdfRequired": {

+ "$ref": "#/definitions/pointer-list"

+ },

+ "const": {

+ "$ref": "#/definitions/allowed-types"

+ },

+ "default": {

+ "$ref": "#/definitions/allowed-types"

+ },

+ "minimum": {

+ "type": "number"

+ },

+ "maximum": {

+ "type": "number"

+ },

+ "exclusiveMinimum": {

+ "type": "number"

+ },

+ "exclusiveMaximum": {

+ "type": "number"

+ },

+ "multipleOf": {

+ "type": "number"

+ },

+ "minLength": {

+ "$ref": "#/definitions/uint"

+ },

+ "maxLength": {

+ "$ref": "#/definitions/uint"

+ },

+ "pattern": {

+ "type": "string"

+ },

+ "format": {

+ "$ref": "#/definitions/format-"

+ },

+ "minItems": {

+ "$ref": "#/definitions/uint"

+ },

+ "maxItems": {

+ "$ref": "#/definitions/uint"

+ },

+ "uniqueItems": {

+ "type": "boolean"

+ },

+ "items": {

+ "$ref": "#/definitions/jso-items"

+ },

+ "unit": {

+ "type": "string"

+ },

+ "nullable": {

+ "type": "boolean"

+ },

+ "sdfType": {

+ "$ref": "#/definitions/sdfType-"

+ },

+ "contentFormat": {

+ "type": "string"

+ }

+ },

+ "additionalProperties": false

+ },

+ {

+ "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "properties": {

 "type": {

- "type": "string",

- "const": "object"

+ "type": "string"

 },

- "required": {

+ "enum": {

 "type": "array",

 "items": {

 "type": "string"

 },

 "minItems": 1

 },

- "properties": {

- "$ref": "#/definitions/sdfData-sdfChoice-properties-"

- },

- "sdfChoice": {

- "$ref": "#/definitions/sdfData-sdfChoice-properties-"

- },

 "observable": {

 "type": "boolean"

 },

 "readable": {

 "type": "boolean"

 },

 "writable": {

 "type": "boolean"

 },

 "description": {

 "type": "string"

 },

 "label": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "sdfRequired": {

 "$ref": "#/definitions/pointer-list"

 },

 "const": {

 "$ref": "#/definitions/allowed-types"

 },

 "default": {

 "$ref": "#/definitions/allowed-types"

 },

 "minimum": {

 "type": "number"

 },

 "maximum": {

 "type": "number"

 },

 "exclusiveMinimum": {

 "type": "number"

 },

 "exclusiveMaximum": {

 "type": "number"

 },

 "multipleOf": {

 "type": "number"

 },

 "minLength": {

 "$ref": "#/definitions/uint"

 },

 "maxLength": {

 "$ref": "#/definitions/uint"

 },

 "pattern": {

 "type": "string"

 },

 "format": {

 "$ref": "#/definitions/format-"

 },

 "minItems": {

 "$ref": "#/definitions/uint"

 },

 "maxItems": {

 "$ref": "#/definitions/uint"

 },

 "uniqueItems": {

 "type": "boolean"

 },

 "items": {

 "$ref": "#/definitions/jso-items"

 },

 "unit": {

 "type": "string"

 },

 "nullable": {

 "type": "boolean"

 },

 "sdfType": {

 "$ref": "#/definitions/sdfType-"

 },

 "contentFormat": {

 "type": "string"

 }

 },

 "additionalProperties": false

- },

+ }

+]

+ },

+ "dataqualities": {

+ "anyOf": [

 {

 "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "properties": {

 "type": {

 "$ref": "#/definitions/type-"

 },

- "enum": {

- "type": "array",

- "items": {

- "type": "string"

- },

- "minItems": 1

- },

- "observable": {

- "type": "boolean"

- },

- "readable": {

- "type": "boolean"

- },

- "writable": {

- "type": "boolean"

+ "sdfChoice": {

+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 },

 "description": {

 "type": "string"

 },

 "label": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "sdfRequired": {

 "$ref": "#/definitions/pointer-list"

 },

 "const": {

 "$ref": "#/definitions/allowed-types"

 },

 "default": {

 "$ref": "#/definitions/allowed-types"

 },

 "minimum": {

 "type": "number"

 },

 "maximum": {

 "type": "number"

 },

 "exclusiveMinimum": {

 "type": "number"

 },

 "exclusiveMaximum": {

 "type": "number"

 },

 "multipleOf": {

 "type": "number"

 },

 "minLength": {

 "$ref": "#/definitions/uint"

 },

 "maxLength": {

 "$ref": "#/definitions/uint"

 },

 "pattern": {

 "type": "string"

 },

 "format": {

 "$ref": "#/definitions/format-"

 },

 "minItems": {

 "$ref": "#/definitions/uint"

 },

 "maxItems": {

 "$ref": "#/definitions/uint"

 },

 "uniqueItems": {

 "type": "boolean"

 },

 "items": {

 "$ref": "#/definitions/jso-items"

 },

 "unit": {

 "type": "string"

 },

 "nullable": {

 "type": "boolean"

 },

 "sdfType": {

 "$ref": "#/definitions/sdfType-"

 },

 "contentFormat": {

 "type": "string"

 }

 },

 "additionalProperties": false

 },

 {

 "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "properties": {

 "type": {

 "type": "string",

 "const": "object"

 },

 "required": {

 "type": "array",

 "items": {

 "type": "string"

 },

 "minItems": 1

 },

 "properties": {

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 },

- "enum": {

- "type": "array",

- "items": {

- "type": "string"

- },

- "minItems": 1

- },

- "observable": {

- "type": "boolean"

- },

- "readable": {

- "type": "boolean"

- },

- "writable": {

- "type": "boolean"

+ "sdfChoice": {

+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 },

 "description": {

 "type": "string"

 },

 "label": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "sdfRequired": {

 "$ref": "#/definitions/pointer-list"

 },

 "const": {

 "$ref": "#/definitions/allowed-types"

 },

 "default": {

 "$ref": "#/definitions/allowed-types"

 },

 "minimum": {

 "type": "number"

 },

 "maximum": {

 "type": "number"

 },

 "exclusiveMinimum": {

 "type": "number"

 },

 "exclusiveMaximum": {

 "type": "number"

 },

 "multipleOf": {

 "type": "number"

 },

 "minLength": {

 "$ref": "#/definitions/uint"

 },

 "maxLength": {

 "$ref": "#/definitions/uint"

 },

 "pattern": {

 "type": "string"

 },

 "format": {

 "$ref": "#/definitions/format-"

 },

 "minItems": {

 "$ref": "#/definitions/uint"

 },

 "maxItems": {

 "$ref": "#/definitions/uint"

 },

 "uniqueItems": {

 "type": "boolean"

 },

 "items": {

 "$ref": "#/definitions/jso-items"

 },

 "unit": {

 "type": "string"

 },

 "nullable": {

 "type": "boolean"

 },

 "sdfType": {

 "$ref": "#/definitions/sdfType-"

 },

 "contentFormat": {

 "type": "string"

 }

 },

 "additionalProperties": false

- }

-]

- },

- "dataqualities": {

- "anyOf": [

+ },

 {

 "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "properties": {

 "type": {

- "$ref": "#/definitions/type-"

+ "type": "string"

 },

 "sdfChoice": {

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 },

 "description": {

 "type": "string"

 },

 "label": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "sdfRequired": {

 "$ref": "#/definitions/pointer-list"

 },

 "const": {

 "$ref": "#/definitions/allowed-types"

 },

 "default": {

 "$ref": "#/definitions/allowed-types"

 },

 "minimum": {

 "type": "number"

 },

 "maximum": {

 "type": "number"

 },

 "exclusiveMinimum": {

 "type": "number"

 },

 "exclusiveMaximum": {

 "type": "number"

 },

 "multipleOf": {

 "type": "number"

 },

 "minLength": {

 "$ref": "#/definitions/uint"

 },

 "maxLength": {

 "$ref": "#/definitions/uint"

 },

 "pattern": {

 "type": "string"

 },

 "format": {

 "$ref": "#/definitions/format-"

 },

 "minItems": {

 "$ref": "#/definitions/uint"

 },

 "maxItems": {

 "$ref": "#/definitions/uint"

 },

 "uniqueItems": {

 "type": "boolean"

 },

 "items": {

 "$ref": "#/definitions/jso-items"

 },

 "unit": {

 "type": "string"

 },

 "nullable": {

 "type": "boolean"

 },

 "sdfType": {

 "$ref": "#/definitions/sdfType-"

 },

 "contentFormat": {

 "type": "string"

 }

 },

 "additionalProperties": false

 },

 {

 "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "properties": {

 "type": {

- "type": "string",

- "const": "object"

+ "$ref": "#/definitions/type-"

 },

- "required": {

+ "enum": {

 "type": "array",

 "items": {

 "type": "string"

 },

 "minItems": 1

 },

- "properties": {

- "$ref": "#/definitions/sdfData-sdfChoice-properties-"

- },

- "sdfChoice": {

- "$ref": "#/definitions/sdfData-sdfChoice-properties-"

- },

 "description": {

 "type": "string"

 },

 "label": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "sdfRequired": {

 "$ref": "#/definitions/pointer-list"

 },

 "const": {

 "$ref": "#/definitions/allowed-types"

 },

 "default": {

 "$ref": "#/definitions/allowed-types"

 },

 "minimum": {

 "type": "number"

 },

 "maximum": {

 "type": "number"

 },

 "exclusiveMinimum": {

 "type": "number"

 },

 "exclusiveMaximum": {

 "type": "number"

 },

 "multipleOf": {

 "type": "number"

 },

 "minLength": {

 "$ref": "#/definitions/uint"

 },

 "maxLength": {

 "$ref": "#/definitions/uint"

 },

 "pattern": {

 "type": "string"

 },

 "format": {

 "$ref": "#/definitions/format-"

 },

 "minItems": {

 "$ref": "#/definitions/uint"

 },

 "maxItems": {

 "$ref": "#/definitions/uint"

 },

 "uniqueItems": {

 "type": "boolean"

 },

 "items": {

 "$ref": "#/definitions/jso-items"

 },

 "unit": {

 "type": "string"

 },

 "nullable": {

 "type": "boolean"

 },

 "sdfType": {

 "$ref": "#/definitions/sdfType-"

 },

 "contentFormat": {

 "type": "string"

 }

 },

 "additionalProperties": false

 },

 {

 "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "properties": {

 "type": {

- "$ref": "#/definitions/type-"

+ "type": "string",

+ "const": "object"

+ },

+ "required": {

+ "type": "array",

+ "items": {

+ "type": "string"

+ },

+ "minItems": 1

+ },

+ "properties": {

+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 },

 "enum": {

 "type": "array",

 "items": {

 "type": "string"

 },

 "minItems": 1

 },

 "description": {

 "type": "string"

 },

 "label": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "sdfRequired": {

 "$ref": "#/definitions/pointer-list"

 },

 "const": {

 "$ref": "#/definitions/allowed-types"

 },

 "default": {

 "$ref": "#/definitions/allowed-types"

 },

 "minimum": {

 "type": "number"

 },

 "maximum": {

 "type": "number"

 },

 "exclusiveMinimum": {

 "type": "number"

 },

 "exclusiveMaximum": {

 "type": "number"

 },

 "multipleOf": {

 "type": "number"

 },

 "minLength": {

 "$ref": "#/definitions/uint"

 },

 "maxLength": {

 "$ref": "#/definitions/uint"

 },

 "pattern": {

 "type": "string"

 },

 "format": {

 "$ref": "#/definitions/format-"

 },

 "minItems": {

 "$ref": "#/definitions/uint"

 },

 "maxItems": {

 "$ref": "#/definitions/uint"

 },

 "uniqueItems": {

 "type": "boolean"

 },

 "items": {

 "$ref": "#/definitions/jso-items"

 },

 "unit": {

 "type": "string"

 },

 "nullable": {

 "type": "boolean"

 },

 "sdfType": {

 "$ref": "#/definitions/sdfType-"

 },

 "contentFormat": {

 "type": "string"

 }

 },

 "additionalProperties": false

 },

 {

 "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "properties": {

 "type": {

- "type": "string",

- "const": "object"

- },

- "required": {

- "type": "array",

- "items": {

- "type": "string"

- },

- "minItems": 1

- },

- "properties": {

- "$ref": "#/definitions/sdfData-sdfChoice-properties-"

+ "type": "string"

 },

 "enum": {

 "type": "array",

 "items": {

 "type": "string"

 },

 "minItems": 1

 },

 "description": {

 "type": "string"

 },

 "label": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "sdfRequired": {

 "$ref": "#/definitions/pointer-list"

 },

 "const": {

 "$ref": "#/definitions/allowed-types"

 },

 "default": {

 "$ref": "#/definitions/allowed-types"

 },

 "minimum": {

 "type": "number"

 },

 "maximum": {

 "type": "number"

 },

 "exclusiveMinimum": {

 "type": "number"

 },

 "exclusiveMaximum": {

 "type": "number"

 },

 "multipleOf": {

 "type": "number"

 },

 "minLength": {

 "$ref": "#/definitions/uint"

 },

 "maxLength": {

 "$ref": "#/definitions/uint"

 },

 "pattern": {

 "type": "string"

 },

 "format": {

 "$ref": "#/definitions/format-"

 },

 "minItems": {

 "$ref": "#/definitions/uint"

 },

 "maxItems": {

 "$ref": "#/definitions/uint"

 },

 "uniqueItems": {

 "type": "boolean"

 },

 "items": {

 "$ref": "#/definitions/jso-items"

 },

 "unit": {

 "type": "string"

 },

 "nullable": {

 "type": "boolean"

 },

 "sdfType": {

 "$ref": "#/definitions/sdfType-"

 },

 "contentFormat": {

 "type": "string"

 }

 },

 "additionalProperties": false

 }

]

 },

 "allowed-types": {

 "anyOf": [

 {

 "type": "number"

 },

 {

 "type": "string"

 },

 {

 "type": "boolean"

 },

 {

 "type": "null"

 },

 {

 "type": "array",

 "items": {

 "type": "number"

 }

 },

 {

 "type": "array",

 "items": {

 "type": "string"

 }

 },

 {

 "type": "array",

 "items": {

 "type": "boolean"

 }

 },

 {

 "type": "object",

 "additionalProperties": {

 }

+ },

+ {

 }

]

 },

 "uint": {

 "type": "integer",

 "minimum": 0

 },

 "jso-items": {

 "anyOf": [

 {

 "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "number",

 "string",

 "boolean",

 "integer"

]

 },

 "sdfChoice": {

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "description": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "minimum": {

 "type": "number"

 },

 "maximum": {

 "type": "number"

 },

 "format": {

 "type": "string"

 },

 "minLength": {

 "$ref": "#/definitions/uint"

 },

 "maxLength": {

 "$ref": "#/definitions/uint"

 }

 },

 "additionalProperties": false

 },

 {

 "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "properties": {

 "type": {

 "type": "string",

 "const": "object"

 },

 "required": {

 "type": "array",

 "items": {

 "type": "string"

 },

 "minItems": 1

 },

 "properties": {

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 },

 "sdfChoice": {

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "description": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "minimum": {

 "type": "number"

 },

 "maximum": {

 "type": "number"

 },

 "format": {

 "type": "string"

 },

 "minLength": {

 "$ref": "#/definitions/uint"

 },

 "maxLength": {

 "$ref": "#/definitions/uint"

 }

 },

 "additionalProperties": false

 },

 {

 "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

+ "properties": {

+ "type": {

+ "type": "string"

+ },

+ "sdfChoice": {

+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"

+ },

+ "sdfRef": {

+ "$ref": "#/definitions/sdf-pointer"

+ },

+ "description": {

+ "type": "string"

+ },

+ "$comment": {

+ "type": "string"

+ },

+ "minimum": {

+ "type": "number"

+ },

+ "maximum": {

+ "type": "number"

+ },

+ "format": {

+ "type": "string"

+ },

+ "minLength": {

+ "$ref": "#/definitions/uint"

+ },

+ "maxLength": {

+ "$ref": "#/definitions/uint"

+ }

+ },

+ "additionalProperties": false

+ },

+ {

+ "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "number",

 "string",

 "boolean",

 "integer"

]

 },

 "enum": {

 "type": "array",

 "items": {

 "type": "string"

 },

 "minItems": 1

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "description": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "minimum": {

 "type": "number"

 },

 "maximum": {

 "type": "number"

 },

 "format": {

 "type": "string"

 },

 "minLength": {

 "$ref": "#/definitions/uint"

 },

 "maxLength": {

 "$ref": "#/definitions/uint"

 }

 },

 "additionalProperties": false

 },

 {

 "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "properties": {

 "type": {

 "type": "string",

 "const": "object"

 },

 "required": {

 "type": "array",

 "items": {

 "type": "string"

 },

 "minItems": 1

 },

 "properties": {

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 },

 "enum": {

 "type": "array",

 "items": {

 "type": "string"

 },

 "minItems": 1

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "description": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "minimum": {

 "type": "number"

 },

 "maximum": {

 "type": "number"

 },

 "format": {

 "type": "string"

 },

 "minLength": {

 "$ref": "#/definitions/uint"

 },

 "maxLength": {

 "$ref": "#/definitions/uint"

 }

 },

 "additionalProperties": false

+ },

+ {

+ "type": "object",

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

+ "properties": {

+ "type": {

+ "type": "string"

+ },

+ "enum": {

+ "type": "array",

+ "items": {

+ "type": "string"

+ },

+ "minItems": 1

+ },

+ "sdfRef": {

+ "$ref": "#/definitions/sdf-pointer"

+ },

+ "description": {

+ "type": "string"

+ },

+ "$comment": {

+ "type": "string"

+ },

+ "minimum": {

+ "type": "number"

+ },

+ "maximum": {

+ "type": "number"

+ },

+ "format": {

+ "type": "string"

+ },

+ "minLength": {

+ "$ref": "#/definitions/uint"

+ },

+ "maxLength": {

+ "$ref": "#/definitions/uint"

+ }

+ },

+ "additionalProperties": false

 }

]

 },

+ "sdftype-name": {

+ "type": "string",

+ "pattern": "^[a-z][\\-a-z0-9]*$"

+ },

 "actionqualities": {

 "type": "object",

 "properties": {

 "description": {

 "type": "string"

 },

 "label": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "sdfRequired": {

 "$ref": "#/definitions/pointer-list"

 },

 "sdfInputData": {

 "$ref": "#/definitions/parameter-list"

 },

 "sdfOutputData": {

 "$ref": "#/definitions/parameter-list"

 },

 "sdfData": {

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 }

 },

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "additionalProperties": false

 },

 "parameter-list": {

 "$ref": "#/definitions/dataqualities"

 },

 "eventqualities": {

 "type": "object",

 "properties": {

 "description": {

 "type": "string"

 },

 "label": {

 "type": "string"

 },

 "$comment": {

 "type": "string"

 },

 "sdfRef": {

 "$ref": "#/definitions/sdf-pointer"

 },

 "sdfRequired": {

 "$ref": "#/definitions/pointer-list"

 },

 "sdfOutputData": {

 "$ref": "#/definitions/parameter-list"

 },

 "sdfData": {

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"

 }

 },

+ "patternProperties": {

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {

+ }

+ },

 "additionalProperties": false

 },

 "format-": {

- "type": "string",

- "enum": [

- "date-time",

- "date",

- "time",

- "uri",

- "uri-reference",

- "uuid"

+ "anyOf": [

+ {

+ "type": "string",

+ "const": "date-time"

+ },

+ {

+ "type": "string",

+ "const": "date"

+ },

+ {

+ "type": "string",

+ "const": "time"

+ },

+ {

+ "type": "string",

+ "const": "uri"

+ },

+ {

+ "type": "string",

+ "const": "uri-reference"

+ },

+ {

+ "type": "string",

+ "const": "uuid"

+ },

+ {

+ "type": "string"

+ }

+]

+ },

+ "sdfType-": {

+ "anyOf": [

+ {

+ "type": "string",

+ "const": "byte-string"

+ },

+ {

+ "type": "string",

+ "const": "unix-time"

+ },

+ {

+ "$ref": "#/definitions/sdftype-name"

+ }

]

 },

 "sdfData-sdfChoice-properties-": {

 "type": "object",

 "additionalProperties": {

 "$ref": "#/definitions/dataqualities"

 }

 },

 "type-": {

 "type": "string",

 "enum": [

 "number",

 "string",

 "boolean",

 "integer",

 "array"

]

 },

- "sdfAction-": {

+ "sdfEvent-": {

 "type": "object",

 "additionalProperties": {

- "$ref": "#/definitions/actionqualities"

+ "$ref": "#/definitions/eventqualities"

 }

 },

- "sdfProperty-": {

+ "sdfAction-": {

 "type": "object",

 "additionalProperties": {

- "$ref": "#/definitions/propertyqualities"

+ "$ref": "#/definitions/actionqualities"

 }

 },

- "sdfEvent-": {

+ "sdfProperty-": {

 "type": "object",

 "additionalProperties": {

- "$ref": "#/definitions/eventqualities"

+ "$ref": "#/definitions/propertyqualities"

 }

- },

- "sdfType-": {

- "type": "string",

- "enum": [

- "byte-string",

- "unix-time"

-]

 }

 }

 }

¶

Appendix C. Data Qualities inspired by json-schema.org

Data qualities define data used in SDF affordances at an information

model level. A popular way to describe JSON data at a data model

level is proposed by a number of drafts on json-schema.org (which

collectively are abbreviated JSO here); for reference to a popular

version we will point here to [JSO7] and [JSO7V]. As the vocabulary

used by JSO is familiar to many JSON modelers, the present

specification borrows some of the terms and ports their semantics to

the information model level needed for SDF.

The main data quality imported is the "type". In SDF, this can take

one of six (text string) values, which are discussed in the

following subsections (note that the JSO type "null" is not

supported as a value of this data quality in SDF).

The additional quality "const" restricts the data to one specific

value (given as the value of the const quality).

Similarly, the additional quality "default" provides data that can

be used in the absence of the data (given as the value of the const

quality); this is mainly documentary and not very well-defined for

SDF as no process is defined that would add default values to an

instance of some interaction data.

C.1. type "number", type "integer"

The types "number" and "integer" are associated with floating point

and integer numbers, as they are available in JSON. A type value of

integer means that only integer values of JSON numbers can be used

(note that 10.0 is an integer value, even if it is in a notation

that would also allow non-zero decimal fractions).

The additional data qualities "minimum", "maximum",

"exclusiveMinimum", "exclusiveMaximum" provide number values that

serve as inclusive/exclusive lower/upper bounds for the number.

(Note that the Boolean form of "exclusiveMinimum"/"exclusiveMaximum"

found in earlier JSO drafts [JSO4V] is not used.)

The data quality "multipleOf" gives a positive number that

constrains the data value to be an integer multiple of the number

given. (Type "integer" can also be expressed as a "multipleOf"

quality of value 1, unless another "multipleOf" quality is present.)

C.2. type "string"

The type "string" is associated with Unicode text string values as

they can be represented in JSON.

¶

¶

¶

¶

¶

¶

¶

¶

The length (as measured in characters) can be constrained by the

additional data qualities "minLength" and "maxLength", which are

inclusive bounds.

(More specifically, Unicode text strings as defined in this

specification are sequences of Unicode scalar values, the number of

which is taken as the length of such a text string. Note that

earlier drafts of this specification explained text string length

values in bytes, which however is not meaningful unless bound to a

specific encoding — which could be UTF-8, if this unusual behavior

is to be provided in an extension.)

The data quality "pattern" takes a string value that is interpreted

as an [ECMA-262] regular expression in Unicode mode that constrains

the string (note that these are not anchored by default, so unless ^

and $ anchors are employed, ECMA-262 regular expressions match any

string that contains a match). The JSO proposals acknowledge that

regular expression support is rather diverse in various platforms,

so the suggestion is to limit them to:

characters;

character classes in square brackets, including ranges; their

complements;

simple quantifiers *, +, ?, and range quantifiers {n}, {n,m},

and {n,};

grouping parentheses;

the choice operator |;

and anchors (beginning-of-input ^ and end-of-input $).

Note that this subset is somewhat similar to the subset introduced

by I-Regexps [RFC9485], which however are anchored regular

expressions, and which include certain backslash escapes for

characters and character classes.

The additional data quality "format" can take one of the following

values. Note that, at an information model level, the presence of

this data quality changes the type from being a simple text string

to the abstract meaning of the format given (i.e., the format "date-

time" is less about the specific syntax employed in [RFC3339] than

about the usage as an absolute point in civil time).

"date-time", "date", "time": An [RFC3339] date-time, full-date,

or full-time, respectively.

"uri", "uri-reference": An [RFC3986] URI or URI Reference,

respectively.

"uuid": An [RFC4122] UUID.

C.3. type "boolean"

The type "boolean" can take the values "true" or "false".

¶

¶

¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

¶

¶

*

¶

*

¶

* ¶

¶

C.4. type "array"

The type "array" is associated with arrays as they are available in

JSON.

The additional quality "items" gives the type that each of the

elements of the array must match.

The number of elements in the array can be constrained by the

additional data qualities "minItems" and "maxItems", which are

inclusive bounds.

The additional data quality "uniqueItems" gives a Boolean value

that, if true, requires the elements to be all different.

C.5. type "object"

The type "object" is associated with maps, from strings to values,

as they are available in JSON.

The additional quality "properties" is a map the entries of which

describe entries in the specified JSON map: The key gives an

allowable map key for the specified JSON map, and the value is a map

with a named set of data qualities giving the type for the

corresponding value in the specified JSON map.

All entries specified this way are optional, unless they are listed

in the value of the additional quality "required", which is an array

of string values that give the key names of required entries.

Note that the term "properties" as an additional quality for

defining map entries is unrelated to sdfProperty.

C.6. Implementation notes

JSO-based keywords are also used in the specification techniques of

a number of ecosystems, but some adjustments may be required.

For instance, [OCF] is based on Swagger 2.0 which appears to be

based on "draft-4" [JSO4][JSO4V] (also called draft-5, but

semantically intended to be equivalent to draft-4). The

"exclusiveMinimum" and "exclusiveMaximum" keywords use the Boolean

form there, so on import to SDF their values have to be replaced by

the values of the respective "minimum"/"maximum" keyword, which are

themselves then removed; the reverse transformation applies on

export.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Appendix D. Composition Examples

This appendix contains two examples illustrating different

composition approaches using the sdfThing quality.

D.1. Outlet Strip Example

Figure 6

¶

{

 "sdfThing": {

 "outlet-strip": {

 "label": "Outlet strip",

 "description": "Contains a number of Sockets",

 "sdfObject": {

 "socket": {

 "description": "An array of sockets in the outlet strip",

 "minItems": 2,

 "maxItems": 10

 }

 }

 }

 }

}

D.2. Refrigerator-Freezer Example

Figure 7

Acknowledgements

This specification is based on work by the One Data Model group.

{

 "sdfThing": {

 "refrigerator-freezer": {

 "description": "A refrigerator combined with a freezer",

 "sdfProperty": {

 "status": {

 "type": "boolean",

 "description":

"Indicates if the refrigerator-freezer is powered"

 }

 },

 "sdfObject": {

 "refrigerator": {

 "description": "A refrigerator compartment",

 "sdfProperty": {

 "temperature": {

 "sdfRef": "#/sdfProproperty/temperature",

 "maximum": 8

 }

 }

 },

 "freezer": {

 "label": "A freezer compartment",

 "sdfProperty": {

 "temperature": {

 "sdfRef": "#/sdfProproperty/temperature",

 "maximum": -6

 }

 }

 }

 }

 }

 },

 "sdfProperty": {

 "temperature": {

 "description": "The temperature for this compartment",

 "type": "number",

 "unit": "Cel"

 }

 }

}

¶

Contributors

Jan Romann

Universität Bremen

Email: jan.romann@uni-bremen.de

Wouter van der Beek

Cascoda Ltd.

Threefield House

Threefield Lane

Southampton

United Kingdom

Email: w.vanderbeek@cascoda.com

Authors' Addresses

Michael Koster (editor)

KTC

29415 Alderpoint Road

Blocksburg, CA, 95514

United States of America

Phone: +1-707-502-5136

Email: michaeljohnkoster@gmail.com

Carsten Bormann (editor)

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

Ari Keränen

Ericsson

FI-02420 Jorvas

Finland

Email: ari.keranen@ericsson.com

mailto:jan.romann@uni-bremen.de
mailto:w.vanderbeek@cascoda.com
tel:+1-707-502-5136
mailto:michaeljohnkoster@gmail.com
tel:+49-421-218-63921
mailto:cabo@tzi.org
mailto:ari.keranen@ericsson.com

	Semantic Definition Format (SDF) for Data and Interactions of Things
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology and Conventions

	2. Overview
	2.1. Example Definition
	2.2. Elements of an SDF model
	2.2.1. sdfObject
	2.2.2. sdfProperty
	2.2.3. sdfAction
	2.2.4. sdfEvent
	2.2.5. sdfData
	2.2.6. sdfThing

	2.3. Member names: Given Names and Quality Names
	2.3.1. Given Names and Quality Names
	2.3.2. Hierarchical Names
	2.3.3. Extensibility of Given Names and Quality Names

	3. SDF structure
	3.1. Information block
	3.2. Namespaces block
	3.3. Definitions block
	3.4. Top-level Affordances and sdfData

	4. Names and namespaces
	4.1. Structure
	4.2. Contributing global names
	4.3. Referencing global names
	4.4. sdfRef
	4.4.1. Resolved models

	4.5. sdfRequired
	4.6. Common Qualities
	4.7. Data Qualities
	4.7.1. sdfType
	4.7.2. sdfChoice

	5. Keywords for definition groups
	5.1. sdfObject
	5.2. sdfProperty
	5.3. sdfAction
	5.4. sdfEvent
	5.5. sdfData

	6. High Level Composition
	6.1. Paths in the model namespaces
	6.2. Modular Composition
	6.2.1. Use of the "sdfRef" keyword to re-use a definition

	6.3. sdfThing

	7. IANA Considerations
	7.1. Media Type
	7.2. Content-Format
	7.3. IETF URN Sub-namespace for Unit Names (urn:ietf:params:unit)
	7.4. Registries
	7.4.1. Quality Name Prefixes
	7.4.2. sdfType Values

	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Formal Syntax of SDF
	Appendix B. json-schema.org Rendition of SDF Syntax
	Appendix C. Data Qualities inspired by json-schema.org
	C.1. type "number", type "integer"
	C.2. type "string"
	C.3. type "boolean"
	C.4. type "array"
	C.5. type "object"
	C.6. Implementation notes

	Appendix D. Composition Examples
	D.1. Outlet Strip Example
	D.2. Refrigerator-Freezer Example

	Acknowledgements
	Contributors
	Authors' Addresses

