
ASID Working Group Y. Yaacovi
INTERNET-DRAFT Microsoft
 M. Wahl
 Critical Angle Inc.
 T. Genovese
 Microsoft

Expires in six months from 1 July 1997
Intended Category: Standards Track

 Lightweight Directory Access Protocol:
 Dynamic Attributes
 <draft-ietf-asid-ldap-dynatt-00.txt>

1. Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

2. Abstract

 This document defines dynamic attributes and the fashion in which they
 are being set and used on entries in the directory. This document
 builds heavily on the dynamic extensions to LDAP infrastructure as
 defined in [1].

 The Lightweight Directory Access Protocol (LDAP) [2] supports
 lightweight access to static directory services, allowing relatively
 fast search and update access. Static directory services store
 information about people that persists in its accuracy and value over
 a long period of time.

 The dynamic extension to LDAP as defined in [1] added the concept of
 dynamic entries that only persist in the directory, when they are
 periodically refreshed. This document takes this approach one step
 farther and defines how dynamic attributes can be used, on either
 static or dynamic entries, to handle up-to-date and dynamic
 information about an entry in the directory. An example use will be a
 client or a person that has a static entry in the directory and

https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldap-dynatt-00.txt

 sometimes goes online, which is reflected in the 'online' attribute
 for the entry. To specify whether this person is online or offline -
 an attribute that changes frequently, a client application will have
 to modify this attribute relatively frequently. The current location
 of a person is another attribute that may change frequently.

 Dynamic attributes must be periodically refreshed. Otherwise, they
 will disappear from the directory over time.

3. Requirements

 Dynamic attributes must be set and used in a standard LDAP manner, to
 allow clients to access static and dynamic attributes in the same way.

 By definition, dynamic attributes are not persistent and may go away
 gracefully or not. The proposed draft must offer a way for a server
 to tell if attributes are still valid, and to do this in a way that is
 scalable. There also must be a mechanism for clients to reestablish
 their attributes with the server.

 Dynamic attributes must build on the same infrastructure that was
 design into LDAP in the dynamic extensions draft ([1]). It should
 take advantage of the extensions and operational attributes defined
 [1].

 Finally, to allow clients to broadly use dynamic attributes, they must
 be able to find out if a server supports such attributes.

4. Description of Approach

 The Lightweight Directory Access Protocol (LDAP) [2] supports the use
 of attributes on entries in the directory. The dynamic extensions
 draft ([1]) added support for dynamic entries. This proposal takes
 the attributes model and the dynamic model and merges the two to
 provide support for dynamic attributes in a manner which is fully
 compatible with LDAP.

 The approach taken here is to mark dynamic attributes as dynamic
 (described below), and require clients to refresh these attributes
 periodically in order to guarantee that they will continue to be
 present on the entry. Dynamic attributes can be set on either a
 static or dynamic entry, and the time-to-live associated with them
 applies to ALL the dynamic attributes on an entry, i.e. there is no
 time-to-live per dynamic attribute. This provides for a more scalable
 design, and a less complex server implementation.

4.1. Dynamic Attributes

 Dynamic attributes behave the same as ordinary user attributes to
 Search, Compare and Modify requests, except that if they time out they
 disappear from the entry in which they are located. Unlike the
 dynamicObject class - which is used to mark entries as dynamic, the

 entry itself does not disappear, and non-dynamic attributes are
 unaffected. Like dynamic entries, a static entry with dynamic
 attributes must have the entryTtl attribute which is described in
 [1].

 Dynamic attributes do not necessarily introduce a new set of
 attributes in the schema. Any static attribute in the schema can be
 made dynamic by including the ;dynamic attribute modifier with the
 typename. It is allowed to introduce new dynamic attributes which are
 not useful in the static domain. Such attributes will still require
 including the ;dynamic attribute modifier with the typename to define
 them as dynamic.

 A dynamic attribute may be a subtype of a non-dynamic attribute, but a
 non-dynamic attribute must not be a subtype of a dynamic attribute.
 Operational attributes and collective attributes must not be dynamic.
 All dynamic attributes are considered to be user attributes, however
 they are not guaranteed to be present in shadow copies of entries.

 A client may introduce dynamic attributes into an entry by using a
 Modify request to add them, or by including them in the attribute list
 of an Add Request. If the attribute type is permitted in the entry
 then the dynamic attribute is also permitted. The client would
 specify that the attribute is dynamic by including the tag ";dynamic"
 with the typename. Dynamic values may be changed, and the attributes
 removed, by using the Modify request as normal. If the entry is
 deleted, dynamic attributes disappear immediately along with all the
 non-dynamic. A ;dynamic modifier on an attribute must not be used in
 a compare request, or in a search request (either in the filter or
 attributes requested for return). This is in keeping with the
 philosophy that dynamic attributes be indistinguishable from static
 attributes as much as possible. In such a case, a server is expected
 to reject the request, returning 'invalidAttributeSyntax'.

 The granularity of a dynamic attribute is the entire attribute
 including all values. Dynamic and static values may not be mixed
 within a single attribute. For example, suppose an existing static
 entry had an attribute called "ipAddress" with the value "1.2.3.4". A
 modification of the entry to add the value "5.4.3.2" to the attribute
 "ipAddress;dynamic" would fail with a "constraintViolation" error.

 The addition and modification of dynamic attributes are subject to
 schema and access control restrictions, as with non-dynamic
 attributes. Thus unless the extensibleObject object class is present,
 generally an object class or content rule must be defined to permit
 those attributes to be present in an entry. If their presence is
 controlled by an object class, then just as with non-dynamic
 attributes, the object class value must have already been added before
 the attributes are added. The dynamicObject object class described in
 [1] does not itself permit any particular dynamic attributes.

 Dynamic attributes in a particular entry are refreshed using the
 Refresh extended operation. All of the entry's dynamic attributes are
 refreshed by a single refresh request. The TTL given in the refresh
 response applies to all of the entry's dynamic attributes. There is
 no way to refresh particular dynamic attributes within an entry at
 different times, or to have different TTLs apply to different dynamic
 attributes or different values of the same multi-value dynamic
 attribute.

 If not refreshed, all dynamic attributes in an entry time out
 simultaneously. All the attributes which are dynamic with all their
 values disappear atomically, as if the server had done a ModifyEntry
 specifying that all the dynamic types were to be deleted from that
 entry. The client must not expect any dynamic attributes to be
 present in an entry after the time-to-live for that entry has reached
 zero. However the attributes may not disappear immediately as servers
 may only process timing out attributes at intervals (e.g. every few
 minutes).

 Note that if an object class definition references a dynamic attribute
 as a mandatory attribute, the attributes of the entry will still time
 out, but a schema inconsistency will be present in that entry. (The
 objectClass attribute and its values always remain since objectClass
 is not a dynamic attribute.) Thus it is strongly recommended that
 designers not specify dynamic attributes as anything other than
 optional attributes of auxiliary classes.

 Dynamic attributes may be used within dynamic entries (i.e., entries
 containing object class "dynamicObject", defined in [1]), but since
 all of such an entry's attributes are implicitly dynamic, such use is
 superfluous.

5. Protocol Additions

 Support of dynamic attributes in LDAP does not require any protocol
 additions beyond the Refresh request and response which were
 introduced in [1].

6. Schema Additions

 An entry in the directory which has dynamic attributes must have the
 entryTtl operational attribute. In addition, the dynamicSubtrees
 attribute, if present in the root DSE, indicates which subtrees of the
 directory support the dynamic extensions. The entryTtl attribute and
 the dynamicSubtrees attribute are defined in [1].

 The following attributes are introduced as a result of allowing
 dynamic attributes on static entries. It is described using the
 AttributeTypeDescription notation of [3]:

 (1.3.6.1.4.1.1466.101.119.5 NAME 'dynamicAttributesSubtrees'
 DESC 'This operational attribute is maintained by the server and
 is present in the Root DSE, if the server supports dynamic
 attributes as described in this draft. The attribute contains
 a list of all the subtrees in this directory for which the
 server supports dynamic attributes.'
 SYNTAX 'DN' NO-USER-MODIFICATION USAGE dSAOperation)

 (1.2.840.113556.1.4.612 NAME 'online'
 DESC 'This attribute is used to indicate whether a entry is the
 directory is currently online or offline. This attribute
 should only be used with objects in the directory for which
 being online or offline makes sense. For example, a
 person object or a meeting object. Dynamic entries are
 always expected to be online. This attribute is optional.
 SYNTAX 'BOOLEAN' SINGLE-VALUE)

 (1.2.840.113556.1.4.613 NAME 'onlineServer'
 DESC 'This attribute is used to indicate the DNS names of server
 where this entry is online. This attribute should only
 be used with objects in the directory for which being
 online or offline makes sense. If an entry is not online,
 the server names in this attribute are meaningless. This
 attribute is maintained by the client and is optional.
 SYNTAX 'LDAPString')

 Note that the 'online' and 'onlineServer' attributes are only examples
 for one particular application of dynamic attributes, and that not all
 entries with dynamic attributes are required to have these attributes.

7. Client and Server Requirements

7.1 Client Requirements

 Clients can find out if a server supports the dynamic extensions by
 checking the supportedExtension field in the root DSE, to see if the
 OBJECT IDENTIFIER described in [1] for Refresh request and response,
 is present. Farther, and as described in [1], clients are expected to
 check the dynamicSubtrees operational attribute in the root DSE to
 find out in which subtrees of the directory, the server selected to
 support the dynamic extensions.

 To find out if a server specifically supports dynamic attributes, and
 in which subtrees in the directory, clients must check the
 dynamicAttributesSubtrees operational attribute in the root DSE.

 Once an entry has been created in the directory, that has dynamic
 attributes, clients are responsible for invoking the refresh extended
 operation, in order to keep these attributes present in the entry.
 The same holds true for dynamic attributes that were added to an entry

 after its creation.

 Clients must not expect that a dynamic attributes will be present in
 an entry after they have timed out. However it must not either
 require that the server remove these attributes immediately (some
 servers may only process timing out attributes at intervals). If the
 client wishes to ensure an attribute does not exist it should issue a
 ModifyRequest to remove this attribute explicitly.

 Initially, a client needs to know how often it should send refresh
 requests to the server. This value is defined as the CRP (Client
 Refresh Period) and is set by the server based on the entryTtl. Since
 the AddRequest and ModifyRequest are left unchanged and are not
 modified in this proposal to return this value, a client must issue a
 Refresh extended operation immediately after an Add or Modify that
 introduced a dynamic attribute to an entry. The Refresh Response will
 return the CRP (in responseTtl) to the client as described in [1].

 Clients must not issue the refresh request for entries to which they
 did not add dynamic attributes. Please note that when a client
 refreshes a static entry to which it added dynamic attribute(s), it
 refreshes ALL the dynamic attributes in this entry, including ones
 added by other clients. Also note that servers which allow anonymous
 clients to create and refresh dynamic entries and attributes will not
 be able to enforce the above.

 Clients should always be ready to handle the case in which their
 dynamic attributes timed out. In such a case, the Refresh operation
 will fail with an error code such as noSuchAttribute, and the client
 is expected to re-add their dynamic attributes.

 Clients should be prepared to experience refresh operations failing
 with protocolError, even though the add and any previous refresh
 requests succeeded. This might happen if a proxy between the client
 and the server goes down, and another proxy is used which does not
 support the Refresh extended operation.

7.2 Server Requirements

 Servers are responsible for removing dynamic attributes when they time
 out. Servers are not required to do this immediately.

 Servers must enforce the schema rules listed in above section 4.

 Servers must ensure that the entryTtl operational attribute described
 in [1] is present in entries that contain dynamic attributes.

 Servers are permitted to check the authentication of the client
 invoking a refresh extended operation, and only permit the operation
 if it matches that of the client which created the entry or added
 dynamic attributes to this entry (please see a note about that in

section 7.1). Servers may permit anonymous users to refresh entries.

 Servers which implement support for dynamic attributes must have the
 OBJECT IDENTIFIER, described in [1] for the request and response,
 present as a value of the supportedExtension field in the root DSE.
 They must also have as values in the attributeTypes attribute of their
 subschema subentries, the AttributeTypeDescription for entryTtl and
 dynamicSubtrees, as described in [1].

8. Implementation issues

8.1 Storage of dynamic information

 Dynamic information is expected to change very often. In addition,
 Refresh requests are expected to arrive at the server very often.
 Disk-based databases that static directory services often use are
 likely inappropriate for storing dynamic information. We recommend
 that server implementations store dynamic attributes in memory
 sufficient to avoid paging. This is not a requirement.

 We expect LDAP servers to be able to store static and dynamic entries.
 If an LDAP server does not support dynamic entries, it should respond
 with an error code such as objectClassViolation. Such a server might
 still support setting dynamic attributes on a static entry.

8.2 Client refresh behavior

 In some cases, the client might not get a Refresh response. This may
 happen as a result of a server crash after receiving the Refresh
 request, the TCP/IP socket timing out in the connection case, or the
 UDP packet getting lost in the connection-less case.

 It is recommended that in such a case, the client will retry the
 Refresh operation immediately, and if this Refresh request does not
 get a response as well, it will resort to its original Refresh cycle,
 i.e. send a Refresh request at its Client Refresh Period (CRP).

9. Localization

 The are no localization issues for this extended operation.

10. Security Considerations

 Security issues are not addressed in this document. Please note,
 though, that anonymous clients are able to refresh attributes which
 they did not add to an entry.

 Also, Care should be taken in making use of information obtained from
 directory servers that has been supplied by client, as it may now be
 out of date. In many networks, for example, IP addresses are
 automatically assigned when a host connects to the network, and may be
 reassigned if that host later disconnects. An IP address obtained

 from the directory may no longer be assigned to the host that placed
 the address in the directory. This issue is not specific to LDAP or
 dynamic directories.

11. Acknowledgments

 Design ideas included in this document are based on those discussed in
 ASID and other IETF Working Groups.

12. Authors Addresses

 Yoram Yaacovi
 Microsoft
 One Microsoft way
 Redmond, WA 98052
 USA

 Phone: +1 206-936-9629
 EMail: yoramy@microsoft.com

 Mark Wahl
 Critical Angle Inc.
 4815 W. Braker Lane #502-385
 Austin, TX 78759
 USA

 EMail: M.Wahl@critical-angle.com

 Tony Genovese
 Microsoft
 One Microsoft way
 Redmond, WA 98052
 USA

 Phone: +1 206-703-0852
 EMail: tonyg@microsoft.com

13. Bibliography

 [1] Y.Yaacovi, M.Wahl, T.Genovese, "Lightweight Directory Access Protocol
 (v3): Extensions for Dynamic Directory Services". INTERNET DRAFT.
 <draft-ietf-asid-ldapv3-dynamic-04.txt>

 [2] M.Wahl, T. Howes, S. Kille, "Lightweight Directory Access
 Protocol (Version 3)". INTERNET DRAFT
 <draft-ietf-asid-ldapv3-protocol-01.txt>

 [3] M.Wahl, A.Coulbeck, T. Howes, S. Kille, "Lightweight Directory
 Access Protocol (v3): Attribute Syntax Definitions". INTERNET DRAFT
 <draft-ietf-asid-ldapv3-attributes-04.txt>

https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldapv3-dynamic-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldapv3-protocol-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldapv3-attributes-04.txt

 Expires on six months from the post date (see top).

