
Network Working Group Rob Weltman
INTERNET-DRAFT Netscape Communications Corp.
 Tim Howes
 Netscape Communications Corp.
 Mark Smith
 Netscape Communications Corp.
 September 26, 1997

The Java LDAP Application Program Interface
draft-ietf-asid-ldap-java-api-01.txt

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working docu-
ments of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as ``work in progress.''

To learn the current status of any Internet-Draft, please check the
``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
Directories on ds.internic.net (US East Coast), nic.nordu.net (Europe),
ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

Abstract

This document defines a java language application program interface to
the lightweight directory access protocol (LDAP), in the form of a class
library. It complements but does not replace RFC 1823 ([9]), which
describes a C language application program interface. It updates and
replaces draft-ietf-asid-ldap-java-api-00.txt [13], in adding clarifica-
tion on behavior under various circumstances, and in revising support
for language-sensitive attribute parsing. Other additions and correc-
tions are listed in the appendix.

1. Introduction

The LDAP class library is designed to provide powerful, yet simple,
access to a LDAP directory services. It defines a synchronous interface
to LDAP, with support for partial results on searching, to suit a wide
variety of applications. This document gives a brief overview of the

Expires 3/98 [Page 1]

https://datatracker.ietf.org/doc/html/rfc1823
https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldap-java-api-00.txt

JAVA LDAP API September 1997

LDAP model, then an overview of the constituents of the class library.
The public class methods are described in detail, followed by an appen-
dix that provides some example code demonstrating the use of the
classes, and an appendix listing changes from earlier drafts.

2. Overview of the LDAP model

LDAP is the lightweight directory access protocol, described in [2] and
[7]. It defines a lightweight access mechanism in which clients send
requests to and receive responses from LDAP servers.

The LDAP information model comes from X.500 [1] and is based on the
entry, which contains information about some object (e.g., a person).
Entries are composed of attributes, which have a type and one or more
values. Each attribute has a syntax that determines what kinds of values
are allowed in the attribute (e.g., ASCII characters, a jpeg photograph,
etc.) and how those values behave during directory operations (e.g., is
case significant during comparisons).

Entries may be organized in a tree structure, usually based on politi-
cal, geographical, and organizational boundaries. Other structures are
possible, including a flat namespace. Each entry is uniquely named rela-
tive to its sibling entries by its relative distinguished name (RDN)
consisting of one or more distinguished attribute values from the entry.
At most one value from each attribute may be used in the RDN. For exam-
ple, the entry for the person Babs Jensen might be named with the "Bar-
bara Jensen" value from the commonName attribute.

A globally unique name for an entry, called a distinguished name or DN,
is constructed by concatenating the sequence of RDNs from the entry up
to the root of the tree. For example, if Babs worked for the University
of Michigan, the DN of her U-M entry might be "cn=Barbara Jensen,
o=University of Michigan, c=US". The DN format used by LDAP is defined
in [4].

Operations are provided to authenticate, search for and retrieve infor-
mation, modify information, and add and delete entries from the tree.

An LDAP server may return referrals if it cannot completely service a
request (for example if the request specifies a directory base outside
of the tree managed by the server). The LDAP class library offers the
programmer two options: the programmer can catch these referrals as
exceptions and explicitly issue new requests to the referred-to servers,
or the programmer can let the library automatically follow the refer-
rals. In the latter case, the programmer may also provide a reauthenti-
cation object, allowing automatic referrals to proceed with appropriate
credentials (as opposed to anonymous authentication) for each referred-
to server.

Expires 3/98 [Page 2]

JAVA LDAP API September 1997

Before the client encodes and sends a string value to a server, the
string values are converted from the java 16-bit Unicode format to UTF-8
format. Then, when the values are received by the server, the values are
converted back to 16-bit Unicodeformat. The integrity of double-byte
and other non-ASCII character sets is fully preserved.

The next sections give an overview of how the class library is used and
detailed descriptions of the LDAP class methods that implement all of
these functions.

3. Overview of the LDAP classes

The central LDAP class is LDAPConnection. It provides methods to estab-
lish an authenticated or anonymous connection to an LDAP server, as well
as methods to search for, modify, compare, and delete entries in the
directory.

The LDAPConnection class also provides fields for storing settings that
are specific to the LDAP session (such as limits on the number of
results returned or timeout limits). An LDAPConnection object can be
cloned, allowing objects to share a single network connection but use
different settings (using LDAPConnection.setOption()).

To support extensions of the LDAP protocol LDAPConnection and to add the
capability to determine the LDAP protocol level supported by an LDAPCon-
nection object, LDAPConnection implements a protocol interface, which is
currently LDAPv3.

A search conducted by an LDAPConnection object returns results in an
LDAPSearchResults object, which can be enumerated to access the entries
found. Each entry (represented by an LDAPEntry object) provides access
to the attributes (represented by LDAPAttribute objects) returned for
that entry. Each attribute can produce the values found as byte arrays
or as Strings.

3.1. Interfaces

LDAPEntryComparator An interface to support arbitrary sorting algo-
 rithms for entries returned by a search operation.
 The basic java LDAP classes include one implemen-
 tation: LDAPCompareAttrNames, to sort in ascending
 order based on one or more attribute names.

LDAPRebind A programmer desiring reauthentication on automat-
 ically following referrals must implement this

Expires 3/98 [Page 3]

JAVA LDAP API September 1997

 interface. Without it, automatically followed
 referrals will use anonymous authentication.
 Referrals of any type other to an LDAP server
 (i.e. a referral URL other than ldap://something)
 are ignored on automatic referral following.

LDAPSocketFactory Programmers needing to provide or use specialized
 socket connections, including Transport Layer
 Security (TLS) based ones, can provide an object
 constructor to implement them using this inter-
 face.

LDAPv2 This interface defines the functionality of the
 LDAP version 2 protocol. It is implemented by
 LDAPConnection.

LDAPv3 This interface extends LDAPv2, adding the func-
 tionality of the LDAP version 3 protocol. It is
 implemented by LDAPConnection.

3.2. Classes

LDAPAttribute Represents the name and values of one attribute of
 a directory entry.

LDAPAttributeSet A collection of LDAPAttributes.

LDAPCompareAttrNames An implementation of LDAPEntryComparator, to sup-
 port sorting of search results by one or more
 attributes.

LDAPConnection Implements LDAPv3 and is the central point for
 interactions with a directory.

LDAPControl Sets additional parameters or constraints for an
 LDAP operation, either on the server or on the
 client.

Expires 3/98 [Page 4]

JAVA LDAP API September 1997

LDAPDN A utility class to facilitate composition and
 decomposition of distinguished names (DNs).

LDAPEntry Represents a single entry in a directory.

LDAPExtendedOperation Encapsulates the ID and data associated with the
 sending or receiving of an extended operation (an
 LDAPv3 feature).

LDAPModification A single add/delete/replace operation to an
 LDAPAttribute.

LDAPModificationSet A collection of LDAPModifications

LDAPRebindAuth An implementation of LDAPRebind must be able to
 provide an LDAPRebindAuth at the time of a refer-
 ral. The class encapsulates reauthentication
 credentials.

LDAPSearchConstraints Defines the options controlling search operations.

LDAPSearchResults The enumerable results of a search operation.

LDAPSortKey Specifies how search results are to be sorted.

LDAPUrl Encapsulates parameters of an LDAP Url query, as
 defined in [8].

3.3. Exceptions

LDAPException General exception, which includes an error message
 and an LDAP error code.

LDAPReferralException Derived from LDAPException and contains a list of
 LDAPUrls corresponding to referrals received on an
 LDAP operation.

Expires 3/98 [Page 5]

JAVA LDAP API September 1997

4. Overview of LDAP API use

An application generally uses the LDAP API in four steps.

- Construct an LDAPConnection. Initialize an LDAP session with a
 directory server. The LDAPConnection.connect() call establishes a
 handle to the session, allowing multiple sessions to be open at
 once, on different instances of LDAPConnection.

- Authenticate to the LDAP server with LDAPConnection.authenticate().

- Perform some LDAP operations and obtain some results.
 LDAPConnection.search() returns an LDAPSearchResults, which can be
 enumerated to access all entries found. LDAPConnection.read()
 returns a single entry.

- Close the connection. The LDAPConnection.disconnect() call closes
 the connection.

All operations are synchronous - they do not return until the operation
has completed. In the java environment, it is appropriate to create a
thread for the operation rather than providing parallel synchronous and
asynchronous operations, as is the case in the C language API described
in [9]. To facilitate user feedback during searches, intermediate search
results can be obtained before the entire search operation is completed
by specifying the number of entries to return at a time.

Standard java Enumerations are used to parse search results. Errors
result in the throwing of an LDAPException, with a specific error code
and context-specific textual information available.

The following sections describe the LDAP classes in more detail.

5. The java LDAP classes

5.1. public class LDAPAttribute

The LDAPAttribute class represents the name and values of an attribute.
It is used to specify an attribute to be added to, deleted from, or
modified in a Directory entry. It is also returned on a search of a
Directory.

5.1.1. Constructors

 public LDAPAttribute(String attrName)

Expires 3/98 [Page 6]

JAVA LDAP API September 1997

 Constructs an attribute with no values.

 public LDAPAttribute(String attrName,
 byte attrBytes[])

 Constructs an attribute with a byte-formatted value.

 public LDAPAttribute(String attrName,
 String attrString)

 Constructs an attribute that has a single string value.

 public LDAPAttribute(String attrName,
 String attrStrings[])

 Constructs an attribute that has an array of string values.

 Parameters are:

 attrName Name of the attribute.

 attrBytes Value of the attribute as raw bytes.

 attrString Value of the attribute as a String.

 attrStrings Array of values as Strings.

 attrBytesArray Array of values as raw byte arrays.

5.1.2. addValue

 public synchronized void addValue(String attrString)

 Adds a string value to the attribute.

 public synchronized void addValue(byte attrBytes[])

 Adds a byte[]-formatted value to the attribute.

 Parameters are:

 attrString Value of the attribute as a String.

Expires 3/98 [Page 7]

JAVA LDAP API September 1997

 attrBytes Value of the attribute as raw bytes.

5.1.3. getByteValues

 public Enumeration getByteValues()

 Returns an enumerator for the values of the attribute in byte[] for-
 mat.

5.1.4. getStringValues

 public Enumeration getStringValues()

 Returns an enumerator for the string values of an attribute.

5.1.5. getName

 public String getName()

 Returns the name of the attribute.

5.1.6. removeValue

 public synchronized void removeValue(String attrString)

 Removes a string value from the attribute.

 public synchronized void removeValue(byte attrValue[])

 Removes a byte[]-formatted value from the attribute.

 Parameters are:

 attrString Value of the attribute as a String.

 attrBytes Value of the attribute as raw bytes.

5.1.7. size

 public int size()

 Returns the number of values of the attribute.

Expires 3/98 [Page 8]

JAVA LDAP API September 1997

5.2. public class LDAPAttributeSet

An LDAPAttributeSet is a collection of LDAPAttributes, as returned in an
entry on a search or read operation, or used to construct an entry to be
added to a directory.

5.2.1. Constructors

 public LDAPAttributeSet()

 Constructs a new set of attributes. This set is initially empty.

5.2.2. add

 public synchronized void add(LDAPAttribute attr)

 Adds the specified attribute to this attribute set.

 Parameters are:

 attr Attribute to add to this set.

5.2.3. elementAt

 public LDAPAttribute elementAt(int index)
 throws ArrayIndexOutOfBoundsException

 Returns the attribute at the position specified by the index. The
 index is 0-based.

 Parameters are:

 index Index of the attribute to get.

5.2.4. getAttribute

 public LDAPAttribute[] getAttribute(String attrName)

 Returns the attribute matching the specified attrName. For example,
 getAttribute("cn") returns only the "cn" attribute;
 getAttribute("cn;lang-en") returns only the "cn;lang-en" attribute.
 In both cases, null is returned if there is no exact match to the
 specified attrName.

Expires 3/98 [Page 9]

JAVA LDAP API September 1997

 public LDAPAttribute[] getAttribute(String attrName, String lang)

 Returns a single best-match attribute, or none if no match is avail-
 able in the entry.

 LDAP version 3 allows adding a subtype specification to an attribute
 name. "cn;lang-ja", for example, indicates a Japanese language sub-
 type of the "cn" attribute. "cn;lang-ja-JP-kanji" may be a subtype of
 "cn;lang-ja". This feature may be used to provide multiple localiza-
 tions in the same Directory. For attributes which do not vary among
 localizations, only the base attribute may be stored, whereas for
 others there may be varying degrees of specialization.

 getAttribute(attrName,lang) returns the subtype that matches attrName
 and that best matches lang. If there are subtypes other than "lang"
 subtypes included in attrName, e.g. "cn;binary", only attributes with
 all of those subtypes are returned. If lang is null or empty, the
 method behaves as getAttribute(attrName). If there are no matching
 attributes, null is returned.

 Example:
 Assume the entry contains only the following attributes:
 cn;lang-en
 cn;lang-ja-JP-kanji
 sn
 getAttribute("cn") returns null.
 getAttribute("sn") returns the "sn" attribute.
 getAttribute("cn", "lang-en-us") returns the "cn;lang-en" attribute.
 getAttribute("cn", "lang-en") returns the "cn;lang-en" attribute.
 getAttribute("cn", "lang-ja") returns null.
 getAttribute("sn", "lang-en") returns the "sn" attribute.

 Parameters are:

 attrName The name of an attribute to retrieve, with or without
 subtype specification(s). "cn", "cn;phonetic", and
 "cn;binary" are valid attribute names.

 lang A language specification as in [14], with optional
 subtypes appended using "-" as separator. "lang-en",
 "lang-en-us", "lang-ja", and "lang-ja-JP-kanji" are
 valid language specification.

5.2.5. getAttributes

 public Enumeration getAttributes()

Expires 3/98 [Page 10]

JAVA LDAP API September 1997

 Returns an enumeration of the attributes in this attribute set.

5.2.6. remove

 public synchronized void remove(String name)

 Removes the specified attribute from the set. If the attribute is not
 a member of the set, nothing happens.

 Parameters are:

 name Name of the attribute to remove from this set. To
 remove an LDAPAttribute by object, the
 LDAPAttribute.getName method can be used:

 LDAPAttributeSet.remove(attr.getName());

5.2.7. removeElementAt

 public void removeElementAt(int index)
 throws ArrayIndexOutOfBoundsException

 Removes the attribute at the position specified by the index. The
 index is 0-based.

 Parameters are:

 index Index of the attribute to remove.

5.2.8. size

 public int size()

 Returns the number of attributes in this set.

5.3. public class LDAPCompareAttrNames implements LDAPEntryComparator

An object of this class supports sorting search results by attribute
name, in ascending or descending order.

5.3.1. Constructors

 public LDAPCompareAttrNames(String attrName)

Expires 3/98 [Page 11]

JAVA LDAP API September 1997

 Constructs an object that will sort results by a single attribute, in
 ascending order.

 public LDAPCompareAttrNames(String attrName,
 boolean ascendingFlag)

 Constructs an object that will sort results by a single attribute, in
 either ascending or descending order.

 public LDAPCompareAttrNames(String[] attrNames)

 Constructs an object that will sort by one or more attributes, in the
 order provided, in ascending order.

 public LDAPCompareAttrNames(String[] attrNames,
 boolean[] ascendingFlags)
 throws LDAPException

 Constructs an object that will sort by one or more attributes, in the
 order provided, in either ascending or descending order for each
 attribute.

 Parameters are:

 attrName Name of an attribute to sort by.

 attrNames Array of names of attributes to sort by.

 ascendingFlag true to sort in ascending order, false for descending
 order.

 ascendingFlags Array of flags, one for each attrName, where each one
 is true to sort in ascending order, false for des-
 cending order. An LDAPException is thrown if the
 length of ascendingFlags is not greater than or equal
 to the length of attrNames.

5.3.2. isGreater

 public boolean isGreater (LDAPEntry entry1, LDAPEntry entry2)

 Returns true if entry1 is to be considered greater than entry2, for
 the purpose of sorting, based on the attribute name or names provided
 on object construction.

Expires 3/98 [Page 12]

JAVA LDAP API September 1997

 Parameters are:

 entry1 Target entry for comparison.

 entry2 Entry to be compared to.

5.4. public class LDAPConnection implements LDAPv3, Cloneable

LDAPConnection is the central class that encapsulates the connection to
a Directory Server through the LDAP protocol. It implements the LDAPv2
and LDAPv3 interfaces. An LDAPConnection object is not connected on con-
struction, and may only be connected to one server at one port. Multiple
threads may share this single connection, and an application may have
more than one LDAPConnection object, connected to the same or different
Directory Servers.

Besides the methods described for LDAPv2 and LDAPv3, LDAPConnection pro-
vides the following methods.

5.4.1. Constructors

 public LDAPConnection()

 Constructs a new LDAPConnection object, which represents a connection
 to an LDAP server.

 Calling the constructor does not actually establish the connection.
 To connect to the LDAP server, use the connect method.

 public LDAPConnection(LDAPSocketFactory factory)

 Constructs a new LDAPConnection object, which will use the supplied
 class factory to construct a socket connection during
 LDAPConnection.connect().

 Parameters are:

 factory An object capable of producing a Socket.

5.4.2. clone

 public LDAPConnection clone()

 Returns a copy of the object with a private context, but sharing the
 network connection if there is one. The network connection remains

Expires 3/98 [Page 13]

JAVA LDAP API September 1997

 open until all clones have disconnected or gone out of scope. Any
 connection opened after cloning is private to the object making the
 connection.

5.4.3. getAuthenticationDN

 public String getAuthenticationDN()

 Returns the distinguished name (DN) used for authentication by this
 object.

5.4.4. getAuthenticationPassword

 public String getAuthenticationPassword()

 Returns the password used for simple authentication by this object.

5.4.5. getHost

 public String getHost()

 Returns the host name of the LDAP server to which the object is or
 was last connected, in the format originally specified.

5.4.6. getPort

 public int getPort()

 Returns the port number of the LDAP server to which the object is or
 was last connected.

5.4.7. getProperty

 public Object getProperty(String name) throws LDAPException

 Gets a property of a connection object.

 Parameters are:

 name Name of the property to be returned.

 The following read-only properties are available for
 any given connection:

Expires 3/98 [Page 14]

JAVA LDAP API September 1997

 LDAP_PROPERTY_SDK The version of this SDK, as a Float
 data type.

 LDAP_PROPERTY_PROTOCOL The highest supported version of the
 LDAP protocol, as a Float data type.

 LDAP_PROPERTY_SECURITY A comma-separated list of the types
 of authentication supported, as a
 String.

 Other properties may be available in particular implementations of
 the class, and used to modify operations such as search.

 An LDAPException is thrown if the requested property is not avail-
 able.

5.4.8. getSearchConstraints

 public LDAPSearchConstraints getSearchConstraints()

 Returns the set of search constraints that apply to all searches per-
 formed through this connection (unless a different set of search con-
 straints is specified when calling the search method).

 Note that the getOption method can be used to get individual con-
 straints (rather than getting the entire set of constraints).

 Typically, the getSearchConstraints method is used to create a
 slightly different set of search constraints to apply to a particular
 search.

5.4.9. getSocketFactory

 public static LDAPSocketFactory getSocketFactory()

 Returns the default LDAPSocketFactory used to establish a connection
 to a server.

5.4.10. isAuthenticated

 public boolean isAthenticated()

 Indicates whether the object has authenticated to the connected LDAP
 server.

Expires 3/98 [Page 15]

JAVA LDAP API September 1997

5.4.11. isConnected

 public boolean isConnected()

 Indicates whether the connection represented by this object is open
 at this time.

5.4.12. read

 public static LDAPEntry read(LDAPUrl toGet) throws LDAPException

 Reads the entry specified by the LDAP URL.

 When this method is called, a new connection is created automati-
 cally, using the host and port specified in the URL. After finding
 the entry, the method closes the connection (in other words, it
 disconnects from the LDAP server).

 If the URL specifies a filter and scope, these are not used. Of the
 information specified in the URL, this method only uses the LDAP host
 name and port number, the base distinguished name (DN), and the list
 of attributes to return.

 The method returns the entry specified by the base DN.

 Parameters are:

 toGet LDAP URL specifying the entry to read.

5.4.13. search

 public static LDAPSearchResults search(LDAPUrl toGet) throws LDAPEx-
 ception

 Performs the search specified by the LDAP URL, returning an enumer-
 able LDAPSearchResults object.

 public static LDAPSearchResults search(LDAPUrl toGet,
 LDAPSearchConstraints cons)
 throws LDAPException

 Perfoms the search specified by the LDAP URL. This method also allows
 specifying constraints for the search (such as the maximum number of
 entries to find or the maximum time to wait for search results).

Expires 3/98 [Page 16]

JAVA LDAP API September 1997

 As part of the search constraints, a choice can be made as to whether
 to have the results delivered all at once or in smaller batches. If
 the results are to be delivered in smaller batches, each iteration
 blocks only until the next batch of results is returned.

 Parameters are:

 toGet LDAP URL specifying the entry to read.

 cons Constraints specific to the search.

5.4.14. setOption

 public void setOption(int option,
 Object value)
 throws LDAPException

 Sets the value of the specified option for this LDAPConnection
 object.

 These options represent the default search constraints for the
 current connection. Some of these options are also propagated through
 the LDAPSearchConstraints, which can be obtained from the connection
 object with the getSearchConstraints method.

 The option that is set here applies to all subsequent searches per-
 formed through the current connection, unless it is overridden with
 an LDAPSearchConstraints at the time of search.

 To set a constraint only for a particular search, create an LDAPSear-
 chConstraints object with the new constraints and pass it to the
 LDAPConnection.search method.

 Parameters are:

 option One of the following options:

 Option Type Description

 LDAPv2.DEREF Integer Specifies under what
 circumstances the object
 dereferences aliases.
 By default, the value of
 this option is

Expires 3/98 [Page 17]

JAVA LDAP API September 1997

 LDAPv2.DEREF_NEVER.

 Legal values for this option are:

 LDAPv2.DEREF_NEVER Aliases are never dereferenced.

 LDAPv2.DEREF_FINDING aliases are dereferenced when find-
 ing the starting point for the
 search (but not when searching
 under that starting entry).

 LDAPv2.DEREF_SEARCHING Aliases are dereferenced when
 searching the entries beneath the
 starting point of the search (but
 not when finding the starting
 entry).

 LDAPv2.DEREF_ALWAYS Aliases are always dereferenced
 (both when finding the starting
 point for the search and when
 searching under that starting
 entry).

 LDAPv2.SIZELIMIT Integer Specifies the maximum
 number of search results
 to return. If this
 option is set to 0,
 there is no maximum
 limit.

 By default, the value of
 this option is 1000.

 LDAPv2.TIMELIMIT Integer Specifies the maximum
 number of milliseconds
 to wait for results
 before timing out. If
 this option is set to 0,
 there is no maximum time
 limit. The actual granu-
 larity of the timeout
 depends on the implemen-
 tation.

Expires 3/98 [Page 18]

JAVA LDAP API September 1997

 By default, the value of
 this option is 0.

 LDAPv2.REFERRALS Boolean Specifies whether or not
 the client follows
 referrals automatically.
 If true, the client fol-
 lows referrals automati-
 cally. If false, an
 LDAPReferralException is
 raised when a referral
 is detected.

 Referrals of any type
 other to an LDAP server
 (i.e. a referral URL
 other than
 ldap://something) are
 ignored on automatic
 referral following.

 By default, the value of
 this option is false.

 LDAPv2.REFERRALS_REBIND_PROC LDAPRebind Specifies an object that
 implements the LDAPRe-
 bind interface. A user
 of the class library
 must define this class
 and the getRebindAuthen-
 tication method that
 will be used to get the
 distinguished name and
 password to use for
 authentication. If this
 value is null and REFER-
 RALS is true, referrals
 will be followed with
 anonymous (= no) authen-
 tication.

 By default, the value of
 this option is null.

 LDAPv2.REFERRALS_HOP_LIMIT Integer Specifies the maximum

Expires 3/98 [Page 19]

JAVA LDAP API September 1997

 number of referrals in a
 sequence that the client
 will follow. For exam-
 ple, if
 REFERRALS_HOP_LIMIT is
 5, the client will fol-
 low no more than 5
 referrals in a row when
 resolving a single LDAP
 request.

 The default value of
 this option is 10.

 LDAPv2.BATCHSIZE Integer Specifies the number of
 search results to return
 at a time. For example,
 if BATCHSIZE is 1,
 enumerating an LDAPSear-
 chResults will block
 only until one entry is
 available. If it is 0,
 enumerating will block
 until all entries have
 been retrieved from the
 server.

 The default value of
 this option is 1.

 value The value to assign to the option. The value must be
 the java.lang object wrapper for the appropriate
 parameter (e.g. boolean->Boolean, int->Integer) .

5.4.15. setProperty

 public void setProperty(String name, Object value) throws LDAPExcep-
 tion

 Sets a property of a connection object.

 No property names have been defined at this time, but the mechanism
 is in place in order to support revisional as well as dynamic exten-
 sions to operation modifiers.

Expires 3/98 [Page 20]

JAVA LDAP API September 1997

 Parameters are:

 name Name of the property to set.

 value Value to assign to the property.

 An LDAPException is thrown if the specified property
 is not supported.

5.4.16. setSocketFactory

 public static void setSocketFactory(LDAPSocketFactory factory)

 Establishes the default LDAPSocketFactory used to establish a connec-
 tion to a server.

 This method is implemented as once-only. It is useful to be able to
 change the run-time connection behavior of a whole application with a
 single instruction, but the results would be confusing, and the
 side-effects dangerous, if the global default factory could be
 changed at arbitrary times by different threads. It should be called
 before the first connect(). If called (for the first time) after con-
 necting, the new factory will not be used until/unless a new connec-
 tion is attempted with the object.

 A typical usage would be:

 if (usingTLS) {
 LDAPConnection.setSocketFactory(myTLSFactory);
 }
 ...
 LDAPConnection conn = new LDAPConnection();
 conn.connect(myHost, myPort);

 In this example, connections are constructed with the default LDAP-
 SocketFactory. At application start-up time, the default may be set
 to use a particular provided TLS socket factory.

 Parameters are:

 factory A factory object which can construct socket connec-
 tions for an LDAPConnection.

5.5. public class LDAPControl implements Cloneable

An LDAPControl encapsulates optional additional parameters or con-
straints to be applied to LDAP operations. If set as a Server Control,

Expires 3/98 [Page 21]

JAVA LDAP API September 1997

it is sent to the server along with operation requests. If set as a
Client Control, it is not sent to the server, but rather interpreted
locally by the client. LDAPControl is an LDAPv3 extension, and is not
supported in an LDAPv2 environment.

5.5.1. Constructors

 public LDAPControl(String id,
 boolean critical,
 byte vals[])

 Parameters are:

 id The type of the Control, as a string.

 critical True if the LDAP operation should be discarded if the
 server does not support this Control.

 vals Control-specific data.

5.5.2. getID

 public String getID()

 Returns the identifier of the control.

5.5.3. isCritical

 public boolean isCritical()

 Returns true if the control must be supported for an associated
 operation to be executed.

5.5.4. getValue

 public byte[] getValue()

 Returns the control-specific data of the object.

5.6. public class LDAPDN

A utility class representing a distinguished name (DN).

Expires 3/98 [Page 22]

JAVA LDAP API September 1997

5.6.1. explodeDN

 public static String[] explodeDN(String dn,
 boolean noTypes)

 Returns the individual components of a distinguished name (DN).

 Parameters are:

 dn Distinguished name, e.g. "cn=Babs
 Jensen,ou=Accounting,o=Acme,c=us"

 noTypes If true, returns only the values of the components,
 and not the names, e.g. "Babs Jensen", "Accounting",
 "Acme", "us" - instead of "cn=Babs Jensen",
 "ou=Accounting", "o=Acme", and "c=us".

5.6.2. explodeRDN

 public static String[] explodeRDN(String rdn,
 boolean noTypes)

 Returns the individual components of a relative distinguished name
 (RDN).

 Parameters are:

 rdn Relative distinguished name, i.e. the left-most com-
 ponent of a distinguished name.

 noTypes If true, returns only the values of the components,
 and not the names.

5.7. public class LDAPEntry

An LDAPEntry represents a single entry in a directory, consisting of a
distinguished name (DN) and zero or more attributes. An instance of
LDAPEntry is created in order to add an entry to a Directory, and
instances are returned on a search by enumerating an LDAPSearchResults.

5.7.1. Constructors

 public LDAPEntry()

 Constructs an empty entry.

Expires 3/98 [Page 23]

JAVA LDAP API September 1997

 public LDAPEntry(String dn)

 Constructs a new entry with the specified distinguished name and with
 an empty attribute set.

 public LDAPEntry(String dn
 LDAPAttributeSet attrs)

 Constructs a new entry with the specified distinguished name and set
 of attributes.

 Parameters are:

 dn The distinguished name of the new entry. The value is
 not validated. An invalid distinguished name will
 cause adding of the entry to a directory to fail.

 attrs The initial set of attributes assigned to the entry.

5.7.2. getAttribute

 public LDAPAttribute[] getAttribute(String attrName)

 Returns the attribute matching the specified attrName. For example,
 getAttribute("cn") returns only the "cn" attribute;
 getAttribute("cn;lang-en") returns only the "cn;lang-en" attribute.
 In both cases, null is returned if there is no exact match to the
 specified attrName.

 public LDAPAttribute[] getAttribute(String attrName, String lang)

 Returns a single best-match attribute, or none if no match is avail-
 able in the entry.

 LDAP version 3 allows adding a subtype specification to an attribute
 name. "cn;lang-ja", for example, indicates a Japanese language sub-
 type of the "cn" attribute. "cn;lang-ja-JP-kanji" may be a subtype of
 "cn;lang-ja". This feature may be used to provide multiple localiza-
 tions in the same Directory. For attributes which do not vary among
 localizations, only the base attribute may be stored, whereas for
 others there may be varying degrees of specialization.

 getAttribute(attrName,lang) returns the subtype that matches attrName
 and that best matches lang. If there are subtypes other than "lang"
 subtypes included in attrName, e.g. "cn;binary", only attributes with
 all of those subtypes are returned. If lang is null or empty, the

Expires 3/98 [Page 24]

JAVA LDAP API September 1997

 method behaves as getAttribute(attrName). If there are no matching
 attributes, null is returned.

 Example:
 Assume the entry contains only the following attributes:
 cn;lang-en
 cn;lang-ja-JP-kanji
 sn
 getAttribute("cn") returns null.
 getAttribute("sn") returns the "sn" attribute.
 getAttribute("cn", "lang-en-us") returns the "cn;lang-en" attribute.
 getAttribute("cn", "lang-en") returns the "cn;lang-en" attribute.
 getAttribute("cn", "lang-ja") returns null.
 getAttribute("sn", "lang-en") returns the "sn" attribute.

 Parameters are:

 attrName The name of an attribute to retrieve, with or without
 subtype specification(s). "cn", "cn;phonetic", and
 "cn;binary" are valid attribute names.

 lang A language specification as in [14], with optional
 subtypes appended using "-" as separator. "lang-en",
 "lang-en-us", "lang-ja", and "lang-ja-JP-kanji" are
 valid language specification.

5.7.3. getAttributeSet

 public LDAPAttributeSet getAttributeSet()

 Returns the attribute set of the entry. All base and subtype variants
 of all attributes are returned. The LDAPAttributeSet returned may be
 empty if there are no attributes in the entry.

 public LDAPAttributeSet getAttributeSet(String subtype)

 Returns an attribute set from the entry, consisting of only those
 attributes matching the specified subtype(s). This may be used to
 extract only a particular language variant subtype of each attribute,
 if it exists. "subtype" may be, for example, "lang-ja", "binary", or
 "lang-ja;phonetic". If more than one subtype is specified, separated
 with a semicolon, only those attributes with all of the named sub-
 types will be returned. The LDAPAttributeSet returned may be empty
 if there are no matching attributes in the entry.

 Parameters are:

Expires 3/98 [Page 25]

JAVA LDAP API September 1997

 subtype One or more subtype specification(s), separated with
 semicolons. "lang-ja" and "lang-en;phonetic" are
 valid subtype specifications.

5.7.4. getDN

 public String getDN()

 Returns the distinguished name of the entry.

5.8. public class LDAPExtendedOperation

An LDAPExtendedOperation encapsulates an ID which uniquely identifies a
particular extended operation, known to a particular server, and the
data associated with the operation.

5.8.1. Constructors

 public LDAPExtendedOperation(String oid,
 byte[] vals)

 Constructs a new object with the specified object ID and data.

 Parameters are:

 oid The unique identifier of the operation.

 vals The operation-specific data of the operation/

5.8.2. getID

 public String getID()

 Returns the unique identifier of the operation.

5.8.3. getValue

 public byte[] getValue()

 Returns the operation-specific data (not a copy, a reference).

Expires 3/98 [Page 26]

JAVA LDAP API September 1997

5.9. public interface LDAPEntryComparator

An object of this class can implement arbitrary sorting algorithms for
search results.

5.9.1. isGreater

 public boolean isGreater(LDAPEntry entry1, LDAPEntry entry2)

 Returns true if entry1 is to be considered greater than or equal to
 entry2, for the purpose of sorting.

 Parameters are:

 entry1 Target entry for comparison.

 entry2 Entry to be compared to.

5.10. public class LDAPException extends Exception

Thrown to indicate that an error has occurred. An LDAPException can
result from physical problems (such as network errors) as well as prob-
lems with LDAP operations (for example, if the LDAP add operation fails
because of a duplicate entry).

Most errors that occur throw this type of exception. The
getLDAPResultCode() method returns the specific result code, which can
be compared against standard LDAP result codes as defined in [11], sec-
tion 4.

5.10.1. Constructors

 public LDAPException()

 Constructs a default exception with no specific error information.

 public LDAPException(String message,
 int resultCode)

 Constructs an exception with an error code and a specified string as
 additional information.

 Parameters are:

Expires 3/98 [Page 27]

JAVA LDAP API September 1997

 message The additional error information.

 resultCode The result code returned

5.10.2. getLDAPErrorMessage

 public String getLDAPErrorMessage()

 Returns the error message, if this message is available (that is, if
 this message was set). If the message was not set, this method
 returns null.

5.10.3. getLDAPResultCode

 public int getLDAPResultCode()

 Returns the result code from the exception. The codes are defined as
 public final static int members of this class. If the exception is a
 result of error information returned from a directory operation, the
 code will be one of those defined in [11]. Otherwise, a local error
 code is returned (see "Error codes" below).

5.10.4. getMatchedDN

 public String getMatchedDN()

 Returns the part of a submitted distinguished name which could be
 matched by the server. If the exception was caused by a local error,
 such as no server available, the return value is null. If the excep-
 tion resulted from an operation being executed on a server, the value
 is an empty String except when the result of the operation was one of
 the following:

 NO_SUCH_OBJECT
 ALIAS_PROBLEM
 INVALID_DN_SYNTAX
 ALIAS_DEREFERENCING_PROBLEM

5.10.5. Error codes

See [11] and [7] for a discussion of the meanings of the codes.

 ADMIN_LIMIT_EXCEEDED
 AFFECTS_MULTIPLE_DSAS
 ALIAS_DEREFERENCING_PROBLEM

Expires 3/98 [Page 28]

JAVA LDAP API September 1997

 ALIAS_PROBLEM
 ATTRIBUTE_OR_VALUE_EXISTS
 AUTH_METHOD_NOT_SUPPORTED
 BUSY
 COMPARE_FALSE
 COMPARE_TRUE
 CONFIDENTIALITY_REQUIRED
 CONSTRAINT_VIOLATION
 ENTRY_ALREADY_EXISTS
 INAPPROPRIATE_AUTHENTICATION
 INAPPROPRIATE_MATCHING
 INSUFFICIENT_ACCESS_RIGHTS
 INVALID_ATTRIBUTE_SYNTAX
 INVALID_CREDENTIALS
 INVALID_DN_SYNTAX
 IS_LEAF
 LDAP_PARTIAL_RESULTS
 LOOP_DETECT
 NAMING_VIOLATION
 NO_SUCH_ATTRIBUTE
 NO_SUCH_OBJECT
 NOT_ALLOWED_ON_NONLEAF
 NOT_ALLOWED_ON_RDN
 OBJECT_CLASS_MODS_PROHIBITED
 OBJECT_CLASS_VIOLATION
 OPERATIONS_ERROR
 OTHER
 PROTOCOL_ERROR
 REFERRAL
 SIZE_LIMIT_EXCEEDED
 STRONG_AUTH_NOT_SUPPORTED
 STRONG_AUTH_REQUIRED
 SUCCESS
 TIME_LIMIT_EXCEEDED
 UNAVAILABLE
 UNAVAILABLE_CRITICAL_EXTENSION
 UNDEFINED_ATTRIBUTE_TYPE
 UNWILLING_TO_PERFORM

 Local errors, resulting from actions other than an operation on a
 server, are among the following:

 CONNECT_ERROR
 PARAM_ERROR
 SERVER_DOWN

Expires 3/98 [Page 29]

JAVA LDAP API September 1997

5.11. public class LDAPModification

A single change specification for an LDAPAttribute.

5.11.1. Constructors

 public LDAPModification(int op,
 LDAPAttribute attr)

 Specifies a modification to be made to an attribute.

 Parameters are:

 op The type of modification to make, which can be one of
 the following:

 LDAPModification.ADD The value should be added to the attri-
 bute

 LDAPModification.DELETE The value should be removed from the
 attribute

 LDAPModification.REPLACE The value should replace all existing
 values of the attribute

 attr The attribute (possibly with values) to be modified.

5.11.2. getAttribute

 public LDAPAttribute getAttribute()

 Returns the attribute (possibly with values) to be modified.

5.11.3. getOp

 public int getOp()

 Returns the type of modification specified by this object.

5.12. public class LDAPModificationSet

A collection of modifications to be made to the attributes of a single
entry.

Expires 3/98 [Page 30]

JAVA LDAP API September 1997

5.12.1. Constructors

 public LDAPModificationSet()

 Constructs a new, empty set of modifications.

5.12.2. add

 public synchronized void add(int op,
 LDAPAttribute attr)

 Specifies another modification to be added to the set of modifica-
 tions.

 Parameters are:

 op The type of modification to make, as described for
 LDAPModification.

 attr The attribute (possibly with values) to be modified.

5.12.3. elementAt

 public LDAPModification elementAt(int index)
 throws ArrayIndexOutOfBoundsException

 Retrieves a particular LDAPModification object at the position speci-
 fied by the index.

 Parameters are:

 index Index of the modification to get.

5.12.4. remove

 public synchronized void remove(String name)

 Removes the first attribute with the specified name in the set of
 modifications.

 Parameters are:

 name Name of the attribute to be removed.

Expires 3/98 [Page 31]

JAVA LDAP API September 1997

5.12.5. removeElementAt

 public void removeElementAt(int index)
 throws ArrayIndexOutOfBoundsException

 Removes a particular LDAPModification object at the position speci-
 fied by the index.

index Index of the modification to remove.

5.12.6. size

 public int size()

 Retrieves the number of LDAPModification objects in this set.

5.13. public class LDAPRebindAuth

Represents information used to authenticate the client in cases where
the client follows referrals automatically.

5.13.1. Constructors

 public LDAPRebindAuth(String dn,
 String password)

 Constructs information that is used by the client for authentication
 when following referrals automatically.

5.13.2. getDN

 public String getDN()

 Returns the distinguished name to be used for reauthentication on
 automatic referral following.

5.13.3. getPassword

 public String getPassword()

 Returns the password to be used for reauthentication on automatic
 referral following.

Expires 3/98 [Page 32]

JAVA LDAP API September 1997

5.14. public class LDAPReferralException extends LDAPException

This exception, derived from LDAPException, is thrown when a server
returns a referral and automatic referral following has not been
enabled.

5.14.1. Constructors

 public LDAPReferralException()

 Constructs a default exception with no specific error information.

 public LDAPReferralException(String message)

 Constructs a default exception with a specified string as additional
 information. This form is used for lower-level errors.

 public LDAPReferralException(String message,
 int resultCode,
 String serverMessage)

 Parameters are:

 message The additional error information.

 resultCode The result code returned

 serverMessage Error message specifying additional information from
 the server.

5.14.2. getURLs

 public LDAPUrl[] getURLs()

 Gets the list of referrals (LDAP URLs to other servers) returned by
 the LDAP server. This exception is only thrown, and therefor the URL
 list only available, if automatic referral following is not enabled.
 The referrals may include URLs of a type other than ones for an LDAP
 server (i.e. a referral URL other than ldap://something).

5.15. public class LDAPSearchConstraints

A set of options to control a search operation. There is always an

Expires 3/98 [Page 33]

JAVA LDAP API September 1997

LDAPSearchConstraints associated with an LDAPConnection object; its
values can be changed with LDAPConnection.setOption, or overridden by
passing an LDAPSearchConstraints object to the search operation.

5.15.1. Constructors

 public LDAPSearchConstraints()

 Constructs an LDAPSearchConstraints object that specifies the default
 set of search constraints.

 public LDAPSearchConstraints(int msLimit,
 int dereference,
 int maxResults,
 boolean doReferrals,
 int batchSize,
 LDAPRebind rebind_proc,
 int hop_limit)

 Constructs a new LDAPSearchConstraints object and allows specifying
 the search constraints in that object.

 Parameters are:

 msLimit Maximum time in milliseconds to wait for results (0
 by default, which means that there is no maximum time
 limit).

 dereference Specifies when aliases should be dereferenced. Must
 be either LDAP_DEREF_NEVER, LDAP_DEREF_FINDING,
 LDAP_DEREF_SEARCHING, or LDAP_DEREF_ALWAYS from
 LDAPv2 (LDAPv2.LDAP_DEREF_NEVER by default).

 maxResults Maximum number of search results to return (1000 by
 default).

 doReferrals Specify true to follow referrals automatically, or
 false to throw an LDAPReferralException error if the
 server sends back a referral (false by default)

 batchSize Specify the number of results to block on during
 enumeration. 0 means to block until all results are
 in (1 by default).

 rebind_proc Specifies an object of the class that implements the
 LDAPRebind interface. The object will be used when

Expires 3/98 [Page 34]

JAVA LDAP API September 1997

 the client follows referrals automatically. The
 object provides a method for getting the dis-
 tinguished name and password used to authenticate to
 another LDAP server during a referral. This field is
 null by default.

 hop_limit Maximum number of referrals to follow in a sequence
 when attempting to resolve a request, when doing
 automatic referral following.

5.15.2. getBatchSize

 public int getBatchSize()

 Returns the number of results to block on during enumeration of
 search results. This should be 0 if intermediate results are not
 needed, and 1 if results are to be processed as they come in.

5.15.3. getDereference

 public int getDereference()

 Specifies when aliases should be dereferenced. Returns either
 LDAP_DEREF_NEVER, LDAP_DEREF_FINDING, LDAP_DEREF_SEARCHING, or
 LDAP_DEREF_ALWAYS from LDAPv2.

5.15.4. getHopLimit

 public int getHopLimit()

 Returns the maximum number of hops to follow during automatic refer-
 ral following.

5.15.5. getMaxResults

 public int getMaxResults()

 Returns the maximum number of search results to be returned; 0 means
 no limit.

5.15.6. getRebindProc

 public LDAPRebind getRebindProc()

Expires 3/98 [Page 35]

JAVA LDAP API September 1997

 Returns the object that provides the method for getting authentica-
 tion information.

5.15.7. getReferrals

 public boolean getReferrals()

 Specifies whether nor not referrals are followed automatically.
 Returns true if referrals are to be followed automatically, or false
 if referrals throw an LDAPReferralException.

5.15.8. getTimeLimit

 public int getTimeLimit()

 Returns the maximum number of milliseconds to wait for any operation
 under these search constraints. If 0, there is no maximum time limit
 on waiting for the operation results. The actual granularity of the
 timeout depends on the implementation.

5.15.9. setBatchSize

 public void setBatchSize(int batchSize)

 Sets the suggested number of results to block on during enumeration
 of search results. This should be 0 if intermediate results are not
 needed, and 1 if results are to be processed as they come in. The
 default is 1.

 Parameters are:

 batchSize Blocking size on search enumerations.

5.15.10. setDereference

 public void setDereference(int dereference)

 Sets a preference indicating whether or not aliases should be
 dereferenced, and if so, when.

 Parameters are:

 dereference Either LDAP_DEREF_NEVER, LDAP_DEREF_FINDING,
 LDAP_DEREF_SEARCHING, or LDAP_DEREF_ALWAYS from

Expires 3/98 [Page 36]

JAVA LDAP API September 1997

 LDAPv2.

5.15.11. setHopLimit

 public void setHopLimit(int hop_limit)

 Sets the maximum number of hops to follow in sequence during
 automatic referral following. The default is 5.

 Parameters are:

 hop_limit Maximum number of chained referrals to follow
 automatically.

5.15.12. setMaxResults

 public void setMaxResults(int maxResults)

 Sets the maximum number of search results to be returned; 0 means no
 limit. The default is 1000.

 Parameters are:

 maxResults Maxumum number of search results to return.

5.15.13. setRebindProc

 public void setRebindProc(LDAPRebind rebind_proc)

 Specifies the object that provides the method for getting authentica-
 tion information. The default is null. If referrals is set to true,
 and the rebindProc is null, referrals will be followed with anonymous
 (= no) authentication.

 Parameters are:

 rebind_proc An object that implements LDAPRebind.

5.15.14. setReferrals

 public void setReferrals(boolean doReferrals)

 Specifies whether nor not referrals are followed automatically, or if
 referrals throw an LDAPReferralException. Referrals of any type

Expires 3/98 [Page 37]

JAVA LDAP API September 1997

 other to an LDAP server (i.e. a referral URL other than
 ldap://something) are ignored on automatic referral following. The
 default is false.

 Parameters are:

 doReferrals True to follow referrals automatically.

5.15.15. setTimeLimit

 public void setTimeLimit(int msLimit)

 Sets the maximum number of milliseconds to wait for any operation
 under these search constraints. If 0, there is no maximum time limit
 on waiting for the operation results. The actual granularity of the
 timeout depends on the implementation.

 Parameters are:

 msLimit Maximum milliseconds to wait.

5.16. public class LDAPSearchResults

An LDAPSearchResults object is returned from a search operation. It
implements Enumeration, thereby providing access to all entries
retrieved during the operation.

5.16.1. hasMoreElements

 public boolean hasMoreElements()

 Specifies whether or not there are more search results in the
 enumeration. If true, there are more search results.

5.16.2. next

 public LDAPEntry next() throws LDAPException

 Returns the next result in the enumeration as an LDAPEntry. If
 automatic referral following is disabled, and there are one or more
 referrals among the search results, next() will throw an LDAPRefer-
 ralException the last time it is called, after all other results have
 been returned.

Expires 3/98 [Page 38]

JAVA LDAP API September 1997

5.16.3. nextElement

 public Object nextElement()

 Returns the next result in the enumeration as an Object. This the
 default implementation of Enumeration.nextElement(). The returned
 value may be an LDAPEntry or an LDAPReferralException.

5.16.4. sort

 public void sort(LDAPEntryComparator comp)

 Sorts all entries in the results using the provided comparison
 object. If the object has been partially or completely enumerated,
 only remaining elements are sorted. Sorting the results requires that
 they all be present. This implies that
 LDAPSearchResults.nextElement() will always block until all results
 have been retrieved, after a sort operation.

 The LDAPCompareAttrNames class is provided to support the common need
 to collate by a single or multiple attribute values, in ascending or
 descending order. Examples are:

 res.sort(new LDAPCompareAttrNames("cn"));

 res.sort(new LDAPCompareAttrNames("cn", false));

 String[] attrNames = { "sn", "givenname" };
 res.sort(new LDAPCompareAttrNames(attrNames));

 Parameters are:

 comp An object that implements the LDAPEntryComparator
 interface to compare two objects of type LDAPEntry.

5.17. public interface LDAPSocketFactory

Used to construct a socket connection for use in an LDAPConnection. An
implementation of this interface may, for example, provide a TLSSocket
connected to a secure server.

5.17.1. makeSocket

 public Socket makeSocket(String host, int port)
 throws IOException, UnknownHostException

Expires 3/98 [Page 39]

JAVA LDAP API September 1997

 Returns a socket connected using the provided host name and port
 number.

 There may be additional makeSocket methods defined when interfaces to
 establish TLS and SASL authentication in the java environment have
 been standardized.

 Parameters are:

 host Contains a hostname or dotted string representing the
 IP address of a host running an LDAP server to con-
 nect to.

 port Contains the TCP or UDP port number to connect to or
 contact. The default LDAP port is 389.

5.18. public class LDAPSortKey

Encapsulates parameters for sorting search results.

5.18.1. Constructors

 public LDAPSortKey(String keyDescription)

 Constructs a new LDAPSortKey object using a, possibly complex, sort-
 ing specification.

 public LDAPSortKey(String key, boolean reverse)

 Constructs a new LDAPSortKey object using an attribute name and a
 sort order.

 public LDAPSortKey(String key, boolean reverse, String matchRule)

 Constructs a new LDAPSortKey object using an attribute name, a sort
 order, and a matching rule.

 Parameters are:

 keyDescription A single attribute specification to sort by. If pre-
 fixed with "-", reverse order sorting is requested. A
 matching rule OID may be appended following ":".
 Examples:
 "cn"

Expires 3/98 [Page 40]

JAVA LDAP API September 1997

 "-cn"
 "-cn:1.2.3.4.5"

 key An attribute name, e.g. "cn".

 reverse True to sort in reverse collation order.

 matchRule The object ID (OID) of a matching rule used for col-
 lation. If the object will be used to request
 server-side sorting of search results, it should be
 the OID of a matching rule known to be supported by
 that server.

5.18.2. getKey

 public String getKey()

 Returns the attribute to be used for collation.

5.18.3. getReverse

 public boolean getReverse()

 Returns true if the sort key specifies reverse-order sorting.

5.18.4. getMatchRule

 public String getMatchRule()

 Returns the OID to be used as matching rule, or null if none is to be
 used.

5.19. public class LDAPUrl

Encapsulates parameters of an LDAP Url query, as defined in [8]. An
LDAPUrl object can be passed to LDAPConnection.search to retrieve search
results.

5.19.1. Constructors

 public LDAPUrl(String url) throws MalformedURLException

Expires 3/98 [Page 41]

JAVA LDAP API September 1997

 Constructs a URL object with the specified string as URL.

 public LDAPUrl(String host,
 int port,
 String dn)

 Constructs with the specified host, port, and DN. This form is used
 to create URL references to a particular object in the directory.

 public LDAPUrl(String host,
 int port,
 String dn,
 String attrNames[],
 int scope,
 String filter)

 Constructs a full-blown LDAP URL to specify an LDAP search operation.

 Parameters are:

 url An explicit URL string, e.g.
 "ldap://ldap.acme.com:80/o=Ace%20Industry,c=us?cn,sn?sub?
 (objectclass=inetOrgPerson)".

 host Host name of LDAP server, or null for "nearest
 X.500/LDAP".

 port Port number for LDAP server (use
 LDAPConnection.DEFAULT_PORT for default port).

 dn Distinguished name of object to fetch.

 attrNames Names of attributes to retrieve. null for all attri-
 butes.

 scope Depth of search (in DN namespace). Use one of
 SCOPE_BASE, SCOPE_ONE, SCOPE_SUB from LDAPv2.

5.19.2. decode

 public static String decode(String URLEncoded) throws MalformedURLEx-
 ception

 Decodes a URL-encoded string. Any occurences of %HH are decoded to
 the hex value represented. However, this routine does NOT decode "+"

Expires 3/98 [Page 42]

JAVA LDAP API September 1997

 into " ". See [10] for details on URL encoding/decoding.

 Parameters are:

 URLEncoded String to decode.

5.19.3. encode

 public static String encode(String toEncode)

 Encodes an arbitrary string. Any illegal characters are encoded as
 %HH. However, this routine does NOT encode " " into "+".

 Parameters are:

 toEncode String to encode.

5.19.4. getAttributes

 public String[] getAttributeArray()

 Return an array of attribute names specified in the URL

5.19.5. getAttributes

 public Enumeration getAttributes()

 Return an Enumerator for the attribute names specified in the URL

5.19.6. getDN

 public String getDN()

 Return the distinguished name encapsulated in the URL.

5.19.7. getFilter

 public String getFilter()

 Returns the search filter [8], or the default filter -
 (objectclass=*) - if none was specified.

Expires 3/98 [Page 43]

JAVA LDAP API September 1997

5.19.8. getHost

 public String getHost()

 Returns the host name of the LDAP server to connect to.

5.19.9. getPort

 public int getPort()

 Returns the port number of the LDAP server to connect to.

5.19.10. getUrl

 public String getUrl()

 Returns a valid string representation of this LDAP URL.

5.20. public interface LDAPv2

As a mechanism to support planned and future LDAP protocol extensions,
functionality is defined in an interface - LDAPv2, corresponding to ver-
sion 2 of the LDAP protocol. LDAPConnection must implement at least
LDAPv2, and may implement LDAPv3. Applications can test for support of
these protocol levels in a given package with the instanceof operator.

5.20.1. add

 public void add(LDAPEntry entry) throws LDAPException

 Adds an entry to the directory.

 Parameters are:

 entry LDAPEntry object specifying the distinguished name
 and attributes of the new entry.

5.20.2. authenticate

 public void authenticate(String dn,
 String passwd)
 throws LDAPException

 Authenticates to the LDAP server (that the object is currently con-
 nected to) using the specified name and password. If the object has

Expires 3/98 [Page 44]

JAVA LDAP API September 1997

 been disconnected from an LDAP server, this method attempts to recon-
 nect to the server. If the object had already authenticated, the old
 authentication is discarded.

 Parameters are:

 dn If non-null and non-empty, specifies that the connec-
 tion and all operations through it should be authen-
 ticated with dn as the distinguished name.

 passwd If non-null and non-empty, specifies that the connec-
 tion and all operations through it should be authen-
 ticated with dn as the distinguished name and passwd
 as password.

5.20.3. compare

 public boolean compare(String dn,
 LDAPAttribute attr)
 throws LDAPException

 Checks to see if an entry contains an attribute with a specified
 value. Returns true if the entry has the value, and false if the
 entry does not have the value or the attribute.

 Parameters are:

 dn The distinguished name of the entry to use in the
 comparison.

 attr The attribute to compare against the entry. The
 method checks to see if the entry has an attribute
 with the same name and value as this attribute.

5.20.4. connect

 public void connect(String host,
 int port)
 throws LDAPException

 Connects to the specified host and port. If this LDAPConnection
 object represents an open connection, the connection is closed first
 before the new connection is opened. At this point there is no
 authentication, and any operations will be conducted as an anonymous
 client.

Expires 3/98 [Page 45]

JAVA LDAP API September 1997

 public void connect(String host,
 int port,
 String dn,
 String passwd)
 throws LDAPException

 Connects to the specified host and port and uses the specified DN and
 password to authenticate to the server. If this LDAPConnection object
 represents an open connection, the connection is closed first before
 the new connection is opened. This is equivalent to connect(host,
 port) followed by authenticate(dn, passwd).

 Parameters are:

 host Contains a hostname or dotted string representing the
 IP address of a host running an LDAP server to con-
 nect to. Alternatively, it may contain a list of host
 names, space-delimited. Each host name may include a
 trailing colon and port number. In the case where
 more than one host name is specified, each host name
 in turn will be contacted until a connection can be
 established. Examples:

 "directory.knowledge.com"
 "199.254.1.2"
 "directory.knowledge.com:1050 people.catalog.com 199.254.1.2"

 port Contains the TCP or UDP port number to connect to or
 contact. The default LDAP port is 389. "port" is
 ignored for any host name which includes a colon and
 port number.

 dn If non-null and non-empty, specifies that the connec-
 tion and all operations through it should be authen-
 ticated with dn as the distinguished name.

 passwd If non-null and non-empty, specifies that the connec-
 tion and all operations through it should be authen-
 ticated with dn as the distinguished name and passwd
 as password.

5.20.5. delete

 public void delete(String dn) throws LDAPException

 Deletes the entry for the specified DN from the directory.

Expires 3/98 [Page 46]

JAVA LDAP API September 1997

 Parameters are:

 dn Distinguished name of the entry to modify.

5.20.6. disconnect

 public synchronized void disconnect() throws LDAPException

 Disconnects from the LDAP server. Before the object can perform LDAP
 operations again, it must reconnect to the server by calling connect.

5.20.7. getOption

 public Object getOption(int option) throws LDAPException

 Returns the value of the specified option for this object.

 Parameters are:

 option See LDAPConnection.setOption for a description of
 valid options.

5.20.8. modify

 public void modify(String dn,
 LDAPModification mod)
 throws LDAPException

 Makes a single change to an existing entry in the directory (for
 example, changes the value of an attribute, adds a new attribute
 value, or removes an existing attribute value).

 The LDAPModification object specifies both the change to be made and
 the LDAPAttribute value to be changed.

 public void modify(String dn,
 LDAPModificationSet mods)
 throws LDAPException

 Makes a set of changes to an existing entry in the directory (for
 example, changes attribute values, adds new attribute values, or
 removes existing attribute values).

Expires 3/98 [Page 47]

JAVA LDAP API September 1997

 Parameters are:

 dn Distinguished name of the entry to modify.

 mod A single change to be made to the entry.

 mods A set of changes to be made to the entry.

5.20.9. read

 public LDAPEntry read(String dn) throws LDAPException

 Reads the entry for the specified distiguished name (DN) and
 retrieves all attributes for the entry.

 public LDAPEntry read(String dn,
 String attrs[])
 throws LDAPException

 Reads the entry for the specified distinguished name (DN) and
 retrieves only the specified attributes from the entry.

 Parameters are:

 dn Distinguished name of the entry to retrieve.

 attrs Names of attributes to retrieve.

5.20.10. rename

 public void rename(String dn,
 String newRdn,
 boolean deleteOldRdn)
 throws LDAPException

 Renames an existing entry in the directory.

 Parameters are:

 dn Current distinguished name of the entry.

 newRdn New relative distinguished name for the entry.

 deleteOldRdn If true, the old name is not retained as an attribute
 value.

Expires 3/98 [Page 48]

JAVA LDAP API September 1997

5.20.11. search

 public LDAPSearchResults search(String base,
 int scope,
 String filter,
 String attrs[],
 boolean attrsOnly)
 throws LDAPException

 Performs the search specified by the parameters.

 public LDAPSearchResults search(String base,
 int scope,
 String filter,
 String attrs[],
 boolean attrsOnly,
 LDAPSearchConstraints cons)
 throws LDAPException

 Performs the search specified by the parameters, also allowing
 specification of constraints for the search (such as the maximum
 number of entries to find or the maximum time to wait for search
 results).

 As part of the search constraints, the function allows specifying
 whether or not the results are to be delivered all at once or in
 smaller batches. If specified that the results are to be delivered in
 smaller batches, each iteration blocks only until the next batch of
 results is returned.

 Parameters are:

 base The base distinguished name to search from.

 scope The scope of the entries to search. The following are
 the valid options:

 LDAPv2.SCOPE_BASE Search only the base DN

 LDAPv2.SCOPE_ONE Search only entries under the base
 DN

 LDAPv2.SCOPE_SUB Search the base DN and all entries
 within its subtree

 filter Search filter specifying the search criteria, as

Expires 3/98 [Page 49]

JAVA LDAP API September 1997

 defined in [3].

 attrs Names of attributes to retrieve.

 attrsOnly If true, returns the names but not the values of the
 attributes found. If false, returns the names and
 values for attributes found

 cons Constraints specific to the search.

5.20.12. setOption

 public void setOption(int option,
 Object value)
 throws LDAPException

 Sets the value of the specified option for this LDAPConnection
 object.

 See LDAPConnection.setOption for an implementation.

5.21. public interface LDAPv3 extends LDAPv2

LDAPv3 extends LDAPv2 by adding support for features of version 3 of the
LDAP protocol. LDAPConnection implements at least LDAPv2, and may also
implement LDAPv3. Applications can test for support of these protocol
levels in a given package with the instanceof operator.

5.21.1. Preferred Language

A preferred language, specified as in [14], can be set using setOption.
A Preferred Language Server Control is constructed and sent to the
server with all operations. If the server supports the control, results
returned on search() or read() will be filtered using the control, as
per [15], e.g.

 ld.setOption(LDAPv3.PREFERRED_LANGUAGE, "lang-en");

5.21.2. authenticate

 public void authenticate(int version,
 String dn,
 String passwd)
 throws LDAPException

Expires 3/98 [Page 50]

JAVA LDAP API September 1997

 Authenticates to the LDAP server (that the object is currently con-
 nected to) using the specified name and password, with the specified
 LDAP protocol version. If the server does not support the requested
 protocol version, an exception is thrown. If the object has been
 disconnected from an LDAP server, this method attempts to reconnect
 to the server. If the object had already authenticated, the old
 authentication is discarded.

 Parameters are:

 version LDAP protocol version requested: currently 2 or 3.

 dn If non-null and non-empty, specifies that the connec-
 tion and all operations through it should be authen-
 ticated with dn as the distinguished name.

 passwd If non-null and non-empty, specifies that the connec-
 tion and all operations through it should be authen-
 ticated with dn as the distinguished name and passwd
 as password.

5.21.3. authenticate

 public void authenticate(String dn,
 byte[] credentials,
 String[] mechanisms,
 Properties props,
 SaslAuthenticationCallback authCb)
 throws LDAPException

 Authenticates to the LDAP server using SASL authentication mechan-
 isms. Mechanisms will be tried in the order provided. If a mechanism
 requires additional information (e.g. credentials) to procede, and
 authCb is not null, authCb's request() method will be called. An
 LDAPException is thrown if authentication fails for all specified
 mechanisms.

 Parameters are:

 dn Distinguished name to authenticate as

 credentials Initial credentials to use on first authentication
 request. The contents are specific to a SASL mechan-
 ism.

 props Properties to be used for authentication. Some are
 only meaningful to a subset of all SASL mechanisms.

Expires 3/98 [Page 51]

JAVA LDAP API September 1997

 The following is a partial list of properties and
 sample values:

 security.userid "default"

 security.policy.encryption "true"

 security.policy.sign_without_encryption "false"

 security.policy.no_encryption "false"

 security.policy.encryption.minimum "40"

 security.policy.encryption.maximum "128"

 security.policy.server_authentication "true"

 security.server.fqdn "safe.mcom.com"

 security.maxbuffer "4096"

 security.ip.local "192.68.1.10"

 security.ip.remote "192.68.1.50"

authCb An object implementing the SaslAuthenticationCallback
 interface, capable of returning additional information
 to a SASL mechanism driver if necessary. This may or may
 not involve interactively prompting the user for this
 information. The parameter may be null, indicating that
 the application will not provide additional information.

5.21.4. extendedOperation

 public LDAPExtendedOperation extendedOperation(
 LDAPExtendedOperation op)
 throws LDAPException

 Provides a means to access extended, non-mandatory operations offered
 by a particular LDAP version 3 compliant server.

 Returns an operation-specific object, containing an ID and an Octet
 String or BER-encoded value(s).

 Parameters are:

Expires 3/98 [Page 52]

JAVA LDAP API September 1997

 op Object which contains an identifier of the extended
 operation, which should be one recognized by the par-
 ticular server this client is connected to, and an
 operation-specific sequence of Octet String or BER-
 encoded value(s).

5.21.5. getResponseControls

 public LDAPControl[] getResponseControls()

 Returns the latest Server Controls returned by a Directory Server
 with a response to an LDAP request from the current thread, or null
 if the latest response contained no Server Controls.

5.21.6. rename

 public void rename(String dn,
 String newRdn,
 String newParentdn,
 boolean deleteOldRdn)
 throws LDAPException

 Renames an existing entry in the directory, possibly repositioning it
 in the directory tree.

 Parameters are:

 dn Current distinguished name of the entry.

 newRdn New relative distinguished name for the entry.

 newParentdn Distinguished name of the existing entry which is to
 be the new parent of the entry.

 deleteOldRdn If true, the old name is not retained as an attribute
 value.

5.22. public interface SaslAuthenticationCallback

Note: this interface is not part of the LDAP classes. It is presented
here to clarify use of SASL mechanisms in authentication using the LDAP
classes.

An application may implement this interface to allow a SASL mechanism
driver to obtain additional information (e.g. credentials) as needed

Expires 3/98 [Page 53]

JAVA LDAP API September 1997

during authentication. The implementation may or may not include
interactively prompting a user.

5.22.1. request

 public byte[] request(String prompt,
 String type)
 throws SaslException

 Parameters are:

 prompt A prompt that may be presented to a user as a guide
 to entering the requested information, or may be used
 as a key to forming the user interface for requesting
 the information, or may be ignored.

 type An identifier of type of information requested by the
 SASL mechanism driver, e.g. "password".

5.23. Client and Server Controls

LDAPv3 operations can be extended through the use of controls. Controls
may be sent to a server or returned to the client with any LDAP message.
These controls are referred to as server controls. The LDAP API also
supports a client-side extension mechanism through the use of client
controls (these controls affect the behavior of the LDAP API only and
are never sent to a server). A common class is used to represent both
types of controls - LDAPControl.

Controls are set and retrieved in LDAPConnection with the setOption and
getOption methods, using the keys LDAPv3.SERVERCONTROLS and
LDAPv3.CLIENTCONTROLS. Either a single LDAPControl or an array may be
passed, e.g.

 LDAPControl control = new LDAPControl(type, critical, vals);
 ld.setOption(LDAPv3.SERVERCONTROLS, control);
 or
 LDAPControl[] controls = new LDAPControl[2];
 controls[0] = new LDAPControl(type0, critical0, vals0);
 controls[1] = new LDAPControl(type1, critical1, vals1);
 ld.setOption(LDAPv3.SERVERCONTROLS, controls);

Server controls returned to a client as part of the response to an
operation can be obtained with LDAPv3.getResponseControls().

Support for specific controls is defined in a package "controls" subor-
dinate to the main LDAP package.

Expires 3/98 [Page 54]

JAVA LDAP API September 1997

6. Security Considerations

LDAP supports security through protocol-level authentication, using
clear-text passwords or other more secure mechanisms. It also supports
running over TLS, which provides strong security at the transport layer.
This draft does not cover TLS implementations, although it identifies a
mechanism for supplying one, through the LDAPSocketFactory interface. An
interface is defined for using protocol-independent SASL mechanism
drivers for authentication.

7. Acknowledgements

The proposed API builds on earlier work done in collaboration with Tho-
mas Kwan and Stephan Gudmundson, then of of NCware Technologies Corp.

8. Bibliography

[1] The Directory: Selected Attribute Syntaxes. CCITT, Recommendation
 X.520.

[2] M. Wahl, A. Coulbeck, T. Howes, S. Kille, "Lightweight Directory
 Access Protocol: Standard and Pilot Attribute Definitions", Inter-
 net Draft draft-ietf-asid-ldapv3-attributes-03.txt, October 1996

[3] T. Howes, "A String Representation of LDAP Search Filters," RFC
1960, June 1996.

[4] S. Kille, "A String Representation of Distinguished Names," RFC
1779, March 1995.

[5] S. Kille, "Using the OSI Directory to Achieve User Friendly Nam-
 ing," RFC 1781, March 1995.

[7] M. Wahl, T. Howes, S. Kille, "Lightweight Directory Access Protocol
 (v3)", Internet Draft draft-ietf-asid-ldapv3-protocol-04.txt, March
 1997.

[8] T. Howes, M. Smith, "An LDAP URL Format", RFC 1959, June 1996.

[9] T. Howes, M. Smith, "The LDAP Application Program Interface", RFC
1823, August 1995.

[10] T. Berners-Lee, L. Masinter, M. McCahill, "Uniform Resource Loca-
 tors (URL)", RFC 1738, December 1994.

[11] W. Yeong, T. Howes, S. Kille, "Lightweight Directory Access Proto-
 col", RFC 1777, March 1995.

https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldapv3-attributes-03.txt
https://datatracker.ietf.org/doc/html/rfc1960
https://datatracker.ietf.org/doc/html/rfc1960
https://datatracker.ietf.org/doc/html/rfc1779
https://datatracker.ietf.org/doc/html/rfc1779
https://datatracker.ietf.org/doc/html/rfc1781
https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldapv3-protocol-04.txt
https://datatracker.ietf.org/doc/html/rfc1959
https://datatracker.ietf.org/doc/html/rfc1823
https://datatracker.ietf.org/doc/html/rfc1823
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1777

Expires 3/98 [Page 55]

JAVA LDAP API September 1997

[12] R. Weltman, "The Java LDAP Application Program Interface", Internet
 Draft draft-weltman-java-ldap-01.txt, April 1997.

[13] R. Weltman, T. Howes, M. Smith, "The Java LDAP Application Program
 Interface", Internet Draft draft-ietf-asid-ldap-java-api-00.txt,
 July 1997.

[14] H. Alvestrans, "Tags for the Identification of Languages", Request
 for Comments 1766, March 1995.

[15] M. Wahl, T. Howes, "Use of Language Codes in LDAPv3", Internet
 Draft draft-ietf-asid-ldapv3-lang-02.txt, June 1997.

9. Authors' Addresses

 Rob Weltman
 Netscape Communications Corp.
 501 E. Middlefield Rd.
 Mountain View, CA 94043
 USA
 +1 650 937-3301
 rweltman@netscape.com

 Tim Howes
 Netscape Communications Corp.
 501 E. Middlefield Rd.
 Mountain View, CA 94043
 USA
 +1 650 937-3419
 howes@netscape.com

 Mark Smith
 Netscape Communications Corp.
 501 E. Middlefield Rd.
 Mountain View, CA 94043
 USA
 +1 650 937-3477
 mcs@netscape.com

https://datatracker.ietf.org/doc/html/draft-weltman-java-ldap-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldap-java-api-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldapv3-lang-02.txt

Expires 3/98 [Page 56]

JAVA LDAP API September 1997

10. Appendix A - Sample java LDAP programs

 import netscape.ldap.*;
 import java.util.*;

 public class SearchJensen {
 public static void main(String[] args)
 {
 try {
 LDAPConnection ld = new LDAPConnection();
 /* Connect to server */
 String MY_HOST = "localhost";
 int MY_PORT = 389;
 ld.connect(MY_HOST, MY_PORT);

 /* authenticate to the directory as nobody */
 /* This is not really necessary if explicit authentication
 is not desired, because there is already anonymous
 authentication at connect time */
 ld.authenticate("", "");

 /* search for all entries with surname of Jensen */
 String MY_FILTER = "sn=Jensen";
 String MY_SEARCHBASE = "o=Ace Industry, c=US";

 LDAPSearchConstraints cons = ld.getSearchConstraints();
 /* Setting the batchSize to one will cause the result
 enumeration below to block on one result at a time,
 allowing us to update a list or do other things as
 results come in. */
 /* We could set it to 0 if we just wanted to get all
 results and were willing to block until then */
 cons.setBatchSize(1);
 LDAPSearchResults res = ld.search(MY_SEARCHBASE,
 LDAPConnection.SCOPE_ONE,
 MY_FILTER,
 null,
 false,
 cons);

 /* Loop on results until finished */
 while (res.hasMoreElements()) {

 /* Next directory entry */
 LDAPEntry findEntry = (LDAPEntry)res.nextElement();
 System.out.println(findEntry.getDN());

 /* Get the attributes of the entry */

Expires 3/98 [Page 57]

JAVA LDAP API September 1997

 LDAPAttributeSet findAttrs = findEntry.getAttributeSet();
 Enumeration enumAttrs = findAttrs.getAttributes();
 System.out.println("Attributes: ");
 /* Loop on attributes */
 while (enumAttrs.hasMoreElements()) {
 LDAPAttribute anAttr =
 (LDAPAttribute)enumAttrs.nextElement();
 String attrName = anAttr.getName();
 System.out.println("" + attrName);
 /* Loop on values for this attribute */
 Enumeration enumVals = anAttr.getStringValues();
 while (enumVals.hasMoreElements()) {
 String aVal = (String)enumVals.nextElement();
 System.out.println("" + aVal);
 }
 }
 }
 }
 catch(LDAPException e) {
 System.out.println("Error: " + e.toString());
 }
 /* Done, so disconnect */
 if (ld.isConnected())
 ld.disconnect();
 }
 }

Expires 3/98 [Page 58]

JAVA LDAP API September 1997

 import netscape.ldap.*;
 import java.util.*;

 public class ModifyEmail {
 public static void main(String[] args)
 {
 try {
 LDAPConnection ld = new LDAPConnection();
 /* Connect to server */
 String MY_HOST = "localhost";
 int MY_PORT = 389;
 ld.connect(MY_HOST, MY_PORT);

 /* authenticate to the directory as Bab Jensen */
 String MY_NAME = "cn=Barbara Jensen,o=Ace Industry,c=US";
 String MY_PASSWORD = "MysteryLady";
 ld.authenticate(MY_NAME, MY_PASSWORD);

 /* Prepare to change my email address */
 LDAPAttribute attrEmail =
 new LDAPAttribute("mail", "babs@ace.com");
 LDAPModification mod =
 new LDAPModification(LDAPModification.REPLACE,
 attrEmail);

 /* Now modify the entry in the directory */
 ld.modify(MY_NAME, mod);
 System.out.println("Entry modified");

 }
 catch(LDAPException e) {
 System.out.println("Error: " + e.toString());
 }
 /* Done, so disconnect */
 if (ld.isConnected())
 ld.disconnect();
 }
 }

Expires 3/98 [Page 59]

JAVA LDAP API September 1997

11. Appendix B - Changes from draft-ietf-asid-ldap-java-api-00.txt

11.1. LDAPConnection

The method setProperty() throws an LDAPException if the specified pro-
perty is not supported.

11.2. Controls

A section was added with support for currently defined LDAP controls.

11.3. LDAPException

Constructors LDAPException(String) and LDAPException(String,int,String)
were removed, and the constructor LDAPException(String,int) was added.
The description stating that the resultCode is no longer valid was
removed.

11.4. LDAPSearchResults

The method next() throws an LDAPReferralException if automatic referral
following is not enabled.

The getBaseAttribute() method was removed.

The getAttribute(attrName) method was redefined to return only an exact
match, and a new method getAttribute(attrName, lang) was added to pro-
vide language-sensitive best-match functionality. Neither method throws
an exception.

11.5. LDAPSecurityException

The class was removed.

11.6. LDAPSortKey

The class was added, to support server-side sorting.

11.7. LDAPv3

The PREFERRED_LANGUAGE option was added to setOption().

11.8. Examples

The disconnect() was moved to after the exception catcher. An example
of using paged sort controls was added.

https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldap-java-api-00.txt

Expires 3/98 [Page 60]

JAVA LDAP API September 1997

12. Appendix C - Changes from draft-weltman-java-ldap-00.txt

12.1. LDAPv3

This interface is new. It adds support for features of LDAP protocol
version 3.

12.2. SSL -> TLS

References to the Secure Socket Layer (SSL) have been replaced with
references to Transport Layer Security (TLS).

12.3. LDAPAttributeSet

Methods getAttribute(String name) and getBaseAttribute(String name) were
added.

12.4. LDAPCompareAttrNames

Constructors were added to allow specifying sorting in descending, and
not just ascending, order.

12.5. LDAPCompareAttrNames

Constructors were added to allow specifying sorting in descending, and
not just ascending, order.

12.6. LDAPControl

This is a new class to support the LDAPv3 protocol extension, where
Server or Client Controls may be specified for LDAP operations.

12.7. LDAPEntry

Methods getAttribute(String name) and getBaseAttribute(String name) were
added.

12.8. LDAPException

The method getMatchedDN was added.

12.9. LDAPExtendedOperation

New class to pass extended operations back and forth to/from the server,
for LDAPv3.

https://datatracker.ietf.org/doc/html/draft-weltman-java-ldap-00.txt

Expires 3/98 [Page 61]

JAVA LDAP API September 1997

12.10. LDAPv2

For connect(), the "host" parameter may be a space-delimited list of
hosts to attempt to connect to. Each one may have a colon and a port
number attached.

12.11. Dereferencing aliases

LDAPConnection.setOption(), the LDAPSearchConstraints constructor,
LDAPSearchConstraints.getDereference(), and
LDAPSearchConstraints.setDereference() were changed so that the option
specifying how to dereference aliases is now an integer instead of a
boolean, and the legal values are declared.

12.12. Default referral hop limit

The default referral hop limit in LDAPConnection.setOption() was changed
from 5 to 10.

12.13. Examples

An example of how to modify an existing Directory entry was added to
appendix A.

Expires 3/98 [Page 62]

JAVA LDAP API September 1997

13. Appendix D - Outstanding issues

13.1. Support for SASL authentication

The framework suggested in the LDAPv3 interface for SASL authentication
is tentative. It will need to be extended to and integrated into the
automatic referral-processing architecture, so that an LDAPRebindProc
can initiate new authentication procedures with servers that are
referred to by a search. The current specification only allows for sim-
ple authentication on automatic referral following.

If referrals are handled explicitly rather than automatically, by catch-
ing LDAPReferralException, the caller may use the LDAPv3 SASL framework.

Expires 3/98 [Page 63]

1. Introduction...1
2. Overview of the LDAP model.....................................2
3. Overview of the LDAP classes...................................3
3.1. Interfaces..3
3.2. Classes...4
3.3. Exceptions..5
4. Overview of LDAP API use.......................................6
5. The java LDAP classes..6
5.1. LDAPAttribute..6
5.1.1. Constructors...6
5.1.2. addValue...7
5.1.3. getByteValues..8
5.1.4. getStringValues..8
5.1.5. getName..8
5.1.6. removeValue..8
5.1.7. size...8
5.2. LDAPAttributeSet...9
5.2.1. Constructors...9
5.2.2. add..9
5.2.3. elementAt..9
5.2.4. getAttribute...9
5.2.5. getAttributes..10
5.2.6. remove...11
5.2.7. removeElementAt..11
5.2.8. size...11
5.3. LDAPCompareAttrNames...11
5.3.1. Constructors...11
5.3.2. isGreater..12
5.4. LDAPConnection...13
5.4.1. Constructors...13
5.4.2. clone..13
5.4.3. getAuthenticationDN......................................14
5.4.4. getAuthenticationPassword................................14
5.4.5. getHost..14
5.4.6. getPort..14
5.4.7. getProperty..14
5.4.8. getSearchConstraints.....................................15
5.4.9. getSocketFactory...15
5.4.10. isAuthenticated..15
5.4.11. isConnected..16
5.4.12. read...16
5.4.13. search...16
5.4.14. setOption..17
5.4.15. setProperty..20
5.4.16. setSocketFactory...21
5.5. LDAPControl..21
5.5.1. Constructors...22
5.5.2. getID..22
5.5.3. isCritical...22
5.5.4. getValue...22
5.6. LDAPDN...22
5.6.1. explodeDN..23

5.6.2. explodeRDN...23
5.7. LDAPEntry..23
5.7.1. Constructors...23
5.7.2. getAttribute...24
5.7.3. getAttributeSet..25
5.7.4. getDN..26
5.8. LDAPExtendedOperation..26
5.8.1. Constructors...26
5.8.2. getID..26
5.8.3. getValue...26
5.9. LDAPEntryComparator..27
5.9.1. isGreater..27
5.10. LDAPException..27
5.10.1. Constructors...27
5.10.2. getLDAPErrorMessage......................................28
5.10.3. getLDAPResultCode..28
5.10.4. getMatchedDN...28
5.10.5. Error codes..28
5.11. LDAPModification...30
5.11.1. Constructors...30
5.11.2. getAttribute...30
5.11.3. getOp..30
5.12. LDAPModificationSet..30
5.12.1. Constructors...31
5.12.2. add..31
5.12.3. elementAt..31
5.12.4. remove...31
5.12.5. removeElementAt..32
5.12.6. size...32
5.13. LDAPRebindAuth...32
5.13.1. Constructors...32
5.13.2. getDN..32
5.13.3. getPassword..32
5.14. LDAPReferralException..33
5.14.1. Constructors...33
5.14.2. getURLs..33
5.15. LDAPSearchConstraints..33
5.15.1. Constructors...34
5.15.2. getBatchSize...35
5.15.3. getDereference...35
5.15.4. getHopLimit..35
5.15.5. getMaxResults..35
5.15.6. getRebindProc..35
5.15.7. getReferrals...36
5.15.8. getTimeLimit...36
5.15.9. setBatchSize...36

5.15.10. setDereference...36
5.15.11. setHopLimit..37
5.15.12. setMaxResults..37
5.15.13. setRebindProc..37
5.15.14. setReferrals...37
5.15.15. setTimeLimit...38

5.16. LDAPSearchResults..38
5.16.1. hasMoreElements..38
5.16.2. next...38
5.16.3. nextElement..39
5.16.4. sort...39
5.17. LDAPSocketFactory..39
5.17.1. makeSocket...39
5.18. LDAPSortKey..40
5.18.1. Constructors...40
5.18.2. getKey...41
5.18.3. getReverse...41
5.18.4. getMatchRule...41
5.19. LDAPUrl..41
5.19.1. Constructors...41
5.19.2. decode...42
5.19.3. encode...43
5.19.4. getAttributes..43
5.19.5. getAttributes..43
5.19.6. getDN..43
5.19.7. getFilter..43
5.19.8. getHost..44
5.19.9. getPort..44
5.19.10. getUrl...44
5.20. LDAPv2...44
5.20.1. add..44
5.20.2. authenticate...44
5.20.3. compare..45
5.20.4. connect..45
5.20.5. delete...46
5.20.6. disconnect...47
5.20.7. getOption..47
5.20.8. modify...47
5.20.9. read...48
5.20.10. rename...48
5.20.11. search...49
5.20.12. setOption..50
5.21. LDAPv3...50
5.21.1. Preferred Language.......................................50
5.21.2. authenticate...50
5.21.3. authenticate...51

5.21.4. extendedOperation..52
5.21.5. getResponseControls......................................53
5.21.6. rename...53
5.22. SaslAuthenticationCallback...................................53
5.22.1. request..54
5.23. Client and Server Controls..................................54
6. Security Considerations..55
7. Acknowledgements...55
8. Bibliography...55
9. Authors' Addresses...56
10. Appendix A - Sample java LDAP programs.........................57
11. Appendix B - Changes from draft-ietf-asid-ldap-java-api-00.txt.60

11.1. LDAPConnection..60
11.2. Controls..60
11.3. LDAPException...60
11.4. LDAPSearchResults...60
11.5. LDAPSecurityException.......................................60
11.6. LDAPSortKey...60
11.7. LDAPv3..60
11.8. Examples..60
12. Appendix C - Changes from draft-weltman-java-ldap-00.txt.......61
12.1. LDAPv3..61
12.2. SSL -> TLS..61
12.3. LDAPAttributeSet..61
12.4. LDAPCompareAttrNames..61
12.5. LDAPCompareAttrNames..61
12.6. LDAPControl...61
12.7. LDAPEntry...61
12.8. LDAPException...61
12.9. LDAPExtendedOperation.......................................61
12.10. LDAPv2..62
12.11. Dereferencing aliases.......................................62
12.12. Default referral hop limit..................................62
12.13. Examples..62
13. Appendix D - Outstanding issues................................63
13.1. Support for SASL authentication.............................63

https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldap-java-api-00.txt
https://datatracker.ietf.org/doc/html/draft-weltman-java-ldap-00.txt

