
Network Working Group M. Wahl
INTERNET-DRAFT ISODE Consortium
Obsoletes: RFC 1777, RFC 1798 T. Howes
 Netscape Communications Corp.
 S. Kille
 ISODE Consortium
Expires in six months from 5 June 1996
Intended Category: Standards Track

 Lightweight Directory Access Protocol (v3)
 <draft-ietf-asid-ldapv3-protocol-01.txt>

1. Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas, and
 its working groups. Note that other groups may also distribute working
 documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference material
 or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net (Europe),
 ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

2. Abstract

 The protocol described in this document is designed to provide access
 to directories supporting the X.500 models, while not incurring the
 resource requirements of the X.500 Directory Access Protocol (DAP). This
 protocol is specifically targeted at management applications and browser
 applications that provide read/write interactive access to directories.
 When used with a directory supporting the X.500 protocols, it is
 intended to be a complement to the X.500 DAP.

 Key aspects of this version of LDAP are:

 - All protocol elements of LDAP (RFC 1777) and CLDAP (RFC 1798) are
 supported.

 - Protocol elements are carried directly over TCP or other transport,
 bypassing much of the session/presentation overhead. Connectionless
 transport (UDP) is also supported for efficient lookup operations.

 - Most protocol data elements can be encoded as ordinary strings

https://datatracker.ietf.org/doc/html/rfc1777
https://datatracker.ietf.org/doc/html/rfc1798
https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldapv3-protocol-01.txt
https://datatracker.ietf.org/doc/html/rfc1777
https://datatracker.ietf.org/doc/html/rfc1798

 (e.g., Distinguished Names).

 - Important features of X.500(1993) are included.

 - Referrals to other servers may be returned.

 - The protocol may be extended to support bilaterally-defined
 operations.

 - Several service controls may be requested by the client.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996
3. Models

 Interest in X.500 [1] directory technologies in the Internet has lead to
 efforts to reduce the high "cost of entry" associated with use of these
 technologies. This document continues the efforts to define directory
 protocol alternatives: it updates the LDAP [2] protocol specification,
 adding support for new features, including some support for servers
 connecting to X.500(1993).

3.1. Protocol Model

 The general model adopted by this protocol is one of clients
 performing protocol operations against servers. In this model, a
 client transmits a protocol request describing the operation to be
 performed to a server, which is then responsible for performing the
 necessary operations on the directory. Upon completion of the
 operations, the server returns a response containing any results or
 errors to the requesting client.

 In keeping with the goal of easing the costs associated with use of
 the directory, it is an objective of this protocol to minimize the
 complexity of clients so as to facilitate widespread deployment of
 applications capable of utilizing the directory.

 Note that, although servers are required to return responses whenever
 such responses are defined in the protocol, there is no requirement
 for synchronous behavior on the part of either clients or servers.
 Rrequests and responses for multiple operations may be exchanged
 between a client and server in any order, provided the client
 eventually receives a response for every request that requires one.

 In LDAP versions 1 and 2, no provision was made for protocol servers
 returning referrals to clients. However, for improved performance and
 distribution this version of the protocol permits servers to return to
 clients referrals to other servers if requested.
 Clients may also request that no referrals be returned, in
 which case the server must ensure that the operation is performed
 against the directory, or else return an error.

 Note that this protocol can be mapped to a strict subset of the
 X.500(1993) directory abstract service, so it can be cleanly provided
 by the DAP. However there is not a one-to-one mapping between LDAP
 protocol operations and DAP operations: some server implementations
 acting as a gateway to X.500 directories may need to make multiple DAP
 requests to perform extended operations.

3.2. Data Model

 This section provides a brief introduction to the X.500 data model, as
 used by LDAP.

 The LDAP protocol assumes there is one or more servers which jointly
 provide access to a Directory Information Tree. The tree is made up of
 entries. Entries have names: one or more values from the entry itself
 form its relative distinguished name, which must be unique among all
 its siblings. The concatenation of the relative distinguished names
 of entries, starting from the immediate subordinate of the unnamed
 root of the tree and continuing to a specific entry forms that entry's
 Distinguished Name, which is unique in the tree. An example of a
 Distinguished Name is

 CN=Steve Kille, O=ISODE Consortium, C=GB

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 Entries consist of a set of attributes. An attribute is a type with
 one or more associated values. The attribute type, described by an
 OID (object identifier), governs the maximum number of values
 permissible for an attribute of that type in an entry, and the syntax to
 which the values must conform. An example of an attribute is "mail".
 There may be one or more values of this attribute, and they must be IA5
 strings.

 All the attributes of an entry are mastered together in a single
 server. Shadow or cached copies of entries may be held in other
 servers, but these cannot be updated directly by users.

3.2.1 Attributes of Entries

 Each entry must have an objectClass attribute. Values of this attribute
 may be modified by clients, but the objectClass attribute cannot be
 removed. The objectClass attribute specifies the object classes of an
 entry, which along with the system and user schema determine the
 permitted attributes of an entry.

 Servers should not permit clients to add attributes to an entry unless
 those attributes are permitted by the object class definitions, the user
 schema controlling that entry (specified in the subschema subentry), or
 are operational attributes known to that server and used for
 administrative purposes.

 Entries may contain the following operational attributes, but if present
 should not be modifiable by clients:

 - creatorsName: the string representation of the Distinguished Name of
 the user who added this entry to the directory, if known.
 - createTimestamp: the GeneralizedTime value of the time this entry was
 added to the directory, if known.
 - modifiersName: the string representation of the Distinguished Name of
 the user who last modified this entry, if known.
 - modifyTimestamp: the GeneralizedTime value of the time this entry was
 last modified, if known.
 - subschemaSubentry: the string representation of the Distinguished Name
 of the subschema subentry which controls the schema for this entry.
 - entryName;binary: a DER encoding of the Distinguished Name of the
 entry.

 Servers may implement other operational attributes. Servers which
 also make use of X.500(1993) protocols should provide support
 for the attributes defined in X.501, including administrativeRole,
 collectiveExclusions, governingStructureRule, dseType and entryACI.

3.2.2 Subschema Subentry

 A server may provide access to one or more subschema subentries to
 permit clients to interrogate the schema which is in force for entries
 in the directory.

 A server which masters or shadows entries and permits clients to modify
 these entries must implement subschema subentries.

 The following two attributes must be present in a subschema subentries:
 - objectClasses: each value of this attribute specifies an object class
 known to the server.
 - attributeTypes: each value of this attribute specifies an attribute
 type known to the server.

 Other attributes may be present in subschema subentries.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 These attributes of subschema subentries may be retrieved by requesting
 a baseObject search of their name, with filter set to a test for the
 presence of the objectClass attribute. Clients should not expect that
 subschema subentries will be returned in searches with other settings of
 scope or filter.

3.3. Relationship to X.500

 This document defines LDAP in terms of X.500 as an X.500 access
 mechanism. An LDAP server should act in accordance with the
 X.500(1993) series of ITU Recommendations when providing the service.

 However, it is not required that an LDAP server make use of any X.500
 protocols in providing this service, e.g. LDAP can be mapped onto any
 other directory system so long as the X.500 data and service model is
 supported in the LDAP interface.

3.4. Server-specific Data Requirements

 An LDAP server must provide information about itself and other
 information that is specific to each server. This is represented as a
 number of attributes located in the root DSE (DSA-Specific Entry),
 that which is named with the zero-length LDAPDN. These attributes
 should be retrievable if a client performs a base object search of the
 root, however they are subject to access control restrictions.
 They should not be included if the client performs a subtree search
 starting from the root. The server need not allow the client to modify
 these attributes.

 Additional attributes may be defined by later documents or by bilateral
 agreement. These attributes are currently defined:

 - administratorAddress: This attribute's values are string containing
 the addresses of the LDAP server's human administrator. This
 information may be of use when tracking down problems in an Internet
 distributed directory. For simplicity the syntax of the values are
 limited to being URLs of the mailto form with an RFC 822 address:
 "mailto:user@domain". Future versions of this protocol may permit other
 forms of addresses.

 - currentTime: This attribute has a single value, a string containing a
 GeneralizedTime character string. This attribute need only be present
 if the server supports LDAP strong or protected simple authentication.
 Otherwise if the server does not know the current time, or does not
 choose to present it to clients, this attribute need not be present. The
 client may wish to use this value to detect whether a strong or
 protected bind is failing because the client and server clocks are not
 sufficiently synchronized. Clients should not use this time field for
 setting their own system clock.

 - serverName;binary: This attribute's value is the binary representation
 of the ASN.1 DER encoding of the server's Distinguished Name. If the
 server does not have a Distinguished Name it will not be able to accept
 strong authentication, and this attribute should be absent. However the
 presence of this attribute does not guarantee that the server will be
 able to perform strong authentication. If the server acts as a gateway
 to more than one X.500 DSA capable of strong authentication, there may
 be multiple values of this attribute, one per DSA.

 - certificationPath;binary: This attribute contains a binary DER
 encoding of an AF.CertificationPath data type, which is the certificate
 path for a server. If the server does not have a certificate path this
 attribute should be absent.

https://datatracker.ietf.org/doc/html/rfc822

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 - namingContexts: The values of this attribute are the string
 representations of Distinguished Names. Each value corresponds to a
 naming context which this server masters or shadows. If the server does
 not master any information (e.g. it is an LDAP gateway to a public X.500
 directory) this attribute should be absent. If the server believes it
 contains the entire directory, the attribute should have a single value,
 and that value should be the empty string (indicating the null DN of the
 root).

 - subschemaSubentry: The values of this attribute are the string
 representations of Distinguished Names. Each value corresponds to a
 subschema subentry, which is an entry in which the server makes
 available attributes specifying the schema. (This is described in

section 3.2.2). If the server does not master or shadow entries and
 does not know the locations of schema information, this attribute should
 be absent. If the server holds all the directory under a single set of
 schema rules, there will be one attribute value (and a single subentry,
 which could be located anywhere in the directory hierarchy). If the
 server holds master or shadow copies of directory entries under one or
 more schema rules, there may be any number of values of this attribute.

 - altLdapServer: The values of this attribute are URLs of other LDAP
 servers which may be contacted when this server becomes unavailable. If
 the server does not know of any other LDAP servers which could be used
 this attribute should be absent. Clients should cache this information
 in case their preferred LDAP server later becomes unavailable.

 - altX500Server: The values of this attribute are encoded with the
 AccessPoint93 syntax. They are the access points of X.500 DSAs which
 could be contacted when this server becomes unavailable. If this server
 does not know of any X.500 DSAs this attribute should be absent.
 Servers implemented as LDAP gateways to X.500 DAP may permit management
 clients to modify the values of this attributes.

 - supportedExtension: The values of this attribute are the string
 representations of OBJECT IDENTIFIERs, in the dotted decimal form.
 Each value is the name of an extended request which this server supports
 (see section 4.11). If the server does not support any extended
 operations this attribute should be absent.

 The ASN.1 type DistinguishedName is defined in [6], and the type
 CertificationPath is defined in [12].

4. Elements of Protocol

 The LDAP protocol is described using Abstract Syntax Notation 1 [3]. It
 is typically transferred using a subset of the Basic Encoding Rules.
 In order to support future extensions to this protocol, clients and

 servers should ignore elements of SEQUENCEs whose tags they do not
 recognize. Note that unlike X.500, each change to the LDAP protocol
 will have a different version number.

4.1. Common Elements

 This section describes the LDAPMessage envelope PDU format, as well as
 data type definitions which are used in the protocol operations.

4.1.1. Message Envelope

 For the purposes of protocol exchanges, all protocol operations are
 encapsulated in a common envelope, the LDAPMessage, which is defined
 as follows:

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 LDAPMessage ::= SEQUENCE {
 messageID MessageID,
 cldapUserName LDAPDN OPTIONAL,
 protocolOp CHOICE {
 bindRequest BindRequest,
 bindReqContinue BindContinuationRequest,
 bindRespBasic BindResponseBasic,
 bindRespExtd BindResponseExtended,
 unbindRequest UnbindRequest,
 searchRequest SearchRequest,
 searchResEntry SearchResultEntry,
 searchResDone SearchResultDone,
 searchResRef SearchResultReference,
 searchResFull SearchResultFull,
 modifyRequest ModifyRequest,
 modifyResponse ModifyResponse,
 addRequest AddRequest,
 addResponse AddResponse,
 delRequest DelRequest,
 delResponse DelResponse,
 modDNRequest ModifyDNRequest,
 modDNResponse ModifyDNResponse,
 compareRequest CompareRequest,
 compareResponse CompareResponse,
 abandonRequest AbandonRequest,
 resumeRequest ResumeRequest,
 resumeError ResumeError,
 extendedReq ExtendedRequest,
 extendedResp ExtendedResponse } }

 MessageID ::= INTEGER (0 .. maxInt)

 maxInt INTEGER ::= 2147483647 -- (2^^31 - 1) --

 The function of the LDAPMessage is to provide an envelope containing
 common fields required in all protocol exchanges. At this time the
 only common fields are the message ID and cldapUserName.

 The message ID is required to have a value different from the values of
 any other requests outstanding in the LDAP session of which this
 message is a part. Typically a client may increment a counter for each
 request. The message ID value must be echoed in all LDAPMessage
 envelopes encapsulating responses corresponding to the request
 contained in the LDAPMessage in which the message ID value was
 originally used.

 The cldapUserName identifies the requesting user for this message. It
 is only present if this LDAPMessage is carried in a connectionless
 transport protocol, such as UDP. This is described in section 5.1.3.
 When the LDAP session is carried in a connection-oriented transport
 protocol this field must be absent.

4.1.2. String Types

 The LDAPString is a notational convenience to indicate that, although
 strings of LDAPString type encode as OCTET STRING types, the legal
 character set in such strings is defined to be the Basic Multilingual
 Plane (BMP) of UCS. These are encoded following the UTF-8 algorithm.
 Note that in the UTF-8 algorithm, characters which are the same as
 printable ASCII (0020 through 007F) are represented as that same ASCII
 character in a single byte.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 LDAPString ::= OCTET STRING

 The LDAPOID is a notational convenince to indicate that the permitted
 value of this string is a dotted-decimal representation of an OBJECT
 IDENTIFIER.

 LDAPOID ::= OCTET STRING

4.1.3. Distinguished Name and Relative Distinguished Name

 An LDAPDN and a RelativeLDAPDN are respectively defined to be the
 representation of a Distinguished Name and a Relative Distinguished
 Name after encoding according to the specification in [4], such that

 <distinguished-name> ::= <name>

 <relative-distinguished-name> ::= <name-component>

 where <name> and <name-component> are as defined in [4]. Only the single
 line representation should be used, with comma as component separator.

 LDAPDN ::= LDAPString

 RelativeLDAPDN ::= LDAPString

4.1.4. Attribute Type and Description

 An AttributeType takes on as its value the textual string associated
 with that AttributeType in its specification. This string must begin
 with a letter, and only contain ASCII letters and digit characters.
 If this string is not known, the AttributeType should take the ASCII
 representation of its OBJECT IDENTIFIER, as decimal digits with
 components separated by periods, e.g., "2.5.4.10". The attribute type
 strings which must be supported are described in section [5].

 AttributeType ::= LDAPString

 An AttributeDescription is a superset of the definition of the
 AttributeType. It has the same ASN.1 definition, but allows additional
 parameters to be

 AttributeDescription ::= LDAPString

 A value of AttributeDescription is based on the following BNF:

 <AttributeDescription> ::= <AttributeType> [";" <options>]

 <options> ::= <binary-option>

 <binary-option> ::= "binary"

 If the "binary" option is present, this overrides any printable
 encoding representation defined for that attribute. Instead the
 attribute is to be transferred as a BER-encoded binary value.

 The data type "AttributeDescriptionList" describes a list of 0 or more
 attribute types. Clients and servers should be prepared to accept a
 list of many hundreds of attribute types.

 AttributeDescriptionList ::= SEQUENCE SIZE (0..maxInt) OF
 AttributeDescription

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

4.1.5. Attribute Value

 A field of type AttributeValue takes on as its value an octet string
 encoding of a X.500 Directory AttributeValue type. The definition of
 these string encodings for different syntaxes and types may be
 found in companions to this document, such as [5].

 AttributeValue ::= OCTET STRING

 Note that there is no defined limit on the size of this encoding; thus
 PDUs including multi-megabyte attributes (e.g. photographs) may be
 returned. If the client has limited memory or storage capabilities it
 may wish to set the attrSizeLimit field when invoking a search operation.

4.1.6. Attribute Value Assertion

 The AttributeValueAssertion type definition is similar to the one in
 the X.500 directory standards. It contains an attribute type and a
 equality matching assertion suitable for that type.

 AttributeValueAssertion ::= SEQUENCE {
 attributeType AttributeType,
 assertionValue AssertionValue }

 AssertionValue ::= OCTET STRING

 For all the attributes described in [5], the assertion value syntax is
 the same as the value syntax.

4.1.7. Attribute

 An attribute consists of a type and one or more values of that type.

 Attribute ::= SEQUENCE {
 type AttributeDescription,
 vals SET SIZE (1..maxInt) OF AttributeValue }

4.1.8. Matching Rule Identifier

 An X.501(1993) Matching Rule is identified in the LDAP protocol by the
 ASCII representation of its OBJECT IDENTIFIER, as decimal digits with
 components separated by periods, e.g. "1.3.6.1.4.1.453.33.33".

 MatchingRuleId ::= LDAPOID

4.1.9. Result Message

 The LDAPResult is the construct used in this protocol to return
 success or failure indications from servers to clients. In response
 to various requests, servers will return responses containing fields
 of type LDAPResult to indicate the final status of a protocol
 operation request.

 LDAPResult ::= SEQUENCE {
 resultCode ENUMERATED {
 success (0),
 operationsError (1),
 protocolError (2),
 timeLimitExceeded (3),
 sizeLimitExceeded (4),
 compareFalse (5),

 compareTrue (6),

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 authMethodNotSupported (7),
 strongAuthRequired (8),
 -- 9 reserved --
 referral (10), -- new
 adminLimitExceeded (11), -- new
 unavailableCriticalExtension (12), -- new
 unableToProceed (13), -- new
 -- 14-15 unused --
 noSuchAttribute (16),
 undefinedAttributeType (17),
 inappropriateMatching (18),
 constraintViolation (19),
 attributeOrValueExists (20),
 invalidAttributeSyntax (21),
 overSpecifiedFilter (22), -- new
 -- 23-31 unused --
 noSuchObject (32),
 aliasProblem (33),
 invalidDNSyntax (34),
 isLeaf (35),
 aliasDereferencingProblem (36),
 -- 37-47 unused --
 inappropriateAuthentication (48),
 invalidCredentials (49),
 insufficientAccessRights (50),
 busy (51),
 unavailable (52),
 unwillingToPerform (53),
 loopDetect (54),
 -- 55-63 unused --
 namingViolation (64),
 objectClassViolation (65),
 notAllowedOnNonLeaf (66),
 notAllowedOnRDN (67),
 entryAlreadyExists (68),
 objectClassModsProhibited (69),
 resultsTooLarge (70), -- cl only
 affectsMultipleDSAs (71), -- new
 -- 72-79 unused --
 other (80) },
 matchedDN LDAPDN,
 errorMessage LDAPString,
 referral [3] Referral OPTIONAL,
 matchedSubtype [4] AttributeType OPTIONAL }

 The errorMessage field of this construct may, at the servers option,

 be used to return an ASCII string containing a textual, human-readable
 error diagnostic. As this error diagnostic is not standardized,
 implementations should not rely on the values returned. If the server
 chooses not to return a textual diagnostic, the errorMessage field of
 the LDAPResult type should contain a zero length string.

 For resultCodes of noSuchObject, aliasProblem, invalidDNSyntax,
 isLeaf, and aliasDereferencingProblem, the matchedDN field is set to
 the name of the lowest entry (object or alias) in the DIT that was
 matched and is a truncated form of the name provided or, if an alias
 has been dereferenced, of the resulting name in a Search or Compare
 result. The matchedDN field should be set to a NULL DN (a zero length
 string) in all other cases.

 When the resultCode is compareTrue the matchedSubtype field may contain
 the type name of the attribute whose value matched the ava in the
 Compare operation.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

4.1.10. Referral

 The referral field is present in an LDAPResult if the
 LDAPResult.resultCode field value is referral. It contains a reference
 to another server (or set of servers) which may be accessed via LDAP
 or other protocols.

 Referral ::= SEQUENCE SIZE (1..maxInt) OF LDAPURL

 The referral contains a list of URLs [14] of servers, any of which the
 client could contact to continue the request. Each server must be
 capable of processing the operation and presenting a consistent view to
 the client. URLs for servers implementing the LDAP protocol are written
 according to [9]; other kinds of URLs may be returned so long as the same
 information could be received using other protocols.

 LDAPURL ::= LDAPString

 If the server has not information of where to progress the operation that
 it could return to the client, it should not return a referral, but
 instead return the result code unableToProceed.

4.2. Bind Operation

 The function of the Bind Operation is to allow authentication information
 to be exchanged between the client and server, and optionally allow
 session-wide parameters to be set.

 The Bind Request is defined as follows:

 BindRequest ::= [APPLICATION 0] SEQUENCE {
 version INTEGER (1 .. 127),

 name LDAPDN,
 authentication AuthenticationChoice,
 serviceControls [7] Controls OPTIONAL }

 AuthenticationChoice ::= CHOICE {
 simple [1] OCTET STRING,
 -- 2 and 3 reserved
 protected [4] ProtectedPassword,
 strong [5] StrongCredentials,
 otherkind [6] OtherCredentials }

 ProtectedPassword ::= SEQUENCE {
 time1 [0] UTCTime OPTIONAL,
 time2 [1] UTCTime OPTIONAL,
 random1 [2] BIT STRING OPTIONAL,
 random2 [3] BIT STRING OPTIONAL,
 protected [4] OCTET STRING }

 StrongCredentials ::= SEQUENCE {
 certification-path [0] AF.CertificationPath OPTIONAL,
 bind-token [1] DAS.Token }

 OtherCredentials ::= SEQUENCE {
 authMechanism [0] LDAPOID,
 authToken [1] OCTET STRING }

 Controls ::= SEQUENCE OF SEQUENCE {
 controlType LDAPString,
 criticality BOOLEAN DEFAULT FALSE,
 controlValue OCTET STRING }

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 Parameters of the Bind Request are:

 - version: A version number indicating the version of the protocol to
 be used in this protocol session. This document describes version
 3 of the LDAP protocol. Note that there is no version negotiation,
 and the client should just set this parameter to the version it
 desires. The client may request version 2, in which case the server
 should implement only the protocol as described in [2].

 - name: The name of the directory object that the client wishes to
 bind as. This field may take on a null value (a zero length
 string) for the purposes of anonymous binds, or when authentication
 has been performed at a lower layer.

 - authentication: information used to authenticate the name, if any,
 provided in the Bind Request.

 - serviceControls: additional requests the client may make about the
 protocol.

 Upon receipt of a Bind Request, a protocol server will authenticate
 the requesting client if necessary, and attempt to set up a protocol
 session with that client. The server will then return a Bind Response
 to the client indicating the status of the session setup request.

 Unlike LDAP v2, the client need not send a Bind Request in the first
 PDU of the connection. The client may request any operations and the
 server should treat these as unauthenticated (or authentication may have
 already occured at a lower layer). If the server requires that the
 client bind first, the server should reject any request other that
 binding or unbinding with the "operationsError" result. If the
 client did not bind before sending a request and receives an
 operationsError, it should close the connection, reopen it and begin
 again by first sending a PDU with a Bind Request. This will aid in
 interoperating with LDAPv2 servers.

 Clients may send multiple bind requests on an association.
 Authentication or controls from earlier binds should subequently be
 ignored.

4.2.1 Authentication

 If no authentication is to be performed, or has been performed at a
 lower layer, then the simple authentication option should be chosen,
 and the password be of zero length.

 The "simple" authentication option provides minimal authentication
 facilities, with the contents of the authentication field consisting
 only of a cleartext password.

 The ProtectedPassword authentication option allows a hash of the
 password, combined optionally with the current time and a random
 number, to be sent to the DSA. The protected field contains the hash
 value.

 Strong authentication to the directory can be accomplished using the
 strong credentials option. The ASN.1 type "CertificationPath" is
 defined in [12], and the ASN.1 type "Token" is defined in [13]. They
 are included in Appendix B for reference.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 Other kinds of authentication to the directory can be performed using
 the other credentials option. The authMechanism must be the
 dotted-decimal printable representation of an OBJECT IDENTIFIER of that
 authentication mechanism: for interoperability the full decimal format
 must be used. The authToken is arbitrary information of a form
 defined by that authentication mechanism, encoded in an OCTET STRING.

4.2.1.1. Strong Credentials Signature Algorithm

 It is recommended for interoperability that if strong authentication
 is to be performed, then if the server's or client's certificates
 contain RSA public keys the PKCS md5WithRSAEncryption
 (1.2.840.113549.1.1.4) algorithm should be used.

4.2.2. Service Controls

 Service Controls are requests made by the client which affect its
 interaction with the server. Controls are not saved after a session
 unbinds or disconnects abruptly, and do not affect other sessions to
 this or other servers.

 If the server is not capable of setting one or more requested controls,
 it should set as many as possible. If any of the controls which the
 server could not set are marked as critical, it should return the
 unavailableCriticalExtension error.

 The controlType field must either be a string defined in this section,
 or a dotted-decimal representation of an OBJECT IDENTIFIER. This will
 aid in preventing conflicts between privately-defined control extensions.

 The following controls have been defined:
 - referringServer
 - chainingProhibited
 - supportedReferral
 - useAliasOnUpdate
 - manageDsaIT
 - preferredLanguage

 The referringServer control is always non-critical. The value field
 contains the URL of another server which referred an operation to this
 server. This control should only be present if the connection is being
 made only to process a referral. If the connection will be held open to
 handle referrals from multiple servers this control should be omitted.

 The chainingProhibited control may be critical or non-critical at the
 clients request. The value should be an empty string. If present, the
 server should not contact any other servers, if it would be possible to
 instead return to the client a referral. If the server is a gateway to
 X.500, it should set the chainingProhibited service control on any
 DAP/DSP requests it makes.

 The supportedReferral control is always non-critical. The field is
 a string name of a protocol which the client implements. The name of
 the protocol may be "ldap", "cldap", "dap", or any IANA-assigned protocol
 name or URL mechanism. If this control is present, a server should
 return a referral rather than chain to another server.

 The useAliasOnUpdate control may be critical or non-critical at the
 clients request. The value should be an empty string. If present, the
 server should permit alias names to be used as components of a

 Distinguished Name in Add, Modify and Delete operations. If the server
 is a gateway to X.500, it should set the useAliasOnUpdate critical
 extensions on any DAP/DSP AddEntry, ModifyEntry and RemoveEntry requests
 it makes.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 The manageDsaIT control is always critical. The value should be an
 empty string. If present, the chainingProhibited control must also be
 present and critical. This control affects the name resolution behavior
 of the server to permit a manager to read and modify knowledge references
 and other server-specific attributes. If the server is a gateway to
 X.500, it should set the manageDsaIT critical extension, as well as the
 appropriate common arguments, on any DAP/DSP requests it makes.

 The preferredLanguage control is always non-critical. The value is an
 ISO 646 language code (such as "EN" for English). This control advises
 the server what language should be used for returned attribute values and
 error messages. It does not affect character sets; BMP is always used.

4.2.3. Bind Response

 The Bind Response will be one of the following, either
 BindResponseBasic or BindResponseExtended.

 BindResponseBasic ::= [APPLICATION 1] LDAPResult

 A BindResponseBasic consists simply of an indication from the server of
 the status of the client's request for the initiation of a protocol
 session. If the bind was successful, the resultCode will be success,
 otherwise it will be one of:

 operationsError
 protocolError
 authMethodNotSupported
 strongAuthRequired
 referral
 inappropriateAuthentication
 invalidCredentials
 unavailable
 unavailableCriticalExtension

 If the client receives a BindResponseBasic response where the
 resultCode was not success, it should close the connection as the
 server will be unwilling to accept further operations.

 The BindResponseExtended is used to provide additional information
 in the bind response, for either a successful or unsuccessfull
 bind operation.

 BindResponseExtended ::= [APPLICATION 17] SEQUENCE {
 result [0] LDAPResult,

 serverURL [1] LDAPURL OPTIONAL,
 serverCreds [2] AuthenticationChoice OPTIONAL,
 supportedExtns [3] SEQUENCE OF LDAPString,
 unsupportedCtls [4] SEQUENCE OF LDAPString }

 The serverURL contains the URL of this LDAP server. The serverCreds
 allows the client to authenticate the server to which it is
 communicating. The supportedExtns contains the names of service
 controls and extended operations which this server supports. The
 unsupportedCtls names the service controls which the client requested
 but the server was not able to set.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

4.2.4 Bind Continuation

 The BindContinuationRequest is used when a "challenge-response" style
 of authentication is to be performed. The client will initially send a
 BindRequest, and will receive a BindResponseExtended. The client may
 then send a BindContinuationRequest to supply additional information
 as part of a single authentication process. The server will reply to
 the BindContinuationRequest with a BindResponseExtended.

 BindContinuationRequest ::= [APPLICATION 19] SEQUENCE {
 otherkind [6] OtherCredentials }

4.3. Unbind Operation

 The function of the Unbind Operation is to terminate a protocol
 session. The Unbind Operation is defined as follows:

 UnbindRequest ::= [APPLICATION 2] NULL

 The Unbind Operation has no response defined. Upon transmission of an
 UnbindRequest, a protocol client may assume that the protocol session
 is terminated. Upon receipt of an UnbindRequest, a protocol server
 may assume that the requesting client has terminated the session and
 that all outstanding requests may be discarded, and may close the
 connection.

4.4. Search Operation

 The Search Operation allows a client to request that a search be
 performed on its behalf by a server. The Search Request is defined as
 follows:

 SearchRequest ::= [APPLICATION 3] SEQUENCE {
 baseObject LDAPDN,
 scope ENUMERATED {
 baseObject (0),
 singleLevel (1),

 wholeSubtree (2) },
 derefAliases ENUMERATED {
 neverDerefAliases (0),
 derefInSearching (1),
 derefFindingBaseObj (2),
 derefAlways (3) },
 sizeLimit INTEGER (0 .. maxInt),
 timeLimit INTEGER (0 .. maxInt),
 typesOnly BOOLEAN,
 filter Filter,
 attributes AttributeDescriptionList,
 pageSizeLimit [0] INTEGER OPTIONAL,
 sortKeys [1] SortKeyList OPTIONAL,
 modifyRightsReq [3] BOOLEAN DEFAULT FALSE,
 extraAttributes [4] BOOLEAN DEFAULT FALSE,
 attrSizeLimit [5] INTEGER OPTIONAL,
 subentries [6] BOOLEAN DEFAULT FALSE,
 dontUseCopy [7] BOOLEAN DEFAULT FALSE,
 usePartialCopy [8] BOOLEAN DEFAULT FALSE }

 SortKeyList ::= SEQUENCE OF SEQUENCE {
 attributeType AttributeType,
 orderingRule [0] MatchingRuleId OPTIONAL,
 reverseOrder [1] BOOLEAN DEFAULT FALSE }

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 Filter ::= CHOICE {
 and [0] SET OF Filter,
 or [1] SET OF Filter,
 not [2] Filter,
 equalityMatch [3] AttributeValueAssertion,
 substrings [4] SubstringFilter,
 greaterOrEqual [5] AttributeValueAssertion,
 lessOrEqual [6] AttributeValueAssertion,
 present [7] AttributeType,
 approxMatch [8] AttributeValueAssertion,
 extensibleMatch [9] MatchingRuleAssertion }

 SubstringFilter ::= SEQUENCE {
 type AttributeType,
 substrings SEQUENCE SIZE (1..maxInt) OF CHOICE {
 initial [0] LDAPString,
 any [1] LDAPString,
 final [2] LDAPString } }

 MatchingRuleAssertion ::= SEQUENCE {
 matchingRules [1] SET SIZE (0..maxInt) OF MatchingRuleId,
 type [2] AttributeType,
 matchValue [3] AssertionValue,

 dnAttributes [4] BOOLEAN }

 Parameters of the Search Request are:

 - baseObject: An LDAPDN that is the base object entry relative to
 which the search is to be performed.

 - scope: An indicator of the scope of the search to be performed. The
 semantics of the possible values of this field are identical to the
 semantics of the scope field in the directory Search Operation.

 - derefAliases: An indicator as to how alias objects should be
 handled in searching. The semantics of the possible values of
 this field are:

 neverDerefAliases: do not dereference aliases in searching
 or in locating the base object of the search;

 derefInSearching: dereference aliases in subordinates of
 the base object in searching, but not in locating the
 base object of the search;

 derefFindingBaseObject: dereference aliases in locating
 the base object of the search, but not when searching
 subordinates of the base object;

 derefAlways: dereference aliases both in searching and in
 locating the base object of the search.

 - sizelimit: A sizelimit that restricts the maximum number of entries
 to be returned as a result of the search. A value of 0 in this
 field indicates that no sizelimit restrictions are in effect for
 the search.

 - timelimit: A timelimit that restricts the maximum time (in seconds)
 allowed for a search. A value of 0 in this field indicates that no
 timelimit restrictions are in effect for the search.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 - typesOnly: An indicator as to whether search results should contain
 both attribute types and values, or just attribute types. Setting
 this field to TRUE causes only attribute types (no values) to be
 returned. Setting this field to FALSE causes both attribute types
 and values to be returned.

 - filter: A filter that defines the conditions that must be fulfilled
 in order for the search to match a given entry. The and, or and not
 choices may be used to form boolean combinations of filters.

 - attributes: A list of the attributes from each entry found as a
 result of the search to be returned. An empty list signifies that

 all attributes from each entry found in the search are to be
 returned.

 - pageSizeLimit: if present and set to TRUE, then if more entries are to
 be returned than the pageSizeLimit, the server should return only as
 many as this limit before returning the SearchResultDone response.
 It must cache all of the results for the lifetime of the association.
 (The client will be able to request more of the entries using the
 ResumeRequest, and the cached results can be cleared if the client
 sends the Abandon operation for this search). If the same or fewer
 entries than this limit are to be returned, the server should return
 all the entries and the SearchResultDone response, and need not cache
 the result. The pageSizeLimit does not affect SearchResultReference
 responses, of which any number may be returned by the server.

 - sortKeys: If this field is present, then it specifies one or more
 attribute types and matching rules, and the returned entries should
 be sorted in order based on these types. If the reverseOrder field is
 set to TRUE, then the entries will be presented in reverse sorted
 order.

 If the server does not recognize any of the attribute types, or the
 ordering rule associated with an attribute type is not applicable, or
 none of the attributes in the search responses are of these types,
 then the sortKeys field is ignored and result entries are returned
 in random order.

 - modifyRightsReq: If this field is set to TRUE and the scope field is
 set to baseObject, then the client requests that the modification
 rights for the entry be included in the search result. Support for
 this field is optional, and clients should expect that not all
 servers will implement returning modify rights.

 - extraAttributes: If this field is present and set to TRUE then
 all operational attributes are requested to be returned as well.
 Note that specific operational attributes may instead be listed in
 the attributes field. Servers are permitted to ignore extraAttributes
 if returning this information is prohibited by security policy.
 Clients should note that many operational attributes are not
 modifiable.

 - attrSizeLimit: If this field is present, then if the size in bytes
 of an attribute and all its values which would be returned in a
 result entry exceeds this size in bytes, then the attribute is not
 included in the result and the incompleteEntry field is set to TRUE.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 - subentries: if present and set to TRUE, the server should ignore
 ordinary entries and only perform the search against subentries. If

 the server not support subentries and this field is TRUE it should
 not do any searching, and return an empty result. (Note that if the
 LDAP is backed by an X.500(1988) directory service, the LDAP server may
 receive a protocolError or unavailableCriticalExtension error, which
 it should discard and instead return to the client an empty result.)

 - dontUseCopy: if present and set to TRUE, only the server which holds
 the master copy of the entry is permitted to perform the filtering
 and attribute selection.

 - usePartialCopy: if present and set to TRUE, if the server holds a
 shadow copy of at least one attribute from a matching entry, it should
 use that copy to satisfy the search, even if not all the attributes
 requested are present in the shadowed copy.

 The results of the search attempted by the server upon receipt of a
 Search Request are returned in Search Responses, which are LDAP
 messages containing either SearchResultEntry, SearchResultReference,
 SearchResultDone or SearchResultFull data types.

 SearchResultEntry ::= [APPLICATION 4] SEQUENCE {
 objectName LDAPDN,
 attributes PartialAttributeList,
 modifyRights [2] BOOLEAN OPTIONAL,
 incompleteEntry [3] BOOLEAN DEFAULT FALSE,
 fromEntry [4] BOOLEAN DEFAULT FALSE,
 thisEntryNumber [5] INTEGER OPTIONAL,
 totalCount [6] INTEGER OPTIONAL }

 PartialAttributeList ::= SEQUENCE SIZE (0..maxInt) OF SEQUENCE {
 type AttributeDescription,
 vals SET SIZE (0..maxInt) OF AttributeValue }

 SearchResultReference ::= [APPLICATION 18] Referral

 SearchResultDone ::= [APPLICATION 5] LDAPResult

 SearchResultFull ::= SEQUENCE SIZE (1..maxInt) OF CHOICE {
 entry SearchResultEntry,
 reference SearchResultReference,
 resultCode SearchResultDone }

 Upon receipt of a Search Request, a server will perform the necessary
 search of the DIT.

 If the LDAP session is operating over a connection-oriented transport
 such as TCP, the server will return to the client a sequence of
 responses in separate LDAP messages. There may be zero or more
 responses containing SearchResultEntry, one for each entry found
 during the search. There may also be zero or more responses
 containing SearchResultReference, one for each area not explored by
 this server during the search. The SearchResultEntry and

 SearchResultReferences may come in any order. Following all the
 SearchResultReference responses and all SearchResultEntry responses up
 to a pageSizeLimit (if any), the server will return a response containing
 the SearchResultDone, which contains an indication of success, or
 detailing any errors that have occurred.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 If the LDAP session is operating over a connectionless transport such
 as UDP, the server will return to the client only one response, a
 LDAPMessage containing a SearchResultFull data type. All if any but
 the last element of the SEQUENCE OF must be of the SearchResultEntry
 type, and the last must be of the SearchResultDone type.

 The SearchResultFull is never returned over a connection-oriented
 transport.

 Each entry returned in a SearchResultEntry will contain all attributes,
 complete with associated values if necessary, as specified in the
 attributes field of the Search Request. Return of attributes is subject
 to access control and other administrative policy.

 In a SearchResultEntry, as an encoding optimisation, the value of the
 objectName LDAP DN may use a trailing '*' character to refer to the
 baseObject of the corresponding searchRequest. For example, if the
 baseObject is specified as "o=UofM, c=US", then the following
 objectName LDAPDNs in a response would have the indicated meanings

 objectName returned actual LDAPDN denoted
 __
 "*" "o=UofM, c=US"
 "cn=Babs Jensen, *" "cn=Babs Jensen, o=UofM, c=US"

 If (and only if) the modifyRightsReq field was present in the Search
 Request may the server also include the ModifyRights field in the
 entry. If present and set to TRUE, then the server suggests it is
 likely that a valid modification operation on this entry would succeed.
 If present and set to FALSE, then it is likely the operation would
 fail due to an authentication or access control restriction. If no
 information is available the server should not include the
 modifyRights field in the response.

 The incompleteEntry flag is set if one or more attributes are not
 present in the PartialAttributeList, because their size would have
 exceeded the attribute size limit, or if a partial shadow copy of the
 entry was used to satisfy the request and some requested attributes are
 not returned. It is never set just because typesOnly was set to TRUE.

 The server may set the fromEntry field in a SearchResult entry to TRUE
 if it is known that the search is not based upon a shadow or cached

 copy of the entry, but that the source of entry data has been directly
 contacted.

 If the pageSizeLimit control was present, the server must number the
 entries which match the search. The first entry returned will have
 thisEntryNumber field contain the number 0, the next is number 1, etc.
 The server must also indicate a count of the total number of entries in
 the field totalCount. The server may revise the count, a larger
 totalCount field in a later SearchResultEntry will override the
 totalCount field of an earlier SearchResultEntry for that search.

 If the server was able to locate the entry referred to by the
 baseObject but was unable to search all the entries in the scope at
 and under the baseObject, the server may return one or more
 SearchResultReference, each containing a reference to another LDAP
 server for continuing the operation. The server should return at most
 one SearchResultReference for a subtree. A server must not return a
 SearchResultReference if it has not located the baseObject and thus has
 not searched any entries; in this case it should return a
 SearchResultDone containing a referral resultCode.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 Note that an X.500 "list" operation can be emulated by a one-level
 LDAP search operation with a filter checking for the existence of the
 objectClass attribute, and that an X.500 "read" operation can be
 emulated by a base object LDAP search operation with the same filter.

4.5. Resume Search Operation

 The Resume Search Operation is used in conjunction with a Search
 operation which was previously issued on this association.

 ResumeRequest ::= [APPLICATION 20] SEQUENCE {
 searchRequestID [0] MessageID,
 startAtEntry [1] INTEGER OPTIONAL,
 entriesToReturn [2] INTEGER OPTIONAL }

 The SearchRequest must have been made with the pageSizeLimit
 field present, and the server must not have returned the SearchResultDone
 for this search, indicating that all the results have been returned or
 an error was encountered. A Search which has been abandoned cannot be
 resumed.

 The searchRequestID field must contain the value of messageID which the
 client used for the original search operation.

 The startAtEntry number may be any number greater than 0, and the sum of
 startAtEntry and entriesToReturn must not be greater than the value of
 totalCount returned by the server for this search. Note that the client
 may request that the server retransmit entries which it has already sent,
 by setting a value of startAtEntry smaller than the thisEntryNumber of

 the last entry which the server has transmitted.

 The server will respond to the ResumeRequest with either a ResumeError,
 or with a series of SearchResultEntry responses. The ResumeError is
 only returned if the server detected a problem with the ResumeRequest,
 such as an invalid searchRequestID. The SearchResultEntry responses
 have the MessageID of the ResumeRequest, not of the original
 SearchRequest.

 ResumeError ::= [APPLICATION 21] LDAPResult

 An example of using Resume is as follows:

 CLIENT SERVER

 0,BindRequest
 -->
 0,BindResponse
 <--

 1,SearchRequest (pageSizeLimit=2)
 -->
 (search matches 5 entries)
 1,SearchResultEntry (0 of 5)
 <--
 1,SearchResultEntry (1 of 5)
 <--
 1,SearchResultDone
 <--

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996
 2,ResumeRequest (search id 1, start at 2, retrieve 3)
 -->
 2,SearchResultEntry (2 of 5)
 <--
 2,SearchResultEntry (3 of 5)
 <--
 2,SearchResultEntry (4 of 5)
 <--

 3,AbandonRequest (id 1)
 -->
 (search cache cleared)

4.6. Modify Operation

 The Modify Operation allows a client to request that a modification
 of the DIB be performed on its behalf by a server. The Modify
 Request is defined as follows:

 ModifyRequest ::= [APPLICATION 6] SEQUENCE {
 object LDAPDN,
 modification SEQUENCE SIZE (1..maxInt) OF SEQUENCE {
 operation ENUMERATED {
 add (0),
 delete (1),
 replace (2) },
 modification AttributeTypeAndValues } }

 AttributeTypeAndValues ::= SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 Parameters of the Modify Request are:

 - object: The object to be modified. The value of this field should
 name the object to be modified. The server will not perform any
 alias dereferencing in determining the object to be modified.

 - A list of modifications to be performed on the entry to be modified.
 The entire list of entry modifications should be performed
 in the order they are listed, as a single atomic operation. While
 individual modifications may violate the directory schema, the
 resulting entry after the entire list of modifications is performed
 must conform to the requirements of the directory schema. The
 values that may be taken on by the 'operation' field in each
 modification construct have the following semantics respectively:

 add: add values listed to the given attribute, creating
 the attribute if necessary;

 delete: delete values listed from the given attribute,
 removing the entire attribute if no values are listed, or
 if all current values of the attribute are listed for
 deletion;

 replace: replace existing values of the given attribute
 with the new values listed, creating the attribute if
 necessary. A replace with no value should delete the entire
 attribute.

 The result of the modify attempted by the server upon receipt of a
 Modify Request is returned in a Modify Response, defined as follows:

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 ModifyResponse ::= [APPLICATION 7] LDAPResult

 Upon receipt of a Modify Request, a server will perform the necessary
 modifications to the DIB.

 The server will return to the client a single Modify Response
 indicating either the successful completion of the DIB modification,
 or the reason that the modification failed. Note that due to the
 requirement for atomicity in applying the list of modifications in
 the Modify Request, the client may expect that no modifications of
 the DIB have been performed if the Modify Response received indicates
 any sort of error, and that all requested modifications have been
 performed if the Modify Response indicates successful completion of
 the Modify Operation.

4.7. Add Operation

 The Add Operation allows a client to request the addition of an entry
 into the directory. The Add Request is defined as follows:

 AddRequest ::= [APPLICATION 8] SEQUENCE {
 entry LDAPDN,
 attributes AttributeList,
 targetSystem [0] LDAPString OPTIONAL }

 AttributeList ::= SEQUENCE SIZE (1..maxInt) OF SEQUENCE {
 type AttributeDescription,
 vals SET SIZE (1..maxInt) OF AttributeValue }

 Parameters of the Add Request are:

 - entry: the Distinguished Name of the entry to be added. Note that
 all components of the name except for the last RDN component must
 exist for the add to succeed. Note also that the server will not
 dereference any aliases in locating the entry to be added, and that
 there are never any entries subordinate to an alias entry.

 - attributes: the list of attributes that make up the content of the
 entry being added.

 - targetSystem: if present, the string representation of an
 AccessPoint93, identifying the server which should hold the target
 entry. If the server does not support the targetSystem extension
 it should return the error unavailableCriticalExtension.

 The result of the add attempted by the server upon receipt of a Add
 Request is returned in the Add Response, defined as follows:

 AddResponse ::= [APPLICATION 9] LDAPResult

 Upon receipt of an Add Request, a server will attempt to perform the
 add requested. The result of the add attempt will be returned to the
 client in the Add Response.

4.8. Delete Operation

 The Delete Operation allows a client to request the removal of an

 entry from the directory. The Delete Request is defined as follows:

 DelRequest ::= [APPLICATION 10] LDAPDN

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 The Delete Request consists of the Distinguished Name of the
 entry to be deleted. Note that the server will not dereference aliases
 while resolving the name of the target entry to be removed.

 The result of the delete attempted by the server upon receipt of a
 Delete Request is returned in the Delete Response, defined as follows:

 DelResponse ::= [APPLICATION 11] LDAPResult

 Upon receipt of a Delete Request, a server will attempt to perform
 the entry removal requested. The result of the delete attempt will be
 returned to the client in the Delete Response. Note that only leaf
 objects may be deleted with this operation.

4.9. Modify DN Operation

 The Modify DN Operation allows a client to change the last component
 of the name of an entry in the directory, or to move a subtree of
 entries to a new location in the directory. The Modify DN Request is
 defined as follows:

 ModifyDNRequest ::= [APPLICATION 12] SEQUENCE {
 entry LDAPDN,
 newrdn RelativeLDAPDN,
 deleteoldrdn BOOLEAN,
 newSuperior [0] LDAPDN OPTIONAL }

 Parameters of the Modify DN Request are:

 - entry: the name of the entry to be changed.

 - newrdn: the RDN that will form the last component of the new name.

 - deleteoldrdn: a boolean parameter that controls whether the old RDN
 attribute values should be retained as attributes of the entry or
 deleted from the entry.

 - newSuperior: if present, this is the name of another entry which
 should be the superior of the subtree in the entry field.

 The result of the name change attempted by the server upon receipt of
 a Modify DN Request is returned in the Modify DN Response, defined
 as follows:

 ModifyDNResponse ::= [APPLICATION 13] LDAPResult

 Upon receipt of a Modify RDN Request, a server will attempt to
 perform the name change. The result of the name change attempt will
 be returned to the client in the Modify DN Response. The attributes
 that make up the old RDN are deleted from the entry, or kept,
 depending on the setting of the deleteoldrdn parameter.

4.10. Compare Operation

 The Compare Operation allows a client to compare an assertion
 provided with an entry in the directory. The Compare Request is
 defined as follows:

 CompareRequest ::= [APPLICATION 14] SEQUENCE {
 entry LDAPDN,
 ava AttributeValueAssertion,
 dontUseCopy [1] BOOLEAN DEFAULT FALSE }

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 Parameters of the Compare Request are:

 - entry: the name of the entry to be compared with.

 - ava: the assertion with which an attribute in the entry is to be
 compared.

 - dontUseCopy: if present and set to TRUE, only the server which holds
 the master copy of the entry is permitted to return the compareTrue
 or compareFalse results.

 The result of the compare attempted by the server upon receipt of a
 Compare Request is returned in the Compare Response, defined as
 follows:

 CompareResponse ::= [APPLICATION 15] LDAPResult

 Upon receipt of a Compare Request, a server will attempt to perform
 the requested comparison. The result of the comparison will be
 returned to the client in the Compare Response. Note that errors and
 the result of comparison are all returned in the same construct.

 Note that some directory systems may establish access controls which
 permit the values of certain attributes (such as userPassword) to be
 compared but not read.

4.11. Abandon Operation

 The function of the Abandon Operation is to allow a client to request
 that the server abandon an outstanding operation. The Abandon
 Request is defined as follows:

 AbandonRequest ::= [APPLICATION 16] MessageID

 The MessageID must be that of a Search, Resume or Compare operation
 which was requested earlier during this association. Other types of
 operations cannot be abandoned.

 There is no response defined in the Abandon Operation. Upon
 transmission of an Abandon Operation, a client may expect that the
 operation identified by the Message ID in the Abandon Request has
 been abandoned. In the event that a server receives an Abandon
 Request on a Search or Resume Operation in the midst of transmitting
 responses to the search, that server should cease transmitting entry
 responses to the abandoned request immediately.

 If the MessageID is for a Search operation in which pageSizeLimit was
 set, the abandon will clear the results from the server's cache.
 Abandoning a Resume operation does not clear the cache.

4.11 Extended Operation

 It may be desirable in some communities to define additional operations
 for services not available in this protocol, for instance digitally
 signed operations and results. Thus an extension mechanism

 The extended operation allows clients to make requests and receive
 responses with bilaterally-defined syntaxes and semantics.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 ExtendedRequest ::= [APPLICATION 23] SEQUENCE {
 requestName [0] LDAPOID,
 requestValue [1] OCTET STRING }

 The requestName is a dotted-decimal representation of the
 OBJECT IDENTIFIER corresponding to the request.
 The requestValue is information in a form defined by that request,
 encapsulated inside an OCTET STRING.

 The server will respond to this with an LDAPMessage containing the
 ExtendedResponse.

 ExtendedResponse ::= [APPLICATION 24] SEQUENCE {
 responseName [0] LDAPOID OPTIONAL,
 response [1] OCTET STRING OPTIONAL,
 standardResponse [2] LDAPResult }

 If the server does not recognize the operation name, it should return
 only the standardResponse field, containing the protocolError result
 code.

5. Protocol Element Encodings and Transfer

 For compatibility with the existing LDAP v2 and CLDAP protocols, four
 underlying services are defined here. However an LDAP server need not
 implement all of them.

5.1. Mapping Onto BER-based Transport Services

 This protocol is designed to run over connection-oriented, reliable
 transports, with all 8 bits in an octet being significant in the data
 stream.

 The protocol elements of LDAP are encoded for exchange using the
 Basic Encoding Rules (BER) [11] of ASN.1 [3]. However, due to the
 high overhead involved in using certain elements of the BER, the
 following additional restrictions are placed on BER-encodings of LDAP
 protocol elements:

 (1) Only the definite form of length encoding will be used.

 (2) BIT STRINGs and OCTET STRINGs will be encoded in the primitive form
 only.

 (3) If the value of a BOOLEAN type is true, the encoding should have
 its contents octets set to hex "FF".

 (4) If a value of a type is its default value, it should be absent.
 Only some BOOLEAN and ENUMERATED types have default values in this
 protocol definition.

 If an implementation supports the protected or strong authentication
 elements then the following additional restrictions apply:

 (5) UTC Times in the protocol itself should be encoded with the "Z"
 suffix, not as a local time. (This requirement does not apply to
 times in attribute values).

 (6) Unused bits in the final octet of the encoding of a BIT STRING
 value, if there are any, should always be set to zero.

 These restrictions do not apply to ASN.1 types encapsulated inside of
 OCTET STRINGs, such as attribute values.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

5.1.1. Transmission Control Protocol (TCP)

 The LDAPMessage PDUs are mapped directly onto the TCP bytestream.
 Server implementations running over the TCP should provide a protocol
 listener on port 389.

5.1.2. Connection Oriented Transport Service (COTS)

 The connection is established. No special use of T-Connect is made.

 Each LDAPMessage PDU is mapped directly onto T-Data.

5.1.3. User Datagram Protocol (UDP)

 The LDAPMessage PDUs are mapped directly onto UDP datagrams. Only
 one request may be sent in a single datagram. Only one response may
 be sent in a single datagram. Server implementations running over
 the UDP should provide a protocol listener on port 389.

 The only operations which the client may request are searchRequest and
 abandonRequest. The server may only respond with the searchResultFull.

5.1.4. Secure Socket Layer over TCP (SSL)

 After establishing the SSL connection over TCP, the LDAPMessage PDUs
 are mapped directly onto the bytestream. Server implementations
 running over SSL/TCP should provide a protocol listener on port TBD.

6. Implementation Guidelines

6.1. Server Implementations

 The server should be capable of recognizing all the mandatory attribute
 type names and implement the syntaxes specified in [5]. Servers may also
 recognize additional attribute type names.

6.2. Client Implementations

 For simple lookup applications using the connectionless transport
 protocol UDP, use of a retry algorithm with multiple servers similar
 to that commonly used in DNS stub resolver implementations is
 recommended. The location of a CLDAP server or servers may be better
 specified using IP addresses (simple or broadcast) rather than names
 that must first be looked up in another directory such as DNS.

7. Security Considerations

 When used with a connection-oriented transport, this version of the
 protocol provides facilities for the LDAP v2 authentication mechanism:
 simple authentication using a cleartext password. It also provides for
 two other authentication mechanisms as described in X.511: transfer of a
 hash of the client's password, and strong authentication based on the
 private key of the client. It is also permitted that the server can
 return its credentials to the client.

 This document also defines a mapping of LDAP over the Secure Sockets
 Layer (SSL), which can provide strong authentication, integrity and
 privacy of the connection.

 Use of cleartext password is strongly discouraged where the underlying
 transport service cannot guarantee confidentiality.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 When used with the connectionless transport, no security services are
 available. There has been some discussion about the desirability of
 authentication with connectionless LDAP requests. This might take the
 form of a clear text password (which would go against the current IAB
 drive to remove such things from protocols) or some arbitrary
 credentials. It is felt that, in general, authentication would incur
 sufficient overhead to negate the advantages of the connectionless
 basis of CLDAP. If an application requires authenticated access to the
 directory then CLDAP is not an appropriate protocol.

8. Acknowledgements

 This document is an update to RFC 1777, by Wengyik Yeong, Tim
 Howes, and Steve Kille. It also includes material from RFC 1798, by
 Alan Young. Design ideas included in this document are based on those
 discussed in ASID and other IETF Working Groups.

9. Bibliography

 [1] The Directory: Overview of Concepts, Models and Service. ITU-T
 Recommendation X.500, 1993.

 [2] W. Yeong, T. Howes, S. Kille, "Lightweight Directory Access
 Protocol", RFC 1777, March 1995.

 [3] Abstract Syntax Notation One (ASN.1) - Specification of Basic
 Notation. ITU-T Recommendation X.680, 1994.

 [4] S. Kille, "A String Representation of Distinguished Names", RFC
1779, March 1995.

 [5] M. Wahl, A. Coulbeck, T. Howes, S. Kille, W. Yeong, C. Robbins,
 "Lightweight X.500 Directory Access Protocol Standard and Pilot
 Attribute Definitions", <draft-ietf-asid-ldapv3-attributes-03.txt>,
 May 1996.

 [6] The Directory: Models. ITU-T Recommendation X.501, 1993.

 [7] The Directory: Selected Attribute Types. ITU-T Recommendation
 X.520, 1993.

 [9] T. Howes, M. Smith, An LDAP URL Format, December 1995,
 <draft-ietf-asid-ldap-format-03.txt>

 [10] The Directory: Procedures for Distributed Operation. ITU-T
 Recommendation X.518, 1993.

 [11] Specification of ASN.1 encoding rules: Basic, Canonical, and
 Distinguished Encoding Rules. ITU-T Recommendation X.690, 1994.

https://datatracker.ietf.org/doc/html/rfc1777
https://datatracker.ietf.org/doc/html/rfc1798
https://datatracker.ietf.org/doc/html/rfc1777
https://datatracker.ietf.org/doc/html/rfc1779
https://datatracker.ietf.org/doc/html/rfc1779
https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldapv3-attributes-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldap-format-03.txt

 [12] The Directory: Authentication Framework. ITU-T Recommendation
 X.509, 1993.

 [13] The Directory: Abstract Service Definition. ITU-T Recommendation
 X.511, 1993.

 [14] T. Berners-Lee, L. Masinter, M. McCahill, "Uniform Resource
 Locators (URL)", RFC 1738, Dec. 1994.

 [15] Universal Multiple-Octet Coded Character Set (UCS) - Architecture
 and Basic Multilingual Plane, ISO/IEC 10646-1 : 1993.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 [16] M. Davis, UTF-8, (WG2 N1036) DAM for ISO/IEC 10646-1.

10. Authors' Address

 Mark Wahl
 ISODE Consortium Inc.
 3925 West Braker Lane, Suite 333
 Austin, TX 78759
 USA

 Phone: +1 512-305-0280
 EMail: M.Wahl@isode.com

 Tim Howes
 Netscape Communications Corp.
 685 Middlefield
 Mountain View, CA 94043
 USA

 Phone: +1 415 254-1900
 EMail: howes@netscape.com

 Steve Kille
 ISODE Consortium
 The Dome, The Square
 Richmond
 TW9 1DT
 UK

 Phone: +44-181-332-9091
 EMail: S.Kille@isode.com

Appendix A - Complete ASN.1 Definition

 In the IMPORTS statement the "AF" module refers to X.509(1993),
 and the "DAS" module to X.511(1993).

https://datatracker.ietf.org/doc/html/rfc1738

 Lightweight-Directory-Access-Protocol-V3 DEFINITIONS
 IMPLICIT TAGS ::=

 BEGIN

 IMPORTS CertificationPath FROM AF
 Token FROM DAS;

 --- to be provided ---

 END

Appendix B - Imported ASN.1 Definitions

 Note that the types described here are distinct from those defined in
 the body of this document.

B.1. Types from X.509(1993) "Authentication Framework"

 The type "Certificate" is defined in X.509(1993). It it strongly
 recommended that clients and server implementations which support
 certificates implement the draft addendums to X.509 which provide
 certificate extensions.

INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY OPTIONAL }

 CertificatePair ::= SEQUENCE {
 forward [0] Certificate OPTIONAL,
 reverse [1] Certificate OPTIONAL
 -- at least one of the pair shall be present -- }

 CertificationPath ::= SEQUENCE {
 userCertificate Certificate,
 theCACertificates SEQUENCE OF CertificatePair
 OPTIONAL }

B.2. Types from X.511(1993) "Directory Abstract Syntax"

 The type "DistinguishedName" is defined in X.501(1993). It is the
 ASN.1 encoding, not a string encoding.

 Token ::= SIGNED { SEQUENCE {
 algorithm [0] AlgorithmIdentifier,
 name [1] DistinguishedName,
 time [2] UTCTime,
 random [3] BIT STRING } }

<draft-ietf-asid-ldapv3-protocol-01.txt> Expires: December 5, 1996
INTERNET-DRAFT Lightweight Directory Access Protocol (v3) June 1996

https://datatracker.ietf.org/doc/html/draft-ietf-asid-ldapv3-protocol-01.txt

