
ASID Working Group Patrik Faltstrom
Internet-Draft Tele2
Expires: September 11, 1998 Leslie L. Daigle
draft-ietf-asid-whoispp-02.txt Bunyip Information Systems Inc.
Replaces: RFC-1835 Sima Newell
 Bunyip Information Systems Inc.
 March 1998

Architecture of the Whois++ service

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other docu-
 ments at any time. It is inappropriate to use Internet- Drafts as
 reference material or to cite them other than as ``work in
 progress.''

 To learn the current status of any Internet-Draft, please check
 the ``1id-abstracts.txt'' listing contained in the Internet-
 Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net
 (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East
 Coast), or ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited.

Abstract

 This document describes Whois++, an extension to the trivial WHOIS
 service described in RFC 954 to permit WHOIS-like servers to make
 available more structured information to the Internet. We describe
 an extension to the simple WHOIS data model and query protocol and a
 companion extensible, distributed indexing service. A number of
 options have also been added such as the use of multiple languages
 and character sets, more advanced search expressions, structured data
 and a number of other useful features. An optional authentication
 mechanism for protecting all or part of the associated Whois++
 information database from unauthorized access is also described.

Table of Contents

 Part I - Whois++ Overview 3
1.1. Purpose and Motivation 3
1.2. Basic Information Model 4
1.2.1. Changes to the current WHOIS Model 5
1.2.2. Registering Whois++ servers 6
1.2.3. The Whois++ Search Selection Mechanism 6

https://datatracker.ietf.org/doc/html/draft-ietf-asid-whoispp-02.txt
https://datatracker.ietf.org/doc/html/rfc1835
https://datatracker.ietf.org/doc/html/rfc954

1.2.4. The Whois++ Architecture 7
1.3. Indexing in Whois++ 7

[Faltstrom et al] [Page 1]

 Architecture of the Whois++ service March 1998

1.4. Getting Help .. 8
1.4.1. Minimum HELP Required 8
1.5. Options and Constraints 9
1.6. Formatting Responses 9
1.7. Reporting Warnings and Errors 10
1.8. Privacy and Security Issues 10

 Part II - Whois++ Implementation 10
2.1. The Whois++ interaction model 10
2.2. The Whois++ Command set 11
2.2.1. System Commands 11
2.2.1.1. The COMMANDS command 12
2.2.1.2. The CONSTRAINTS command 13
2.2.1.3. The DESCRIBE command 13
2.2.1.4. The HELP command 13
2.2.1.5. The LIST command 13
2.2.1.6. The POLLED-BY command 13
2.2.1.7. The POLLED-FOR command 14
2.2.1.8. The SHOW command 14
2.2.1.9. The VERSION command 14
2.2.2. The Search Command 14
2.2.2.1. Format of a Search Term 15
2.2.2.2. Format of a Search String 16
2.3. Whois++ Constraints 16
2.3.1. Required Constraints 17
2.3.2. Optional CONSTRAINTS 17
2.3.2.1. The SEARCH Constraint 18
2.3.2.2. The FORMAT Constraint 18
2.3.2.3. The MAXFULL Constraint 18
2.3.2.4. The MAXHITS Constraint 19
2.3.2.5. The CASE Constraint 19
2.3.2.6. The AUTHENTICATE Constraint 19
2.3.2.7. The LANGUAGE Constraint 19
2.3.2.8. The INCHARSET Constraint 20
2.3.2.9. The INCHARSET Constraint 20
2.3.2.10. The IGNORE Constraint 20
2.3.2.11. The INCLUDE Constraint 20
2.3.2.12. The HOLD Constraint 20
2.4. Server Response Modes 21
2.4.1. Default Responses 21
2.4.2. Format of Responses 22
2.4.3. Syntax of a Formatted Response 22
2.4.3.1. A FULL format response 23
2.4.3.2. ABRIDGED Format Response 23
2.4.3.3. HANDLE Format Response 23
2.4.3.4. SUMMARY Format Response 23
2.4.3.5. SERVER-TO-ASK Response 24
2.4.4. System Generated Messages 24
2.5. Compatibility with Older WHOIS Servers 25

3. Miscellaneous ... 25
3.1. Acknowledgements 25
3.2. References .. 26
3.3. Authors' Addresses 26
Appendix A - Some Sample Queries 27
Appendix B - Some sample responses 28

[Faltstrom et al] [Page 2]

 Architecture of the Whois++ service March 1998

Appendix C - Sample responses to system commands 29
Appendix D - Sample Whois++ session 31
Appendix E - System messages 32
Appendix F - The Whois++ Input Syntax 34
Appendix G - The Whois++ Response Syntax 36
Appendix H - Description of Regular expressions 39

1. Part I - Whois++ Overview

1.1. Purpose and Motivation

 The current NIC WHOIS service [HARR85] is used to provide a very
 limited directory service, serving information about a small number
 of Internet users registered with the DDN NIC. Over time the basic
 service has been expanded to serve additional information and similar
 services have also been set up on other hosts. Unfortunately, these
 additions and extensions have been done in an ad hoc and
 uncoordinated manner.

 The basic WHOIS information model represents each individual record
 as a Rolodex-like collection of text. Each record has a unique
 identifier (or handle), but otherwise is assumed to have little
 structure. The current service allows users to issue searches for
 individual strings within individual records, as well as searches for
 individual record handles using a very simple query-response
 protocol.

 Despite its utility, the current NIC WHOIS service cannot function as
 a general White Pages service for the entire Internet. Given the
 inability of a single server to offer guaranteed response or
 reliability, the huge volume of traffic that a full scale directory
 service will generate and the potentially huge number of users of
 such a service, such a trivial architecture is obviously unsuitable
 for the current Internet's needs for information services.

 This document describes the architecture and protocol for Whois++, a
 simple, distributed and extensible information lookup service based
 upon a small set of extensions to the original WHOIS information
 model. These extensions allow the new service to address the
 community's needs for a simple directory service, yet the extensible
 architecture is expected to also allow it to find applications in a
 number of other information service areas.

 Added features include an extension to the trivial WHOIS data model
 and query protocol and a companion extensible, distributed indexing
 service. A number of other options have also been added, like boolean
 operators, more powerful search constraints and search methods. In
 addition, the data has been structured to make both the client and

 server elements of the dialogue more stringent and easily
 parsed. An optional authentication mechanism for protecting all or
 parts of the associated Whois++ information database from
 unauthorized access is also briefly described.

 The architecture of Whois++ allows distributed maintenance of

[Faltstrom et al] [Page 3]

 Architecture of the Whois++ service March 1998

 the directory contents and the use of the Whois++ indexing service
 for locating additional Whois++ servers. Although a general overview
 of this service is included for completeness, the indexing extensions
 are described described separately in [WINDX].

 It should be noted that Whois++ is not backward compatible with
 WHOIS.

1.2. The Whois++ Information Model

 The Whois++ service is based on the use of information templates,
 which consist of ordered sets of data elements (or attribute-value
 pairs). It underlying recommendation is to use standardized
 templates where available.

 It is intended that adding structured template types to a server
 and subsequently searching through information stored in templates
 of a specified type should be simple tasks. The creation and use of
 customized templates should also be possible with little effort,
 although their use is discouraged where appropriate standardized
 templates exist.

 Registration and schema definitions are done on an attribute by
 attribute basis, so a client that receives a record parses the
 record structure one attribute at a time. Because of this system,
 the client does not need to know the structure of the whole record,
 only individual attributes. If the client sees an unknown
 attribute, it will skip that one and continue parsing the
 subsequent attributes. A server that defines schemas can therefore
 add its own unregistered attributes to a well-defined template type.

 We also offer methods to allow the user to constrain searches to
 desired attributes or template types, in addition to the existing
 commands for specifying handles or simple strings.

 It is expected that the minimalist approach we have taken will find
 applications where the high cost of configuring and operating
 traditional White Pages services can not currently be justified.

 Note also that the architecture makes no assumptions about the search
 and retrieval mechanisms used within individual servers. Operators
 are free to use dedicated database formats, fast indexing software or
 even provide gateways to other directory services to store and
 retrieve information. The Whois++ server simply functions as a
 known front end, offering a simple data model and communicating
 through a well known port and query protocol. The format of both
 queries and replies has been structured to allow the use of client
 software for generating searches and displaying the results. At the
 same time, some effort has been made to keep responses legible (to

 some degree) by human users, both to ensure low entry cost and to
 ease debugging.

 The actual implemention details of an individual Whois++ search
 engine are left to the imagination of the implementor. It is hoped

[Faltstrom et al] [Page 4]

 Architecture of the Whois++ service March 1998

 that the simple, extensible approach taken will encourage
 experimentation and the development of improved search engines.

1.2.1. Changes to the current WHOIS Model

 The current WHOIS service is based upon an extremely simple data
 model. The NIC WHOIS database consists of a series of individual
 records, each of which is identified by a single unique identifer
 (the "handle"). Each record contains one or more lines of
 information. Currently, there is no structure or implicit ordering of
 this information, although each record is implicitly concerned
 with information about a single user or service.

 We have implemented two basic changes to this model. First, we have
 structured the information within the database as collections of data
 elements that are simple attribute/value pairs. Each individual
 record contains a specified ordered set of these data elements.

 Second, we have introduced the classing of database records into
 template types. In effect, each record is based upon one template
 of a specified set; each template contains a finite and specified
 number of data elements. This classing allows users to limit
 searches to specific collections of information, such as information
 about users, services, abstracts of papers, or descriptions of
 software.

 Since the data typing is done at the attribute level, not the
 template level, it is also possible to add non-standard attributes to
 a well-known template type.

 As an addition to the model, we require that each individual Whois++
 database on the Internet be assigned a unique handle, analogous to
 the handle associated with each database record.

 The Whois++ database structure is shown in Fig. 1.

 __
| |
| + Single unique Whois++ server handle |
| |
| _______ _______ _______ |
handle3	handle6	handle9	
_______	_______	_______				
handle2	handle5	handle8	
_______	_______	_______				
handle1	handle4	handle7	
	
------- ------- -------						
Template Template Template						

| Type 1 Type 2 Type 3 |
| |
| |
| |
| |

[Faltstrom et al] [Page 5]

 Architecture of the Whois++ service March 1998

| Fig.1 - Structure of a Whois++ database. |
| |
| Notes: - Entire database is identified by a single unique Whois++ |
| serverhandle. |
| - Each record has a single unique handle. |
| - Each record has a specific set of attributes, which is |
| determined by the Template Type used. |
| - Each value associated with an attribute is a text string |
| of an arbitrary length. |
|__|

1.2.2. Registering Whois++ servers

 We propose that individual database handles be registered through the
 Internet Assigned Numbers Authority (the IANA), ensuring their
 uniqueness. This will allow us to specify each Whois++ entry on the
 Internet as a unique pair consisting of a server handle and a record
 handle.

 A unique registered handle is preferable to using the host's IP
 address, since it is conceivable that the Whois++ server for a
 particular domain may move over time. If we preserve the unique
 Whois++ handle in such cases we have the option of using it for
 resource discovery and networked information retrieval (see [IIIR]
 for a discussion of resource and discovery and support issues).

 Uniqueness of server handles can be guaranteed by registering them
 with IANA.

 We believe that organizing information around a series of such
 templates will make it easier for administrators to gather and
 maintain this information and thus encourage them to make such
 information available. At the same time, as users become more
 familiar with the data elements available within specific templates
 they will be able to specify their searches better, and the service
 will become more useful.

1.2.3. The Whois++ Search Selection Mechanism

 The WHOIS++ search mechanism is intended to be extremely simple. A
 search command comprises one required element and one optional
 element. The first (required) element is a set of one or more search
 terms. The second (optional) element is a colon followed by set of
 one or more global constraints, which modify or control the search.

 Within each search term, the user may specify the template type,

 attribute, value or handle that any record returned must satisfy.
 Each search term can have an optional set of local constraints that
 apply only to that term.

 A Whois++ database may be seen as a single collection of

[Faltstrom et al] [Page 6]

 Architecture of the Whois++ service March 1998

 typed records. Each search term specifies a further constraint that
 the selected set of output records must satisfy. Each term may thus
 be thought of as performing a subtractive selection, in the sense
 that any record that does not fulfill the term is discarded from the
 result set. Result sets can be further specified by supplying
 multiple search terms, related by logical connectives (AND, OR, NOT).

1.2.4. The Whois++ Architecture

 The Whois++ directory service has an architecture which is separated
 into two components: the base level server, which is described in
 this paper, and an indexing server (described in [WINDX]). A single
 physical server can act as both a base level server and an indexing
 server.

 A base level server is one which contains only filled templates. An
 indexing server is one which contains forward knowledge (q.v.) and
 pointers to other indexing servers or base level servers.

1.3. Indexing in Whois++

 Indexing in Whois++ is used to tie together many base level servers
 and index servers into a unified directory service. For more
 detailed information on this subject, see [WINDX].

 Each base level server and index server that is to participate
 in the unified directory service must generate forward knowledge
 for the entries it contains. One type of forward knowledge is the
 "centroid".

 An example of a centroid is as follows. Consider a Whois++ server
 that contains exactly three records:

 Record 1 Record 2
 Template: Person Template: Person
 First-Name: John First-Name: Joe
 Last-Name: Smith Last-Name: Smith
 Favourite-Drink: Labatt Beer Favourite-Drink: Molson Beer

 Record 3
 Template: Domain
 Domain-Name: foo.edu
 Contact-Name: Mike Foobar

 the centroid for this server would be

 Template: Person
 First-Name: Joe
 John

 Last-Name: Smith
 Favourite-Drink:Beer
 Labatt
 Molson

[Faltstrom et al] [Page 7]

 Architecture of the Whois++ service March 1998

 Template: Domain
 Domain-Name: foo.edu
 Contact-Name: Mike
 Foobar

 An index server would then collect this centroid for this server as
 forward knowledge.

 Index servers can collect forward knowledge for any servers it
 polls. In effect, all of the servers that the index server knows
 about can be searched with a single query to the index server; the
 index server holds the forward knowledge along with pointers to the
 servers it indexes, and can refer the query to servers which might
 hold information which satisfies the query.

 Implementors of this protocol are strongly encouraged to incorporate
 centroid generation abilities into their servers.

 Whois++ uses the Common Indexing Protocol, which was originally
 described in [WINDX] as a centroid-like object to provide index
 information (forward knowledge) about server contents. This work
 is being extended in the IETF's FIND Working-Group.

 ---- ----
top level | | | |
whois index | | | |
servers ---- ----
 / ________ /
 / \ /
 ____ ____
first level | | | |
whois index | | | |
servers ---- ----
 / / \
 / / \
 ____ ____ ____
individual | | | | | |
whois servers | | | | | |
 ---- ---- ----

 Fig. 2 - Indexing system architecture.

1.4. Getting Help

 Another extension to the basic WHOIS service is the requirement that
 all servers support at least a minimal set of help commands, allowing
 users to find out information about both the individual server and
 the entire Whois++ service itself. This is done in the context of the

[Faltstrom et al] [Page 8]

 Architecture of the Whois++ service March 1998

 new extended information model by defining two specific template
 formats and requiring each server to offer at least one example of
 each record using these formats. The operator of each Whois++ service
 is therefor expected to have, as a minimum, a single example of
 SERVICES and HELP records, which can be accessed through appropriate
 commands.

1.4.1. Minimum HELP Required

 Executing the command:

 DESCRIBE

 gives a brief information about the Whois++ server.

 Executing the command:

 HELP

 gives a brief description of the Whois++ service itself.

 The text of both required helped records should contain pointers to
 additional help subjects that are available.

 Executing the command:

 HELP <searchstring>

 gives information on <searchstring>.

1.5. Options and Constraints

 The Whois++ service is based upon a minimal core set of commands and
 controlling constraints. A small set of additional optional commands
 and constraints can be supported by a server. These allow users to
 perform such tasks as provide security options, modify the
 information contents of a server or add multilingual support. The
 required set of Whois++ commands are listed in section 2.2.
 Whois++ constraints are described in section 2.3. Optional
 constraints are described in section 2.3.2.

1.6. Formatting Responses

 The output returned by a Whois++ server is structured to allow
 machine parsing and automated handling. Of particular interest is the
 ability to return summary information about a search instead of
 having to return the entire results.

 All output of searches will be returned in one of five output
 formats, which will be one of FULL, ABRIDGED, HANDLE, SUMMARY or
 SERVER-TO-ASK. Note that a conforming server is only required to
 support the FULL format.

[Faltstrom et al] [Page 9]

 Architecture of the Whois++ service March 1998

 When available, SERVER-TO-ASK format is used to indicate that a
 search cannot be completed but that one or more alternative Whois++
 servers may be able to perform the search.

 Details of each output format are specified in section 2.4.

1.7. Reporting Warnings and Errors

 The formatted response of Whois++ commands allows the encoding of
 warning or error messages to simplify parsing and machine handling.
 The syntax of output formats are described in detail in section 2.4,
 and details of Whois++ warnings and error conditions are given in

Appendix E.

 All system messages are numerical, but can be tagged with text. It is
 the client's decision if the text is presented to the user.

1.8. Privacy and Security Issues

 The basic Whois++ service was conceived as a simple, unauthenticated
 information lookup service, but there are occasions when
 authentication mechanisms are required. To handle such cases, one
 optional mechanism is provided for authenticating each Whois++
 transaction. This is the ability to name a (mutually-recognized)
 authentication scheme in the optional AUTHENTICATE global
 constraint.

 Note that the Whois++ authentication mechanism does not dictate the
 actual authentication scheme used, it merely provides a framework for
 indicating that a particular transaction is to be authenticated, and
 the appropriate scheme to use. This mechanism is extensible and
 individual implementors are free to add additional schemes.

 Sophisticated security and authentication schemes may be proposed to
 address specific needs. For example, the Simple Authentication and
 Security Layer (SASL) work proposed by John Myers (particularly for
 POP and IMAP) may be applicable here.

2. Part II - Whois++ Implementation

2.1. The Whois++ interaction model

 The Whois++ service has an assigned port number -- number 63.
 However, there is nothing inherent the Whois++ protocol or
 interaction model that prevents it from being used on any TCP
 connection on any port -- the specification of the connection is
 outside the scope of this protocol spec. Once a connection is
 established, the server issues a banner message, and listens for

 input. The command specified in this input is processed and the
 results returned including an ending system message. If the client
 does not specify the optional HOLD constraint, the connection is
 then terminated.

[Faltstrom et al] [Page 10]

 Architecture of the Whois++ service March 1998

 If the server supports the optional HOLD constraint, and this
 constraint is specified as part of any command, the server continues
 to listen on the connection for another (single) line of input.
 This cycle continues as long as the sender continues to append the
 required HOLD constraint to each subsequent command.

2.2. The Whois++ Command set

 The Whois++ command set consists of a core set of required systems
 commands, a single required search command and an set of optional
 system commands which support features that are not required by all
 servers. The set of required Whois++ system commands are listed in
 Table I. Valid search terms for the search command are described in
 Table II.

 Each Whois++ command also allows the use of one or more controlling
 constraints, which, when selected, are used to override defaults or
 otherwise modify the server's behavior. There is a core set of
 constraints that must be supported by all conforming servers:
 SEARCH (which controls the type of search performed), FORMAT (which
 determines the output format used) and MAXHITS (which determines the
 maximum number of matches that a search can return). These required
 constraints are summarized in Table III.

 An additional set of optional constraints are used to provide support
 for different character sets, provide data for the authentication
 scheme, and requesting multiple transactions during a single
 communications session. These optional constraints are listed in
 Table IV.

 It is possible, using the required COMMANDS and CONSTRAINTS system
 commands, to query any Whois++ server for its list of supported
 commands and constraints.

 Please note that the line terminator is defined as a carriage
 return and line feed (CR/LF) pair. Also, none of the commands or
 constraints supported by Whois++ are case sensitive. For example,
 the following are equivalent: HELP, Help, help, hElp.
 Capitalization of all letters (e.g. HELP) is used only to improve
 the legibility of this document. Finally, "attribute value" is
 defined as "the value associated with an attribute".

2.2.1. System Commands

 System commands are commands to the server for information or to
 control its operation. These include commands to list the template
 types available from individual servers, to obtain a single blank
 template of any available type, and commands to obtain the list of

 valid commands and constraints supported on a server.

 There are also commands to obtain the current version of the Whois++
 protocol supported, to access a simple help subsystem, to obtain a
 brief description of the service provided by the Whois++

[Faltstrom et al] [Page 11]

 Architecture of the Whois++ service March 1998

 server. The DESCRIBE command is intended, among other
 things, to support the automated registration of the service in
 yellow pages directory services. The required commands are listed
 in Table I.

--

Short Long Form Functionality
----- --------- -------------
 COMMANDS [':' HOLD] List Whois++ commands
 supported by this server

 CONSTRAINTS [':' HOLD] List valid constraints
 supported by this server

 DESCRIBE [':' HOLD] Describe this server,
 formating the response
 using a standard
 SERVICES template

 '?' HELP [<string> [':' (<othercnstrnts> / HOLD)
 0*(';' (<otherconstraints> / HOLD))]]
 Provide help specific to
 this Whois++ server, using
 a "Help" template

 LIST [':' (<othercnstrnts> / HOLD)
 0*(';' (<otherconstraints> / HOLD))]
 List templates supported
 by this server

 POLLED-BY [':' HOLD] List indexing servers
 that are known to poll
 this server

 POLLED-FOR [':' HOLD] List information about
 servers this server polls

 SHOW <string> [':' <cnstrnts>] Show contents of template
 specified in <string>

 VERSION [':' HOLD] Show the version of
 the protocol supported by
 this server

 Table I - Required Whois++ SYSTEM commands.

--

 Descriptions of each command follow. Examples of responses
 to each command are provided in Appendix C.

2.2.1.1. The COMMANDS command

[Faltstrom et al] [Page 12]

 Architecture of the Whois++ service March 1998

 The COMMANDS command returns a list of commands that the server
 supports. The response is formatted as a FULL response.

2.2.1.2. The CONSTRAINTS command

 The CONSTRAINTS command returns a list of both the constraints and
 their values that the server supports. The response is formatted as a
 FULL response, where every constraint is represented as a separate
 record. The template name for these records is CONSTRAINT. No
 attention is paid to handles. Each record has, as a minimum, the
 following two attributes:

 - "Constraint", whose value is the constraint name
 - "Default", which shows the default value for this constraint.

 If the client is permitted to change the value of the constraint,
 there is also:

 - "Range", which contains a list of values that this
 server supports, as a comma separated list, or, if the range
 is numerical, as a pair of numbers separated with a hyphen.

 Note that, irrespective of whether a session is continued (with the
 HOLD constraint) or not, constraints are set to the default value
 unless explicitly changed with a constraint in each query.

2.2.1.3. The DESCRIBE command

 The DESCRIBE command gives a brief description about the server in a
 "Services" template. The result is formatted as a FULL response with
 as a minimum one attribute:

 - "Text", which describes the service in a form legible by human
 users.

2.2.1.4. The HELP command

 The HELP command takes an optional argument which is the subject on
 which to get help. The answer is formatted as a FULL format response.

2.2.1.5. The LIST command

 The LIST command returns the name of the templates available on the
 server. The answer is formatted as a FULL format response.

2.2.1.6. The POLLED-BY command

 The POLLED-BY command returns a list of servers and the templates and
 attribute names that those servers polled as centroids from this

 server. The format is in FULL format with two attributes, "Template"
 and "Field", whose values are lists of the names of the polled
 templates and fields, respectively. An empty result means either
 that the server is not polled by anyone, or that it doesn't support
 indexing.

[Faltstrom et al] [Page 13]

 Architecture of the Whois++ service March 1998

2.2.1.7. The POLLED-FOR command

 The POLLED-FOR command returns a list of servers that this server has
 polled, and the template and attribute names for each of those. The
 answer is in FULL format with two attributes, Template and Field. An
 empty result means either that the server is not polling anyone, or
 that it doesn't support indexing.

2.2.1.8. The SHOW command

 The SHOW command takes a template name as argument and returns
 information about that template, formatted as a FULL response.
 The answer is formatted as a blank template with the requested name.

2.2.1.9. The VERSION command

 The output format is a FULL response containg a record with template
 name VERSION. The record must have attribute name "Version", whose
 value is "2.0" for this version of the protocol. The record may also
 have the additional fields "Program-Name" and "Program-Version" which
 gives information about the server implementation if the server so
 desires.

 If the server also supports the earlier version of the protocol,
 "1.0", two records are given back as a response to the VERSION
 command, one for each version supported.

2.2.2. The SEARCH Command

 A SEARCH command comprises one required element and one optional
 element. The first (required) element is a set of one or more search
 terms. The second (optional) element is a set of global constraints,
 which modify or control the search.

 Each attribute value in the Whois++ database is divided into one or
 more words separated by whitespace:

 whitespace = 1*(%d32 / %d09 / %d10 / %d13 / %d64)
 ; space tab LF CR @

 Each search term operates on every word in the attribute value.
 Two or more search terms have to be combined with boolean operators
 AND, OR or NOT. The operator AND has higher precedence than the
 operator OR, but this can be changed by the use of parentheses.

 Boolean operators function as follows for two search terms, A and
 B. Let A1 be the result set from the first search term and B1 be the
 result set from the second search. The operation A AND B returns the
 hits in the intersection of sets A1 and B1. The operation A OR B

 returns the hits in the union of the sets A1 and B1. The operation
 NOT A returns all possible results that are not in set A1. The
 behaviour of the boolean operators can be generalized to N search
 terms where N > 2. Note that NOT has a higher precedence than AND
 or OR, so NOT A AND B returns the hits in B that are not in A.

[Faltstrom et al] [Page 14]

 Architecture of the Whois++ service March 1998

 Search constraints that apply to all search terms are specified as
 global constraints. The search terms and the global constraints are
 separated with a colon (':'). Each additional global constraint is
 appended to the end of the search command, and a semicolon ';' is
 used as the delimiter between global constraints.

 If any of the search constraints can not be fulfilled, or if
 several of the specified constraints are mutually exclusive, the
 server ignores the constraints that can not be fulfilled and those
 that are mutually exclusive. The server performs the search using
 only the remaining constraints and returns the corresponding set of
 records.

 The set of required constraints are listed in Table III. The set
 of optional constraints are listed in Table IV.

 As an option, the server may accept specifications for attributes
 to be included or excluded from a reply. Thus, users could specify
 -only- those attributes to return, or specific attributes to filter
 out, thus creating custom views.

2.2.2.1. Format of a Search Term

 Each search term consists of one of the following:

 1) A search string

 <value>

 2) A search term specifier (as listed in Table II), followed by a
 '=', followed by a search string. This is noted as:

 <specifier> = <value>

 3) An attribute name, followed by '=', followed by
 a search string:

 <attribute_name> = <value>

 If no search term specifier is provided, then the search will be
 applied to attribute values only. This corresponds to an identifier
 of VALUE.

 When the user specifies the search term using the form:

 "<attribute_name> = <value>"

 this is considered to be an ATTRIBUTE-VALUE search.

 For discussion of the system reply format, and selecting the
 appropriate reply format, see section 2.4.

[Faltstrom et al] [Page 15]

 Architecture of the Whois++ service March 1998

 Valid specifiers:

 Name Functionality
 ---- -------------

 HANDLE Confine search to handles.
 VALUE Confine search to attribute
 values.

 Table II - Valid search command term specifiers.

2.2.2.2. Format of a Search String

 Special characters that need to be quoted are preceeded by a
 backslash, ''.

 Special characters are space ' ', tab, equal sign '=', comma ',',
 colon ':', backslash '', semicolon ';', asterisk '*', period '.',
 parenthesis '()', square brackets '[]', dollar sign '$' and
 circumflex '^'.

 If the search term is given in some other character set than ISO-
 8859-1, it must be specified by the constraint INCHARSET.

2.3. Whois++ Constraints

 Constraints are intended to be hints or recommendations to the server
 about how to process a command. They may also be used to override
 default behaviour, such as requesting that a server not drop the
 connection after performing a command.

 Thus, a user might specify a search constraint as "SEARCH=exact",
 which means that the search engine is to perform an exact match
 search. The user might also specify "LANGUAGE=Fr", which means that
 the server should (if possible) display the French versions of the
 attribute values, and if possible use French in fuzzy matches. The
 server should also issue system messages in French.

 In general, constraints take the form "<constraintname>=<value>",
 where <value> is one of a specified set of valid values. The notable
 exception is "HOLD", which takes no argument.

 The CONSTRAINTS system command is used to list the search constraints
 supported by an individual server.

 If a server cannot satisfy the specified constraint, the server
 should indicate this to the user through the use of system messages.
 In such cases, the search is still performed, with the the server
 ignoring unsupported constraints.

[Faltstrom et al] [Page 16]

 Architecture of the Whois++ service March 1998

2.3.1. Required Constraints

 The following CONSTRAINTS must be supported in all conforming Whois++
 servers.

 --

 Format

 SEARCH= exact / lstring

 FORMAT= full / abridged / handle / summary

 MAXHITS= 1-<max-allowed>

 Table III - Required Whois++ constraints.

 --

2.3.2. Optional CONSTRAINTS

 The following CONSTRAINTS and constraint values are not required of a
 conforming Whois++ server, but may be supported. If supported, their
 names and supported values must be returned in the response to the
 CONSTRAINTS command.

 Format

 SEARCH= regex / fuzzy / substring

 CASE= ignore / consider

 FORMAT= server-to-ask

 MAXFULL= 1-<max-allowed>

 AUTHENTICATE= data

 INCHARSET= us-ascii / iso-8859-* /
 UNICODE-1-1-UTF-8 / UNICODE-2-0-UTF-8 / UTF-8

 OUTCHARSET= us-ascii / iso-8859-* /
 UNICODE-1-1-UTF-8 / UNICODE-2-0-UTF-8 / UTF-8

 LANGUAGE= <As defined in RFC 1766 [ALVE95]>

https://datatracker.ietf.org/doc/html/rfc1766

 HOLD

 IGNORE= <attributelist>

[Faltstrom et al] [Page 17]

 Architecture of the Whois++ service March 1998

 INCLUDE= <attributelist>

 N.B.: "UTF-8" is as defined in [RFC2279]. This is the character set
 label that should be used for UTF encoded information; the
 labels "UNICODE-2-0-UTF-8" and "UNICODE-1-1-UTF-8" are retained
 primarily for compatibility with older Whois++ servers, and
 as outlined in [RFC2279].

 Table IV - Optional Whois++ constraints.

 --

2.3.2.1. The SEARCH Constraint

 The SEARCH constraint is used for specifying the method that is to be
 used for the search. The default method is "exact". Following is a
 definition of each search method.

 exact The search will succeed for a word that exactly
 matches the search string.

 substring The search will succeed for a word that matches
 a part of a word.

 regex The search will succeed for a word when a regular
 expression matches the searched data. Regular
 expression is built up by using constructions of
 '*', '.', '^', '$', and '[]'. For use of
 regular expressions see Appendix H.

 fuzzy The search will succeed for words that matches the
 search string by using an algorithm designed to catch
 closely related names with different spelling, e.g.
 names with the same pronunciation. The server
 chooses which algorithm to use, but it may vary
 depending on template name, attribute name and
 language used (see Constraint Language above).

 lstring The search will succeed for words that begins
 with the search string.

2.3.2.2. The FORMAT Constraint

 The FORMAT constraint describes what format the result will be in.
 Default format is FULL. For a description of each format, see Server
 Response Modes below.

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2279

2.3.2.3. The MAXFULL Constraint

 The MAXFULL constraint sets the limit of the number of matching
 records the server allows before it enforces SUMMARY responses. The
 client may attempt to override this value by specifying another value

[Faltstrom et al] [Page 18]

 Architecture of the Whois++ service March 1998

 to that constraint. Example: If, for privacy reasons, the server is
 to return the response in SUMMARY format if the number of hits
 exceeds 2, the MAXFULL constraint is set to 2 by the server.

 Regardless of what format the client asked for, the server will
 change the response format to SUMMARY when the number of matching
 records equals or exceeds this value.

2.3.2.4. The MAXHITS Constraint

 The MAXHITS constraint sets the maximum number of records returned
 to the client in response to a query.

2.3.2.5. The CASE Constraint

 The CASE constraint defines if the search should be case
 sensitive or not. Default value is to have case ignored.

2.3.2.6. The AUTHENTICATE Constraint

 The AUTHENTICATE constraint describes which authentication scheme to
 use when executing the search. Depending on the authentication
 scheme used, some other constraints may have to be specified. The
 authentication scheme definition identifies which constraints it
 requires.

2.3.2.7. The LANGUAGE Constraint

 The LANGUAGE constraint specifies the language in which the client
 wishes to receive responses. It therefore specifies which attribute
 values should be presented to the user (i.e., only those in the
 specified language, or for which no language information is
 available). It can also be used as an extra information to the
 fuzzy matching search method, and it might also be used to tell the
 server to give the system responses in another language. This
 should preferably be handled by the client. The language codes
 defined in RFC 1766 [ALVE95] should be used as a value for the
 language constraint. In these, the case of the letters are
 insignificant.

 If a record has attribute values in different languages, and no
 LANGUAGE search constraint was given in the query, the switch
 between the different languages should be given in the response by
 the use of system messages 601 which has one argument only, the
 name of the language or one of the predefined strings "ANY" or "DEF".
 A block of alternative attribute values starts with a language
 definition like "% 601 SE". After the first language specification,
 zero or more language specifications can be given, each switching

https://datatracker.ietf.org/doc/html/rfc1766

 into the desired language. When all specific languages have been
 tagged, the specification "% 601 DEF" can be used for specifying
 default attribute values. A block of alternative attributes must
 end with "% 601 ANY".

[Faltstrom et al] [Page 19]

 Architecture of the Whois++ service March 1998

 The following is an example of a response using the language
 messages:

 # FULL USER LOCAL USER-DOE
 % 601 FR
 Name: Monsieur John Doe
 % 601 SV
 Name: Herr John Doe
 % 601 DEF
 Name: Mister John Doe
 % 601 ANY
 Email: jdoe@doe.pp.se
 # END

 The language specifications may be suppressed by the server (using
 the % 601 messages) if the client has explicitly, by using the global
 constraint LANGUAGE, asked for a specific language.

2.3.2.8. The INCHARSET Constraint

 The INCHARSET constraint tells the server in which character set the
 search string itself is given. The default character set is
 ISO-8859-1.

2.3.2.9. The OUTCHARSET Constraint

 The OUTCHARSET constraint tells the server in which character set the
 search result data (not attributenames or system information) is
 supposed to be given in. The default character set is ISO-8859-1,
 but the server may choose something else.

2.3.2.10. The IGNORE Constraint

 The IGNORE constraint specifies which attributes NOT to include in
 the result. All other attributes will be included (as if named
 explicitly by the "include" constraint).

 If an attribute is named both with the "include" and "ignore"
 constraint, the attribute is to be included in the result, but the
 system message "% 112 Requested constraint not fulfilled" must be
 sent.

2.3.2.11. The INCLUDE Constraint

 The INCLUDE constraint specifies which attributes to include in the
 result. All other attributes will be excluded (as if named explicitly
 by the "ignore" constraint).

 If an attribute is named both with the "include" and "ignore"

 constraint, the attribute is to be included in the result, but the
 system message must be "% 112 Requested constraint not fulfilled".

2.3.2.12. The HOLD Constraint

[Faltstrom et al] [Page 20]

 Architecture of the Whois++ service March 1998

 The HOLD constraint requests that the server hold open the connection
 after sending the response to the query. The server waits for
 another user input string.

2.4. Server Response Modes

 The grammar for Whois++ responses is given in Appendix G, and
 described below.

 There are currently a total of five different response modes possible
 for Whois++ servers. These are FULL, ABRIDGED, HANDLE, SUMMARY and
 SERVER-TO-ASK. The syntax of each output format is specified in more
 detail in Appendix G.

 1) A FULL format response provides the complete contents of a
 template matching the specified query, including the template
 type, the server handle and an optional record handle.

 2) An ABRIDGED format response provides a brief summary, including
 (as a minimum) the server handle, the corresponding record
 handle and relevant information for that template.

 3) A HANDLE format response returns a line with information about
 the server handle and record handle for a record that matched
 the specified query.

 4) A SUMMARY response provides only a brief summary of information
 the number of matches and the list of template types in which
 the matches occurred.

 5) A SERVER-TO-ASK response only returns pointers to other index
 servers which might possibly be able to answer the specified
 query.

 The server may optionally respond with an empty result set and may
 also respond with an empty response together with a system message
 to indicate that the query was too complex for it to fulfill.

2.4.1. Default Responses

 By default, a Whois++ server will provide FULL responses. This may be
 changed by the client with the use of the global constraint "format".

 The server will not respond with more matches than the value
 specified with the global constraint "maxhits" in any response
 format. If the number of matches exceeds this value, the server will
 issues the system message 110 (maxhits value exceeded), but will
 still show the responses, up to the number of the "maxhits"

 constraint value. This mechanism will allow the server to hide the
 number of possible matches to a search command.

2.4.2. Format of Responses

[Faltstrom et al] [Page 21]

 Architecture of the Whois++ service March 1998

 Each response consists of a numerical system generated message, which
 can be tagged with text, followed by an optional formatted response
 message, followed by a second system generated message. The formatted
 response itself can include system messages, for example for switches
 in language.

 That is:

 '%' <system messages> <CR/LF>

 [<formatted response>]

 '%' <system messages> <CR/LF>

 If there are no matches to a query, the system is not required to
 generate any output as a formatted response, although it must still
 generate system messages.

 For information about the standard text for system messages, see
Appendix E.

2.4.3. Syntax of a Formatted Response

 All formatted responses except for the HANDLE response, consist of a
 response-specific START line, followed by an optional response-
 specific data section, followed by a TERMINATION line. The HANDLE
 response is different in that it only consists of a START line. It
 is permissible to insert any number of lines consisting solely of
 CR/LF pairs within a formatted response to improve readability.

 Each line shall be limited to no more than 81 characters, including
 the terminating CR/LF pair. If a line (including the required
 leading single space) would exceed 81 characters, it must be broken
 into lines of no more than 81 characters, with each continuation line
 beginning with a "+" character in the first column instead of the
 leading character.

 If an attribute value in a data section includes a line break, the
 line break must be replaced by a CR/LF pair and the following line
 begin with a "-" character in the first column, instead of the
 leading character. The attribute name is not repeated on consecutive
 lines.

 A TERMINATION line consists of a line with a '#' in the first column,
 followed by one space (ASCII 32) character, followed by the keyword
 END, followed by zero or more characters, followed by a CR/LF pair.

 A response-specific section will be one of the following:

 1) FULL Format Response
 2) ABRIDGED Format Response
 3) HANDLE Format Response
 4) SUMMARY Format Response

[Faltstrom et al] [Page 22]

 Architecture of the Whois++ service March 1998

 5) SERVER-TO-ASK Format Response

2.4.3.1. A FULL format response

 A FULL format response consists of a series of responses, each
 consisting of a START line, followed by the complete template
 information for the matching record and a TERMINATION line.

 Each START line consists of a '#' in the first column, followed by
 one space character, the word "FULL", a space character,
 the name of the corresponding template type, one space
 character, the server handle, a space character, (optionally) the
 handle for the record, and a terminating CR/LF pair.

 The template information for the record will be returned as a series
 of lines consisting of a single space, followed by the corresponding
 line of the record.

 The line of the record shall consist of a single space and the
 attribute name followed by a ':', a single space, the value of that
 attribute, and a CR/LF pair.

2.4.3.2. ABRIDGED Format Response

 Each ABRIDGED format response consists of a START line, a single line
 excerpt of the template information from each matching record and a
 TERMINATION line. The excerpt information shall include information
 that is relevant to the template type.

 The START line consists of a '#' in the first column, followed by one
 space character, the word "ABRIDGED", a space character,
 the name of the corresponding template type, a space character,
 the server handle, a space character, the handle for the
 record, and a terminating CR/LF pair.

 The abridged template information will be returned as a line,
 consisting of a single space, followed by the abridged line of the
 record and a CR/LF pair.

2.4.3.3. HANDLE Format Response

 A HANDLE response consists of a single START line, which shall start
 with a '#' in the first column, followed by one space
 character, the word "HANDLE", a space character, the name of
 the corresponding template, a space character, the handle for
 the server, a space character, the handle for that record, and
 a terminating CR/LF pair.

2.4.3.4. SUMMARY Format Response

 A SUMMARY format response consists of a single response,
 consisting of a line listing the number of matches to the specified

[Faltstrom et al] [Page 23]

 Architecture of the Whois++ service March 1998

 query, optionally a count of referrals, followed by a list of all
 template types which satisfied the query at least once.

 The START line shall begin with a '#' in the first column, be
 followed by one space character (decimal 32), the word "SUMMARY", a
 single space character, the handle for the server, and a terminating
 CR/LF pair.

 The format of the attributes in the SUMMARY format follows the
 rules for the FULL template, with the attributes "matches",
 "referrals" and "templates". "matches" and "templates" are
 mandatory, "referrals" optional.

 The first line must begin with the string "matches:", be
 followed by a space and the number of responses to the query and
 terminated by a CR/LF pair.

 The following line shall either begin with the string "templates: "
 or the string "referrals: ". The string "templates: " are followed
 by a CR/LF separated list of the name of the template types
 which matched the query. Each line following the first which
 include the text "templates:" must begin with a '-' instead of
 a space. The string "referrals: " is followed by the number of
 referrals included in the number of hits.

2.4.3.5. SERVER-TO-ASK Response

 A SERVER-TO-ASK response consists of information to the client about
 a server to contact next to resolve a query. If the server has
 pointers to more than one server, it will present additional SERVER-
 TO-ASK responses.

 The SERVER-TO-ASK response will consist of a START line and a number
 of lines with attribute-value pairs, separated by CRLF. Each line is
 indented with one space. The end of a SERVER-TO-ASK response is
 indicated with a TERMINATION line.

 Each START line consists of a '#' in the first column, followed by
 one space character, the word "SERVER-TO-ASK", a space
 character, the handle of the server and a terminating CR/LF pair.

 1. "Server-Handle" - The server handle of the server pointed at.
 (req.)
 2. "Host-Name" - Hostname for the server pointed at.
 3. "Host-Port" - Portnumber for the server pointed at.
 4. "Protocol" - The protocol to use when contacting this server.
 (opt.)

 Other attributes may be present, depending on the index server.

 The default protocol to use is Whois++.

2.4.4. System Generated Messages

 All system generated messages must have a '%' as the first

[Faltstrom et al] [Page 24]

 Architecture of the Whois++ service March 1998

 character, a space as the second one, followed by a three digit
 number, a space and an optional text message. The total length of the
 line must be no more than 81 characters long, including the
 terminating CR/LF pair. There is no limit to the number of system
 messages that may be generated.

 The format for multiline replies requires that every line, except the
 last, begin with "%", followed by space, the reply code, a hyphen,
 and an optional text. The last line will begin with "%", followed by
 space, the reply code, a space and some optional text.

 System generated messages displayed before or after the formatted
 response section are expected to refer to operation of the system or
 refer to the entire query. System generated messages within the
 output of an individual record during a FULL response are expected to
 refer to that record only, and could (for example) be used to
 indicate problems with that record of the response. See Appendix E
 for a description of system messages.

2.5. Compatibility with Older WHOIS Servers

 Note that this format, although potentially more verbose, is still in
 a human readable form. Responses from older systems that do not
 follow this format are still conformant, since their responses would
 be interpreted as being equivalent to optional text messages, without
 a formatted response. Clients written to this specification would
 display the responses as a advisory text message, where it would
 still be readable by the user.

3. Miscellaneous

3.1. Acknowledgements

 This document has been through many iterations of refinement, with
 contributions of different natures along the way. These
 acknowledgements accrue.

 The Whois++ effort began as an intensive brainstorming session at the
 24th IETF, in Boston Massachusetts. Present at the birth, and
 contributing ideas through this early phase, were (alphabetically)
 Peter Deutsch, Alan Emtage, Jim Fullton, Joan Gargano, Brad
 Passwaters, Simon Spero, and Chris Weider. Others who have since
 helped shape this document with feedback and suggestions include
 Roxana Bradescu, Patrik Faltstrom, Kevin Gamiel, Dan Kegel, Michael
 Mealling, Mark Prior and Rickard Schoultz.

 Version 2 of the protocol spec is based on input during the lifetime
 of version 1. Special mention goes to Jeff Allen, Leslie Daigle,
 and Philippe Boucher. During the polishing of the RFC for version 2,

 important input was given by Len Charest, Clarke Anderson and others
 in the ASID working group of the IETF.

 This work was supported in part by grant 12/39/01 from the UK
 Electronic Libraries Programme (eLib), an initiative of the

[Faltstrom et al] [Page 25]

 Architecture of the Whois++ service March 1998

 Joint Information Systems Committee (JISC). This grant has
 provided the opportunity to test the protocol specification
 by developing a test suite. The challenge was not only to provide AN
 implementation that satisfied the document, but to build tools that
 would be able to respond to all POSSIBLE responses that could be
 implemented from the spec. This lead to the contribution of some
 textual clarifications. Specific thanks go to Bill Heelan and
 Philippe Boucher.

3.2 References

 [ALVE95] Alvestrand H., "Tags for the Identification of
 Languages", RFC 1766, UNINETT, March 1995.

 [RFC2234] Crocker, D. and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", RFC 2234, November
 1997.

 [HARR85] Harrenstein K., Stahl M., and E. Feinler,
 "NICNAME/WHOIS", RFC 954, SRI, October 1985.

 [POST82] Postel J., "Simple Mail Transfer Protocol", STD 10,
RFC 821, USC/Information Sciences Institute,

 August 1982.

 [IIIR] Weider C., and P. Deutsch, "A Vision of an
 Integrated Internet Information Service", RFC 1727
 Bunyip Information Systems, Inc., December 1994.

 [WINDX] Weider, C., J. Fullton, and S. Spero, "Architecture
 of the Whois++ Index Service", RFC 1913, February
 1996.

 [RFC2279] F. Yergeau, " UTF-8, a transformation format of ISO
 10646", RFC 2279, January 1998.

3.3. Authors Addresses

 Patrik Faltstrom
 Tele2
 Borgarfjordsgatan 16
 BOX 62
 194 64 Kista
 SWEDEN

https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc954
https://datatracker.ietf.org/doc/html/rfc821
https://datatracker.ietf.org/doc/html/rfc1727
https://datatracker.ietf.org/doc/html/rfc1913
https://datatracker.ietf.org/doc/html/rfc2279

 Email: paf@swip.net

 Leslie L. Daigle
 Bunyip Information Systems Inc.

[Faltstrom et al] [Page 26]

 Architecture of the Whois++ service March 1998

 310 Ste. Catherine St. W
 Suite 300
 Montreal, Quebec, CANADA
 H2X 2A1

 Email: leslie@bunyip.com

 Sima Newell
 Bunyip Information Systems Inc.
 310 Ste. Catherine St. W
 Suite 300
 Montreal, Quebec, CANADA
 H2X 2A1

 Email: sima@bunyip.com

Appendix A - Some Sample Queries

 author=leslie and template=user

 The result will consist of all records where attribute "author"
 matches "leslie" with case ignored. Only USER templates will be
 searched. An example of a matching attribute is
 "Author=Leslie L. Daigle".

 This is the typical case of searching.

 author=leslie and template=user:language=fr

 The result will consist of the same records as above, but if
 attributes are available in alternative languages, only the
 ones in French will be displayed. These are either the ones which
 have explicitly been tagged as having French values, or ones that
 are tagged as being in the "DEF" (default) language.

 schoultz and rick;search=lstring

 The result will consist of all records which have one attribute value
 matching "schoultz" exactly (because the default search type is
 exact) and one attribute with "rick" as leading substring, both with
 case ignored. One example is "Name=Rickard Schoultz".

 value=phone;search=substring

 The result will consist of all records which have attribute values
 matching *phone*, for example the record "Name=Acme telephone inc.",
 but will not match the attribute name "phone". (Since term specifier

 is "value" by default, the search term could just as well have been
 simply "phone").

 ucdavis;search=substring and (gargano or joan):include=name,email

[Faltstrom et al] [Page 27]

 Architecture of the Whois++ service March 1998

 This search command will find records which have records containing
 the words "gargano" or "joan" somewhere in the record, and has the
 word "ucdavis" somewhere in a word. The result will only show the
 "name" and "email" fields.

Appendix B - Some sample responses

 1) FULL format responses:

 # FULL USER SERVERHANDLE1 PD45
 Name: Peter Deutsch
 email: peterd@bunyip.com
 # END
 # FULL USER SERVERHANDLE1 AE1
 Name: Alan Emtage
 email: bajan@bunyip.com
 # END
 # FULL USER SERVERHANDLE1 NW1
 Name: Nick West
 Favourite-Bicycle-Forward-Wheel-Brand: New Bicy
 +cles Acme Inc.
 email: nick@bicycle.acme.com
 My-favourite-song: Happy birthday to you!
 -Happy birthday to you!
 -Happy birthday dear Nick!
 -Happy birthday to you.
 # END
 # FULL SERVICES SERVERHANDLE1 WWW1
 Type: World Wide Web
 Location: the world
 # END

 2) An ABRIDGED format response:

 # ABRIDGED USER SERVERHANDLE1 PD45
 Peter Deutsch peterd@bunyip.com
 # END
 # ABRIDGED USER SERVERHANDLE1 AE1
 Alan Emtage bajan@bunyip.com
 # END
 # ABRIDGED USER SERVERHANDLE1 WWW1
 World Wide Web the world
 # END

 3) HANDLE format responses:

[Faltstrom et al] [Page 28]

 Architecture of the Whois++ service March 1998

 # HANDLE USER SERVERHANDLE1 PD45
 # HANDLE USER SERVERHANDLE1 AE1
 # HANDLE SERVICES SERVERHANDLE1 WWW1

 4) A SUMMARY format response:

 # SUMMARY SERVERHANDLE1
 Matches: 35
 Referrals: 2
 Templates: User
 -Services
 -Abstracts
 # END

Appendix C - Sample responses to system commands

 C.1 Response to the LIST command

 # FULL LIST SERVERHANDLE1
 Templates: USER
 -SERVICES
 -HELP
 # END

 C.2 Response to the SHOW command

 This example shows the result after issuing "show user":

 # FULL USER SERVERHANDLE1
 Name:
 Email:
 Work-Phone:
 Organization-Name:
 City:
 Country:
 # END

 C.3 Response to the POLLED-BY command

 # FULL POLLED-BY SERVERHANDLE1
 Server-handle: serverhandle2
 Cached-Host-Name: sunic.sunet.se
 Cached-Host-Port: 7070
 Template: USER
 Field: ALL

 # END
 # FULL POLLED-BY SERVERHANDLE1
 Server-handle: serverhandle3
 Cached-Host-Name: kth.se
 Cached-Host-Port: 7070

[Faltstrom et al] [Page 29]

 Architecture of the Whois++ service March 1998

 Template: ALL
 Field: Name,Email
 # END

 C.4 Response to the POLLED-FOR command

 # FULL POLLED-FOR SERVERHANDLE1
 Server-Handle: serverhandle5
 Template: ALL
 Field: Name,Address,Job-Title,Organization-Name,
 +Organization-Address,Organization-Name
 # END
 # FULL POLLED-FOR SERVERHANDLE1
 Server-Handle: serverhandle4
 Template: USER
 Field: ALL
 # END

 C.5 Response to the VERSION command

 # FULL VERSION BUNYIP.COM
 Version: 2.0
 Program-Name: Digger
 Program-Version: 3.0b1
 Program-Author: Bunyip Information Systems Inc.
 Program-Author-Email: digger-info@bunyip.com
 Bug-Report-Email: digger-bugs@bunyip.com
 # END

 C.6 Response to the CONSTRAINTS command

 # FULL CONSTRAINTS SERVERHANDLE1
 CONSTRAINT: maxhits
 DEFAULT: 100
 RANGE: 0-100
 # END
 # FULL CONSTRAINTS SERVERHANDLE1
 CONSTRAINT: case
 DEFAULT: ignore
 RANGE: ignore, consider
 # END
 # FULL CONSTRAINTS SERVERHANDLE1
 CONSTRAINT: search
 DEFAULT: exact
 RANGE: exact, lstring, substring, fuzzy
 # END

 # FULL CONSTRAINTS SERVERHANDLE1
 CONSTRAINT: language
 DEFAULT: DEF
 RANGE: FR, EN, SV, ANY, DEF
 # END

[Faltstrom et al] [Page 30]

 Architecture of the Whois++ service March 1998

 # FULL CONSTRAINTS SERVERHANDLE1
 CONSTRAINT: incharset
 DEFAULT: ISO-8859-1
 RANGE: ISO-8859-1, UTF-8
 # END
 # FULL CONSTRAINTS SERVERHANDLE1
 CONSTRAINT: outcharset
 DEFAULT: ISO-8859-1
 RANGE: ISO-8859-1, UTF-8, HTML
 # END

 C.7 Response to the COMMANDS command

 # FULL COMMANDS SERVERHANDLE1
 Commands: commands
 -constraints
 -describe
 -help
 -list
 -polled-by
 -polled-for
 -show
 -version
 # END

Appendix D - Sample Whois++ session

 Below is an example of a session between a client and a server. The
 angle brackets to the left is not part of the communication, but is
 just put there to denote the direction of the communication between
 the server or the client. Text appended to '>' means messages from
 the server and '<' from the client.

 Client connects to the server

 >% 220-Welcome to
 >% 220-the Whois++ server
 >% 220 at ACME inc.
 <name=Nick:hold
 >% 200 Command okay
 >
 ># FULL USER ACME.COM NW1
 > name: Nick West
 > email: nick@acme.com
 ># END

 ># SERVER-TO-ASK ACME.COM
 > Server-Handle: SUNETSE01
 > Host-Name: whois.sunet.se
 > Host-Port: 7070
 ># END

[Faltstrom et al] [Page 31]

 Architecture of the Whois++ service March 1998

 ># SERVER-TO-ASK ACME.COM
 > Server-Handle: KTHSE01
 ># END
 >% 226 Transfer complete
 <version
 >% 200 Command okay
 ># FULL VERSION ACME.COM
 > Version: 2.0
 ># END
 >% 226 Transfer complete
 >% 203 Bye
 Server closes the connection

 In the example above, the client connected to a Whois++ server and
 queried for all records where the attribute "name" equals "Nick", and
 asked the server not to close the connection after the response by
 using the global constraint "HOLD".

 The server responds with one record and a pointer to two other
 servers that either holds records or pointers to other servers.

 The client continues with asking for the servers version number
 without using the HOLD constraint. After responding with protocol
 version, the server closes the connection.

 Note that each response from the server begins system message 200
 (Command OK), and ends with system message 226 (Transfer Complete).

Appendix E - System messages

 A system message begins with a '%', followed by a space and a three
 digit number, a space, and an optional text message. The line message
 must be no more than 81 characters long, including the terminating CR
 LF pair. There is no limit to the number of system messages that may
 be generated.

 A multiline system message have a hyphen instead of a space in column
 6, immediately after the numeric response code in all lines, except
 the last one, where the space is used.

 Example 1

 % 200 Command okay

 Example 2

 % 220-Welcome to
 % 220-the Whois++ server
 % 220 at ACME inc.

 The client is not expected to parse the text part of the response
 message except when receiving reply 600 or 601, in which case the
 text part is in the former case the name of a character set that
 will be used by the server in the rest of the response, and in the

[Faltstrom et al] [Page 32]

 Architecture of the Whois++ service March 1998

 latter case when it specifies what language the attribute value is
 in. The valid values for characters sets is specified in the
 "characterset" list in the grammar in Appendix F.

 The theory of reply codes is described in Appendix E in STD 10, RFC
821 [POST82].

--

List of system response codes

110 Too many hits The number of matches exceeded
 the value specified by the
 maxhits constraint. Server
 will still reply with as many
 records as "maxhits" allows.

111 Requested constraint not supported One or more constraints in
 query is not implemented, but
 the search is still done.

112 Requested constraint not fulfilled One or more constraints in
 query has unacceptable value
 and was therefore not used,
 but the search is still done.

200 Command Ok Command accepted (i.e., syntax
 okay, will be executed).
 The client must wait for a
 transaction end system
 message.

201 Command Completed successfully Command accepted and executed.

203 Bye Server is closing connection

220 Service Ready Greeting message. Server is
 accepting commands.

226 Transaction complete End of data. All responses to
 query are sent.

430 Authentication needed Client requested information
 that needs authentication.

500 Syntax error

502 Search expression too complicated This message is sent when the

https://datatracker.ietf.org/doc/html/rfc821
https://datatracker.ietf.org/doc/html/rfc821

 server is not able to resolve
 a query (i.e. when a client
 sent a regular expression that
 is too deeply nested).

[Faltstrom et al] [Page 33]

 Architecture of the Whois++ service March 1998

530 Authentication failed The authentication phase
 failed.

600 <token> Subsequent attribute values
 are encoded in the character
 set specified by <token>.

601 <token> Subsequent attribute values
 are in the language specified
 by <token>.

601 DEF Subsequent attribute values
 are default values, i.e. they
 should be used for all languages
 not specified by "601 <token>"
 since last "601 ANY" message.

601 ANY Subsequent attribute values
 are for all languages.

 Table V - System response codes

--

Appendix F - The Whois++ Input Grammar

The following grammar, which uses BNF-like notation as defined in
[RFC2234] defines the set of acceptable input to a Whois++ server.

N.B.: As outlined in the ABNF definition, rule names and string
literals are in the US-ASCII character set, and are case-insensitive.

 whois-command = (system-command [":" "hold"]
 / terms [":" globalcnstrnts]) nl

 system-command = "constraints"
 / "describe"
 / "commands"
 / "polled-by"
 / "polled-for"
 / "version"
 / "list"
 / "show" [1*sp bytestring]
 / "help" [1*sp bytestring]
 / "?" [bytestring]

 terms = and-expr *("or" and-expr)

https://datatracker.ietf.org/doc/html/rfc2234

 and-expr = not-expr *("and" not-expr)

 not-expr = ["not"] (term / ("(" terms ")"))

 term = generalterm / specificterm

[Faltstrom et al] [Page 34]

 Architecture of the Whois++ service March 1998

 / combinedterm

 generalterm = bytestring

 specificterm = specificname "=" bytestring

 specificname = "handle" / "value"

 combinedterm = attributename "=" bytestring

 globalcnstrnts = globalcnstrnt *(";" globalcnstrnt)

 globalcnstrnt = "format" "=" format
 / "maxfull" "=" 1*digit
 / "maxhits" "=" 1*digit
 / opt-globalcnst

 opt-globalcnst = "hold"
 / "authenticate" "=" auth-method
 / "language" "=" language
 / "incharset" "=" characterset
 / "ignore" "=" bytestring
 / "include" "=" bytestring

 format = "full" / "abridged" / "handle" / "summary"
 / "server-to-ask"

 auth-method = bytestring

 language = <The language code defined in RFC1766 [ALVE95]>

 characterset = "us-ascii" / "iso-8859-1" / "iso-8859-2" /
 "iso-8859-3" / "iso-8859-4" / "iso-8859-5" /
 "iso-8859-6" / "iso-8859-7" / "iso-8859-8" /
 "iso-8859-9" / "iso-8859-10" /
 "UNICODE-1-1-UTF-8" / "UNICODE-2-0-UTF-8"
 "UTF-8"

 ;"UTF-8" is as defined in [RFC2279]. This is
 ;the character set label that should be used
 ;for UTF encoded information; the labels
 ;"UNICODE-2-0-UTF-8" and "UNICODE-1-1-UTF-8"
 ;are retained primarily for compatibility with
 ;older Whois++ servers (and as outlined in
 ;[RFC2279]).

 searchvalue = "exact" / "substring" / "regex" / "fuzzy"
 / "lstring"

https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2279

 casevalue = "ignore" / "consider"

 bytestring = 0*charbyte

[Faltstrom et al] [Page 35]

 Architecture of the Whois++ service March 1998

 attributename = 1*attrbyte

 charbyte = "

 normalbyte = <%d33-255, except specialbyte>

 attrbyte = <%d33-127 except specialbyte> /
 "

 specialbyte = " " / tab / "=" / "," / ":" / ";" / "
 "*" / "." / "(" / ")" / "[" / "]" / "^" /
 "$" / "!" / "?"

 tab = %d09
 sp = %d32 ; space

 digit = "0" / "1" / "2" / "3" / "4" /
 "5" / "6" / "7" / "8" / "9"

 nl = %d13 %d10 ; CR LF

 NOTE: Blanks that are significant to a query must be escaped. The
 following characters, when significant to the query, may be preceded
 and/or followed by a single blank:

 : ; , () = !

Appendix G - The Whois++ Response Grammar

The following grammar, which uses ABNF-like notation as defined in
[RFC2234], defines the set of responses expected from a Whois++ server
upon receipt of a valid Whois++ query.

N.B.: As outlined in the ABNF definition, rule names and string
literals are in the US-ASCII character set, and are case-insensitive.

 server = goodmessage mnl output mnl endmessage nl
 / badmessage nl endmessage nl

 output = full / abridged / summary / handle

 full = 0*(full-record / server-to-ask)

 abridged = 0*(abridged-record / server-to-ask)

 summary = summary-record

https://datatracker.ietf.org/doc/html/rfc2234

 handle = 0*(handle-record / server-to-ask)

 full-record = "# FULL " template serverhandle localhandle

[Faltstrom et al] [Page 36]

 Architecture of the Whois++ service March 1998

 system-nl
 1*(fulldata system-nl)
 "# END" system-nl

 abridged-record = "# ABRIDGED " template serverhandle localhandle
 system-nl
 abridgeddata
 "# END" system-nl

 summary-record = "# SUMMARY " serverhandle system-nl
 summarydata
 "# END" system-nl

 handle-record = "# HANDLE " template serverhandle localhandle
 system-nl

 server-to-ask = "# SERVER-TO-ASK " serverhandle system-nl
 server-to-askdata
 "# END" system-nl

 fulldata = " " attributename ": " attributevalue

 abridgeddata = " " 0*(attributevalue / tab)

 summarydata = " Matches: " number system-nl
 [" Referrals: " number system-nl]
 " Templates: " template 0*(system-nl "-"
 template)

 server-to-ask-data = " Server-Handle:" serverhandle system-nl
 " Host-Name: " hostname system-nl
 " Host-Port: " number system-nl
 [" Protocol: " prot system-nl]
 0*(" " labelstring ": " labelstring system-nl)

 attributename = 1*attrbyte

 attrbyte = <%d33-127 except specialbyte>

 attributevalue = longstring

 template = labelstring

 serverhandle = labelstring

 localhandle = labelstring

 hostname = labelstring

 prot = labelstring

 longstring = bytestring 0*(nl ("+" / "-") bytestring)

[Faltstrom et al] [Page 37]

 Architecture of the Whois++ service March 1998

 bytestring = 0*charbyte

 labelstring = 0*restrictedbyte

 restrictedbyte = <%d32-%d255 except specialbyte>

 charbyte = <%d32-%d255 except nl>

 specialbyte = ":" / " " / tab / nl

 tab = %d09

 mnl = 1*system-nl

 system-nl = nl [1*(message nl)]

 nl = %d13 %d10

 message = [1*(messagestart "-" bytestring nl)]
 messagestart " " bytestring nl

 messagestart = "% " digit digit digit

 goodmessage = [1*(goodmessagestart "-" bytestring nl)]
 goodmessagestart " " bytestring nl

 goodmessagestart= "% 200"

 messagestart = "% " digit digit digit

 badmessage = [1*(badmessagestart "-" bytestring nl)]
 badmessagestart " " bytestring nl

 badmessagestart = "% 5" digit digit

 endmessage = endmessageclose / endmessagecont

 endmessageclose = [endmessagestart " " bytestring nl]
 byemessage

 endmessagecont = endmessagestart " " bytestring nl

 endmessagestart = "% 226"

 byemessage = byemessagestart " " bytestring nl

 endmessagestart = "% 203"

 number = 1*(digit)

 digit = "0" / "1" / "2" / "3" / "4" / "5" /
 "6" / "7" / "8" / "9"

[Faltstrom et al] [Page 38]

 Architecture of the Whois++ service March 1998

Appendix H - Description of Regular expressions

 The regular expressions described in this section are the same as
 used in many other applications and operating systems. However, it
 is very simple and does not include logical operators AND and OR.

 Searches using regular expressions always use substring
 matching except when the regular expression contains the characters
 '^' or '$'.

 Character Function
 --------- --------

 <any except those listed in this table> Matches itself

 . Matches any character

 a* Matches zero or more 'a'

 [ab] Matches 'a' or 'b'

 [a-c] Matches 'a', 'b' or 'c'

 ^ Matches beginning of
 a token

 $ Matches end of a token

 Examples

 String Matches Doesn't match
 ------- ------- -------------
 hello xhelloy heello
 h.llo hello helio
 h.*o hello helloa
 h[a-f]llo hello hgllo
 ^he.* hello ehello
 .*lo$ hello helloo

[Faltstrom et al] [Page 39]

