
Internet Engineering Task Force Audio/Video Transport Working Group
INTERNET-DRAFT S. Casner / Cisco Systems
draft-ietf-avt-crtp-05.txt V. Jacobson / LBNL
 July 27, 1998
 Expires: January 1999

Compressing IP/UDP/RTP Headers for Low-Speed Serial Links

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working docu-
ments of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet- Drafts as reference material
or to cite them other than as "work in progress."

To learn the current status of any Internet-Draft, please check the
"1id-abstracts.txt" listing contained in the Internet- Drafts Shadow
Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
munnari.oz.au (Pacific Rim), ftp.ietf.org (US East Coast), or
ftp.isi.edu (US West Coast).

Distribution of this document is unlimited.

 Abstract

 This document describes a method for compressing the headers of
 IP/UDP/RTP datagrams to reduce overhead on low-speed serial links.
 In many cases, all three headers can be compressed to 2-4 bytes.

Comments are solicited and should be addressed to the working group
mailing list rem-conf@es.net and/or the author(s).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC 2119.

 Expires January 1999 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt
https://datatracker.ietf.org/doc/html/rfc2119

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

1. Introduction

Since the Real-time Transport Protocol was published as an RFC [1],
there has been growing interest in using RTP as one step to achieve
interoperability among different implementations of network audio/video
applications. However, there is also concern that the 12-byte RTP
header is too large an overhead for 20-byte payloads when operating over
low speed lines such as dial-up modems at 14.4 or 28.8 kb/s. (Some
existing applications operating in this environment use an application-
specific protocol with a header of a few bytes that has reduced func-
tionality relative to RTP.)

Header size may be reduced through compression techniques as has been
done with great success for TCP [2]. In this case, compression might be
applied to the RTP header alone, on an end-to-end basis, or to the com-
bination of IP, UDP and RTP headers on a link-by-link basis. Compress-
ing the 40 bytes of combined headers together provides substantially
more gain than compressing 12 bytes of RTP header alone because the
resulting size is approximately the same (2-4 bytes) in either case.
Compressing on a link-by-link basis also provides better performance
because the delay and loss rate are lower. Therefore, the method
defined here is for combined compression of IP, UDP and RTP headers on a
link-by-link basis.

This document defines a compression scheme that may be used with IPv4,
IPv6 or packets encapsulated with more than one IP header, though the
initial focus is on IPv4. The IP/UDP/RTP compression defined here is
intended to fit within the more general compression framework specified
in [3] for use with both IPv6 and IPv4. That framework defines TCP and
non-TCP as two classes of transport above IP. This specification
creates IP/UDP/RTP as a third class extracted from the non-TCP class.

2. Assumptions and Tradeoffs

The goal of this compression scheme is to reduce the IP/UDP/RTP headers
to two bytes for most packets in the case where no UDP checksums are
being sent, or four bytes with checksums. It is motivated primarily by
the specific problem of sending audio and video over 14.4 and 28.8
dialup modems. These links tend to provide full-duplex communication,
so the protocol takes advantage of that fact, though the protocol may
also be used with reduced performance on simplex links. This compres-
sion scheme performs best on local links with low round-trip-time.

This specification does not address segmentation and preemption of large
packets to reduce the delay across the slow link experienced by small
real-time packets, except to identify in Section 4 some interactions
between segmentation and compression that may occur. Segmentation
schemes may be defined separately and used in conjunction with the

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 2]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

compression defined here.

It should be noted that implementation simplicity is an important factor
to consider in evaluating a compression scheme. Communications servers
may need to support compression over perhaps as many as 100 dial-up
modem lines using a single processor. Therefore, it may be appropriate
to make some simplifications in the design at the expense of generality,
or to produce a flexible design that is general but can be subsetted for
simplicity. Higher compression gain might be achieved by communicating
more complex models for the changing header fields from the compressor
to the decompressor, but that complexity is deemed unnecessary. The
next sections discuss some of the tradeoffs listed here.

2.1. Simplex vs. Full Duplex

In the absence of other constraints, a compression scheme that worked
over simplex links would be preferred over one that did not. However,
operation over a simplex link requires periodic refreshes with an
uncompressed packet header to restore compression state in case of
error. If an explicit error signal can be returned instead, the delay
to recovery may be shortened substantially. The overhead in the no-
error case is also reduced. To gain these performance improvements,
this specification includes an explicit error indication sent on the
reverse path.

On a simplex link, it would be possible to use a periodic refresh
instead. Whenever the decompressor detected an error in a particular
packet stream, it would simply discard all packets in that stream until
an uncompressed header was received for that stream, and then resume
decompression. The penalty would be the potentially large number of
packets discarded. The periodic refresh method described in Section 3.3
of [3] applies to IP/UDP/RTP compression on simplex links or links with
high delay as well as to other non-TCP packet streams.

2.2. Segmentation and Layering

Delay induced by the time required to send a large packet over the slow
link is not a problem for one-way audio, for example, because the
receiver can adapt to the variance in delay. However, for interactive
conversations, minimizing the end-to-end delay is critical. Segmenta-
tion of large, non-real-time packets to allow small real-time packets to
be transmitted between segments can reduce the delay.

This specification deals only with compression and assumes segmentation,
if included, will be handled as a separate layer. It would be inap-
propriate to integrate segmentation and compression in such a way that
the compression could not be used by itself in situations where segmen-
tation was deemed unnecessary or impractical. Similarly, one would like

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 3]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

to avoid any requirements for a reservation protocol. The compression
scheme can be applied locally on the two ends of a link independent of
any other mechanisms except for the requirements that the link layer
provide some packet type codes, a packet length indication, and good
error detection.

Conversely, separately compressing the IP/UDP and RTP layers loses too
much of the compression gain that is possible by treating them together.
Crossing these protocol layer boundaries is appropriate because the same
function is being applied across all layers.

3. The Compression Algorithm

The compression algorithm defined in this document draws heavily upon
the design of TCP/IP header compression as described in RFC 1144 [2].
Readers are referred to that RFC for more information on the underlying
motivations and general principles of header compression.

3.1. The basic idea

In TCP header compression, the first factor-of-two reduction in data
rate comes from the observation that half of the bytes in the IP and TCP
headers remain constant over the life of the connection. After sending
the uncompressed header once, these fields may be elided from the
compressed headers that follow. The remaining compression comes from
differential coding on the changing fields to reduce their size, and
from eliminating the changing fields entirely for common cases by calcu-
lating the changes from the length of the packet. This length is indi-
cated by the link-level protocol.

For RTP header compression, some of the same techniques may be applied.
However, the big gain comes from the observation that although several
fields change in every packet, the difference from packet to packet is
often constant and therefore the second-order difference is zero. By
maintaining both the uncompressed header and the first-order differences
in the session state shared between the compressor and decompressor, all
that must be communicated is an indication that the second-order differ-
ence was zero. In that case, the decompressor can reconstruct the ori-
ginal header without any loss of information simply by adding the
first-order differences to the saved uncompressed header as each
compressed packet is received.

Just as TCP/IP header compression maintains shared state for multiple
simultaneous TCP connections, this IP/UDP/RTP compression SHOULD main-
tain state for multiple session contexts. A session context is defined
by the combination of the IP source and destination addresses, the UDP
source and destination ports, and the RTP SSRC field. A compressor
implementation might use a hash function on these fields to index a

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt
https://datatracker.ietf.org/doc/html/rfc1144

 Expires January 1999 [Page 4]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

table of stored session contexts. The compressed packet carries a small
integer, called the session context identifier or CID, to indicate in
which session context that packet should be interpreted. The decompres-
sor can use the CID to index its table of stored session contexts
directly.

Because the RTP compression is lossless, it may be applied to any UDP
traffic that benefits from it. Most likely, the only packets that will
benefit are RTP packets, but it is acceptable to use heuristics to
determine whether or not the packet is an RTP packet because no harm is
done if the heuristic gives the wrong answer. This does require execut-
ing the compression algorithm for all UDP packets, or at least those
with even port numbers (see section 3.4).

Most compressor implementations will need to maintain a "negative cache"
of packet streams that have failed to compress as RTP packets for some
number of attempts in order to avoid further attempts. Failing to
compress means that some fields in the potential RTP header that are
expected to remain constant most of the time, such as the payload type
field, keep changing. Even if the other such fields remain constant, a
packet stream with a constantly changing SSRC field SHOULD be entered in
the negative cache to avoid consuming all of the available session con-
texts. The negative cache is indexed by the source and destination IP
address and UDP port pairs but not the RTP SSRC field since the latter
may be changing. When RTP compression fails, the IP and UDP headers MAY
still be compressed.

Fragmented IP Packets that are not initial fragments and packets that
are not long enough to contain a complete UDP header MUST NOT be sent as
FULL_HEADER packets. Furthermore, packets that do not additionally con-
tain at least 12 bytes of UDP data MUST NOT be used to establish RTP
context. If such a packet is sent as a FULL_HEADER packet, it MAY be
followed by COMPRESSED_UDP packets but MUST NOT be followed by
COMPRESSED_RTP packets.

3.2. Header Compression for RTP Data Packets

In the IPv4 header, only the total length, packet ID, and header check-
sum fields will normally change. The total length is redundant with the
length provided by the link layer, and since this compression scheme
must depend upon the link layer to provide good error detection (e.g.,
PPP's CRC [4]), the header checksum may also be elided. This leaves
only the packet ID, which, assuming no IP fragmentation, would not need
to be communicated. However, in order to maintain lossless compression,
changes in the packet ID will be transmitted. The packet ID usually
increments by one or a small number for each packet. (Some systems
increment the ID with the bytes swapped, which results in slightly less
compression.) In the IPv6 base header, there is no packet ID nor header

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 5]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

checksum and only the payload length field changes.

In the UDP header, the length field is redundant with the IP total
length field and the length indicated by the link layer. The UDP check-
sum field will be a constant zero if the source elects not to generate
UDP checksums. Otherwise, the checksum must be communicated intact in
order to preserve the lossless compression. Maintaining end-to-end
error detection for applications that require it is an important princi-
ple.

In the RTP header, the SSRC identifier is constant in a given context
since that is part of what identifies the particular context. For most
packets, only the sequence number and the timestamp will change from
packet to packet. If packets are not lost or misordered upstream from
the compressor, the sequence number will increment by one for each
packet. For audio packets of constant duration, the timestamp will
increment by the number of sample periods conveyed in each packet. For
video, the timestamp will change on the first packet of each frame, but
then stay constant for any additional packets in the frame. If each
video frame occupies only one packet, but the video frames are generated
at a constant rate, then again the change in the timestamp from frame to
frame is constant. Note that in each of these cases the second-order
difference of the sequence number and timestamp fields is zero, so the
next packet header can be constructed from the previous packet header by
adding the first-order differences for these fields that are stored in
the session context along with the previous uncompressed header. When
the second-order difference is not zero, the magnitude of the change is
usually much smaller than the full number of bits in the field, so the
size can be reduced by encoding the new first-order difference and
transmitting it rather than the absolute value.

The M bit will be set on the first packet of an audio talkspurt and the
last packet of a video frame. If it were treated as a constant field
such that each change required sending the full RTP header, this would
reduce the compression significantly. Therefore, one bit in the
compressed header will carry the M bit explicitly.

If the packets are flowing through an RTP mixer, most commonly for
audio, then the CSRC list and CC count will also change. However, the
CSRC list will typically remain constant during a talkspurt or longer,
so it need be sent only when it changes.

3.3. The protocol

The compression protocol must maintain a collection of shared informa-
tion in a consistent state between the compressor and decompressor.
There is a separate session context for each IP/UDP/RTP packet stream,
as defined by a particular combination of the IP source and destination

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 6]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

addresses, UDP source and destination ports, and the RTP SSRC field.
The number of session contexts to be maintained MAY be negotiated
between the compressor and decompressor. Each context is identified by
an 8- or 16-bit identifier, depending upon the number of contexts nego-
tiated, so the maximum number is 65536. Both uncompressed and
compressed packets MUST carry the context ID and a 4-bit sequence number
used to detect packet loss between the compressor and decompressor.
Each context has its own separate sequence number space so that a single
packet loss need only invalidate one context.

The shared information in each context consists of the following items:

 o The full IP, UDP and RTP headers, possibly including a CSRC list,
 for the last packet sent by the compressor or reconstructed by the
 decompressor.
 o The first-order difference for the IPv4 ID field, initialized to 1
 whenever an uncompressed IP header for this context is received and
 updated each time a delta IPv4 ID field is received in a compressed
 packet.
 o The first-order difference for the RTP timestamp field, initialized
 to 0 whenever an uncompressed packet for this context is received
 and updated each time a delta RTP timestamp field is received in a
 compressed packet.
 o The last value of the 4-bit sequence number, which is used to detect
 packet loss between the compressor and decompressor.
 o The current generation number for non-differential coding of UDP
 packets with IPv6(see [3]). For IPv4, the generation number may be
 set to zero if the COMPRESSED_NON_TCP packet type, defined below, is
 never used.
 o A context-specific delta encoding table (see section 3.3.4) may
 optionally be negotiated for each context.

In order to communicate packets in the various uncompressed and
compressed forms, this protocol depends upon the link layer being able
to provide an indication of four new packet formats in addition to the
normal IPv4 and IPv6 packet formats:

 FULL_HEADER - communicates the uncompressed IP header plus any fol-
 lowing headers and data to establish the uncompressed header state
 in the decompressor for a particular context. The FULL-HEADER
 packet also carries the 8- or 16-bit session context identifier and
 the 4-bit sequence number to establish synchronization between the
 compressor and decompressor. The format is shown in section 3.3.1.

 COMPRESSED_UDP - communicates the IP and UDP headers compressed to
 6 or fewer bytes (often 2 if UDP checksums are disabled), followed
 by any subsequent headers (possibly RTP) in uncompressed form, plus
 data. This packet type is used when there are differences in the

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 7]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

 usually constant fields of the (potential) RTP header. The RTP
 header includes a potentially changed value of the SSRC field, so
 this packet may redefine the session context. The format is shown
 in section 3.3.3.

 COMPRESSED_RTP - indicates that the RTP header is compressed along
 with the IP and UDP headers. The size of this header may still be
 just two bytes, or more if differences must be communicated. This
 packet type is used when the second-order difference (at least in
 the usually constant fields) is zero. It includes delta encodings
 for those fields that have changed by other than the expected
 amount to establish the first-order differences after an
 uncompressed RTP header is sent and whenever they change. The for-
 mat is shown in section 3.3.2.

 CONTEXT_STATE - indicates a special packet sent from the decompres-
 sor to the compressor to communicate a list of context IDs for
 which synchronization has or may have been lost. This packet is
 only sent across the point-to-point link so it requires no IP
 header. The format is shown in section 3.3.5.

When this compression scheme is used with IPv6 as part of the general
header compression framework specified in [3], another packet type MAY
be used:

 COMPRESSED_NON_TCP - communicates the compressed IP and UDP headers
 as defined in [3] without differential encoding. If it were used
 for IPv4, it would require one or two bytes more than the
 COMPRESSED_UDP form listed above in order to carry the IPv4 ID
 field. For IPv6, there is no ID field and this non-differential
 compression is more resilient to packet loss.

Assignments of numeric codes for these packet formats in the Point-to-
Point Protocol [4] are to be made by the Internet Assigned Numbers
Authority.

3.3.1. FULL_HEADER (uncompressed) packet format

The definition of the FULL_HEADER packet given here is intended to be
the consistent with the definition given in [3]. Full details on design
choices are given there.

The format of the FULL_HEADER packet is the same as that of the original
packet. In the IPv4 case, this is usually an IP header, followed by a
UDP header and UDP payload that may be an RTP header and its payload.
However, the FULL_HEADER packet may also carry IP encapsulated packets,
in which case there would be two IP headers followed by UDP and possibly
RTP. Or in the case of IPv6, the packet may be built of some

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 8]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

combination of IPv6 and IPv4 headers. Each successive header is indi-
cated by the type field of the previous header, as usual.

The FULL_HEADER packet differs from the corresponding normal IPv4 or
IPv6 packet in that it must also carry the compression context ID and
the 4-bit sequence number. In order to avoid expanding the size of the
header, these values are inserted into length fields in the IP and UDP
headers since the actual length may be inferred from the length provided
by the link layer. Two 16-bit length fields are needed; these are taken
from the first two available headers in the packet. That is, for an
IPv4/UDP packet, the first length field is the total length field of the
IPv4 header, and the second is the length field of the UDP header. For
an IPv4 encapsulated packet, the first length field would come from the
total length field of the first IP header, and the second length field
would come from the total length field of the second IP header.

As specified in Sections 5.3.2 of [3], the position of the context ID
(CID) and 4-bit sequence number varies depending upon whether 8- or 16-
bit context IDs have been selected, as shown in the following diagram
(16 bits wide, with the most-significant bit is to the left):

 For 8-bit context ID:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |0|1| Generation| CID | First length field
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0 | seq | Second length field
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 For 16-bit context ID:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |1|1| Generation| 0 | seq | First length field
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | CID | Second length field
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The first bit in the first length field indicates the length of the CID.
The length of the CID MUST either be constant for all contexts or two
additional distinct packet types MUST be provided to separately indicate
COMPRESSED_UDP and COMPRESSED_RTP packet formats with 8- and 16-bit
CIDs. The second bit in the first length field is 1 to indicate that
the 4-bit sequence number is present, as is always the case for this
IP/UDP/RTP compression scheme.

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 9]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

The generation field is used with IPv6 for COMPRESSED_NON_TCP packets as
described in [3]. For IPv4-only implementations that do not use
COMPRESSED_NON_TCP packets, the compressor SHOULD set the generation
value to zero. For consistent operation between IPv4 and IPv6, the gen-
eration value is stored in the context when it is received by the
decompressor, and the most recent value is returned in the CONTEXT_STATE
packet.

When a FULL_HEADER packet is received, the complete set of headers is
stored into the context selected by the context ID. The 4-bit sequence
number is also stored in the context, thereby resynchronizing the
decompressor to the compressor.

When COMPRESSED_NON_TCP packets are used, the 4-bit sequence number is
inserted into the "Data Field" of that packet and the D bit is set as
described in Section 6 of [3]. When a COMPRESSED_NON_TCP packet is
received, the generation number is compared to the value stored in the
context. If they are not the same, the context is not up to date and
MUST be refreshed by a FULL_HEADER packet. If the generation does
match, then the compressed IP and UDP header information, the 4-bit
sequence number, and the (potential) RTP header are all stored into the
saved context.

The amount of memory required to store the context will vary depending
upon how many encapsulating headers are included in the FULL_HEADER
packet. The compressor and decompressor MAY negotiate a maximum header
size.

3.3.2. COMPRESSED_RTP packet format

When the second-order difference of the RTP header from packet to packet
is zero, the decompressor can reconstruct a packet simply by adding the
stored first-order differences to the stored uncompressed header
representing the previous packet. All that need be communicated is the
session context identifier and a small sequence number (not related to
the RTP sequence number) to maintain synchronization and detect packet
loss between the compressor and decompressor.

If the second-order difference of the RTP header is not zero for some
fields, the new first-order difference for just those fields is communi-
cated using a compact encoding. The new first-order difference values
are added to the corresponding fields in the uncompressed header in the
decompressor's session context, and are also stored explicitly in the
context to be added to the corresponding fields again on each subsequent
packet in which the second-order difference is zero. Each time the
first-order difference changes, it is transmitted and stored in the con-
text.

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 10]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

In practice, the only fields for which it is useful to store the first-
order difference are the IPv4 ID field and the RTP timestamp. For the
RTP sequence number field, the usual increment is 1. If the sequence
number changes by other than 1, the difference must be communicated but
does not set the expected difference for the next packet. Instead, the
expected first-order difference remains fixed at 1 so that the differ-
ence need not be explicitly communicated on the next packet assuming it
is in order.

For the RTP timestamp, when a FULL_HEADER, COMPRESSED_NON_TCP or
COMPRESSED_UDP packet is sent to refresh the RTP state, the stored
first-order difference is initialized to zero. If the timestamp is the
same on the next packet (e.g., same video frame), then the second-order
difference is zero. Otherwise, the difference between the timestamps of
the two packets is transmitted as the new first-order difference to be
added to the timestamp in the uncompressed header stored in the
decompressor's context and also stored as the first-order difference in
that context. Each time the first-order difference changes on subse-
quent packets, that difference is again transmitted and used to update
the context.

Similarly, since the IPv4 ID field frequently increments by one, the
first-order difference for that field is initialized to one when the
state is refreshed by a FULL_HEADER packet, or when a COMPRESSED_NON_TCP
packet is sent since it carries the ID field in uncompressed form.
Thereafter, whenever the first-order difference changes, it is transmit-
ted and stored in the context.

A bit mask will be used to indicate which fields have changed by other
than the expected difference. In addition to the small link sequence
number, the list of items to be conditionally communicated in the
compressed IP/UDP/RTP header is as follows:

 I = IPv4 packet ID (always 0 if no IPv4 header)
 U = UDP checksum
 M = RTP marker bit
 S = RTP sequence number
 T = RTP timestamp
 L = RTP CSRC count and list

If 4 bits are needed for the link sequence number to get a reasonable
probability of loss detection, there are too few bits remaining to
assign one bit to each of these items and still fit them all into a sin-
gle byte to go along with the context ID.

It is not necessary to explicitly carry the U bit to indicate the pres-
ence of the UDP checksum because a source will typically include check-
sums on all packets of a session or none of them. When the session

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 11]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

state is initialized with an uncompressed header, if there is a nonzero
checksum present, an unencoded 16-bit checksum will be inserted into the
compressed header in all subsequent packets until this setting is
changed by sending another uncompressed packet.

Of the remaining items, the L bit for the CSRC count and list may be the
one least frequently used. Rather than dedicating a bit in the mask to
indicate CSRC change, an unusual combination of the other bits may be
used instead. This bit combination is denoted MSTI. If all four of the
bits for the IP packet ID, RTP marker bit, RTP sequence number and RTP
timestamp are set, this is a special case indicating an extended form of
the compressed RTP header will follow. That header will include an
additional byte containing the real values of the four bits plus the CC
count. The CSRC list, of length indicated by the CC count, will be
included just as it appears in the uncompressed RTP header.

The other fields of the RTP header (version, P bit, X bit, payload type
and SSRC identifier) are assumed to remain relatively constant. In par-
ticular, the SSRC identifier is defined to be constant for a given con-
text because it is one of the factors selecting the context. If any of
the other fields change, the uncompressed RTP header MUST sent as
described in Section 3.3.3.

The following diagram shows the compressed IP/UDP/RTP header with dotted
lines indicating fields that are conditionally present. The most signi-
ficant bit is numbered 0. Multi-byte fields are sent in network byte
order (most significant byte first). The delta fields are often a sin-
gle byte as shown but may be two or three bytes depending upon the delta
value as explained in Section 3.3.4.

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 12]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

 0 1 2 3 4 5 6 7
 +...............................+
 : msb of session context ID : (if 16-bit CID)
 +-------------------------------+
 | lsb of session context ID |
 +---+---+---+---+---+---+---+---+
 | M | S | T | I | link sequence |
 +---+---+---+---+---+---+---+---+
 : :
 + UDP checksum + (if nonzero in context)
 : :
 +...............................+
 : :
 + "RANDOM" fields + (if encapsulated)
 : :
 +...............................+
 : M'| S'| T'| I'| CC : (if MSTI = 1111)
 +...............................+
 : delta IPv4 ID : (if I or I' = 1)
 +...............................+
 : delta RTP sequence : (if S or S' = 1)
 +...............................+
 : delta RTP timestamp : (if T or T' = 1)
 +...............................+
 : :
 : CSRC list : (if MSTI = 1111
 : : and CC nonzero)
 : :
 +...............................+
 : :
 : RTP header extension : (if X set in context)
 : :
 : :
 +-------------------------------+
 | |
 | RTP data |
 / /
 / /
 | |
 +-------------------------------+
 : padding : (if P set in context)
 +...............................+

When more than one IPv4 header is present in the context as
initialized by the FULL_HEADER packet, then the IP ID fields of
encapsulating headers MUST be sent as absolute values as described in

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 13]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

[3]. These fields are identified as "RANDOM" fields. They are
inserted into the COMPRESSED_RTP packet in the same order as they
appear in the original headers, immediately following the UDP checksum
if present or the MSTI byte if not, as shown in the diagram. Only if
an IPv4 packet immediately precedes the UDP header will the IP ID of
that header be sent differentially, i.e., potentially with no bits if
the second difference is zero, or as a delta IPv4 ID field if not. If
there is not an IPv4 header immediately preceding the UDP header, then
the I bit MUST be 0 and no delta IPv4 ID field will be present.

3.3.3. COMPRESSED_UDP packet format

If there is a change in any of the fields of the RTP header that are
normally constant (such as the payload type field), then an uncompressed
RTP header MUST be sent. If the IP and UDP headers do not also require
updating, this RTP header MAY be carried in a COMPRESSED_UDP packet
rather than a FULL_HEADER packet. The COMPRESSED_UDP packet has the
same format as the COMPRESSED_RTP packet except that the M, S and T bits
are always 0 and the corresponding delta fields are never included:

 0 1 2 3 4 5 6 7
 +...............................+
 : msb of session context ID : (if 16-bit CID)
 +-------------------------------+
 | lsb of session context ID |
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | I | link sequence |
 +---+---+---+---+---+---+---+---+
 : :
 + UDP checksum + (if nonzero in context)
 : :
 +...............................+
 : :
 + "RANDOM" fields + (if encapsulated)
 : :
 +...............................+
 : delta IPv4 ID : (if I = 1)
 +-------------------------------+
 | UDP data |
 : (uncompressed RTP header) :

Note that this constitutes a form of IP/UDP header compression different
from COMPRESSED_NON_TCP packet type defined in [3]. The motivation is
to allow reaching the target of two bytes when UDP checksums are dis-
abled, as IPv4 allows. The protocol in [3] does not use differential
coding for UDP packets, so in the IPv4 case, two bytes of IP ID, and two
bytes of UDP checksum if nonzero, would always be transmitted in

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 14]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

addition to two bytes of compression prefix. For IPv6, the
COMPRESSED_NON_TCP packet type MAY be used instead.

3.3.4. Encoding of differences

The delta fields in the COMPRESSED_RTP and COMPRESSED_UDP packets are
encoded with a variable-length mapping for compactness of the more
commonly-used values. A default encoding is specified below, but it is
RECOMMENDED that implementations use a table-driven delta encoder and
decoder to allow negotiation of a table specific for each session if
appropriate, possibly even an optimal Huffman encoding. Encodings based
on sequential interpretation of the bit stream, of which this default
table and Huffman encoding are examples, allow a reasonable table size
and may result in an execution speed faster than a non-table-driven
implementation with explicit tests for ranges of values.

The default delta encoding is specified in the following table. This
encoding was designed to efficiently encode the small changes that may
occur in the IP ID and in RTP sequence number when packets are lost
upstream from the compressor, yet still handling most audio and video
deltas in two bytes. The column on the left is the decimal value to be
encoded, and the column on the right is the resulting sequence of bytes
shown in hexadecimal and in the order in which they are transmitted
(network byte order). The first and last values in each contiguous
range are shown, with ellipses in between:

 Decimal Hex

 -16384 C0 00 00
 : :
 -129 C0 3F 7F
 -128 80 00
 : :
 -1 80 7F
 0 00
 : :
 127 7F
 128 80 80
 : :
 16383 BF FF
 16384 C0 40 00
 : :
 4194303 FF FF FF

For positive values, a change of zero through 127 is represented
directly in one byte. If the most significant two bits of the byte are
10 or 11, this signals an extension to a two- or three-byte value,
respectively. The least significant six bits of the first byte are

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 15]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

combined, in decreasing order of significance, with the next one or two
bytes to form a 14- or 22- bit value.

Negative deltas may occur when packets are misordered or in the inten-
tionally out-of-order RTP timestamps on MPEG video [5]. These events
are less likely, so a smaller range of negative values is encoded using
otherwise redundant portions of the positive part of the table.

A change in the RTP timestamp value less than -16384 or greater than
4194303 forces the RTP header to be sent uncompressed using a
FULL_HEADER, COMPRESSED_NON_TCP or COMPRESSED_UDP packet type. The IP
ID and RTP sequence number fields are only 16 bits, so negative deltas
for those fields SHOULD be masked to 16 bits and then encoded (as large
positive 16-bit numbers).

3.3.5. Error Recovery

Whenever the 4-bit sequence number for a particular context increments
by other than 1, except when set by a FULL_HEADER or COMPRESSED_NON_TCP
packet, the decompressor MUST invalidate that context and send a
CONTEXT_STATE packet back to the compressor indicating that the context
has been invalidated. All packets for the invalid context MUST be dis-
carded until a FULL_HEADER or COMPRESSED_NON_TCP packet is received for
that context to re-establish consistent state (unless the "twice" algo-
rithm is used as described later in this section). Since multiple
compressed packets may arrive in the interim, the decompressor SHOULD
NOT retransmit the CONTEXT_STATE packet for every compressed packet
received, but instead SHOULD limit the rate of retransmission to avoid
flooding the reverse channel.

When an error occurs on the link, the link layer will usually discard
the packet that was damaged (if any), but may provide an indication of
the error. Some time may elapse before another packet is delivered for
the same context, and then that packet would have to be discarded by the
decompressor when it is observed to be out of sequence, resulting in at
least two packets lost. To allow faster recovery if the link does pro-
vide an explicit error indication, the decompressor MAY optionally send
an advisory CONTEXT_STATE packet listing the last valid sequence number
and generation number for one or more recently active contexts (not
necessarily all). For a given context, if the compressor has sent no
compressed packet with a higher sequence number, and if the generation
number matches the current generation, no corrective action is required.
Otherwise, the compressor MAY choose to mark the context invalid so that
the next packet is sent in FULL_HEADER or COMPRESSED_NON_TCP mode
(FULL_HEADER is required if the generation doesn't match). However,
note that if the link round-trip-time is large compared to the inter-
packet spacing, there may be several packets from multiple contexts in
flight across the link, increasing the probability that the sequence

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 16]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

numbers will already have advanced when the CONTEXT_STATE packet is
received by the compressor. The result could be that some contexts are
invalidated unnecessarily, causing extra bandwidth to be consumed.

The format of the CONTEXT_STATE packet is shown in the following
diagrams. The first byte is a type code to allow the CONTEXT_STATE
packet type to be shared by multiple compression schemes within the gen-
eral compression framework specified in [3]. The contents of the
remainder of the packet depends upon the compression scheme. For the
IP/UDP/RTP compression scheme specified here, the remainder of the
CONTEXT_STATE packet is structured as a list of blocks to allow the
state for multiple contexts to be indicated, preceded by a one-byte
count of the number of blocks.

Two type code values are used for the IP/UDP/RTP compression scheme. The
value 1 indicates that 8-bit session context IDs are being used:

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 = IP/UDP/RTP with 8-bit CID |
 +---+---+---+---+---+---+---+---+
 | context count |
 +---+---+---+---+---+---+---+---+
 +---+---+---+---+---+---+---+---+
 | session context ID |
 +---+---+---+---+---+---+---+---+
 | I | 0 | 0 | 0 | sequence |
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | generation |
 +---+---+---+---+---+---+---+---+
 ...
 +---+---+---+---+---+---+---+---+
 | session context ID |
 +---+---+---+---+---+---+---+---+
 | I | 0 | 0 | 0 | sequence |
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | generation |
 +---+---+---+---+---+---+---+---+

The value 2 indicates that 16-bit session context IDs are being used.
The session context ID is sent in network byte order (most significant
byte first):

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 17]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 2 = IP/UDP/RTP with 16-bit CID|
 +---+---+---+---+---+---+---+---+
 | context count |
 +---+---+---+---+---+---+---+---+
 +---+---+---+---+---+---+---+---+
 | |
 + session context ID +
 | |
 +---+---+---+---+---+---+---+---+
 | I | 0 | 0 | 0 | sequence |
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | generation |
 +---+---+---+---+---+---+---+---+
 ...
 +---+---+---+---+---+---+---+---+
 | |
 + session context ID +
 | |
 +---+---+---+---+---+---+---+---+
 | I | 0 | 0 | 0 | sequence |
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | generation |
 +---+---+---+---+---+---+---+---+

The bit labeled "I" is set to one for contexts that have been marked
invalid and require a FULL_HEADER of COMPRESSED_NON_TCP packet to be
transmitted. If the I bit is zero, the context state is advisory. The
I bit is set to zero to indicate advisory context state that MAY be sent
following a link error indication.

Since the CONTEXT_STATE packet itself may be lost, retransmission of one
or more blocks is allowed. It is expected that retransmission will be
triggered only by receipt of another packet, but if the line is near
idle, retransmission MAY be triggered by a relatively long timer (on the
order of 1 second).

If a CONTEXT_STATE block for a given context is retransmitted, it may
cross paths with the FULL_HEADER or COMPRESSED_NON_TCP packet intended
to refresh that context. In that case, the compressor MAY choose to
ignore the error indication.

In the case where UDP checksums are being transmitted, the decompressor
MAY attempt to use the "twice" algorithm described in section 10.1 of
[3]. In this algorithm, the delta is applied more than once on the
assumption that the delta may have been the same on the missing

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 18]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

packet(s) and the one subsequently received. Success is indicated by a
checksum match. For the scheme defined here, the difference in the 4-
bit sequence number tells number of times the delta must be applied.
Note, however, that there is a nontrivial risk of an incorrect positive
indication. It may be advisable to request a FULL_HEADER or
COMPRESSED_NON_TCP packet even if the "twice" algorithm succeeds.

Some errors may not be detected, for example if 16 packets are lost in a
row and the link level does not provide an error indication. In that
case, the decompressor will generate packets that are not valid. If UDP
checksums are being transmitted, the receiver will probably detect the
invalid packets and discard them, but the receiver does not have any
means to signal the decompressor. Therefore, it is RECOMMENDED that the
decompressor verify the UDP checksum periodically, perhaps one out of 16
packets. If an error is detected, the decompressor would invalidate the
context and signal the compressor with a CONTEXT_STATE packet.

3.4. Compression of RTCP Control Packets

By relying on the RTP convention that data is carried on an even port
number and the corresponding RTCP packets are carried on the next higher
(odd) port number, one could tailor separate compression schemes to be
applied to RTP and RTCP packets. For RTCP, the compression could apply
not only to the header but also the "data", that is, the contents of the
different packet types. The numbers in Sender Report (SR) and Receiver
Report (RR) RTCP packets would not compress well, but the text informa-
tion in the Source Description (SDES) packets could be compressed down
to a bit mask indicating each item that was present but compressed out
(for timing purposes on the SDES NOTE item and to allow the end system
to measure the average RTCP packet size for the interval calculation).

However, in the compression scheme defined here, no compression will be
done on the RTCP headers and "data" for several reasons (though compres-
sion SHOULD still be applied to the IP and UDP headers). Since the RTP
protocol specification suggests that the RTCP packet interval be scaled
so that the aggregate RTCP bandwidth used by all participants in a ses-
sion will be no more than 5% of the session bandwidth, there is not much
to be gained from RTCP compression. Compressing out the SDES items
would require a significant increase in the shared state that must be
stored for each context ID. And, in order to allow compression when
SDES information for several sources was sent through an RTP "mixer", it
would be necessary to maintain a separate RTCP session context for each
SSRC identifier. In a session with more than 255 participants, this
would cause perfect thrashing of the context cache even when only one
participant was sending data.

Even though RTCP is not compressed, the fraction of the total bandwidth
occupied by RTCP packets on the compressed link remains no more than 5%

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 19]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

in most cases, assuming that the RTCP packets are sent as COMPRESSED_UDP
packets. Given that the uncompressed RTCP traffic consumes no more than
5% of the total session bandwidth, then for a typical RTCP packet length
of 90 bytes, the portion of the compressed bandwidth used by RTCP will
be no more than 5% if the size of the payload in RTP data packets is at
least 108 bytes. If the size of the RTP data payload is smaller, the
fraction will increase, but is still less than 7% for a payload size of
37 bytes. For large data payloads, the compressed RTCP fraction is less
than the uncompressed RTCP fraction (for example, 4% at 1000 bytes).

3.5. Compression of non-RTP UDP Packets

As described earlier, the COMPRESSED_UDP packet MAY be used to compress
UDP packets that don't carry RTP. Whatever data follows the UDP header
is unlikely to have some constant values in the bits that correspond to
usually constant fields in the RTP header. In particular, the SSRC
field would likely change. Therefore, it is necessary to keep track of
the non-RTP UDP packet streams to avoid using up all the context slots
as the "SSRC field" changes (since that field is part of what identifies
a particular RTP context). Those streams may each be given a context,
but the encoder would set a flag in the context to indicate that the
changing SSRC field should be ignored and COMPRESSED_UDP packets should
always be sent instead of COMPRESSED_RTP packets.

4. Interaction With Segmentation

A segmentation scheme may be used in conjunction with RTP header
compression to allow small, real-time packets to interrupt large,
presumably non-real-time packets in order to reduce delay. It is
assumed that the large packets bypass the compressor and decompressor
since the interleaving would modify the sequencing of packets at the
decompressor and cause the appearance of errors. Header compression
should be less important for large packets since the overhead ratio is
smaller.

If some packets from an RTP session context are selected for segmenta-
tion (perhaps based on size) and some are not, there is a possibility of
re-ordering. This would reduce the compression efficiency because the
large packets would appear as lost packets in the sequence space. How-
ever, this should not cause more serious problems because the RTP
sequence numbers should be reconstructed correctly and will allow the
application to correct the ordering.

Link errors detected by the segmentation scheme using its own sequencing
information MAY be indicated to the compressor with an advisory
CONTEXT_STATE message just as for link errors detected by the link layer
itself.

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 Expires January 1999 [Page 20]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

The context ID byte is placed first in the COMPRESSED_RTP header so that
this byte MAY be shared with the segmentation layer if such sharing is
feasible and has been negotiated. Since the compressor may assign con-
text ID values arbitrarily, the value can be set to match the context
identifier from the segmentation layer.

5. Negotiating Compression

The use of IP/UDP/RTP compression over a particular link is a function
of the link-layer protocol. It is expected that such negotiation will
be defined separately for PPP [4], for example. The following items MAY
be negotiated:

 o The size of the context ID.
 o The maximum size of the stack of headers in the context.
 o A context-specific table for decoding of delta values.

6. Acknowledgments

Several people have contributed to the design of this compression scheme
and related problems. Scott Petrack initiated discussion of RTP header
compression in the AVT working group at Los Angeles in March, 1996.
Carsten Bormann has developed an overall architecture for compression in
combination with traffic control across a low-speed link, and made
several specific contributions to the scheme described here. David Oran
independently developed a note based on similar ideas, and suggested the
use of PPP Multilink protocol for segmentation. Mikael Degermark has
contributed advice on integration of this compression scheme with the
IPv6 compression framework.

7. References:

[1] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP:
 A Transport Protocol for real-time applications," RFC 1889.

[2] V. Jacobson, "TCP/IP Compression for Low-Speed Serial Links,"
RFC 1144.

[3] M. Degermark, B. Nordgren, and S. Pink, "Header Compression for
 IPv6," work in progress.

[4] W. Simpson, "The Point-to-Point Protocol (PPP)", RFC 1548.

[5] D. Hoffman, G. Fernando, V. Goyal, M. Civanlar, "RTP Payload
 Format for MPEG1/MPEG2 Video", RFC 2250.

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc1144
https://datatracker.ietf.org/doc/html/rfc1548
https://datatracker.ietf.org/doc/html/rfc2250

 Expires January 1999 [Page 21]

Internet Draft draft-ietf-avt-crtp-05.txt July 1998

8. Security Considerations

Because encryption eliminates the redundancy that this compression
scheme tries to exploit, there is some inducement to forego encryption
in order to achieve operation over a low-bandwidth link. However, for
those cases where encryption of data and not headers is satisfactory,
RTP does specify an alternative encryption method in which only the RTP
payload is encrypted and the headers are left in the clear. That would
allow compression to still be applied.

A malfunctioning or malicious compressor could cause the decompressor to
reconstitute packets that do not match the original packets but still
have valid IP, UDP and RTP headers and possibly even valid UDP check-
sums. Such corruption may be detected with end-to-end authentication
and integrity mechanisms which will not be affected by the compression.
Constant portions of authentication headers will be compressed as
described in [3].

No authentication is performed on the CONTEXT_STATE control packet sent
by this protocol. An attacker with access to the link between the
decompressor and compressor could inject false CONTEXT_STATE packets and
cause compression efficiency to be reduced, probably resulting in
congestion on the link. However, an attacker with access to the link
could also disrupt the traffic in many other ways.

A potential denial-of-service threat exists when using compression tech-
niques that have non-uniform receiver-end computational load. The
attacker can inject pathological datagrams into the stream which are
complex to decompress and cause the receiver to be overloaded and
degrading processing of other streams. However, this compression does
not exhibit any significant non-uniformity.

A security review of this protocol found no additional security con-
siderations.

9. Authors' Addresses

 Stephen L. Casner
 Cisco Systems, Inc.
 1072 Arastradero Road
 Palo Alto, CA 94304
 United States
 EMail: casner@cisco.com

 Van Jacobson
 MS 50A-3111
 Lawrence Berkeley National Laboratory
 Berkeley, CA 94720
 United States

https://datatracker.ietf.org/doc/html/draft-ietf-avt-crtp-05.txt

 EMail: van@ee.lbl.gov

 Expires January 1999 [Page 22]

