Audio/Video Transport Working	G. Hunt
Group	ВТ
Internet-Draft	A. Clark
Intended status: Standards Track	Telchemy
Expires: April 30, 2009	October 27, 2008

TOC

RTCP XR Report Block for Jitter Buffer Metric Reporting draft-ietf-avt-rtcp-xr-jb-00.txt

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 30, 2009.

Abstract

This document defines an RTCP XR Report Block that allows the reporting of Jitter Buffer metrics for a range of RTP applications.

Table of Contents

Introduction

- <u>1.1.</u> Jitter Buffer Metrics Block
- 1.2. RTCP and RTCP XR Reports
- 1.3. Performance Metrics Framework
- **1.4.** Applicability
- 2. Jitter Buffer Metrics Block

- 2.1. Report Block Structure
- 2.2. Definition of Fields in Jitter Buffer Metrics Block
- 3. SDP Signaling
- 4. IANA Considerations
- <u>5.</u> Security Considerations
- 6. Contributors
- 7. References
 - 7.1. Normative References
 - 7.2. Informative References
- § Authors' Addresses
- § Intellectual Property and Copyright Statements

1. Introduction

TOC

1.1. Jitter Buffer Metrics Block

TOC

This draft defines a new block type to augment those defined in [RFC3611] (Friedman, T., "RTP Control Protocol Extended Reports (RTCP XR)," November 2003.), for use in a range of RTP applications. The new block type provides information on jitter buffer configuration and performance.

The metric belongs to the class of transport-related terminal metrics defined in [MONARCH] (work in progress).

Instances of this Metrics Block refer by tag to the separate auxiliary Measurement Identity block [MEASIDENT] (Hunt, G., "RTCP XR Measurement Identifier Block," August 2008.) which contains information such as the SSRC of the measured stream, and RTP sequence numbers and time intervals indicating the span of the report.

1.2. RTCP and RTCP XR Reports

TOC

The use of RTCP for reporting is defined in [RFC3550] (Schulzrinne, H., "RTP: A Transport Protocol for Real-Time Applications," July 2003.).

[RFC3611] (Friedman, T., "RTP Control Protocol Extended Reports (RTCP XR)," November 2003.) defined an extensible structure for reporting using an RTCP Extended Report (XR). This draft defines a new Extended Report block that MUST be used as defined in [RFC3550] (Schulzrinne, H., "RTP: A Transport Protocol for Real-Time Applications," July 2003.)

1.3. Performance Metrics Framework

TOC

The Performance Metrics Framework [PMOLFRAME] (Clark, A., "Framework for Performance Metric Development," July 2008.) provides guidance on the definition and specification of performance metrics. Metrics described in this draft either reference external definitions or define metrics generally in accordance with the guidelines in [PMOLFRAME] (Clark, A., "Framework for Performance Metric Development," July 2008.).

1.4. Applicability

TOC

These metrics are applicable to a range of RTP applications.

2. Jitter Buffer Metrics Block

TOC

This block describes the configuration and operating parameters of the jitter buffer in the receiver of the RTP end system or RTP mixer which sends the report.

2.1. Report Block Structure

TOC

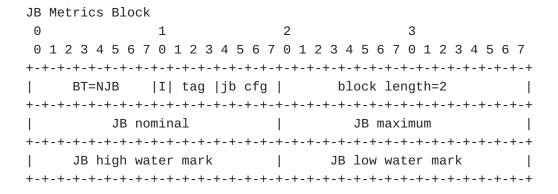


Figure 1: Report Block Structure

2.2. Definition of Fields in Jitter Buffer Metrics Block

TOC

block type (BT): 8 bits

A Jitter Buffer Metrics Report Block is identified by the constant NJB.

[Note to RFC Editor: please replace NJB with the IANA provided RTCP XR block type for this block.]
Interval Metric flag (I): 1 bit

This field is used to indicate whether the Jitter Buffer Metrics block is an Interval or a Cumulative report, that is, whether the reported values apply to the most recent measurement interval duration between successive metrics reports (I=1) (the Interval Duration) or to the accumulation period characteristic of cumulative measurements (I=0) (the Cumulative Duration). Numerical values for both these intervals are provided in the Measurement Identifier block referenced by the tag field below.

Measurement Identifier association (tag): 3 bits

This field is used to identify the Measurement Identifier block [MEASIDENT] (Hunt, G., "RTCP XR Measurement Identifier Block," August 2008.) which describes this measurement. The relevant Measurement Identifier block has the same tag value as the Jitter Buffer Metrics block. Note that there may be more than one Measurement Identifier block per RTCP packet.

Jitter Buffer Configuration (jb cfg): 4 bits

This field is used to identify the jitter buffer method in use at the receiver, according to the following code:

bits 014-017
 0 = Fixed jitter buffer
 1 = Adaptive jitter buffer

Other values reserved

block length: 16 bits

The length of this report block in 32-bit words, minus one. For the Jitter Buffer block, the block length is equal to 2.

jitter buffer nominal delay (JB nominal): 16 bits

This is the current nominal jitter buffer delay in milliseconds, which corresponds to the nominal jitter buffer delay for packets that arrive exactly on time. This parameter MUST be provided for both fixed and adaptive jitter buffer implementations.

If the measured value exceeds 0xFFFD, the value 0xFFFE SHOULD be reported to indicate an over-range measurement. If the measurement is unavailable, the value 0xFFFF SHOULD be reported.

jitter buffer maximum delay (JB maximum): 16 bits

This is the current maximum jitter buffer delay in milliseconds which corresponds to the earliest arriving packet that would not be discarded. In simple queue implementations this may correspond to the nominal size. In adaptive jitter buffer implementations, this value may dynamically. This parameter MUST be provided for both fixed and adaptive jitter buffer implementations.

If the measured value exceeds 0xFFFD, the value 0xFFFE SHOULD be reported to indicate an over-range measurement. If the measurement is unavailable, the value 0xFFFF SHOULD be reported.

jitter buffer high water mark (JB high water mark): 16 bits

This is the highest value of the jitter buffer nominal delay which occurred at any time during the reporting interval.

If the measured value exceeds 0xFFFD, the value 0xFFFE SHOULD be reported to indicate an over-range measurement. If the measurement is unavailable, the value 0xFFFF SHOULD be reported.

jitter buffer low water mark (JB low water mark): 16 bits

This is the lowest value of the jitter buffer nominal delay which occurred at any time during the reporting interval.

If the measured value exceeds 0xFFFD, the value 0xFFFE SHOULD be reported to indicate an over-range measurement. If the measurement is unavailable, the value 0xFFFF SHOULD be reported.

3. SDP Signaling

TOC

[RFC3611] (Friedman, T., "RTP Control Protocol Extended Reports (RTCP XR)," November 2003.) defines the use of SDP (Session Description Protocol) [RFC4566] (Handley, M., "SDP: Session Description Protocol," July 2006.) for signaling the use of XR blocks. XR blocks MAY be used without prior signaling.

This section augments the SDP [RFC4566] (Handley, M., "SDP: Session Description Protocol," July 2006.) attribute "rtcp-xr" defined in [RFC3611] (Friedman, T., "RTP Control Protocol Extended Reports (RTCP XR)," November 2003.) by providing an additional value of "xr-format" to signal the use of the report block defined in this document. rtcp-xr-attrib = "a=" "rtcp-xr" ":" [xr-format *(SP xr-format)] CRLF (defined in [RFC3611] (Friedman, T., "RTP Control Protocol Extended Reports (RTCP XR)," November 2003.))

xr-format = xr-format / xr-jb-block xr-jb-block = "xr-jb"

4. IANA Considerations

TOC

This document creates a new block type within the IANA "RTCP XR Block Type Registry" called the Jitter Buffer Metrics Block, and a new parameter xr-jb within the "RTCP XR SDP Parameters Registry".

5. Security Considerations

TOC

It is believed that this proposed RTCP XR report block introduces no new security considerations beyond those described in [RFC3611] (Friedman, T., "RTP Control Protocol Extended Reports (RTCP XR),"

November 2003.). This block does not provide per-packet statistics so the risk to confidentiality documented in Section 7, paragraph 3 of [RFC3611] (Friedman, T., "RTP Control Protocol Extended Reports (RTCP XR)," November 2003.) does not apply.

6. Contributors TOC

The authors gratefully acknowledge the comments and contributions made by Bruce Adams, Philip Arden, Amit Arora, Bob Biskner, Kevin Connor, Claus Dahm, Randy Ethier, Roni Even, Jim Frauenthal, Albert Higashi, Tom Hock, Shane Holthaus, Paul Jones, Rajesh Kumar, Keith Lantz, Mohamed Mostafa, Amy Pendleton, Colin Perkins, Mike Ramalho, Ravi Raviraj, Albrecht Schwarz, Tom Taylor, and Hideaki Yamada.

7. References TOC

7.1. Normative References

TOC

[MEASIDENT]	Hunt, G., "RTCP XR Measurement Identifier Block," ID draft-ietf-avt-rtcp-xr-measid-00, August 2008.
[RFC2119]	Bradner, S., " <u>Key words for use in RFCs to Indicate</u> <u>Requirement Levels</u> ," RFC 2119, BCP 14, March 1997.
[RFC3550]	Schulzrinne, H., "RTP: A Transport Protocol for Real- Time Applications," RFC 3550, July 2003.
[RFC3611]	Friedman, T., "RTP Control Protocol Extended Reports (RTCP XR)," RFC 3611, November 2003.
[RFC4566]	Handley, M., "SDP: Session Description Protocol," RFC 4566, July 2006.

7.2. Informative References

TOC

[MONARCH]	Hunt, G., "Monitoring Architectures for RTP," ID draft-hunt-avt-monarch-01, August 2008.	
[PMOLFRAME]	Clark, A., "Framework for Performance Metric Development," ID draft-ietf-pmol-metrics-framework-00, July 2008.	

Authors' Addresses

TOC

Geoff Hunt
ВТ
Orion 1 PP9
Adastral Park

	Martlesham Heath
	Ipswich, Suffolk IP4 2TH
	United Kingdom
Phone:	+44 1473 608325
Email:	geoff.hunt@bt.com
	Alan Clark
	Telchemy Incorporated
	2905 Premiere Parkway, Suite 280
	Duluth, GA 30097
	USA
Email:	alan.d.clark@telchemy.com

Full Copyright Statement

TOC

Copyright © The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this

standard. Please address the information to the IETF at $\underline{\text{ietf-ipr@ietf.org}}$.