
Internet Engineering Task Force Audio/Video Transport Working Group
Internet Draft Schulzrinne/Casner/Frederick/Jacobson
draft-ietf-avt-rtp-new-05.txt Columbia U./Cisco/Xerox/Cisco
October 21, 1999
Expires: April 21, 2000

RTP: A Transport Protocol for Real-Time Applications

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at

http://www.ietf.org/shadow.html.

Abstract

 This memorandum is a revision of RFC 1889 in preparation for
 advancement from Proposed Standard to Draft Standard status. Readers
 are encouraged to use the PostScript form of this draft to see where
 changes from RFC 1889 are marked by change bars.

 This memorandum describes RTP, the real-time transport protocol. RTP
 provides end-to-end network transport functions suitable for
 applications transmitting real-time data, such as audio, video or
 simulation data, over multicast or unicast network services. RTP does
 not address resource reservation and does not guarantee quality-of-
 service for real-time services. The data transport is augmented by a
 control protocol (RTCP) to allow monitoring of the data delivery in a
 manner scalable to large multicast networks, and to provide minimal
 control and identification functionality. RTP and RTCP are designed
 to be independent of the underlying transport and network layers. The

Schulzrinne/Casner/Frederick/Jacobson [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-avt-rtp-new-05.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc1889

Internet Draft RTP October 21, 1999

 protocol supports the use of RTP-level translators and mixers.

 This specification is a product of the Audio/Video Transport working
 group within the Internet Engineering Task Force. Comments are
 solicited and should be addressed to the working group's mailing list
 at rem-conf@es.net and/or the authors.

 Resolution of Open Issues

 [Note to the RFC Editor: This section is to be deleted when this
 draft is published as an RFC but is shown here for reference during
 the Last Call. The first paragraph of the Abstract is also to be
 deleted.]

 Readers are directed to Appendix B, Changes from RFC 1889, for a
 listing of the changes that have been made in this draft. The changes
 are marked with change bars in the PostScript form of this draft.

 The revisions in this draft are intended to be complete for Working
 Group last call; the open issues from previous drafts have been
 addressed:

 o A fudge factor has been added to the RTCP unconditional
 reconsideration algorithm to compensate for the fact that it
 settles to a steady state bandwidth that is below the desired
 level.

 o As agreed at the Chicago IETF, the conditional and hybrid
 reconsideration schemes have been removed in favor of
 unconditional reconsideration.

 o The SSRC sampling algorithm has been extracted to a separate
 draft as agreed at the Chicago IETF. That draft describes the
 "bin" mechanism that avoids a temporary underestimate in group
 size when the group size is decreasing.

 o The "reverse reconsideration" algorithm does not prevent the
 group size estimate from incorrectly dropping to zero for a
 short time when most participants of a large session leave at
 once but some remain. This has just been noted as only a
 secondary concern.

 o Scaling of the minimum RTCP interval inversely proportional
 to the session bandwidth parameter has been added, but only in
 the direction of smaller intervals for higher bandwidth.

https://datatracker.ietf.org/doc/html/rfc1889

Schulzrinne/Casner/Frederick/Jacobson [Page 2]

Internet Draft RTP October 21, 1999

 Scaling to longer intervals for low bandwidths would cause a
 problem because this is an optional step. Some participants
 might be timed out prematurely if they scaled to a longer
 interval while others kept the nominal 5 seconds. The benefit
 of scaling longer was not considered great in any case.

 o No change was specified for the jitter computation for media
 with several packets with the same timestamp. There is not a
 clear answer as to what should be done, or that any change
 would make a significant improvement.

 o As proposed without objection at the Los Angeles IETF,
 definition of additional SDES items such as PHOTO URL and
 NICKNAME will be deferred to subsequent registration through
 IANA since that method has been established. This is in the
 spirit of minimizing changes to the protocol in the transition
 from Proposed to Draft.

 o Nothing was added about allowing a translator to add its own
 random offsets to the sequence number and timestamp fields
 because it would likely cause more trouble than good.

1 Introduction

 This memorandum specifies the real-time transport protocol (RTP),
 which provides end-to-end delivery services for data with real-time
 characteristics, such as interactive audio and video. Those services
 include payload type identification, sequence numbering, timestamping
 and delivery monitoring. Applications typically run RTP on top of UDP
 to make use of its multiplexing and checksum services; both protocols
 contribute parts of the transport protocol functionality. However,
 RTP may be used with other suitable underlying network or transport
 protocols (see Section 10). RTP supports data transfer to multiple
 destinations using multicast distribution if provided by the
 underlying network.

 Note that RTP itself does not provide any mechanism to ensure timely
 delivery or provide other quality-of-service guarantees, but relies
 on lower-layer services to do so. It does not guarantee delivery or
 prevent out-of-order delivery, nor does it assume that the underlying
 network is reliable and delivers packets in sequence. The sequence
 numbers included in RTP allow the receiver to reconstruct the
 sender's packet sequence, but sequence numbers might also be used to
 determine the proper location of a packet, for example in video
 decoding, without necessarily decoding packets in sequence.

 While RTP is primarily designed to satisfy the needs of multi-
 participant multimedia conferences, it is not limited to that

Schulzrinne/Casner/Frederick/Jacobson [Page 3]

Internet Draft RTP October 21, 1999

 particular application. Storage of continuous data, interactive
 distributed simulation, active badge, and control and measurement
 applications may also find RTP applicable.

 This document defines RTP, consisting of two closely-linked parts:

 o the real-time transport protocol (RTP), to carry data that
 has real-time properties.

 o the RTP control protocol (RTCP), to monitor the quality of
 service and to convey information about the participants in an
 on-going session. The latter aspect of RTCP may be sufficient
 for "loosely controlled" sessions, i.e., where there is no
 explicit membership control and set-up, but it is not
 necessarily intended to support all of an application's
 control communication requirements. This functionality may be
 fully or partially subsumed by a separate session control
 protocol, which is beyond the scope of this document.

 RTP represents a new style of protocol following the principles of
 application level framing and integrated layer processing proposed by
 Clark and Tennenhouse [1]. That is, RTP is intended to be malleable
 to provide the information required by a particular application and
 will often be integrated into the application processing rather than
 being implemented as a separate layer. RTP is a protocol framework
 that is deliberately not complete. This document specifies those
 functions expected to be common across all the applications for which
 RTP would be appropriate. Unlike conventional protocols in which
 additional functions might be accommodated by making the protocol
 more general or by adding an option mechanism that would require
 parsing, RTP is intended to be tailored through modifications and/or
 additions to the headers as needed. Examples are given in Sections
 5.3 and 6.4.3.

 Therefore, in addition to this document, a complete specification of
 RTP for a particular application will require one or more companion
 documents (see Section 12):

 o a profile specification document, which defines a set of
 payload type codes and their mapping to payload formats (e.g.,
 media encodings). A profile may also define extensions or
 modifications to RTP that are specific to a particular class
 of applications. Typically an application will operate under
 only one profile. A profile for audio and video data may be
 found in the companion RFC 1890 (updated by Internet-Draft

draft-ietf-avt-profile-new [2]).

 o payload format specification documents, which define how a

https://datatracker.ietf.org/doc/html/rfc1890
https://datatracker.ietf.org/doc/html/draft-ietf-avt-profile-new

Schulzrinne/Casner/Frederick/Jacobson [Page 4]

Internet Draft RTP October 21, 1999

 particular payload, such as an audio or video encoding, is to
 be carried in RTP.

 A discussion of real-time services and algorithms for their
 implementation as well as background discussion on some of the RTP
 design decisions can be found in [3].

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [4] and
 indicate requirement levels for compliant RTP implementations.

2 RTP Use Scenarios

 The following sections describe some aspects of the use of RTP. The
 examples were chosen to illustrate the basic operation of
 applications using RTP, not to limit what RTP may be used for. In
 these examples, RTP is carried on top of IP and UDP, and follows the
 conventions established by the profile for audio and video specified
 in the companion RFC 1890 (updated by Internet-Draft draft-ietf-avt-

profile-new).

2.1 Simple Multicast Audio Conference

 A working group of the IETF meets to discuss the latest protocol
 draft, using the IP multicast services of the Internet for voice
 communications. Through some allocation mechanism the working group
 chair obtains a multicast group address and pair of ports. One port
 is used for audio data, and the other is used for control (RTCP)
 packets. This address and port information is distributed to the
 intended participants. If privacy is desired, the data and control
 packets may be encrypted as specified in Section 9.1, in which case
 an encryption key must also be generated and distributed. The exact
 details of these allocation and distribution mechanisms are beyond
 the scope of RTP.

 The audio conferencing application used by each conference
 participant sends audio data in small chunks of, say, 20 ms duration.
 Each chunk of audio data is preceded by an RTP header; RTP header and
 data are in turn contained in a UDP packet. The RTP header indicates
 what type of audio encoding (such as PCM, ADPCM or LPC) is contained
 in each packet so that senders can change the encoding during a
 conference, for example, to accommodate a new participant that is
 connected through a low-bandwidth link or react to indications of
 network congestion.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1890
https://datatracker.ietf.org/doc/html/draft-ietf-avt-profile-new
https://datatracker.ietf.org/doc/html/draft-ietf-avt-profile-new

Schulzrinne/Casner/Frederick/Jacobson [Page 5]

Internet Draft RTP October 21, 1999

 The Internet, like other packet networks, occasionally loses and
 reorders packets and delays them by variable amounts of time. To cope
 with these impairments, the RTP header contains timing information
 and a sequence number that allow the receivers to reconstruct the
 timing produced by the source, so that in this example, chunks of
 audio are contiguously played out the speaker every 20 ms. This
 timing reconstruction is performed separately for each source of RTP
 packets in the conference. The sequence number can also be used by
 the receiver to estimate how many packets are being lost.

 Since members of the working group join and leave during the
 conference, it is useful to know who is participating at any moment
 and how well they are receiving the audio data. For that purpose,
 each instance of the audio application in the conference periodically
 multicasts a reception report plus the name of its user on the RTCP
 (control) port. The reception report indicates how well the current
 speaker is being received and may be used to control adaptive
 encodings. In addition to the user name, other identifying
 information may also be included subject to control bandwidth limits.
 A site sends the RTCP BYE packet (Section 6.6) when it leaves the
 conference.

2.2 Audio and Video Conference

 If both audio and video media are used in a conference, they are
 transmitted as separate RTP sessions RTCP packets are transmitted for
 each medium using two different UDP port pairs and/or multicast
 addresses. There is no direct coupling at the RTP level between the
 audio and video sessions, except that a user participating in both
 sessions should use the same distinguished (canonical) name in the
 RTCP packets for both so that the sessions can be associated.

 One motivation for this separation is to allow some participants in
 the conference to receive only one medium if they choose. Further
 explanation is given in Section 5.2. Despite the separation,
 synchronized playback of a source's audio and video can be achieved
 using timing information carried in the RTCP packets for both
 sessions.

2.3 Mixers and Translators

 So far, we have assumed that all sites want to receive media data in
 the same format. However, this may not always be appropriate.
 Consider the case where participants in one area are connected
 through a low-speed link to the majority of the conference
 participants who enjoy high-speed network access. Instead of forcing
 everyone to use a lower-bandwidth, reduced-quality audio encoding, an
 RTP-level relay called a mixer may be placed near the low-bandwidth

Schulzrinne/Casner/Frederick/Jacobson [Page 6]

Internet Draft RTP October 21, 1999

 area. This mixer resynchronizes incoming audio packets to reconstruct
 the constant 20 ms spacing generated by the sender, mixes these
 reconstructed audio streams into a single stream, translates the
 audio encoding to a lower-bandwidth one and forwards the lower-
 bandwidth packet stream across the low-speed link. These packets
 might be unicast to a single recipient or multicast on a different
 address to multiple recipients. The RTP header includes a means for
 mixers to identify the sources that contributed to a mixed packet so
 that correct talker indication can be provided at the receivers.

 Some of the intended participants in the audio conference may be
 connected with high bandwidth links but might not be directly
 reachable via IP multicast. For example, they might be behind an
 application-level firewall that will not let any IP packets pass. For
 these sites, mixing may not be necessary, in which case another type
 of RTP-level relay called a translator may be used. Two translators
 are installed, one on either side of the firewall, with the outside
 one funneling all multicast packets received through a secure
 connection to the translator inside the firewall. The translator
 inside the firewall sends them again as multicast packets to a
 multicast group restricted to the site's internal network.

 Mixers and translators may be designed for a variety of purposes. An
 example is a video mixer that scales the images of individual people
 in separate video streams and composites them into one video stream
 to simulate a group scene. Other examples of translation include the
 connection of a group of hosts speaking only IP/UDP to a group of
 hosts that understand only ST-II, or the packet-by-packet encoding
 translation of video streams from individual sources without
 resynchronization or mixing. Details of the operation of mixers and
 translators are given in Section 7.

2.4 Layered Encodings

 Multimedia applications should be able to adjust the transmission
 rate to match the capacity of the receiver or to adapt to network
 congestion. Many implementations place the responsibility of rate-
 adaptivity at the source. This does not work well with multicast
 transmission because of the conflicting bandwidth requirements of
 heterogeneous receivers. The result is often a least-common
 denominator scenario, where the smallest pipe in the network mesh
 dictates the quality and fidelity of the overall live multimedia
 "broadcast".

 Instead, responsibility for rate-adaptation can be placed at the
 receivers by combining a layered encoding with a layered transmission
 system. In the context of RTP over IP multicast, the source can
 stripe the progressive layers of a hierarchically represented signal

Schulzrinne/Casner/Frederick/Jacobson [Page 7]

Internet Draft RTP October 21, 1999

 across multiple RTP sessions each carried on its own multicast group.
 Receivers can then adapt to network heterogeneity and control their
 reception bandwidth by joining only the appropriate subset of the
 multicast groups.

 Details of the use of RTP with layered encodings are given in
 Sections 6.3.9, 8.3 and 10.

3 Definitions

 RTP payload: The data transported by RTP in a packet, for
 example audio samples or compressed video data. The payload
 format and interpretation are beyond the scope of this
 document.

 RTP packet: A data packet consisting of the fixed RTP header, a
 possibly empty list of contributing sources (see below),
 and the payload data. Some underlying protocols may require
 an encapsulation of the RTP packet to be defined. Typically
 one packet of the underlying protocol contains a single RTP
 packet, but several RTP packets MAY be contained if
 permitted by the encapsulation method (see Section 10).

 RTCP packet: A control packet consisting of a fixed header part
 similar to that of RTP data packets, followed by structured
 elements that vary depending upon the RTCP packet type. The
 formats are defined in Section 6. Typically, multiple RTCP
 packets are sent together as a compound RTCP packet in a
 single packet of the underlying protocol; this is enabled
 by the length field in the fixed header of each RTCP
 packet.

 Port: The "abstraction that transport protocols use to
 distinguish among multiple destinations within a given host
 computer. TCP/IP protocols identify ports using small
 positive integers." [5] The transport selectors (TSEL) used
 by the OSI transport layer are equivalent to ports. RTP
 depends upon the lower-layer protocol to provide some
 mechanism such as ports to multiplex the RTP and RTCP
 packets of a session.

 Transport address: The combination of a network address and port
 that identifies a transport-level endpoint, for example an
 IP address and a UDP port. Packets are transmitted from a
 source transport address to a destination transport
 address.

 RTP media type: An RTP media type is the collection of payload

Schulzrinne/Casner/Frederick/Jacobson [Page 8]

Internet Draft RTP October 21, 1999

 types which can be carried within a single RTP session. The
 RTP Profile assigns RTP media types to RTP payload types.

 RTP session: The association among a set of participants
 communicating with RTP. For each participant, the session
 is defined by a particular pair of destination transport
 addresses (one network address plus a port pair for RTP and
 RTCP). The destination transport address pair may be common
 for all participants, as in the case of IP multicast, or
 may be different for each, as in the case of individual
 unicast network addresses and port pairs. In a multimedia
 session, each medium is carried in a separate RTP session
 with its own RTCP packets. The multiple RTP sessions are
 distinguished by different port number pairs and/or
 different multicast addresses.

 Synchronization source (SSRC): The source of a stream of RTP
 packets, identified by a 32-bit numeric SSRC identifier
 carried in the RTP header so as not to be dependent upon
 the network address. All packets from a synchronization
 source form part of the same timing and sequence number
 space, so a receiver groups packets by synchronization
 source for playback. Examples of synchronization sources
 include the sender of a stream of packets derived from a
 signal source such as a microphone or a camera, or an RTP
 mixer (see below). A synchronization source may change its
 data format, e.g., audio encoding, over time. The SSRC
 identifier is a randomly chosen value meant to be globally
 unique within a particular RTP session (see Section 8). A
 participant need not use the same SSRC identifier for all
 the RTP sessions in a multimedia session; the binding of
 the SSRC identifiers is provided through RTCP (see Section

6.5.1). If a participant generates multiple streams in one
 RTP session, for example from separate video cameras, each
 MUST be identified as a different SSRC.

 Contributing source (CSRC): A source of a stream of RTP packets
 that has contributed to the combined stream produced by an
 RTP mixer (see below). The mixer inserts a list of the SSRC
 identifiers of the sources that contributed to the
 generation of a particular packet into the RTP header of
 that packet. This list is called the CSRC list. An example
 application is audio conferencing where a mixer indicates
 all the talkers whose speech was combined to produce the
 outgoing packet, allowing the receiver to indicate the
 current talker, even though all the audio packets contain
 the same SSRC identifier (that of the mixer).

Schulzrinne/Casner/Frederick/Jacobson [Page 9]

Internet Draft RTP October 21, 1999

 End system: An application that generates the content to be sent
 in RTP packets and/or consumes the content of received RTP
 packets. An end system can act as one or more
 synchronization sources in a particular RTP session, but
 typically only one.

 Mixer: An intermediate system that receives RTP packets from one
 or more sources, possibly changes the data format, combines
 the packets in some manner and then forwards a new RTP
 packet. Since the timing among multiple input sources will
 not generally be synchronized, the mixer will make timing
 adjustments among the streams and generate its own timing
 for the combined stream. Thus, all data packets originating
 from a mixer will be identified as having the mixer as
 their synchronization source.

 Translator: An intermediate system that forwards RTP packets
 with their synchronization source identifier intact.
 Examples of translators include devices that convert
 encodings without mixing, replicators from multicast to
 unicast, and application-level filters in firewalls.

 Monitor: An application that receives RTCP packets sent by
 participants in an RTP session, in particular the reception
 reports, and estimates the current quality of service for
 distribution monitoring, fault diagnosis and long-term
 statistics. The monitor function is likely to be built into
 the application(s) participating in the session, but may
 also be a separate application that does not otherwise
 participate and does not send or receive the RTP data
 packets (since they are on a separate port). These are
 called third-party monitors. It is also acceptable for a
 third-party monitor to receive the RTP data packets but not
 send RTCP packets or otherwise be counted in the session.

 Non-RTP means: Protocols and mechanisms that may be needed in
 addition to RTP to provide a usable service. In particular,
 for multimedia conferences, a control protocol may
 distribute multicast addresses and keys for encryption,
 negotiate the encryption algorithm to be used, and define
 dynamic mappings between RTP payload type values and the
 payload formats they represent for formats that do not have
 a predefined payload type value. Examples of such protocols
 include the Session Initiation Protocol (SIP) (RFC 2543
 [6]), H.323 [7] and applications using SDP (RFC 2327 [8]),
 such as RTSP (RFC 2326 [9]). For simple applications,
 electronic mail or a conference database may also be used.
 The specification of such protocols and mechanisms is

https://datatracker.ietf.org/doc/html/rfc2543
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc2326

Schulzrinne/Casner/Frederick/Jacobson [Page 10]

Internet Draft RTP October 21, 1999

 outside the scope of this document.

4 Byte Order, Alignment, and Time Format

 All integer fields are carried in network byte order, that is, most
 significant byte (octet) first. This byte order is commonly known as
 big-endian. The transmission order is described in detail in [10].
 Unless otherwise noted, numeric constants are in decimal (base 10).

 All header data is aligned to its natural length, i.e., 16-bit fields
 are aligned on even offsets, 32-bit fields are aligned at offsets
 divisible by four, etc. Octets designated as padding have the value
 zero.

 Wallclock time (absolute date and time) is represented using the
 timestamp format of the Network Time Protocol (NTP), which is in
 seconds relative to 0h UTC on 1 January 1900 [11]. The full
 resolution NTP timestamp is a 64-bit unsigned fixed-point number with
 the integer part in the first 32 bits and the fractional part in the
 last 32 bits. In some fields where a more compact representation is
 appropriate, only the middle 32 bits are used; that is, the low 16
 bits of the integer part and the high 16 bits of the fractional part.
 The high 16 bits of the integer part must be determined
 independently.

 An implementation is not required to run the Network Time Protocol in
 order to use RTP. Other time sources, or none at all, may be used
 (see the description of the NTP timestamp field in Section 6.4.1).
 However, running NTP may be useful for synchronizing streams
 transmitted from separate hosts.

 The NTP timestamp will wrap around to zero some time in the year
 2036, but for RTP purposes, only differences between pairs of NTP
 timestamps are used. So long as the pairs of timestamps can be
 assumed to be within 68 years of each other, using modulo arithmetic
 for subtractions and comparisons makes the wraparound irrelevant.

5 RTP Data Transfer Protocol

5.1 RTP Fixed Header Fields

 The RTP header has the following format:

Schulzrinne/Casner/Frederick/Jacobson [Page 11]

Internet Draft RTP October 21, 1999

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P|X| CC |M| PT | sequence number |
 +-+
 | timestamp |
 +-+
 | synchronization source (SSRC) identifier |
 +=+
 | contributing source (CSRC) identifiers |
 | |
 +-+

 The first twelve octets are present in every RTP packet, while the
 list of CSRC identifiers is present only when inserted by a mixer.
 The fields have the following meaning:

 version (V): 2 bits
 This field identifies the version of RTP. The version
 defined by this specification is two (2). (The value 1 is
 used by the first draft version of RTP and the value 0 is
 used by the protocol initially implemented in the "vat"
 audio tool.)

 padding (P): 1 bit
 If the padding bit is set, the packet contains one or more
 additional padding octets at the end which are not part of
 the payload. The last octet of the padding contains a count
 of how many padding octets should be ignored, including
 itself. Padding may be needed by some encryption
 algorithms with fixed block sizes or for carrying several
 RTP packets in a lower-layer protocol data unit.

 extension (X): 1 bit
 If the extension bit is set, the fixed header MUST be
 followed by exactly one header extension, with a format
 defined in Section 5.3.1.

 CSRC count (CC): 4 bits
 The CSRC count contains the number of CSRC identifiers that
 follow the fixed header.

 marker (M): 1 bit
 The interpretation of the marker is defined by a profile.
 It is intended to allow significant events such as frame
 boundaries to be marked in the packet stream. A profile MAY
 define additional marker bits or specify that there is no

Schulzrinne/Casner/Frederick/Jacobson [Page 12]

Internet Draft RTP October 21, 1999

 marker bit by changing the number of bits in the payload
 type field (see Section 5.3).

 payload type (PT): 7 bits
 This field identifies the format of the RTP payload and
 determines its interpretation by the application. A profile
 MAY specify a default static mapping of payload type codes
 to payload formats. Additional payload type codes MAY be
 defined dynamically through non-RTP means (see Section 3).
 A set of default mappings for audio and video is specified
 in the companion RFC 1890 (updated by Internet-Draft

draft-ietf-avt-profile-new [2]). An RTP source MAY change
 the payload type during a session, but this field SHOULD
 NOT be used for multiplexing separate media streams (see

Section 5.2).

 A receiver MUST ignore packets with payload types that it
 does not understand.

 sequence number: 16 bits
 The sequence number increments by one for each RTP data
 packet sent, and may be used by the receiver to detect
 packet loss and to restore packet sequence. The initial
 value of the sequence number SHOULD be random
 (unpredictable) to make known-plaintext attacks on
 encryption more difficult, even if the source itself does
 not encrypt according to the method in Section 9.1, because
 the packets may flow through a translator that does.
 Techniques for choosing unpredictable numbers are discussed
 in [12].

 timestamp: 32 bits
 The timestamp reflects the sampling instant of the first
 octet in the RTP data packet. The sampling instant MUST be
 derived from a clock that increments monotonically and
 linearly in time to allow synchronization and jitter
 calculations (see Section 6.4.1). The resolution of the
 clock MUST be sufficient for the desired synchronization
 accuracy and for measuring packet arrival jitter (one tick
 per video frame is typically not sufficient). The clock
 frequency is dependent on the format of data carried as
 payload and is specified statically in the profile or
 payload format specification that defines the format, or
 MAY be specified dynamically for payload formats defined
 through non-RTP means. If RTP packets are generated
 periodically, the nominal sampling instant as determined
 from the sampling clock is to be used, not a reading of the
 system clock. As an example, for fixed-rate audio the

https://datatracker.ietf.org/doc/html/rfc1890
https://datatracker.ietf.org/doc/html/draft-ietf-avt-profile-new

Schulzrinne/Casner/Frederick/Jacobson [Page 13]

Internet Draft RTP October 21, 1999

 timestamp clock would likely increment by one for each
 sampling period. If an audio application reads blocks
 covering 160 sampling periods from the input device, the
 timestamp would be increased by 160 for each such block,
 regardless of whether the block is transmitted in a packet
 or dropped as silent.

 The initial value of the timestamp SHOULD be random, as for
 the sequence number. Several consecutive RTP packets will
 have equal timestamps if they are (logically) generated at
 once, e.g., belong to the same video frame. Consecutive RTP
 packets MAY contain timestamps that are not monotonic if
 the data is not transmitted in the order it was sampled, as
 in the case of MPEG interpolated video frames. (The
 sequence numbers of the packets as transmitted will still
 be monotonic.)

 SSRC: 32 bits
 The SSRC field identifies the synchronization source. This
 identifier SHOULD be chosen randomly, with the intent that
 no two synchronization sources within the same RTP session
 will have the same SSRC identifier. An example algorithm
 for generating a random identifier is presented in Appendix

A.6. Although the probability of multiple sources choosing
 the same identifier is low, all RTP implementations must be
 prepared to detect and resolve collisions. Section 8
 describes the probability of collision along with a
 mechanism for resolving collisions and detecting RTP-level
 forwarding loops based on the uniqueness of the SSRC
 identifier. If a source changes its source transport
 address, it must also choose a new SSRC identifier to avoid
 being interpreted as a looped source (see Section 8.2).

 CSRC list: 0 to 15 items, 32 bits each
 The CSRC list identifies the contributing sources for the
 payload contained in this packet. The number of identifiers
 is given by the CC field. If there are more than 15
 contributing sources, only 15 can be identified. CSRC
 identifiers are inserted by mixers (see Section 7.1), using
 the SSRC identifiers of contributing sources. For example,
 for audio packets the SSRC identifiers of all sources that
 were mixed together to create a packet are listed, allowing
 correct talker indication at the receiver.

5.2 Multiplexing RTP Sessions

 For efficient protocol processing, the number of multiplexing points
 should be minimized, as described in the integrated layer processing

Schulzrinne/Casner/Frederick/Jacobson [Page 14]

Internet Draft RTP October 21, 1999

 design principle [1]. In RTP, multiplexing is provided by the
 destination transport address (network address and port number) which
 define an RTP session. For example, in a teleconference composed of
 audio and video media encoded separately, each medium SHOULD be
 carried in a separate RTP session with its own destination transport
 address.

 Separate audio and video streams SHOULD NOT be carried in a single
 RTP session and demultiplexed based on the payload type or SSRC
 fields. Interleaving packets with different RTP media types but using
 the same SSRC would introduce several problems:

 1. If, say, two audio streams shared the same RTP session and
 the same SSRC value, and one were to change encodings and
 thus acquire a different RTP payload type, there would be
 no general way of identifying which stream had changed
 encodings.

 2. An SSRC is defined to identify a single timing and sequence
 number space. Interleaving multiple payload types would
 require different timing spaces if the media clock rates
 differ and would require different sequence number spaces
 to tell which payload type suffered packet loss.

 3. The RTCP sender and receiver reports (see Section 6.4) can
 only describe one timing and sequence number space per SSRC
 and do not carry a payload type field.

 4. An RTP mixer would not be able to combine interleaved
 streams of incompatible media into one stream.

 5. Carrying multiple media in one RTP session precludes: the
 use of different network paths or network resource
 allocations if appropriate; reception of a subset of the
 media if desired, for example just audio if video would
 exceed the available bandwidth; and receiver
 implementations that use separate processes for the
 different media, whereas using separate RTP sessions
 permits either single- or multiple-process implementations.

 Using a different SSRC for each medium but sending them in the same
 RTP session would avoid the first three problems but not the last
 two.

5.3 Profile-Specific Modifications to the RTP Header

 The existing RTP data packet header is believed to be complete for
 the set of functions required in common across all the application

Schulzrinne/Casner/Frederick/Jacobson [Page 15]

Internet Draft RTP October 21, 1999

 classes that RTP might support. However, in keeping with the ALF
 design principle, the header MAY be tailored through modifications or
 additions defined in a profile specification while still allowing
 profile-independent monitoring and recording tools to function.

 o The marker bit and payload type field carry profile-specific
 information, but they are allocated in the fixed header since
 many applications are expected to need them and might
 otherwise have to add another 32-bit word just to hold them.
 The octet containing these fields MAY be redefined by a
 profile to suit different requirements, for example with a
 more or fewer marker bits. If there are any marker bits, one
 SHOULD be located in the most significant bit of the octet
 since profile-independent monitors may be able to observe a
 correlation between packet loss patterns and the marker bit.

 o Additional information that is required for a particular
 payload format, such as a video encoding, SHOULD be carried in
 the payload section of the packet. This might be in a header
 that is always present at the start of the payload section, or
 might be indicated by a reserved value in the data pattern.

 o If a particular class of applications needs additional
 functionality independent of payload format, the profile under
 which those applications operate SHOULD define additional
 fixed fields to follow immediately after the SSRC field of the
 existing fixed header. Those applications will be able to
 quickly and directly access the additional fields while
 profile-independent monitors or recorders can still process
 the RTP packets by interpreting only the first twelve octets.

 If it turns out that additional functionality is needed in common
 across all profiles, then a new version of RTP should be defined to
 make a permanent change to the fixed header.

5.3.1 RTP Header Extension

 An extension mechanism is provided to allow individual
 implementations to experiment with new payload-format-independent
 functions that require additional information to be carried in the
 RTP data packet header. This mechanism is designed so that the header
 extension may be ignored by other interoperating implementations that
 have not been extended.

 Note that this header extension is intended only for limited use.
 Most potential uses of this mechanism would be better done another
 way, using the methods described in the previous section. For
 example, a profile-specific extension to the fixed header is less

Schulzrinne/Casner/Frederick/Jacobson [Page 16]

Internet Draft RTP October 21, 1999

 expensive to process because it is not conditional nor in a variable
 location. Additional information required for a particular payload
 format SHOULD NOT use this header extension, but SHOULD be carried in
 the payload section of the packet.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | defined by profile | length |
 +-+
 | header extension |
 | |

 If the X bit in the RTP header is one, a variable-length header
 extension MUST be appended to the RTP header, following the CSRC list
 if present. The header extension contains a 16-bit length field that
 counts the number of 32-bit words in the extension, excluding the
 four-octet extension header (therefore zero is a valid length). Only
 a single extension can be appended to the RTP data header. To allow
 multiple interoperating implementations to each experiment
 independently with different header extensions, or to allow a
 particular implementation to experiment with more than one type of
 header extension, the first 16 bits of the header extension are left
 open for distinguishing identifiers or parameters. The format of
 these 16 bits is to be defined by the profile specification under
 which the implementations are operating. This RTP specification does
 not define any header extensions itself.

6 RTP Control Protocol -- RTCP

 The RTP control protocol (RTCP) is based on the periodic transmission
 of control packets to all participants in the session, using the same
 distribution mechanism as the data packets. The underlying protocol
 MUST provide multiplexing of the data and control packets, for
 example using separate port numbers with UDP. RTCP performs four
 functions:

 1. The primary function is to provide feedback on the quality
 of the data distribution. This is an integral part of the
 RTP's role as a transport protocol and is related to the
 flow and congestion control functions of other transport
 protocols. The feedback may be directly useful for control
 of adaptive encodings [13,14], but experiments with IP
 multicasting have shown that it is also critical to get
 feedback from the receivers to diagnose faults in the
 distribution. Sending reception feedback reports to all

Schulzrinne/Casner/Frederick/Jacobson [Page 17]

Internet Draft RTP October 21, 1999

 participants allows one who is observing problems to
 evaluate whether those problems are local or global. With a
 distribution mechanism like IP multicast, it is also
 possible for an entity such as a network service provider
 who is not otherwise involved in the session to receive the
 feedback information and act as a third-party monitor to
 diagnose network problems. This feedback function is
 performed by the RTCP sender and receiver reports,
 described below in Section 6.4.

 2. RTCP carries a persistent transport-level identifier for an
 RTP source called the canonical name or CNAME, Section

6.5.1. Since the SSRC identifier may change if a conflict
 is discovered or a program is restarted, receivers require
 the CNAME to keep track of each participant. Receivers may
 also require the CNAME to associate multiple data streams
 from a given participant in a set of related RTP sessions,
 for example to synchronize audio and video. Inter-media
 synchronization also requires the NTP and RTP timestamps
 included in RTCP packets by data senders.

 3. The first two functions require that all participants send
 RTCP packets, therefore the rate must be controlled in
 order for RTP to scale up to a large number of
 participants. By having each participant send its control
 packets to all the others, each can independently observe
 the number of participants. This number is used to
 calculate the rate at which the packets are sent, as
 explained in Section 6.2.

 4. A fourth, OPTIONAL function is to convey minimal session
 control information, for example participant identification
 to be displayed in the user interface. This is most likely
 to be useful in "loosely controlled" sessions where
 participants enter and leave without membership control or
 parameter negotiation. RTCP serves as a convenient channel
 to reach all the participants, but it is not necessarily
 expected to support all the control communication
 requirements of an application. A higher-level session
 control protocol, which is beyond the scope of this
 document, may be needed.

 Functions 1-3 SHOULD be used in all environments, but particularly in
 the IP multicast environment. RTP application designers SHOULD avoid
 mechanisms that can only work in unicast mode and will not scale to
 larger numbers. Transmission of RTCP MAY be controlled separately for
 senders and receivers, as described in Section 6.2, for cases such as
 unidirectional links where feedback from receivers is not possible.

Schulzrinne/Casner/Frederick/Jacobson [Page 18]

Internet Draft RTP October 21, 1999

6.1 RTCP Packet Format

 This specification defines several RTCP packet types to carry a
 variety of control information:

 SR: Sender report, for transmission and reception statistics
 from participants that are active senders

 RR: Receiver report, for reception statistics from participants
 that are not active senders and in combination with SR for
 active senders reporting on more than 31 sources

 SDES: Source description items, including CNAME

 BYE: Indicates end of participation

 APP: Application specific functions

 Each RTCP packet begins with a fixed part similar to that of RTP data
 packets, followed by structured elements that MAY be of variable
 length according to the packet type but MUST end on a 32-bit
 boundary. The alignment requirement and a length field in the fixed
 part of each packet are included to make RTCP packets "stackable".
 Multiple RTCP packets can be concatenated without any intervening
 separators to form a compound RTCP packet that is sent in a single
 packet of the lower layer protocol, for example UDP. There is no
 explicit count of individual RTCP packets in the compound packet
 since the lower layer protocols are expected to provide an overall
 length to determine the end of the compound packet.

 Each individual RTCP packet in the compound packet may be processed
 independently with no requirements upon the order or combination of
 packets. However, in order to perform the functions of the protocol,
 the following constraints are imposed:

 o Reception statistics (in SR or RR) should be sent as often as
 bandwidth constraints will allow to maximize the resolution of
 the statistics, therefore each periodically transmitted
 compound RTCP packet MUST include a report packet.

 o New receivers need to receive the CNAME for a source as soon
 as possible to identify the source and to begin associating
 media for purposes such as lip-sync, so each compound RTCP
 packet MUST also include the SDES CNAME.

 o The number of packet types that may appear first in the
 compound packet needs to be limited to increase the number of
 constant bits in the first word and the probability of

Schulzrinne/Casner/Frederick/Jacobson [Page 19]

Internet Draft RTP October 21, 1999

 successfully validating RTCP packets against misaddressed RTP
 data packets or other unrelated packets.

 Thus, all RTCP packets MUST be sent in a compound packet of at least
 two individual packets, with the following format:

 Encryption prefix: If and only if the compound packet is to be
 encrypted according to the method in Section 9.1, it MUST
 be prefixed by a random 32-bit quantity redrawn for every
 compound packet transmitted. If padding is required for
 the encryption, it MUST be added to the last packet of the
 compound packet.

 SR or RR: The first RTCP packet in the compound packet MUST
 always be a report packet to facilitate header validation
 as described in Appendix A.2. This is true even if no data
 has been sent nor received, in which case an empty RR MUST
 be sent, and even if the only other RTCP packet in the
 compound packet is a BYE.

 Additional RRs: If the number of sources for which reception
 statistics are being reported exceeds 31, the number that
 will fit into one SR or RR packet, then additional RR
 packets SHOULD follow the initial report packet.

 SDES: An SDES packet containing a CNAME item MUST be included
 in each compound RTCP packet. Other source description
 items MAY optionally be included if required by a
 particular application, subject to bandwidth constraints
 (see Section 6.3.9).

 BYE or APP: Other RTCP packet types, including those yet to be
 defined, MAY follow in any order, except that BYE SHOULD be
 the last packet sent with a given SSRC/CSRC. Packet types
 MAY appear more than once.

 It is RECOMMENDED that translators and mixers combine individual RTCP
 packets from the multiple sources they are forwarding into one
 compound packet whenever feasible in order to amortize the packet
 overhead (see Section 7). An example RTCP compound packet as might be
 produced by a mixer is shown in Fig. 1. If the overall length of a
 compound packet would exceed the maximum transmission unit (MTU) of
 the network path, it SHOULD be segmented into multiple shorter
 compound packets to be transmitted in separate packets of the
 underlying protocol. Note that each of the compound packets MUST
 begin with an SR or RR packet.

 An implementation SHOULD ignore incoming RTCP packets with types

Schulzrinne/Casner/Frederick/Jacobson [Page 20]

Internet Draft RTP October 21, 1999

 unknown to it. Additional RTCP packet types may be registered with
 the Internet Assigned Numbers Authority (IANA) as described in

Section 11.3.

if encrypted: random 32-bit integer
 |
 |[------- packet -------][----------- packet -----------][-packet-]
 |
 | receiver chunk chunk
 V reports item item item item
--
|R[SR|# sender #site#site][SDES|# CNAME PHONE |#CNAME LOC][BYE##why]
|R[|# report # 1 # 2][|# |#][##]
|R[|# # #][|# |#][##]
|R[|# # #][|# |#][##]
--
|<------------------ UDP packet (compound packet) --------------->|

#: SSRC/CSRC

 Figure 1: Example of an RTCP compound packet

6.2 RTCP Transmission Interval

 RTP is designed to allow an application to scale automatically over
 session sizes ranging from a few participants to thousands. For
 example, in an audio conference the data traffic is inherently self-
 limiting because only one or two people will speak at a time, so with
 multicast distribution the data rate on any given link remains
 relatively constant independent of the number of participants.
 However, the control traffic is not self-limiting. If the reception
 reports from each participant were sent at a constant rate, the
 control traffic would grow linearly with the number of participants.
 Therefore, the rate must be scaled down by dynamically calculating
 the interval between RTCP packet transmissions.

 For each session, it is assumed that the data traffic is subject to
 an aggregate limit called the "session bandwidth" to be divided among
 the participants. This bandwidth might be reserved and the limit
 enforced by the network. If there is no reservation, there may be
 other constraints, depending on the environment, that establish the
 "reasonable" maximum for the session to use, and that would be the
 session bandwidth. The session bandwidth may be chosen based or some

Schulzrinne/Casner/Frederick/Jacobson [Page 21]

Internet Draft RTP October 21, 1999

 cost or a priori knowledge of the available network bandwidth for the
 session. It is somewhat independent of the media encoding, but the
 encoding choice may be limited by the session bandwidth. Often, the
 session bandwidth is the sum of the nominal bandwidths of the senders
 expected to be concurrently active. For teleconference audio, this
 number would typically be one sender's bandwidth. For layered
 encodings, each layer is a separate RTP session with its own session
 bandwidth parameter.

 The session bandwidth parameter is expected to be supplied by a
 session management application when it invokes a media application,
 but media applications MAY set a default based on the single-sender
 data bandwidth for the encoding selected for the session. The
 application MAY also enforce bandwidth limits based on multicast
 scope rules or other criteria. All participants MUST use the same
 value for the session bandwidth so that the same RTCP interval will
 be calculated.

 Bandwidth calculations for control and data traffic include lower-
 layer transport and network protocols (e.g., UDP and IP) since that
 is what the resource reservation system would need to know. The
 application can also be expected to know which of these protocols are
 in use. Link level headers are not included in the calculation since
 the packet will be encapsulated with different link level headers as
 it travels.

 The control traffic should be limited to a small and known fraction
 of the session bandwidth: small so that the primary function of the
 transport protocol to carry data is not impaired; known so that the
 control traffic can be included in the bandwidth specification given
 to a resource reservation protocol, and so that each participant can
 independently calculate its share. It is RECOMMENDED that the
 fraction of the session bandwidth allocated to RTCP be fixed at 5%.
 It is also RECOMMENDED that 1/4 of the RTCP bandwidth be dedicated to
 participants that are sending data so that in sessions with a large
 number of receivers but a small number of senders, newly joining
 participants will more quickly receive the CNAME for the sending
 sites. When the proportion of senders is greater than 1/4 of the
 participants, the senders get their proportion of the full RTCP
 bandwidth. While the values of these and other constants in the
 interval calculation are not critical, all participants in the
 session MUST use the same values so the same interval will be
 calculated. Therefore, these constants SHOULD be fixed for a
 particular profile.

 A profile MAY specify that the control traffic bandwidth may be a
 separate parameter of the session rather than a strict percentage of
 the session bandwidth. Using a separate parameter allows rate-

Schulzrinne/Casner/Frederick/Jacobson [Page 22]

Internet Draft RTP October 21, 1999

 adaptive applications to set an RTCP bandwidth consistent with a
 "typical" data bandwidth that is lower than the maximum bandwidth
 specified by the session bandwidth parameter.

 The profile MAY further specify that the control traffic bandwidth
 may be divided into two separate session parameters for those
 participants which are active data senders and those which are not.
 Following the recommendation that 1/4 of the RTCP bandwidth be
 dedicated to data senders, the RECOMMENDED default values for these
 two parameters would be 1.25% and 3.75%, respectively. When the
 proportion of senders is greater than 1/4 of the participants, the
 senders get their proportion of the sum of these parameters. Using
 two parameters allows RTCP reception reports to be turned off
 entirely for a particular session by setting the RTCP bandwidth for
 non-data-senders to zero while keeping the RTCP bandwidth for data
 senders non-zero so that sender reports can still be sent for inter-
 media synchronization. This may be appropriate for systems operating
 on unidirectional links or for sessions that don't require feedback
 on the quality of reception.

 The calculated interval between transmissions of compound RTCP
 packets SHOULD also have a lower bound to avoid having bursts of
 packets exceed the allowed bandwidth when the number of participants
 is small and the traffic isn't smoothed according to the law of large
 numbers. It also keeps the report interval from becoming too small
 during transient outages like a network partition such that
 adaptation is delayed when the partition heals. At application
 startup, a delay SHOULD be imposed before the first compound RTCP
 packet is sent to allow time for RTCP packets to be received from
 other participants so the report interval will converge to the
 correct value more quickly. This delay MAY be set to half the
 minimum interval to allow quicker notification that the new
 participant is present. The RECOMMENDED value for a fixed minimum
 interval is 5 seconds.

 An implementation MAY scale the minimum RTCP interval to a smaller
 value inversely proportional to the session bandwidth parameter with
 the following limitations:

 o For multicast sessions, only active data senders MAY use the
 reduced minimum value to calculate the interval for
 transmission of compound RTCP packets.

 o For unicast sessions, the reduced value MAY be used by
 participants that are not active data senders as well, and the
 delay before sending the initial compound RTCP packet MAY be
 zero.

Schulzrinne/Casner/Frederick/Jacobson [Page 23]

Internet Draft RTP October 21, 1999

 o For all sessions, the fixed minimum SHOULD be used when
 calculating the participant timeout interval (see Section

6.3.5) so that implementations which do not use the reduced
 value for transmitting RTCP packets are not timed out by other
 participants prematurely.

 o The RECOMMENDED value for the reduced minimum in seconds is
 360 divided by the session bandwidth in kilobits/second. This
 minimum is smaller than 5 seconds for bandwidths greater than
 72 kb/s.

 The algorithm described in Section 6.3 and Appendix A.7 was designed
 to meet the goals outlined above. It calculates the interval between
 sending compound RTCP packets to divide the allowed control traffic
 bandwidth among the participants. This allows an application to
 provide fast response for small sessions where, for example,
 identification of all participants is important, yet automatically
 adapt to large sessions. The algorithm incorporates the following
 characteristics:

 o The calculated interval between RTCP packets scales linearly
 with the number of members in the group. It is this linear
 factor which allows for a constant amount of control traffic
 when summed across all members.

 o The interval between RTCP packets is varied randomly over the
 range [0.5,1.5] times the calculated interval to avoid
 unintended synchronization of all participants [15]. The
 first RTCP packet sent after joining a session is also delayed
 by a random variation of half the minimum RTCP interval.

 o A dynamic estimate of the average compound RTCP packet size
 is calculated, including all those received and sent, to
 automatically adapt to changes in the amount of control
 information carried.

 o Since the calculated interval is dependent on the number of
 observed group members, there may be undesirable startup
 effects when a new user joins an existing session, or many
 users simultaneously join a new session. These new users will
 initially have incorrect estimates of the group membership,
 and thus their RTCP transmission interval will be too short.
 This problem can be significant if many users join the session
 simultaneously. To deal with this, an algorithm called "timer
 reconsideration" is employed. This algorithm implements a
 simple back-off mechanism which causes users to hold back RTCP
 packet transmission if the group sizes are increasing.

Schulzrinne/Casner/Frederick/Jacobson [Page 24]

Internet Draft RTP October 21, 1999

 o When users leave a session, either with a BYE or by timeout,
 the group membership decreases, and thus the calculated
 interval should decrease. A "reverse reconsideration"
 algorithm is used to allow members to more quickly reduce
 their intervals in response to group membership decreases.

 o BYE packets are given different treatment than other RTCP
 packets. When a user leaves a group, and wishes to send a BYE
 packet, it may do so before its next scheduled RTCP packet.
 However, transmission of BYE's follows a back-off algorithm
 which avoids floods of BYE packets should a large number of
 members simultaneously leave the session.

 This algorithm may be used for sessions in which all participants are
 allowed to send. In that case, the session bandwidth parameter is the
 product of the individual sender's bandwidth times the number of
 participants, and the RTCP bandwidth is 5% of that.

 Details of the algorithm's operation are given in the sections that
 follow. Appendix A.7 gives an example implementation.

6.2.1 Maintaining the number of session members

 Calculation of the RTCP packet interval depends upon an estimate of
 the number of sites participating in the session. New sites are added
 to the count when they are heard, and an entry for each SHOULD be
 created in a table indexed by the SSRC or CSRC identifier (see

Section 8.2) to keep track of them. New entries MAY be considered not
 valid until multiple packets carrying the new SSRC have been received
 (see Appendix A.1), or until an SDES RTCP packet containing a CNAME
 for that SSRC has been received. Entries MAY be deleted from the
 table when an RTCP BYE packet with the corresponding SSRC identifier
 is received, except that some straggler data packets might arrive
 after the BYE and cause the entry to be recreated. Instead, the entry
 SHOULD be marked as having received a BYE and then deleted after an
 appropriate delay.

 A participant MAY mark another site inactive, or delete it if not yet
 valid, if no RTP or RTCP packet has been received for a small number
 of RTCP report intervals (5 is RECOMMENDED). This provides some
 robustness against packet loss. All sites must have the same value
 for this multiplier and must calculate roughly the same value for the
 RTCP report interval in order for this timeout to work properly.
 Therefore, this multiplier SHOULD be fixed for a particular profile.

 For sessions with a very large number of participants, it may be
 impractical to maintain a table to store the SSRC identifier and
 state information for all of them. An implementation MAY use SSRC

Schulzrinne/Casner/Frederick/Jacobson [Page 25]

Internet Draft RTP October 21, 1999

 sampling, as described in [16], to reduce the storage requirements.
 An implementation MAY use any other algorithm with similar
 performance. A key requirement is that any algorithm considered
 SHOULD NOT substantially underestimate the group size, although it
 MAY overestimate.

6.3 RTCP Packet Send and Receive Rules

 The rules for how to send, and what to do when receiving an RTCP
 packet are outlined here. An implementation that allows operation in
 a multicast environment or a multipoint unicast environment MUST meet
 the scalability goals described in Section 6.2. Such an
 implementation MAY use an algorithm other than the one defined here
 so long as it provides equivalent or better performance. An
 implementation which is constrained to two-party unicast operation
 MAY omit this algorithm.

 To execute these rules, a session participant must maintain several
 pieces of state:

 tp: the last time an RTCP packet was transmitted;

 tc: the current time;

 tn: the next scheduled transmission time of an RTCP packet;

 pmembers: the estimated number of session members at the time tn
 was last recomputed;

 members: the most current estimate for the number of session
 members;

 senders: the most current estimate for the number of senders in
 the session;

 rtcp_bw: The target RTCP bandwidth, i.e., the total bandwidth
 that will be used for RTCP packets by all members of this
 session, in octets per second. This will be a specified
 fraction of the "session bandwidth" parameter supplied to
 the application at startup.

 we_sent: Flag that is true if the application has sent data
 since the 2nd previous RTCP report was transmitted.

 avg_rtcp_size: The average compound RTCP packet size, in octets,
 over all RTCP packets sent and received by this
 participant.

Schulzrinne/Casner/Frederick/Jacobson [Page 26]

Internet Draft RTP October 21, 1999

 initial: Flag that is true if the application has not yet sent
 an RTCP packet.

 Many of these rules make use of the "calculated interval" between
 packet transmissions. This interval is described in the following
 section.

6.3.1 Computing the RTCP transmission interval

 To maintain scalability, the average interval between packets from a
 session participant should scale with the group size. This interval
 is called the calculated interval. It is obtained by combining a
 number of the pieces of state described above. The calculated
 interval T is then determined as follows:

 1. If there are any senders (senders > 0) in the session, but
 the number of senders is less than 25% of the membership
 (members), the interval depends on whether the participant
 is a sender or not (based on the value of we_sent). If the
 participant is a sender (we_sent true), the constant C is
 set to the average RTCP packet size (avg_rtcp_size) divided
 by 25% of the RTCP bandwidth (rtcp_bw), and the constant n
 is set to the number of senders. If we_sent is not true,
 the constant C is set to the average RTCP packet size
 divided by 75% of the RTCP bandwidth. The constant n is set
 to the number of receivers (members - senders). If the
 number of senders is greater than 25%, senders and
 receivers are treated together. The constant C is set to
 the total RTCP bandwidth and n is set to the total number
 of members.

 2. If the participant has not yet sent an RTCP packet (the
 variable initial is true), the constant Tmin is set to 2.5
 seconds, else it is set to 5 seconds.

 3. The deterministic calculated interval Td is set to
 max(Tmin, n*C).

 4. The calculated interval T is set to a number uniformly
 distributed between 0.5 and 1.5 times the deterministic
 calculated interval.

 5. The resulting value of T is divided by e-3/2=1.21828 to
 compensate for the fact that the unconditional
 reconsideration algorithm converges to a value below the
 intended average.

 This procedure results in an interval which is random, but which, on

Schulzrinne/Casner/Frederick/Jacobson [Page 27]

Internet Draft RTP October 21, 1999

 average, gives at least 25% of the RTCP bandwidth to senders and the
 rest to receivers. If the senders constitute more than one quarter of
 the membership, this procedure splits the bandwidth equally among all
 participants, on average.

6.3.2 Initialization

 Upon joining the session, the participant initializes tp to 0, tc to
 0, senders to 0, pmembers to 1, members to 1, we_sent to false,
 rtcp_bw to the specified fraction of the session bandwidth, initial
 to true, and avg_rtcp_size to the size of the very first packet
 constructed by the application. The calculated interval T is then
 computed, and the first packet is scheduled for time tn = T. This
 means that a transmission timer is set which expires at time T. Note
 that an application MAY use any desired approach for implementing
 this timer.

 The participant adds its own SSRC to the member table.

6.3.3 Receiving an RTP or non-BYE RTCP packet

 When an RTP or RTCP packet is received from a participant whose SSRC
 is not in the member table, the SSRC is added to the table, and the
 value for members is updated once the participant has been validated
 as described in Section 6.2.1. The same processing occurs for each
 CSRC in a validated RTP packet.

 When an RTP packet is received from a participant whose SSRC is not
 in the sender table, the SSRC is added to the table, and the value
 for senders is updated.

 For each compound RTCP packet received, the value of avg_rtcp_size is
 updated: avg_rtcp_size = (1/16)*packet_size + (15/16)* avg_rtcp_size,
 where packet_size is the size of the RTCP packet just received.

6.3.4 Receiving an RTCP BYE packet

 Except as described in Section 6.3.7 for the case when an RTCP BYE is
 to be transmitted, if the received packet is an RTCP BYE packet, the
 SSRC is checked against the member table. If present, the entry is
 removed from the table, and the value for members is updated. The
 SSRC is then checked against the sender table. If present, the entry
 is removed from the table, and the value for senders is updated.

 Furthermore, to make the transmission rate of RTCP packets more
 adaptive to changes in group membership, the following "reverse
 reconsideration" algorithm SHOULD be executed when a BYE packet is
 received that reduces members to a value less than pmembers:

Schulzrinne/Casner/Frederick/Jacobson [Page 28]

Internet Draft RTP October 21, 1999

 o The value for tn is updated according to the following
 formula: tn = tc + (members/pmembers)(tn - tc).

 o The value for tp is updated according the following formula:
 tp = tc - (members/pmembers)(tc - tp).

 o The next RTCP packet is rescheduled for transmission at time
 tn, which is now earlier.

 o The value of pmembers is set equal to members.

 This algorithm does not prevent the group size estimate from
 incorrectly dropping to zero for a short time due to premature
 timeouts when most participants of a large session leave at once but
 some remain. The algorithm does make the estimate return to the
 correct value more rapidly. This situation is unusual enough and the
 consequences are sufficiently harmless that this problem is deemed
 only a secondary concern.

6.3.5 Timing Out an SSRC

 At occassional intervals, the participant MUST check to see if any of
 the other participants time out. To do this, the participant computes
 the deterministic (without the randomization factor) calculated
 interval Td for a receiver, that is, with we_sent false. Any other
 session member who has not sent an RTP or RTCP packet since time tc -
 MTd (M is the timeout multiplier, and defaults to 5) is timed out.
 This means that its SSRC is removed from the member list, and members
 is updated. A similar check is performed on the sender list. Any
 member on the sender list who has not sent an RTP packet since time
 tc - 2T (within the last two RTCP report intervals) is removed from
 the sender list, and senders is updated.

 If any members time out, the reverse reconsideration algorithm
 described in Section 6.3.4 SHOULD be performed.

 The participant MUST perform this check at least once per RTCP
 transmission interval.

6.3.6 Expiration of transmission timer

 When the packet transmission timer expires, the participant performs
 the following operations:

 o The transmission interval T is computed as described in
Section 6.3.1, including the randomization factor.

 o If tp + T is less than or equal to tc, an RTCP packet is

Schulzrinne/Casner/Frederick/Jacobson [Page 29]

Internet Draft RTP October 21, 1999

 transmitted. tp is set to tc, then another value for T is
 calculated as in the previous step and tn is set to tc + T.
 The transmission timer is set to expire again at time tn. If
 tp + T is greater than tc, tn is set to tp + T. No RTCP packet
 is transmitted. The transmission timer is set to expire at
 time tn.

 o pmembers is set to members.

 If an RTCP packet is transmitted, the value of initial is set to
 FALSE. Furthermore, the value of avg_rtcp_size is updated:
 avg_rtcp_size = (1/16)*packet_size + (15/16)* avg_rtcp_size, where
 packet_size is the size of the RTCP packet just transmitted.

6.3.7 Transmitting a BYE packet

 When a participant wishes to leave a session, a BYE packet is
 transmitted to inform the other participants of the event. In order
 to avoid a flood of BYE packets when many participants leave the
 system, a participant MUST execute the following algorithm if the
 number of members is more than 50 when the participant chooses to
 leave. This algorithm usurps the normal role of the members variable
 to count BYE packets instead:

 o When the participant decides to leave the system, tp is reset
 to tc, the current time, members and pmembers are initialized
 to 1, initial is set to 1, we_sent is set to false, senders is
 set to 0, and avg_rtcp_size is set to the size of the BYE
 packet. The calculated interval T is computed. The BYE packet
 is then scheduled for time tn = tc + T.

 o Every time a BYE packet from another participant is received,
 members is incremented by 1 regardless of whether that
 participant exists in the member table or not, and when SSRC
 sampling is in use, regardless of whether or not the BYE SSRC
 would be included in the sample. members is NOT incremented
 when other RTCP packets or RTP packets are received, but only
 for BYE packets.

 o Transmission of the BYE packet then follows the rules for
 transmitting a regular RTCP packet, as above.

 This allows BYE packets to be sent right away, yet controls their
 total bandwidth usage. In the worst case, this could cause RTCP
 control packets to use twice the bandwidth as normal (10%) -- 5% for
 non BYE RTCP packets and 5% for BYE.

 A participant that does not want to wait for the above mechanism to

Schulzrinne/Casner/Frederick/Jacobson [Page 30]

Internet Draft RTP October 21, 1999

 allow transmission of a BYE packet MAY leave the group without
 sending a BYE at all. That participant will eventually be timed out
 by the other group members.

 If the group size estimate members is less than 50 when the
 participant decides to leave, the participant MAY send a BYE packet
 immediately. Alternatively, the participant MAY choose to execute
 the above BYE backoff algorithm.

 In either case, a participant which never sent an RTP or RTCP packet
 MUST NOT send a BYE packet when they leave the group.

6.3.8 Updating we_sent

 The variable we_sent contains true if the participant has sent an RTP
 packet recently, false otherwise. This determination is made by using
 the same mechanisms as for managing the set of other participants
 listed in the senders table. If the participant sends an RTP packet
 when we_sent is false, it adds itself to the sender table and sets
 we_sent to true. The reverse reconsideration algorithm described in

Section 6.3.4 SHOULD be performed to possibly reduce the delay before
 sending an SR packet. Every time another RTP packet is sent, the
 time of transmission of that packet is maintained in the table. The
 normal sender timeout algorithm is then applied to the participant --
 if an RTP packet has not been transmitted since time tc - 2T, the
 participant removes itself from the sender table, decrements the
 sender count, and sets we_sent to false.

6.3.9 Allocation of source description bandwidth

 This specification defines several source description (SDES) items in
 addition to the mandatory CNAME item, such as NAME (personal name)
 and EMAIL (email address). It also provides a means to define new
 application-specific RTCP packet types. Applications should exercise
 caution in allocating control bandwidth to this additional
 information because it will slow down the rate at which reception
 reports and CNAME are sent, thus impairing the performance of the
 protocol. It is RECOMMENDED that no more than 20% of the RTCP
 bandwidth allocated to a single participant be used to carry the
 additional information. Furthermore, it is not intended that all
 SDES items will be included in every application. Those that are
 included SHOULD be assigned a fraction of the bandwidth according to
 their utility. Rather than estimate these fractions dynamically, it
 is recommended that the percentages be translated statically into
 report interval counts based on the typical length of an item.

 For example, an application may be designed to send only CNAME, NAME
 and EMAIL and not any others. NAME might be given much higher

Schulzrinne/Casner/Frederick/Jacobson [Page 31]

Internet Draft RTP October 21, 1999

 priority than EMAIL because the NAME would be displayed continuously
 in the application's user interface, whereas EMAIL would be displayed
 only when requested. At every RTCP interval, an RR packet and an SDES
 packet with the CNAME item would be sent. For a small session
 operating at the minimum interval, that would be every 5 seconds on
 the average. Every third interval (15 seconds), one extra item would
 be included in the SDES packet. Seven out of eight times this would
 be the NAME item, and every eighth time (2 minutes) it would be the
 EMAIL item.

 When multiple applications operate in concert using cross-application
 binding through a common CNAME for each participant, for example in a
 multimedia conference composed of an RTP session for each medium, the
 additional SDES information MAY be sent in only one RTP session. The
 other sessions would carry only the CNAME item. In particular, this
 approach should be applied to the multiple sessions of a layered
 encoding scheme (see Section 2.4).

6.4 Sender and Receiver Reports

 RTP receivers provide reception quality feedback using RTCP report
 packets which may take one of two forms depending upon whether or not
 the receiver is also a sender. The only difference between the sender
 report (SR) and receiver report (RR) forms, besides the packet type
 code, is that the sender report includes a 20-byte sender information
 section for use by active senders. The SR is issued if a site has
 sent any data packets during the interval since issuing the last
 report or the previous one, otherwise the RR is issued.

 Both the SR and RR forms include zero or more reception report
 blocks, one for each of the synchronization sources from which this
 receiver has received RTP data packets since the last report. Reports
 are not issued for contributing sources listed in the CSRC list. Each
 reception report block provides statistics about the data received
 from the particular source indicated in that block. Since a maximum
 of 31 reception report blocks will fit in an SR or RR packet,
 additional RR packets MAY be stacked after the initial SR or RR
 packet as needed to contain the reception reports for all sources
 heard during the interval since the last report.

 The next sections define the formats of the two reports, how they may
 be extended in a profile-specific manner if an application requires
 additional feedback information, and how the reports may be used.
 Details of reception reporting by translators and mixers is given in

Section 7.

6.4.1 SR: Sender report RTCP packet

Schulzrinne/Casner/Frederick/Jacobson [Page 32]

Internet Draft RTP October 21, 1999

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P| RC | PT=SR=200 | length | header
 +-+
 | SSRC of sender |
 +=+
 | NTP timestamp, most significant word | sender
 +-+ info
 | NTP timestamp, least significant word |
 +-+
 | RTP timestamp |
 +-+
 | sender's packet count |
 +-+
 | sender's octet count |
 +=+
 | SSRC_1 (SSRC of first source) | report
 +-+ block
 | fraction lost | cumulative number of packets lost | 1
 +-+
 | extended highest sequence number received |
 +-+
 | interarrival jitter |
 +-+
 | last SR (LSR) |
 +-+
 | delay since last SR (DLSR) |
 +=+
 | SSRC_2 (SSRC of second source) | report
 +-+ block
 : ... : 2
 +=+
 | profile-specific extensions |
 +-+

 The sender report packet consists of three sections, possibly
 followed by a fourth profile-specific extension section if defined.
 The first section, the header, is 8 octets long. The fields have the
 following meaning:

 version (V): 2 bits
 Identifies the version of RTP, which is the same in RTCP
 packets as in RTP data packets. The version defined by this
 specification is two (2).

 padding (P): 1 bit

Schulzrinne/Casner/Frederick/Jacobson [Page 33]

Internet Draft RTP October 21, 1999

 If the padding bit is set, this individual RTCP packet
 contains some additional padding octets at the end which
 are not part of the control information but are included in
 the length field. The last octet of the padding is a count
 of how many padding octets should be ignored, including
 itself (it will be a multiple of four). Padding may be
 needed by some encryption algorithms with fixed block
 sizes. In a compound RTCP packet, padding is only required
 on one individual packet because the compound packet is
 encrypted as a whole for the method in Section 9.1. Thus,
 padding MUST only be added to the last individual packet,
 and if padding is added to that packet, the padding bit
 MUST be set only on that packet. This convention aids the
 header validity checks described in Appendix A.2 and allows
 detection of packets from some early implementations that
 incorrectly set the padding bit on the first individual
 packet and add padding to the last individual packet.

 reception report count (RC): 5 bits
 The number of reception report blocks contained in this
 packet. A value of zero is valid.

 packet type (PT): 8 bits
 Contains the constant 200 to identify this as an RTCP SR
 packet.

 length: 16 bits
 The length of this RTCP packet in 32-bit words minus one,
 including the header and any padding. (The offset of one
 makes zero a valid length and avoids a possible infinite
 loop in scanning a compound RTCP packet, while counting
 32-bit words avoids a validity check for a multiple of 4.)

 SSRC: 32 bits
 The synchronization source identifier for the originator of
 this SR packet.

 The second section, the sender information, is 20 octets long and is
 present in every sender report packet. It summarizes the data
 transmissions from this sender. The fields have the following
 meaning:

 NTP timestamp: 64 bits
 Indicates the wallclock time (see Section 4) when this
 report was sent so that it may be used in combination with
 timestamps returned in reception reports from other
 receivers to measure round-trip propagation to those
 receivers. Receivers should expect that the measurement

Schulzrinne/Casner/Frederick/Jacobson [Page 34]

Internet Draft RTP October 21, 1999

 accuracy of the timestamp may be limited to far less than
 the resolution of the NTP timestamp. The measurement
 uncertainty of the timestamp is not indicated as it may not
 be known. On a system that has no notion of wallclock time
 but does have some system-specific clock such as "system
 uptime", a sender MAY use that clock as a reference to
 calculate relative NTP timestamps. It is important to
 choose a commonly used clock so that if separate
 implementations are used to produce the individual streams
 of a multimedia session, all implementations will use the
 same clock. Until the year 2036, relative and absolute
 timestamps will differ in the high bit so (invalid)
 comparisons will show a large difference; by then one hopes
 relative timestamps will no longer be needed. A sender
 that has no notion of wallclock or elapsed time MAY set the
 NTP timestamp to zero.

 RTP timestamp: 32 bits
 Corresponds to the same time as the NTP timestamp (above),
 but in the same units and with the same random offset as
 the RTP timestamps in data packets. This correspondence may
 be used for intra- and inter-media synchronization for
 sources whose NTP timestamps are synchronized, and may be
 used by media-independent receivers to estimate the nominal
 RTP clock frequency. Note that in most cases this timestamp
 will not be equal to the RTP timestamp in any adjacent data
 packet. Rather, it MUST be calculated from the
 corresponding NTP timestamp using the relationship between
 the RTP timestamp counter and real time as maintained by
 periodically checking the wallclock time at a sampling
 instant.

 sender's packet count: 32 bits
 The total number of RTP data packets transmitted by the
 sender since starting transmission up until the time this
 SR packet was generated. The count SHOULD be reset if the
 sender changes its SSRC identifier.

 sender's octet count: 32 bits
 The total number of payload octets (i.e., not including
 header or padding) transmitted in RTP data packets by the
 sender since starting transmission up until the time this
 SR packet was generated. The count SHOULD be reset if the
 sender changes its SSRC identifier. This field can be used
 to estimate the average payload data rate.

 The third section contains zero or more reception report blocks
 depending on the number of other sources heard by this sender since

Schulzrinne/Casner/Frederick/Jacobson [Page 35]

Internet Draft RTP October 21, 1999

 the last report. Each reception report block conveys statistics on
 the reception of RTP packets from a single synchronization source.
 Receivers SHOULD NOT carry over statistics when a source changes its
 SSRC identifier due to a collision. These statistics are:

 SSRC_n (source identifier): 32 bits
 The SSRC identifier of the source to which the information
 in this reception report block pertains.

 fraction lost: 8 bits
 The fraction of RTP data packets from source SSRC_n lost
 since the previous SR or RR packet was sent, expressed as a
 fixed point number with the binary point at the left edge
 of the field. (That is equivalent to taking the integer
 part after multiplying the loss fraction by 256.) This
 fraction is defined to be the number of packets lost
 divided by the number of packets expected, as defined in
 the next paragraph. An implementation is shown in Appendix

A.3. If the loss is negative due to duplicates, the
 fraction lost is set to zero. Note that a receiver cannot
 tell whether any packets were lost after the last one
 received, and that there will be no reception report block
 issued for a source if all packets from that source sent
 during the last reporting interval have been lost.

 cumulative number of packets lost: 24 bits
 The total number of RTP data packets from source SSRC_n
 that have been lost since the beginning of reception. This
 number is defined to be the number of packets expected less
 the number of packets actually received, where the number
 of packets received includes any which are late or
 duplicates. Thus packets that arrive late are not counted
 as lost, and the loss may be negative if there are
 duplicates. The number of packets expected is defined to
 be the extended last sequence number received, as defined
 next, less the initial sequence number received. This may
 be calculated as shown in Appendix A.3.

 extended highest sequence number received: 32 bits
 The low 16 bits contain the highest sequence number
 received in an RTP data packet from source SSRC_n, and the
 most significant 16 bits extend that sequence number with
 the corresponding count of sequence number cycles, which
 may be maintained according to the algorithm in Appendix

A.1. Note that different receivers within the same session
 will generate different extensions to the sequence number
 if their start times differ significantly.

Schulzrinne/Casner/Frederick/Jacobson [Page 36]

Internet Draft RTP October 21, 1999

 interarrival jitter: 32 bits
 An estimate of the statistical variance of the RTP data
 packet interarrival time, measured in timestamp units and
 expressed as an unsigned integer. The interarrival jitter J
 is defined to be the mean deviation (smoothed absolute
 value) of the difference D in packet spacing at the
 receiver compared to the sender for a pair of packets. As
 shown in the equation below, this is equivalent to the
 difference in the "relative transit time" for the two
 packets; the relative transit time is the difference
 between a packet's RTP timestamp and the receiver's clock
 at the time of arrival, measured in the same units.

 If Si is the RTP timestamp from packet i, and Ri is the
 time of arrival in RTP timestamp units for packet i, then
 for two packets i and j, D may be expressed as D(i,j) =
 (R_j - R_i) - (S_j - S_i) = (R_j - S_j) - (R_i - S_i)

 The interarrival jitter SHOULD be calculated continuously
 as each data packet i is received from source SSRC_n, using
 this difference D for that packet and the previous packet i
 -1 in order of arrival (not necessarily in sequence),
 according to the formula J_i = J_i-1 + (|D(i-1,i)| - J_i-
 1)/16
 Whenever a reception report is issued, the current value of
 J is sampled.

 The jitter calculation MUST conform to the formula
 specified here in order to allow profile-independent
 monitors to make valid interpretations of reports coming
 from different implementations. This algorithm is the
 optimal first-order estimator and the gain parameter 1/16
 gives a good noise reduction ratio while maintaining a
 reasonable rate of convergence [17]. A sample
 implementation is shown in Appendix A.8.

 last SR timestamp (LSR): 32 bits
 The middle 32 bits out of 64 in the NTP timestamp (as
 explained in Section 4) received as part of the most recent
 RTCP sender report (SR) packet from source SSRC_n. If no SR
 has been received yet, the field is set to zero.

 delay since last SR (DLSR): 32 bits
 The delay, expressed in units of 1/65536 seconds, between
 receiving the last SR packet from source SSRC_n and sending
 this reception report block. If no SR packet has been
 received yet from SSRC_n, the DLSR field is set to zero.

Schulzrinne/Casner/Frederick/Jacobson [Page 37]

Internet Draft RTP October 21, 1999

 Let SSRC_r denote the receiver issuing this receiver
 report. Source SSRC_n can compute the round-trip
 propagation delay to SSRC_r by recording the time A when
 this reception report block is received. It calculates the
 total round-trip time A-LSR using the last SR timestamp
 (LSR) field, and then subtracting this field to leave the
 round-trip propagation delay as (A- LSR - DLSR). This is
 illustrated in Fig. 2.

 This may be used as an approximate measure of distance to
 cluster receivers, although some links have very asymmetric
 delays.

[10 Nov 1995 11:33:25.125] [10 Nov 1995 11:33:36.5]
n SR(n) A=b710:8000 (46864.500 s)
-->
 v ^
ntp_sec =0xb44db705 v ^ dlsr=0x0005.4000 (5.250s)
ntp_frac=0x20000000 v ^ lsr =0xb705:2000 (46853.125s)
 (3024992016.125 s) v ^
r v ^ RR(n)
-->
 |<-DLSR->|
 (5.250 s)

A 0xb710:8000 (46864.500 s)
DLSR -0x0005:4000 (5.250 s)
LSR -0xb705:2000 (46853.125 s)

delay 0x 6:2000 (6.125 s)

 Figure 2: Example for round-trip time computation

6.4.2 RR: Receiver report RTCP packet

Schulzrinne/Casner/Frederick/Jacobson [Page 38]

Internet Draft RTP October 21, 1999

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P| RC | PT=RR=201 | length | header
 +-+
 | SSRC of packet sender |
 +=+
 | SSRC_1 (SSRC of first source) | report
 +-+ block
 | fraction lost | cumulative number of packets lost | 1
 +-+
 | extended highest sequence number received |
 +-+
 | interarrival jitter |
 +-+
 | last SR (LSR) |
 +-+
 | delay since last SR (DLSR) |
 +=+
 | SSRC_2 (SSRC of second source) | report
 +-+ block
 : ... : 2
 +=+
 | profile-specific extensions |
 +-+

 The format of the receiver report (RR) packet is the same as that of
 the SR packet except that the packet type field contains the constant
 201 and the five words of sender information are omitted (these are
 the NTP and RTP timestamps and sender's packet and octet counts). The
 remaining fields have the same meaning as for the SR packet.

 An empty RR packet (RC = 0) MUST be put at the head of a compound
 RTCP packet when there is no data transmission or reception to
 report.

6.4.3 Extending the sender and receiver reports

 A profile SHOULD define profile-specific extensions to the sender
 report and receiver report if there is additional information that
 needs to be reported regularly about the sender or receivers. This
 method SHOULD be used in preference to defining another RTCP packet
 type because it requires less overhead:

 o fewer octets in the packet (no RTCP header or SSRC field);

 o simpler and faster parsing because applications running under

Schulzrinne/Casner/Frederick/Jacobson [Page 39]

Internet Draft RTP October 21, 1999

 that profile would be programmed to always expect the
 extension fields in the directly accessible location after the
 reception reports.

 The extension is a fourth section in the sender- or receiver-report
 packet which comes at the end after the reception report blocks, if
 any. If additional sender information is required, then for sender
 reports it would be included first in the extension section, but for
 receiver reports it would not be present. If information about
 receivers is to be included, that data SHOULD be structured as an
 array of blocks parallel to the existing array of reception report
 blocks; that is, the number of blocks would be indicated by the RC
 field.

6.4.4 Analyzing sender and receiver reports

 It is expected that reception quality feedback will be useful not
 only for the sender but also for other receivers and third-party
 monitors. The sender may modify its transmissions based on the
 feedback; receivers can determine whether problems are local,
 regional or global; network managers may use profile-independent
 monitors that receive only the RTCP packets and not the corresponding
 RTP data packets to evaluate the performance of their networks for
 multicast distribution.

 Cumulative counts are used in both the sender information and
 receiver report blocks so that differences may be calculated between
 any two reports to make measurements over both short and long time
 periods, and to provide resilience against the loss of a report. The
 difference between the last two reports received can be used to
 estimate the recent quality of the distribution. The NTP timestamp is
 included so that rates may be calculated from these differences over
 the interval between two reports. Since that timestamp is independent
 of the clock rate for the data encoding, it is possible to implement
 encoding- and profile-independent quality monitors.

 An example calculation is the packet loss rate over the interval
 between two reception reports. The difference in the cumulative
 number of packets lost gives the number lost during that interval.
 The difference in the extended last sequence numbers received gives
 the number of packets expected during the interval. The ratio of
 these two is the packet loss fraction over the interval. This ratio
 should equal the fraction lost field if the two reports are
 consecutive, but otherwise it may not. The loss rate per second can
 be obtained by dividing the loss fraction by the difference in NTP
 timestamps, expressed in seconds. The number of packets received is
 the number of packets expected minus the number lost. The number of
 packets expected may also be used to judge the statistical validity

Schulzrinne/Casner/Frederick/Jacobson [Page 40]

Internet Draft RTP October 21, 1999

 of any loss estimates. For example, 1 out of 5 packets lost has a
 lower significance than 200 out of 1000.

 From the sender information, a third-party monitor can calculate the
 average payload data rate and the average packet rate over an
 interval without receiving the data. Taking the ratio of the two
 gives the average payload size. If it can be assumed that packet loss
 is independent of packet size, then the number of packets received by
 a particular receiver times the average payload size (or the
 corresponding packet size) gives the apparent throughput available to
 that receiver.

 In addition to the cumulative counts which allow long-term packet
 loss measurements using differences between reports, the fraction
 lost field provides a short-term measurement from a single report.
 This becomes more important as the size of a session scales up enough
 that reception state information might not be kept for all receivers
 or the interval between reports becomes long enough that only one
 report might have been received from a particular receiver.

 The interarrival jitter field provides a second short-term measure of
 network congestion. Packet loss tracks persistent congestion while
 the jitter measure tracks transient congestion. The jitter measure
 may indicate congestion before it leads to packet loss. Since the
 interarrival jitter field is only a snapshot of the jitter at the
 time of a report, it may be necessary to analyze a number of reports
 from one receiver over time or from multiple receivers, e.g., within
 a single network.

6.5 SDES: Source description RTCP packet

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P| SC | PT=SDES=202 | length | header
 +=+
 | SSRC/CSRC_1 | chunk
 +-+ 1
 | SDES items |
 | ... |
 +=+
 | SSRC/CSRC_2 | chunk
 +-+ 2
 | SDES items |
 | ... |
 +=+

Schulzrinne/Casner/Frederick/Jacobson [Page 41]

Internet Draft RTP October 21, 1999

 The SDES packet is a three-level structure composed of a header and
 zero or more chunks, each of of which is composed of items describing
 the source identified in that chunk. The items are described
 individually in subsequent sections.

 version (V), padding (P), length:
 As described for the SR packet (see Section 6.4.1).

 packet type (PT): 8 bits
 Contains the constant 202 to identify this as an RTCP SDES
 packet.

 source count (SC): 5 bits
 The number of SSRC/CSRC chunks contained in this SDES
 packet. A value of zero is valid but useless.

 Each chunk consists of an SSRC/CSRC identifier followed by a list of
 zero or more items, which carry information about the SSRC/CSRC. Each
 chunk starts on a 32-bit boundary. Each item consists of an 8-bit
 type field, an 8-bit octet count describing the length of the text
 (thus, not including this two-octet header), and the text itself.
 Note that the text can be no longer than 255 octets, but this is
 consistent with the need to limit RTCP bandwidth consumption.

 The text is encoded according to the UTF-8 encoding specified in RFC
2279 [18]. US-ASCII is a subset of this encoding and requires no

 additional encoding. The presence of multi-octet encodings is
 indicated by setting the most significant bit of a character to a
 value of one.

 Items are contiguous, i.e., items are not individually padded to a
 32-bit boundary. Text is not null terminated because some multi-octet
 encodings include null octets. The list of items in each chunk MUST
 be terminated by one or more null octets, the first of which is
 interpreted as an item type of zero to denote the end of the list.
 No length octet follows the null item type octet, but additional null
 octets MUST be included if needed to pad until the next 32-bit
 boundary. Note that this padding is separate from that indicated by
 the P bit in the RTCP header. A chunk with zero items (four null
 octets) is valid but useless.

 End systems send one SDES packet containing their own source
 identifier (the same as the SSRC in the fixed RTP header). A mixer
 sends one SDES packet containing a chunk for each contributing source
 from which it is receiving SDES information, or multiple complete
 SDES packets in the format above if there are more than 31 such
 sources (see Section 7).

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2279

Schulzrinne/Casner/Frederick/Jacobson [Page 42]

Internet Draft RTP October 21, 1999

 The SDES items currently defined are described in the next sections.
 Only the CNAME item is mandatory. Some items shown here may be useful
 only for particular profiles, but the item types are all assigned
 from one common space to promote shared use and to simplify profile-
 independent applications. Additional items may be defined in a
 profile by registering the type numbers with IANA as described in

Section 11.3.

6.5.1 CNAME: Canonical end-point identifier SDES item

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | CNAME=1 | length | user and domain name ...
 +-+

 The CNAME identifier has the following properties:

 o Because the randomly allocated SSRC identifier may change if
 a conflict is discovered or if a program is restarted, the
 CNAME item MUST be included to provide the binding from the
 SSRC identifier to an identifier for the source that remains
 constant.

 o Like the SSRC identifier, the CNAME identifier SHOULD also be
 unique among all participants within one RTP session.

 o To provide a binding across multiple media tools used by one
 participant in a set of related RTP sessions, the CNAME SHOULD
 be fixed for that participant.

 o To facilitate third-party monitoring, the CNAME SHOULD be
 suitable for either a program or a person to locate the
 source.

 Therefore, the CNAME SHOULD be derived algorithmically and not
 entered manually, when possible. To meet these requirements, the
 following format SHOULD be used unless a profile specifies an
 alternate syntax or semantics. The CNAME item SHOULD have the format
 "user@host", or "host" if a user name is not available as on single-
 user systems. For both formats, "host" is either the fully qualified
 domain name of the host from which the real-time data originates,
 formatted according to the rules specified in RFC 1034 [19], RFC 1035
 [20] and Section 2.1 of RFC 1123 [21]; or the standard ASCII
 representation of the host's numeric address on the interface used
 for the RTP communication. For example, the standard ASCII
 representation of an IP Version 4 address is "dotted decimal", also

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1123#section-2.1

Schulzrinne/Casner/Frederick/Jacobson [Page 43]

Internet Draft RTP October 21, 1999

 known as dotted quad. Other address types are expected to have ASCII
 representations that are mutually unique. The fully qualified domain
 name is more convenient for a human observer and may avoid the need
 to send a NAME item in addition, but it may be difficult or
 impossible to obtain reliably in some operating environments.
 Applications that may be run in such environments SHOULD use the
 ASCII representation of the address instead.

 Examples are "doe@sleepy.megacorp.com" or "doe@192.0.2.89" for a
 multi-user system. On a system with no user name, examples would be
 "sleepy.megacorp.com" or "192.0.2.89".

 The user name SHOULD be in a form that a program such as "finger" or
 "talk" could use, i.e., it typically is the login name rather than
 the personal name. The host name is not necessarily identical to the
 one in the participant's electronic mail address.

 This syntax will not provide unique identifiers for each source if an
 application permits a user to generate multiple sources from one
 host. Such an application would have to rely on the SSRC to further
 identify the source, or the profile for that application would have
 to specify additional syntax for the CNAME identifier.

 If each application creates its CNAME independently, the resulting
 CNAMEs may not be identical as would be required to provide a binding
 across multiple media tools belonging to one participant in a set of
 related RTP sessions. If cross-media binding is required, it may be
 necessary for the CNAME of each tool to be externally configured with
 the same value by a coordination tool.

 Application writers should be aware that private network address
 assignments such as the Net-10 assignment proposed in RFC 1597 [22]
 may create network addresses that are not globally unique. This would
 lead to non-unique CNAMEs if hosts with private addresses and no
 direct IP connectivity to the public Internet have their RTP packets
 forwarded to the public Internet through an RTP-level translator.
 (See also RFC 1627 [23].) To handle this case, applications MAY
 provide a means to configure a unique CNAME, but the burden is on the
 translator to translate CNAMEs from private addresses to public
 addresses if necessary to keep private addresses from being exposed.

6.5.2 NAME: User name SDES item

https://datatracker.ietf.org/doc/html/rfc1597
https://datatracker.ietf.org/doc/html/rfc1627

Schulzrinne/Casner/Frederick/Jacobson [Page 44]

Internet Draft RTP October 21, 1999

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | NAME=2 | length | common name of source ...
 +-+

 This is the real name used to describe the source, e.g., "John Doe,
 Bit Recycler, Megacorp". It may be in any form desired by the user.
 For applications such as conferencing, this form of name may be the
 most desirable for display in participant lists, and therefore might
 be sent most frequently of those items other than CNAME. Profiles MAY
 establish such priorities. The NAME value is expected to remain
 constant at least for the duration of a session. It SHOULD NOT be
 relied upon to be unique among all participants in the session.

6.5.3 EMAIL: Electronic mail address SDES item

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | EMAIL=3 | length | email address of source ...
 +-+

 The email address is formatted according to RFC 822 [24], for
 example, "John.Doe@megacorp.com". The EMAIL value is expected to
 remain constant for the duration of a session.

6.5.4 PHONE: Phone number SDES item

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PHONE=4 | length | phone number of source ...
 +-+

 The phone number SHOULD be formatted with the plus sign replacing the
 international access code. For example, "+1 908 555 1212" for a
 number in the United States.

6.5.5 LOC: Geographic user location SDES item

https://datatracker.ietf.org/doc/html/rfc822

Schulzrinne/Casner/Frederick/Jacobson [Page 45]

Internet Draft RTP October 21, 1999

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | LOC=5 | length | geographic location of site ...
 +-+

 Depending on the application, different degrees of detail are
 appropriate for this item. For conference applications, a string
 like "Murray Hill, New Jersey" may be sufficient, while, for an
 active badge system, strings like "Room 2A244, AT&T BL MH" might be
 appropriate. The degree of detail is left to the implementation
 and/or user, but format and content MAY be prescribed by a profile.
 The LOC value is expected to remain constant for the duration of a
 session, except for mobile hosts.

6.5.6 TOOL: Application or tool name SDES item

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TOOL=6 | length | name/version of source appl. ...
 +-+

 A string giving the name and possibly version of the application
 generating the stream, e.g., "videotool 1.2". This information may be
 useful for debugging purposes and is similar to the Mailer or Mail-
 System-Version SMTP headers. The TOOL value is expected to remain
 constant for the duration of the session.

6.5.7 NOTE: Notice/status SDES item

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | NOTE=7 | length | note about the source ...
 +-+

 The following semantics are suggested for this item, but these or
 other semantics MAY be explicitly defined by a profile. The NOTE item
 is intended for transient messages describing the current state of
 the source, e.g., "on the phone, can't talk". Or, during a seminar,
 this item might be used to convey the title of the talk. It should be
 used only to carry exceptional information and SHOULD NOT be included
 routinely by all participants because this would slow down the rate
 at which reception reports and CNAME are sent, thus impairing the

Schulzrinne/Casner/Frederick/Jacobson [Page 46]

Internet Draft RTP October 21, 1999

 performance of the protocol. In particular, it SHOULD NOT be included
 as an item in a user's configuration file nor automatically generated
 as in a quote-of-the-day.

 Since the NOTE item may be important to display while it is active,
 the rate at which other non-CNAME items such as NAME are transmitted
 might be reduced so that the NOTE item can take that part of the RTCP
 bandwidth. When the transient message becomes inactive, the NOTE item
 SHOULD continue to be transmitted a few times at the same repetition
 rate but with a string of length zero to signal the receivers.
 However, receivers SHOULD also consider the NOTE item inactive if it
 is not received for a small multiple of the repetition rate, or
 perhaps 20-30 RTCP intervals.

6.5.8 PRIV: Private extensions SDES item

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PRIV=8 | length | prefix length | prefix string...
 +-+
 ... | value string ...
 +-+

 This item is used to define experimental or application-specific SDES
 extensions. The item contains a prefix consisting of a length-string
 pair, followed by the value string filling the remainder of the item
 and carrying the desired information. The prefix length field is 8
 bits long. The prefix string is a name chosen by the person defining
 the PRIV item to be unique with respect to other PRIV items this
 application might receive. The application creator might choose to
 use the application name plus an additional subtype identification if
 needed. Alternatively, it is RECOMMENDED that others choose a name
 based on the entity they represent, then coordinate the use of the
 name within that entity.

 Note that the prefix consumes some space within the item's total
 length of 255 octets, so the prefix should be kept as short as
 possible. This facility and the constrained RTCP bandwidth SHOULD NOT
 be overloaded; it is not intended to satisfy all the control
 communication requirements of all applications.

 SDES PRIV prefixes will not be registered by IANA. If some form of
 the PRIV item proves to be of general utility, it SHOULD instead be
 assigned a regular SDES item type registered with IANA so that no
 prefix is required. This simplifies use and increases transmission
 efficiency.

Schulzrinne/Casner/Frederick/Jacobson [Page 47]

Internet Draft RTP October 21, 1999

6.6 BYE: Goodbye RTCP packet

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P| SC | PT=BYE=203 | length |
 +-+
 | SSRC/CSRC |
 +-+
 : ... :
 +=+
 | length | reason for leaving ... (opt)
 +-+

 The BYE packet indicates that one or more sources are no longer
 active.

 version (V), padding (P), length:
 As described for the SR packet (see Section 6.4.1).

 packet type (PT): 8 bits
 Contains the constant 203 to identify this as an RTCP BYE
 packet.

 source count (SC): 5 bits
 The number of SSRC/CSRC identifiers included in this BYE
 packet. A count value of zero is valid, but useless.

 The rules for when a BYE packet should be sent are specified in
 Sections 6.3.7 and 8.2.

 If a BYE packet is received by a mixer, the mixer SHOULD forward the
 BYE packet with the SSRC/CSRC identifier(s) unchanged. If a mixer
 shuts down, it SHOULD send a BYE packet listing all contributing
 sources it handles, as well as its own SSRC identifier. Optionally,
 the BYE packet MAY include an 8-bit octet count followed by that many
 octets of text indicating the reason for leaving, e.g., "camera
 malfunction" or "RTP loop detected". The string has the same encoding
 as that described for SDES. If the string fills the packet to the
 next 32-bit boundary, the string is not null terminated. If not, the
 BYE packet MUST be padded with null octets to the next 32-bit
 boundary. This padding is separate from that indicated by the P bit
 in the RTCP header.

6.7 APP: Application-defined RTCP packet

Schulzrinne/Casner/Frederick/Jacobson [Page 48]

Internet Draft RTP October 21, 1999

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P| subtype | PT=APP=204 | length |
 +-+
 | SSRC/CSRC |
 +-+
 | name (ASCII) |
 +-+
 | application-dependent data ...
 +-+

 The APP packet is intended for experimental use as new applications
 and new features are developed, without requiring packet type value
 registration. APP packets with unrecognized names SHOULD be ignored.
 After testing and if wider use is justified, it is RECOMMENDED that
 each APP packet be redefined without the subtype and name fields and
 registered with IANA using an RTCP packet type.

 version (V), padding (P), length:
 As described for the SR packet (see Section 6.4.1).

 subtype: 5 bits
 May be used as a subtype to allow a set of APP packets to
 be defined under one unique name, or for any application-
 dependent data.

 packet type (PT): 8 bits
 Contains the constant 204 to identify this as an RTCP APP
 packet.

 name: 4 octets
 A name chosen by the person defining the set of APP packets
 to be unique with respect to other APP packets this
 application might receive. The application creator might
 choose to use the application name, and then coordinate the
 allocation of subtype values to others who want to define
 new packet types for the application. Alternatively, it is
 RECOMMENDED that others choose a name based on the entity
 they represent, then coordinate the use of the name within
 that entity. The name is interpreted as a sequence of four
 ASCII characters, with uppercase and lowercase characters
 treated as distinct.

 application-dependent data: variable length
 Application-dependent data may or may not appear in an APP
 packet. It is interpreted by the application and not RTP

Schulzrinne/Casner/Frederick/Jacobson [Page 49]

Internet Draft RTP October 21, 1999

 itself. It MUST be a multiple of 32 bits long.

7 RTP Translators and Mixers

 In addition to end systems, RTP supports the notion of "translators"
 and "mixers", which could be considered as "intermediate systems" at
 the RTP level. Although this support adds some complexity to the
 protocol, the need for these functions has been clearly established
 by experiments with multicast audio and video applications in the
 Internet. Example uses of translators and mixers given in Section 2.3
 stem from the presence of firewalls and low bandwidth connections,
 both of which are likely to remain.

7.1 General Description

 An RTP translator/mixer connects two or more transport-level
 "clouds". Typically, each cloud is defined by a common network and
 transport protocol (e.g., IP/UDP) plus a multicast address and
 transport level destination port or a pair of unicast addresses and
 ports. (Network-level protocol translators, such as IP version 4 to
 IP version 6, may be present within a cloud invisibly to RTP.) One
 system may serve as a translator or mixer for a number of RTP
 sessions, but each is considered a logically separate entity.

 In order to avoid creating a loop when a translator or mixer is
 installed, the following rules MUST be observed:

 o Each of the clouds connected by translators and mixers
 participating in one RTP session either MUST be distinct from
 all the others in at least one of these parameters (protocol,
 address, port), or MUST be isolated at the network level from
 the others.

 o A derivative of the first rule is that there MUST NOT be
 multiple translators or mixers connected in parallel unless by
 some arrangement they partition the set of sources to be
 forwarded.

 Similarly, all RTP end systems that can communicate through one or
 more RTP translators or mixers share the same SSRC space, that is,
 the SSRC identifiers MUST be unique among all these end systems.

Section 8.2 describes the collision resolution algorithm by which
 SSRC identifiers are kept unique and loops are detected.

 There may be many varieties of translators and mixers designed for
 different purposes and applications. Some examples are to add or
 remove encryption, change the encoding of the data or the underlying
 protocols, or replicate between a multicast address and one or more

Schulzrinne/Casner/Frederick/Jacobson [Page 50]

Internet Draft RTP October 21, 1999

 unicast addresses. The distinction between translators and mixers is
 that a translator passes through the data streams from different
 sources separately, whereas a mixer combines them to form one new
 stream:

 Translator: Forwards RTP packets with their SSRC identifier
 intact; this makes it possible for receivers to identify
 individual sources even though packets from all the sources
 pass through the same translator and carry the translator's
 network source address. Some kinds of translators will pass
 through the data untouched, but others MAY change the
 encoding of the data and thus the RTP data payload type and
 timestamp. If multiple data packets are re-encoded into
 one, or vice versa, a translator MUST assign new sequence
 numbers to the outgoing packets. Losses in the incoming
 packet stream may induce corresponding gaps in the outgoing
 sequence numbers. Receivers cannot detect the presence of a
 translator unless they know by some other means what
 payload type or transport address was used by the original
 source.

 Mixer: Receives streams of RTP data packets from one or more
 sources, possibly changes the data format, combines the
 streams in some manner and then forwards the combined
 stream. Since the timing among multiple input sources will
 not generally be synchronized, the mixer will make timing
 adjustments among the streams and generate its own timing
 for the combined stream, so it is the synchronization
 source. Thus, all data packets forwarded by a mixer MUST be
 marked with the mixer's own SSRC identifier. In order to
 preserve the identity of the original sources contributing
 to the mixed packet, the mixer SHOULD insert their SSRC
 identifiers into the CSRC identifier list following the
 fixed RTP header of the packet. A mixer that is also itself
 a contributing source for some packet SHOULD explicitly
 include its own SSRC identifier in the CSRC list for that
 packet.

 For some applications, it MAY be acceptable for a mixer not
 to identify sources in the CSRC list. However, this
 introduces the danger that loops involving those sources
 could not be detected.

 The advantage of a mixer over a translator for applications like
 audio is that the output bandwidth is limited to that of one source
 even when multiple sources are active on the input side. This may be
 important for low-bandwidth links. The disadvantage is that receivers
 on the output side don't have any control over which sources are

Schulzrinne/Casner/Frederick/Jacobson [Page 51]

Internet Draft RTP October 21, 1999

 passed through or muted, unless some mechanism is implemented for
 remote control of the mixer. The regeneration of synchronization
 information by mixers also means that receivers can't do inter-media
 synchronization of the original streams. A multi-media mixer could do
 it.

 [E1] [E6]
 | |
 E1:17 | E6:15 |
 | | E6:15
 V M1:48 (1,17) M1:48 (1,17) V M1:48 (1,17)
 (M1)-------------><T1>-----------------><T2>-------------->[E7]
 ^ ^ E4:47 ^ E4:47
 E2:1 | E4:47 | | M3:89 (64,45)
 | | |
 [E2] [E4] M3:89 (64,45) |
 | legend:
[E3] --------->(M2)----------->(M3)------------| [End system]
 E3:64 M2:12 (64) ^ (Mixer)
 | E5:45 <Translator>
 |
 [E5] source: SSRC (CSRCs)
 ------------------->

 Figure 3: Sample RTP network with end systems, mixers and translators

 A collection of mixers and translators is shown in Figure 3 to
 illustrate their effect on SSRC and CSRC identifiers. In the figure,
 end systems are shown as rectangles (named E), translators as
 triangles (named T) and mixers as ovals (named M). The notation "M1:
 48(1,17)" designates a packet originating a mixer M1, identified with
 M1's (random) SSRC value of 48 and two CSRC identifiers, 1 and 17,
 copied from the SSRC identifiers of packets from E1 and E2.

7.2 RTCP Processing in Translators

 In addition to forwarding data packets, perhaps modified, translators
 and mixers MUST also process RTCP packets. In many cases, they will
 take apart the compound RTCP packets received from end systems to
 aggregate SDES information and to modify the SR or RR packets.
 Retransmission of this information may be triggered by the packet
 arrival or by the RTCP interval timer of the translator or mixer

Schulzrinne/Casner/Frederick/Jacobson [Page 52]

Internet Draft RTP October 21, 1999

 itself.

 A translator that does not modify the data packets, for example one
 that just replicates between a multicast address and a unicast
 address, MAY simply forward RTCP packets unmodified as well. A
 translator that transforms the payload in some way MUST make
 corresponding transformations in the SR and RR information so that it
 still reflects the characteristics of the data and the reception
 quality. These translators MUST NOT simply forward RTCP packets. In
 general, a translator SHOULD NOT aggregate SR and RR packets from
 different sources into one packet since that would reduce the
 accuracy of the propagation delay measurements based on the LSR and
 DLSR fields.

 SR sender information: A translator does not generate its own
 sender information, but forwards the SR packets received
 from one cloud to the others. The SSRC is left intact but
 the sender information MUST be modified if required by the
 translation. If a translator changes the data encoding, it
 MUST change the "sender's byte count" field. If it also
 combines several data packets into one output packet, it
 MUST change the "sender's packet count" field. If it
 changes the timestamp frequency, it MUST change the "RTP
 timestamp" field in the SR packet.

 SR/RR reception report blocks: A translator forwards reception
 reports received from one cloud to the others. Note that
 these flow in the direction opposite to the data. The SSRC
 is left intact. If a translator combines several data
 packets into one output packet, and therefore changes the
 sequence numbers, it MUST make the inverse manipulation for
 the packet loss fields and the "extended last sequence
 number" field. This may be complex. In the extreme case,
 there may be no meaningful way to translate the reception
 reports, so the translator MAY pass on no reception report
 at all or a synthetic report based on its own reception.
 The general rule is to do what makes sense for a particular
 translation.

 A translator does not require an SSRC identifier of its
 own, but MAY choose to allocate one for the purpose of
 sending reports about what it has received. These would be
 sent to all the connected clouds, each corresponding to the
 translation of the data stream as sent to that cloud, since
 reception reports are normally multicast to all
 participants.

 SDES: Translators typically forward without change the SDES

Schulzrinne/Casner/Frederick/Jacobson [Page 53]

Internet Draft RTP October 21, 1999

 information they receive from one cloud to the others, but
 MAY, for example, decide to filter non-CNAME SDES
 information if bandwidth is limited. The CNAMEs MUST be
 forwarded to allow SSRC identifier collision detection to
 work. A translator that generates its own RR packets MUST
 send SDES CNAME information about itself to the same clouds
 that it sends those RR packets.

 BYE: Translators forward BYE packets unchanged. A translator
 that is about to cease forwarding packets SHOULD send a BYE
 packet to each connected cloud containing all the SSRC
 identifiers that were previously being forwarded to that
 cloud, including the translator's own SSRC identifier if it
 sent reports of its own.

 APP: Translators forward APP packets unchanged.

7.3 RTCP Processing in Mixers

 Since a mixer generates a new data stream of its own, it does not
 pass through SR or RR packets at all and instead generates new
 information for both sides.

 SR sender information: A mixer does not pass through sender
 information from the sources it mixes because the
 characteristics of the source streams are lost in the mix.
 As a synchronization source, the mixer SHOULD generate its
 own SR packets with sender information about the mixed data
 stream and send them in the same direction as the mixed
 stream.

 SR/RR reception report blocks: A mixer generates its own
 reception reports for sources in each cloud and sends them
 out only to the same cloud. It MUST NOT send these
 reception reports to the other clouds and MUST NOT forward
 reception reports from one cloud to the others because the
 sources would not be SSRCs there (only CSRCs).

 SDES: Mixers typically forward without change the SDES
 information they receive from one cloud to the others, but
 MAY, for example, decide to filter non-CNAME SDES
 information if bandwidth is limited. The CNAMEs MUST be
 forwarded to allow SSRC identifier collision detection to
 work. (An identifier in a CSRC list generated by a mixer
 might collide with an SSRC identifier generated by an end
 system.) A mixer MUST send SDES CNAME information about
 itself to the same clouds that it sends SR or RR packets.

Schulzrinne/Casner/Frederick/Jacobson [Page 54]

Internet Draft RTP October 21, 1999

 Since mixers do not forward SR or RR packets, they will
 typically be extracting SDES packets from a compound RTCP
 packet. To minimize overhead, chunks from the SDES packets
 MAY be aggregated into a single SDES packet which is then
 stacked on an SR or RR packet originating from the mixer.
 The RTCP packet rate MAY be different on each side of the
 mixer.

 A mixer that does not insert CSRC identifiers MAY also
 refrain from forwarding SDES CNAMEs. In this case, the SSRC
 identifier spaces in the two clouds are independent. As
 mentioned earlier, this mode of operation creates a danger
 that loops can't be detected.

 BYE: Mixers MUST forward BYE packets. A mixer that is about to
 cease forwarding packets SHOULD send a BYE packet to each
 connected cloud containing all the SSRC identifiers that
 were previously being forwarded to that cloud, including
 the mixer's own SSRC identifier if it sent reports of its
 own.

 APP: The treatment of APP packets by mixers is application-
 specific.

7.4 Cascaded Mixers

 An RTP session may involve a collection of mixers and translators as
 shown in Figure 3. If two mixers are cascaded, such as M2 and M3 in
 the figure, packets received by a mixer may already have been mixed
 and may include a CSRC list with multiple identifiers. The second
 mixer SHOULD build the CSRC list for the outgoing packet using the
 CSRC identifiers from already-mixed input packets and the SSRC
 identifiers from unmixed input packets. This is shown in the output
 arc from mixer M3 labeled M3:89(64,45) in the figure. As in the case
 of mixers that are not cascaded, if the resulting CSRC list has more
 than 15 identifiers, the remainder cannot be included.

8 SSRC Identifier Allocation and Use

 The SSRC identifier carried in the RTP header and in various fields
 of RTCP packets is a random 32-bit number that is required to be
 globally unique within an RTP session. It is crucial that the number
 be chosen with care in order that participants on the same network or
 starting at the same time are not likely to choose the same number.

 It is not sufficient to use the local network address (such as an
 IPv4 address) for the identifier because the address may not be
 unique. Since RTP translators and mixers enable interoperation among

Schulzrinne/Casner/Frederick/Jacobson [Page 55]

Internet Draft RTP October 21, 1999

 multiple networks with different address spaces, the allocation
 patterns for addresses within two spaces might result in a much
 higher rate of collision than would occur with random allocation.

 Multiple sources running on one host would also conflict.

 It is also not sufficient to obtain an SSRC identifier simply by
 calling random() without carefully initializing the state. An example
 of how to generate a random identifier is presented in Appendix A.6.

8.1 Probability of Collision

 Since the identifiers are chosen randomly, it is possible that two or
 more sources will choose the same number. Collision occurs with the
 highest probability when all sources are started simultaneously, for
 example when triggered automatically by some session management
 event. If N is the number of sources and L the length of the
 identifier (here, 32 bits), the probability that two sources
 independently pick the same value can be approximated for large N
 [25] as 1 - exp(-N**2 / 2**(L+1)). For N=1000, the probability is
 roughly 10**-4.

 The typical collision probability is much lower than the worst-case
 above. When one new source joins an RTP session in which all the
 other sources already have unique identifiers, the probability of
 collision is just the fraction of numbers used out of the space.
 Again, if N is the number of sources and L the length of the
 identifier, the probability of collision is N / 2**L. For N=1000, the
 probability is roughly 2*10**-7.

 The probability of collision is further reduced by the opportunity
 for a new source to receive packets from other participants before
 sending its first packet (either data or control). If the new source
 keeps track of the other participants (by SSRC identifier), then
 before transmitting its first packet the new source can verify that
 its identifier does not conflict with any that have been received, or
 else choose again.

8.2 Collision Resolution and Loop Detection

 Although the probability of SSRC identifier collision is low, all RTP
 implementations MUST be prepared to detect collisions and take the
 appropriate actions to resolve them. If a source discovers at any
 time that another source is using the same SSRC identifier as its
 own, it MUST send an RTCP BYE packet for the old identifier and
 choose another random one. (As explained below, this step is taken
 only once in case of a loop.) If a receiver discovers that two other
 sources are colliding, it MAY keep the packets from one and discard

Schulzrinne/Casner/Frederick/Jacobson [Page 56]

Internet Draft RTP October 21, 1999

 the packets from the other when this can be detected by different
 source transport addresses or CNAMEs. The two sources are expected
 to resolve the collision so that the situation doesn't last.

 Because the random SSRC identifiers are kept globally unique for each
 RTP session, they can also be used to detect loops that may be
 introduced by mixers or translators. A loop causes duplication of
 data and control information, either unmodified or possibly mixed, as
 in the following examples:

 o A translator may incorrectly forward a packet to the same
 multicast group from which it has received the packet, either
 directly or through a chain of translators. In that case, the
 same packet appears several times, originating from different
 network sources.

 o Two translators incorrectly set up in parallel, i.e., with
 the same multicast groups on both sides, would both forward
 packets from one multicast group to the other. Unidirectional
 translators would produce two copies; bidirectional
 translators would form a loop.

 o A mixer can close a loop by sending to the same transport
 destination upon which it receives packets, either directly or
 through another mixer or translator. In this case a source
 might show up both as an SSRC on a data packet and a CSRC in a
 mixed data packet.

 A source may discover that its own packets are being looped, or that
 packets from another source are being looped (a third-party loop).

 Both loops and collisions in the random selection of a source
 identifier result in packets arriving with the same SSRC identifier
 but a different source transport address, which may be that of the
 end system originating the packet or an intermediate system.
 Therefore, if a source changes its source transport address, it MUST
 also choose a new SSRC identifier to avoid being interpreted as a
 looped source. Note that if a translator restarts and consequently
 changes the source transport address (e.g., changes the UDP source
 port number) on which it forwards packets, then all those packets
 will appear to receivers to be looped because the SSRC identifiers
 are applied by the original source and will not change. This problem
 can be avoided by keeping the source transport addressed fixed across
 restarts, but in any case will be resolved after a timeout at the
 receivers.

 Loops or collisions occurring on the far side of a translator or
 mixer cannot be detected using the source transport address if all

Schulzrinne/Casner/Frederick/Jacobson [Page 57]

Internet Draft RTP October 21, 1999

 copies of the packets go through the translator or mixer, however
 collisions may still be detected when chunks from two RTCP SDES
 packets contain the same SSRC identifier but different CNAMEs.

 To detect and resolve these conflicts, an RTP implementation MUST
 include an algorithm similar to the one described below, though the
 implementation MAY choose a different policy for which packets from
 colliding sources are kept. The algorithm described below ignores
 packets from a new source or loop that collide with an established
 source. It resolves collisions with the participant's own SSRC
 identifier by sending an RTCP BYE for the old identifier and choosing
 a new one. However, when the collision was induced by a loop of the
 participant's own packets, the algorithm will choose a new identifier
 only once and thereafter ignore packets from the looping source
 transport address. This is required to avoid a flood of BYE packets.

 This algorithm requires keeping a table indexed by the source
 identifier and containing the source transport addresses from the
 first RTP packet and first RTCP packet received with that identifier,
 along with other state for that source. Two source transport
 addresses are required since, for example, the UDP source port
 numbers may be different on RTP and RTCP packets. However, it may be
 assumed that the network address is the same in both source transport
 addresses.

 Each SSRC or CSRC identifier received in an RTP or RTCP packet is
 looked up in the source identifier table in order to process that
 data or control information. The source transport address from the
 packet is compared to the corresponding source transport address in
 the table to detect a loop or collision if they don't match. For
 control packets, each element with its own SSRC id, for example an
 SDES chunk, requires a separate lookup. (The SSRC id in a reception
 report block is an exception because it identifies a source heard by
 the reporter, and that SSRC id is unrelated to the source transport
 adddress of the RTCP packet sent by the reporter.) If the SSRC or
 CSRC is not found, a new entry is created. These table entries are
 removed when an RTCP BYE packet is received with the corresponding
 SSRC id and validated by a matching source transport address, or
 after no packets have arrived for a relatively long time (see Section

6.2.1).

 Note that if two sources on the same host are transmitting with the
 same source identifier at the time a receiver begins operation, it
 would be possible that the first RTP packet received came from one of
 the sources while the first RTCP packet received came from the other.
 This would cause the wrong RTCP information to be associated with the
 RTP data, but this situation should be sufficiently rare and harmless
 that it may be disregarded.

Schulzrinne/Casner/Frederick/Jacobson [Page 58]

Internet Draft RTP October 21, 1999

 In order to track loops of the participant's own data packets, the
 implementation MUST also keep a separate list of source transport
 addresses (not identifiers) that have been found to be conflicting.
 As in the source identifier table, two source transport addresses
 MUST be kept to separately track conflicting RTP and RTCP packets.
 Note that the conflicting address list should be short, usually
 empty. Each element in this list stores the source addresses plus
 the time when the most recent conflicting packet was received. An
 element MAY be removed from the list when no conflicting packet has
 arrived from that source for a time on the order of 10 RTCP report
 intervals (see Section 6.2).

 For the algorithm as shown, it is assumed that the participant's own
 source identifier and state are included in the source identifier
 table. The algorithm could be restructured to first make a separate
 comparison against the participant's own source identifier.

 if (SSRC or CSRC identifier is not found in the source
 identifier table) {
 create a new entry storing the data or control source
 transport address, the SSRC or CSRC id and other state;
 }

 /* Identifier is found in the table */

 else if (table entry was created on receipt of a control packet
 and this is the first data packet or vice versa) {
 store the source transport address from this packet;
 }
 else if (source transport address from the packet does not match
 the one saved in the table entry for this identifier) {

 /* An identifier collision or a loop is indicated */

 if (source identifier is not the participant's own) {
 /* OPTIONAL error counter step */
 if (source identifier is from an RTCP SDES chunk
 containing a CNAME item that differs from the CNAME
 in the table entry) {
 count a third-party collision;
 } else {
 count a third-party loop;
 }
 abort processing of data packet or control element;
 }

 /* A collision or loop of the participant's own packets */

Schulzrinne/Casner/Frederick/Jacobson [Page 59]

Internet Draft RTP October 21, 1999

 else if (source transport address is found in the list of
 conflicting data or control source transport
 addresses) {
 /* OPTIONAL error counter step */
 if (source identifier is not from an RTCP SDES chunk
 containing a CNAME item or CNAME is the
 participant's own) {
 count occurrence of own traffic looped;
 }
 mark current time in conflicting address list entry;
 abort processing of data packet or control element;
 }

 /* New collision, change SSRC identifier */

 else {
 log occurrence of a collision;
 create a new entry in the conflicting data or control
 source transport address list and mark current time;
 send an RTCP BYE packet with the old SSRC identifier;
 choose a new SSRC identifier;
 create a new entry in the source identifier table with
 the old SSRC plus the source transport address from
 the data or control packet being processed;
 }
 }

 In this algorithm, packets from a newly conflicting source address
 will be ignored and packets from the original source address will be
 kept. If no packets arrive from the original source for an extended
 period, the table entry will be timed out and the new source will be
 able to take over. This might occur if the original source detects
 the collision and moves to a new source identifier, but in the usual
 case an RTCP BYE packet will be received from the original source to
 delete the state without having to wait for a timeout.

 If the original source address was through a mixer and later the same
 source is received directly, the receiver may be well advised to
 switch to the new source address unless other sources in the mix
 would be lost. Furthermore, for applications in which sources may
 change addresses during the course of an RTP session, such as
 applications including mobile entities, the RTP implementation SHOULD
 modify the collision detection algorithm to accept packets from the
 new source transport address. To guard against flip-flopping between
 addresses if a genuine collision does occur, the algorithm SHOULD
 include some means to detect this case and avoid switching.

Schulzrinne/Casner/Frederick/Jacobson [Page 60]

Internet Draft RTP October 21, 1999

 When a new SSRC identifier is chosen due to a collision, the
 candidate identifier SHOULD first be looked up in the source
 identifier table to see if it was already in use by some other
 source. If so, another candidate MUST be generated and the process
 repeated.

 A loop of data packets to a multicast destination can cause severe
 network flooding. All mixers and translators MUST implement a loop
 detection algorithm like the one here so that they can break loops.
 This should limit the excess traffic to no more than one duplicate
 copy of the original traffic, which may allow the session to continue
 so that the cause of the loop can be found and fixed. However, in
 extreme cases where a mixer or translator does not properly break the
 loop and high traffic levels result, it may be necessary for end
 systems to cease transmitting data or control packets entirely. This
 decision may depend upon the application. An error condition SHOULD
 be indicated as appropriate. Transmission MAY be attempted again
 periodically after a long, random time (on the order of minutes).

8.3 Use with Layered Encodings

 For layered encodings transmitted on separate RTP sessions (see
Section 2.4), a single SSRC identifier space SHOULD be used across

 the sessions of all layers and the core (base) layer SHOULD be used
 for SSRC identifier allocation and collision resolution. When a
 source discovers that it has collided, it transmits an RTCP BYE
 message on only the base layer but changes the SSRC identifier to the
 new value in all layers.

9 Security

 Lower layer protocols may eventually provide all the security
 services that may be desired for applications of RTP, including
 authentication, integrity, and confidentiality. These services have
 been specified for IP in [26]. Since the initial audio and video
 applications using RTP needed a confidentiality service before such
 services were available for the IP layer, the confidentiality service
 described in the next section was defined for use with RTP and RTCP.
 That description is included here to codify existing practice. New
 applications of RTP MAY implement this RTP-specific confidentiality
 service for backward compatibility, and/or they MAY implement IP
 layer security services. The overhead on the RTP protocol for this
 confidentiality service is low, so the penalty will be minimal if
 this service is obsoleted by lower layer services in the future.

 Alternatively, other services, other implementations of services and
 other algorithms may be defined for RTP in the future if warranted.
 The selection presented here is meant to simplify implementation of

Schulzrinne/Casner/Frederick/Jacobson [Page 61]

Internet Draft RTP October 21, 1999

 interoperable, secure applications and provide guidance to
 implementors. No claim is made that the methods presented here are
 appropriate for a particular security need. A profile may specify
 which services and algorithms should be offered by applications, and
 may provide guidance as to their appropriate use.

 Key distribution and certificates are outside the scope of this
 document.

9.1 Confidentiality

 Confidentiality means that only the intended receiver(s) can decode
 the received packets; for others, the packet contains no useful
 information. Confidentiality of the content is achieved by
 encryption.

 When encryption of RTP or RTCP is desired, all the octets that will
 be encapsulated for transmission in a single lower-layer packet are
 encrypted as a unit. For RTCP, a 32-bit random number MUST be
 prepended to the unit before encryption to deter known plaintext
 attacks. For RTP, no prefix is required because the sequence number
 and timestamp fields are initialized with random offsets.

 For RTCP, an implementation MAY split a compound RTCP packet into two
 lower-layer packets, one to be encrypted and one to be sent in the
 clear. For example, SDES information might be encrypted while
 reception reports were sent in the clear to accommodate third-party
 monitors that are not privy to the encryption key. In this example,
 depicted in Fig. 4, the SDES information MUST be appended to an RR
 packet with no reports (and the encrypted) to satisfy the requirement
 that all compound RTCP packets begin with an SR or RR packet.

 The presence of encryption and the use of the correct key are
 confirmed by the receiver through header or payload validity checks.
 Examples of such validity checks for RTP and RTCP headers are given
 in Appendices A.1 and A.2.

 The default encryption algorithm is the Data Encryption Standard
 (DES) algorithm in cipher block chaining (CBC) mode, as described in

Section 1.1 of RFC 1423 [27], except that padding to a multiple of 8
 octets is indicated as described for the P bit in Section 5.1. The
 initialization vector is zero because random values are supplied in
 the RTP header or by the random prefix for compound RTCP packets. For
 details on the use of CBC initialization vectors, see [28].
 Implementations that support encryption SHOULD always support the DES
 algorithm in CBC mode as the default to maximize interoperability.
 This method is chosen because it has been demonstrated to be easy and

https://datatracker.ietf.org/doc/html/rfc1423#section-1.1

Schulzrinne/Casner/Frederick/Jacobson [Page 62]

Internet Draft RTP October 21, 1999

 UDP packet UDP packet
------------------------------------- -------------------------
[32-bit][][#] [# sender # receiver]
[random][RR][SDES # CNAME, ...] [SR # report # report]
[integer][(empty)][#] [# #]
------------------------------------- -------------------------
 encrypted not encrypted

#: SSRC

 Figure 4: Encrypted and non-encrypted RTCP packets

 practical to use in experimental audio and video tools in operation
 on the Internet. Other encryption algorithms MAY be specified
 dynamically for a session by non-RTP means.

 As an alternative to encryption at the IP level or at the RTP level
 as described above, profiles MAY define additional payload types for
 encrypted encodings. Those encodings MUST specify how padding and
 other aspects of the encryption are to be handled. This method allows
 encrypting only the data while leaving the headers in the clear for
 applications where that is desired. It may be particularly useful for
 hardware devices that will handle both decryption and decoding.

9.2 Authentication and Message Integrity

 Authentication and message integrity services are not defined at the
 RTP level since these services would not be directly feasible without
 a key management infrastructure. It is expected that authentication
 and integrity services will be provided by lower layer protocols.

10 RTP over Network and Transport Protocols

 This section describes issues specific to carrying RTP packets within
 particular network and transport protocols. The following rules apply
 unless superseded by protocol-specific definitions outside this
 specification.

 RTP relies on the underlying protocol(s) to provide demultiplexing of
 RTP data and RTCP control streams. For UDP and similar protocols, RTP
 SHOULD use an even port number and the corresponding RTCP stream
 SHOULD use the next higher (odd) port number. If an application is
 supplied with an odd number for use as the RTP port, it SHOULD

Schulzrinne/Casner/Frederick/Jacobson [Page 63]

Internet Draft RTP October 21, 1999

 replace this number with the next lower (even) number.

 In a unicast session, applications SHOULD be prepared to receive RTP
 data and control on one port pair and send to another.

 It is RECOMMENDED that layered encoding applications (see Section
2.4) use a set of contiguous port numbers. The port numbers MUST be

 distinct because of a widespread deficiency in existing operating
 systems that prevents use of the same port with multiple multicast
 addresses, and for unicast, there is only one permissible address.
 Thus for layer n, the data port is P + 2n, and the control port is P
 + 2n + 1. When IP multicast is used, the addresses MUST also be
 distinct because multicast routing and group membership are managed
 on an address granularity. However, allocation of contiguous IP
 multicast addresses cannot be assumed because some groups may require
 different scopes and may therefore be allocated from different
 address ranges.

 RTP data packets contain no length field or other delineation,
 therefore RTP relies on the underlying protocol(s) to provide a
 length indication. The maximum length of RTP packets is limited only
 by the underlying protocols.

 If RTP packets are to be carried in an underlying protocol that
 provides the abstraction of a continuous octet stream rather than
 messages (packets), an encapsulation of the RTP packets MUST be
 defined to provide a framing mechanism. Framing is also needed if the
 underlying protocol may contain padding so that the extent of the RTP
 payload cannot be determined. The framing mechanism is not defined
 here.

 A profile MAY specify a framing method to be used even when RTP is
 carried in protocols that do provide framing in order to allow
 carrying several RTP packets in one lower-layer protocol data unit,
 such as a UDP packet. Carrying several RTP packets in one network or
 transport packet reduces header overhead and may simplify
 synchronization between different streams.

11 Summary of Protocol Constants

 This section contains a summary listing of the constants defined in
 this specification.

 The RTP payload type (PT) constants are defined in profiles rather
 than this document. However, the octet of the RTP header which
 contains the marker bit(s) and payload type MUST avoid the reserved
 values 200 and 201 (decimal) to distinguish RTP packets from the RTCP
 SR and RR packet types for the header validation procedure described

Schulzrinne/Casner/Frederick/Jacobson [Page 64]

Internet Draft RTP October 21, 1999

 in Appendix A.1. For the standard definition of one marker bit and a
 7-bit payload type field as shown in this specification, this
 restriction means that payload types 72 and 73 are reserved.

11.1 RTCP packet types

 abbrev. name value
 SR sender report 200
 RR receiver report 201
 SDES source description 202
 BYE goodbye 203
 APP application-defined 204

 These type values were chosen in the range 200-204 for improved
 header validity checking of RTCP packets compared to RTP packets or
 other unrelated packets. When the RTCP packet type field is compared
 to the corresponding octet of the RTP header, this range corresponds
 to the marker bit being 1 (which it usually is not in data packets)
 and to the high bit of the standard payload type field being 1 (since
 the static payload types are typically defined in the low half). This
 range was also chosen to be some distance numerically from 0 and 255
 since all-zeros and all-ones are common data patterns.

 Since all compound RTCP packets MUST begin with SR or RR, these codes
 were chosen as an even/odd pair to allow the RTCP validity check to
 test the maximum number of bits with mask and value.

 Additional RTCP packet types may be registered through IANA (see
Section 11.3).

11.2 SDES types

 abbrev. name value
 END end of SDES list 0
 CNAME canonical name 1
 NAME user name 2
 EMAIL user's electronic mail address 3
 PHONE user's phone number 4
 LOC geographic user location 5
 TOOL name of application or tool 6
 NOTE notice about the source 7
 PRIV private extensions 8

 Additional SDES types may be registered through IANA (see Section

Schulzrinne/Casner/Frederick/Jacobson [Page 65]

Internet Draft RTP October 21, 1999

 11.3).

11.3 IANA Considerations

 Additional RTCP packet types and SDES types may be registered through
 the Internet Assigned Numbers Authority (IANA). Since these number
 spaces are small, allowing unconstrained registration of new values
 would not be prudent. To facilitate review of requests and to promote
 shared use of new types among multiple applications, requests for
 registration of new values must be documented in an RFC or other
 permanent and readily available reference such as the product of
 another cooperative standards body (e.g., ITU-T). Other requests may
 also be accepted, under the advice of a "designated expert." (Contact
 the IANA for the contact information of the current expert.)

12 RTP Profiles and Payload Format Specifications

 A complete specification of RTP for a particular application will
 require one or more companion documents of two types described here:
 profiles, and payload format specifications.

 RTP may be used for a variety of applications with somewhat differing
 requirements. The flexibility to adapt to those requirements is
 provided by allowing multiple choices in the main protocol
 specification, then selecting the appropriate choices or defining
 extensions for a particular environment and class of applications in
 a separate profile document. Typically an application will operate
 under only one profile so there is no explicit indication of which
 profile is in use. A profile for audio and video applications may be
 found in the companion RFC 1890 (updated by Internet-Draft draft-

ietf-avt-profile-new). Profiles are typically titled "RTP Profile
 for ...".

 The second type of companion document is a payload format
 specification, which defines how a particular kind of payload data,
 such as H.261 encoded video, should be carried in RTP. These
 documents are typically titled "RTP Payload Format for XYZ
 Audio/Video Encoding". Payload formats may be useful under multiple
 profiles and may therefore be defined independently of any particular
 profile. The profile documents are then responsible for assigning a
 default mapping of that format to a payload type value if needed.

 Within this specification, the following items have been identified
 for possible definition within a profile, but this list is not meant
 to be exhaustive:

 RTP data header: The octet in the RTP data header that contains
 the marker bit and payload type field MAY be redefined by a

https://datatracker.ietf.org/doc/html/rfc1890
https://datatracker.ietf.org/doc/html/draft-ietf-avt-profile-new
https://datatracker.ietf.org/doc/html/draft-ietf-avt-profile-new

Schulzrinne/Casner/Frederick/Jacobson [Page 66]

Internet Draft RTP October 21, 1999

 profile to suit different requirements, for example with
 more or fewer marker bits (Section 5.3, p. 13).

 Payload types: Assuming that a payload type field is included,
 the profile will usually define a set of payload formats
 (e.g., media encodings) and a default static mapping of
 those formats to payload type values. Some of the payload
 formats may be defined by reference to separate payload
 format specifications. For each payload type defined, the
 profile MUST specify the RTP timestamp clock rate to be
 used (Section 5.1, p. 12).

 RTP data header additions: Additional fields MAY be appended to
 the fixed RTP data header if some additional functionality
 is required across the profile's class of applications
 independent of payload type (Section 5.3, p. 13).

 RTP data header extensions: The contents of the first 16 bits of
 the RTP data header extension structure MUST be defined if
 use of that mechanism is to be allowed under the profile
 for implementation-specific extensions (Section 5.3.1, p.
 14).

 RTCP packet types: New application-class-specific RTCP packet
 types MAY be defined and registered with IANA.

 RTCP report interval: A profile SHOULD specify that the values
 suggested in Section 6.2 for the constants employed in the
 calculation of the RTCP report interval will be used. Those
 are the RTCP fraction of session bandwidth, the minimum
 report interval, and the bandwidth split between senders
 and receivers. A profile MAY specify alternate values if
 they have been demonstrated to work in a scalable manner.

 SR/RR extension: An extension section MAY be defined for the
 RTCP SR and RR packets if there is additional information
 that should be reported regularly about the sender or
 receivers (Section 6.4.3, p. 31).

 SDES use: The profile MAY specify the relative priorities for
 RTCP SDES items to be transmitted or excluded entirely
 (Section 6.3.9); an alternate syntax or semantics for the
 CNAME item (Section 6.5.1); the format of the LOC item
 (Section 6.5.5); the semantics and use of the NOTE item
 (Section 6.5.7); or new SDES item types to be registered
 with IANA.

 Security: A profile MAY specify which security services and

Schulzrinne/Casner/Frederick/Jacobson [Page 67]

Internet Draft RTP October 21, 1999

 algorithms should be offered by applications, and MAY
 provide guidance as to their appropriate use (Section 9, p.
 47).

 String-to-key mapping: A profile MAY specify how a user-provided
 password or pass phrase is mapped into an encryption key.

 Underlying protocol: Use of a particular underlying network or
 transport layer protocol to carry RTP packets MAY be
 required.

 Transport mapping: A mapping of RTP and RTCP to transport-level
 addresses, e.g., UDP ports, other than the standard mapping
 defined in Section 10, p. 48 may be specified.

 Encapsulation: An encapsulation of RTP packets may be defined to
 allow multiple RTP data packets to be carried in one
 lower-layer packet or to provide framing over underlying
 protocols that do not already do so (Section 10, p. 48).

 It is not expected that a new profile will be required for every
 application. Within one application class, it would be better to
 extend an existing profile rather than make a new one in order to
 facilitate interoperation among the applications since each will
 typically run under only one profile. Simple extensions such as the
 definition of additional payload type values or RTCP packet types may
 be accomplished by registering them through the Internet Assigned
 Numbers Authority and publishing their descriptions in an addendum to
 the profile or in a payload format specification.

A Algorithms

 We provide examples of C code for aspects of RTP sender and receiver
 algorithms. There may be other implementation methods that are faster
 in particular operating environments or have other advantages. These
 implementation notes are for informational purposes only and are
 meant to clarify the RTP specification.

 The following definitions are used for all examples; for clarity and
 brevity, the structure definitions are only valid for 32-bit big-
 endian (most significant octet first) architectures. Bit fields are
 assumed to be packed tightly in big-endian bit order, with no
 additional padding. Modifications would be required to construct a
 portable implementation.

Schulzrinne/Casner/Frederick/Jacobson [Page 68]

Internet Draft RTP October 21, 1999

 /*
 * rtp.h -- RTP header file (RFC XXXX)
 */
 #include <sys/types.h>

 /*
 * The type definitions below are valid for 32-bit architectures and
 * may have to be adjusted for 16- or 64-bit architectures.
 */
 typedef unsigned char u_int8;
 typedef unsigned short u_int16;
 typedef unsigned int u_int32;
 typedef short int16;

 /*
 * Current protocol version.
 */
 #define RTP_VERSION 2

 #define RTP_SEQ_MOD (1<<16)
 #define RTP_MAX_SDES 255 /* maximum text length for SDES */

 typedef enum {
 RTCP_SR = 200,
 RTCP_RR = 201,
 RTCP_SDES = 202,
 RTCP_BYE = 203,
 RTCP_APP = 204
 } rtcp_type_t;

 typedef enum {
 RTCP_SDES_END = 0,
 RTCP_SDES_CNAME = 1,
 RTCP_SDES_NAME = 2,
 RTCP_SDES_EMAIL = 3,
 RTCP_SDES_PHONE = 4,
 RTCP_SDES_LOC = 5,
 RTCP_SDES_TOOL = 6,
 RTCP_SDES_NOTE = 7,
 RTCP_SDES_PRIV = 8
 } rtcp_sdes_type_t;

 /*
 * RTP data header
 */
 typedef struct {
 unsigned int version:2; /* protocol version */

Schulzrinne/Casner/Frederick/Jacobson [Page 69]

Internet Draft RTP October 21, 1999

 unsigned int p:1; /* padding flag */
 unsigned int x:1; /* header extension flag */
 unsigned int cc:4; /* CSRC count */
 unsigned int m:1; /* marker bit */
 unsigned int pt:7; /* payload type */
 unsigned int seq:16; /* sequence number */
 u_int32 ts; /* timestamp */
 u_int32 ssrc; /* synchronization source */
 u_int32 csrc[1]; /* optional CSRC list */
 } rtp_hdr_t;

 /*
 * RTCP common header word
 */
 typedef struct {
 unsigned int version:2; /* protocol version */
 unsigned int p:1; /* padding flag */
 unsigned int count:5; /* varies by packet type */
 unsigned int pt:8; /* RTCP packet type */
 u_int16 length; /* pkt len in words, w/o this word */
 } rtcp_common_t;

 /*
 * Big-endian mask for version, padding bit and packet type pair
 */
 #define RTCP_VALID_MASK (0xc000 | 0x2000 | 0xfe)
 #define RTCP_VALID_VALUE ((RTP_VERSION << 14) | RTCP_SR)

 /*
 * Reception report block
 */
 typedef struct {
 u_int32 ssrc; /* data source being reported */
 unsigned int fraction:8; /* fraction lost since last SR/RR */
 int lost:24; /* cumul. no. pkts lost (signed!) */
 u_int32 last_seq; /* extended last seq. no. received */
 u_int32 jitter; /* interarrival jitter */
 u_int32 lsr; /* last SR packet from this source */
 u_int32 dlsr; /* delay since last SR packet */
 } rtcp_rr_t;

 /*
 * SDES item
 */
 typedef struct {
 u_int8 type; /* type of item (rtcp_sdes_type_t) */
 u_int8 length; /* length of item (in octets) */
 char data[1]; /* text, not null-terminated */

Schulzrinne/Casner/Frederick/Jacobson [Page 70]

Internet Draft RTP October 21, 1999

 } rtcp_sdes_item_t;

 /*
 * One RTCP packet
 */
 typedef struct {
 rtcp_common_t common; /* common header */
 union {
 /* sender report (SR) */
 struct {
 u_int32 ssrc; /* sender generating this report */
 u_int32 ntp_sec; /* NTP timestamp */
 u_int32 ntp_frac;
 u_int32 rtp_ts; /* RTP timestamp */
 u_int32 psent; /* packets sent */
 u_int32 osent; /* octets sent */
 rtcp_rr_t rr[1]; /* variable-length list */
 } sr;

 /* reception report (RR) */
 struct {
 u_int32 ssrc; /* receiver generating this report */
 rtcp_rr_t rr[1]; /* variable-length list */
 } rr;

 /* source description (SDES) */
 struct rtcp_sdes {
 u_int32 src; /* first SSRC/CSRC */
 rtcp_sdes_item_t item[1]; /* list of SDES items */
 } sdes;

 /* BYE */
 struct {
 u_int32 src[1]; /* list of sources */
 /* can't express trailing text for reason */
 } bye;
 } r;
 } rtcp_t;

 typedef struct rtcp_sdes rtcp_sdes_t;

Schulzrinne/Casner/Frederick/Jacobson [Page 71]

Internet Draft RTP October 21, 1999

 /*
 * Per-source state information
 */
 typedef struct {
 u_int16 max_seq; /* highest seq. number seen */
 u_int32 cycles; /* shifted count of seq. number cycles */
 u_int32 base_seq; /* base seq number */
 u_int32 bad_seq; /* last 'bad' seq number + 1 */
 u_int32 probation; /* sequ. packets till source is valid */
 u_int32 received; /* packets received */
 u_int32 expected_prior; /* packet expected at last interval */
 u_int32 received_prior; /* packet received at last interval */
 u_int32 transit; /* relative trans time for prev pkt */
 u_int32 jitter; /* estimated jitter */
 /* ... */
 } source;

A.1 RTP Data Header Validity Checks

 An RTP receiver SHOULD check the validity of the RTP header on
 incoming packets since they might be encrypted or might be from a
 different application that happens to be misaddressed. Similarly, if
 encryption according to the method described in Section 9 is enabled,
 the header validity check is needed to verify that incoming packets
 have been correctly decrypted, although a failure of the header
 validity check (e.g., unknown payload type) may not necessarily
 indicate decryption failure.

 Only weak validity checks are possible on an RTP data packet from a
 source that has not been heard before:

 o RTP version field must equal 2.

 o The payload type must be known, in particular it must not be
 equal to SR or RR.

 o If the P bit is set, then the last octet of the packet must
 contain a valid octet count, in particular, less than the
 total packet length minus the header size.

 o The X bit must be zero if the profile does not specify that
 the header extension mechanism may be used. Otherwise, the
 extension length field must be less than the total packet size
 minus the fixed header length and padding.

 o The length of the packet must be consistent with CC and

Schulzrinne/Casner/Frederick/Jacobson [Page 72]

Internet Draft RTP October 21, 1999

 payload type (if payloads have a known length).

 The last three checks are somewhat complex and not always possible,
 leaving only the first two which total just a few bits. If the SSRC
 identifier in the packet is one that has been received before, then
 the packet is probably valid and checking if the sequence number is
 in the expected range provides further validation. If the SSRC
 identifier has not been seen before, then data packets carrying that
 identifier may be considered invalid until a small number of them
 arrive with consecutive sequence numbers.

 The routine update_seq shown below ensures that a source is declared
 valid only after MIN_SEQUENTIAL packets have been received in
 sequence. It also validates the sequence number seq of a newly
 received packet and updates the sequence state for the packet's
 source in the structure to which s points.

 When a new source is heard for the first time, that is, its SSRC
 identifier is not in the table (see Section 8.2), and the per-source
 state is allocated for it, s->probation should be set to the number
 of sequential packets required before declaring a source valid
 (parameter MIN_SEQUENTIAL) and s->max_seq initialized to seq-1 s-
 >probation marks the source as not yet valid so the state may be
 discarded after a short timeout rather than a long one, as discussed
 in Section 6.2.1.

 After a source is considered valid, the sequence number is considered
 valid if it is no more than MAX_DROPOUT ahead of s->max_seq nor more
 than MAX_MISORDER behind. If the new sequence number is ahead of
 max_seq modulo the RTP sequence number range (16 bits), but is
 smaller than max_seq , it has wrapped around and the (shifted) count
 of sequence number cycles is incremented. A value of one is returned
 to indicate a valid sequence number.

 Otherwise, the value zero is returned to indicate that the validation
 failed, and the bad sequence number is stored. If the next packet
 received carries the next higher sequence number, it is considered
 the valid start of a new packet sequence presumably caused by an
 extended dropout or a source restart. Since multiple complete
 sequence number cycles may have been missed, the packet loss
 statistics are reset.

 Typical values for the parameters are shown, based on a maximum
 misordering time of 2 seconds at 50 packets/second and a maximum
 dropout of 1 minute. The dropout parameter MAX_DROPOUT SHOULD be a
 small fraction of the 16-bit sequence number space to give a
 reasonable probability that new sequence numbers after a restart will
 not fall in the acceptable range for sequence numbers from before the

Schulzrinne/Casner/Frederick/Jacobson [Page 73]

Internet Draft RTP October 21, 1999

 restart.

Schulzrinne/Casner/Frederick/Jacobson [Page 74]

Internet Draft RTP October 21, 1999

 void init_seq(source *s, u_int16 seq)
 {
 s->base_seq = seq - 1;
 s->max_seq = seq;
 s->bad_seq = RTP_SEQ_MOD + 1;
 s->cycles = 0;
 s->received = 0;
 s->received_prior = 0;
 s->expected_prior = 0;
 /* other initialization */
 }

 int update_seq(source *s, u_int16 seq)
 {
 u_int16 udelta = seq - s->max_seq;
 const int MAX_DROPOUT = 3000;
 const int MAX_MISORDER = 100;
 const int MIN_SEQUENTIAL = 2;

 /*
 * Source is not valid until MIN_SEQUENTIAL packets with
 * sequential sequence numbers have been received.
 */
 if (s->probation) {
 /* packet is in sequence */
 if (seq == s->max_seq + 1) {
 s->probation--;
 s->max_seq = seq;
 if (s->probation == 0) {
 init_seq(s, seq);
 s->received++;
 return 1;
 }
 } else {
 s->probation = MIN_SEQUENTIAL - 1;
 s->max_seq = seq;
 }
 return 0;
 } else if (udelta < MAX_DROPOUT) {
 /* in order, with permissible gap */
 if (seq < s->max_seq) {
 /*
 * Sequence number wrapped - count another 64K cycle.
 */
 s->cycles += RTP_SEQ_MOD;
 }
 s->max_seq = seq;

Schulzrinne/Casner/Frederick/Jacobson [Page 75]

Internet Draft RTP October 21, 1999

 } else if (udelta <= RTP_SEQ_MOD - MAX_MISORDER) {
 /* the sequence number made a very large jump */
 if (seq == s->bad_seq) {
 /*
 * Two sequential packets -- assume that the other side
 * restarted without telling us so just re-sync
 * (i.e., pretend this was the first packet).
 */
 init_seq(s, seq);
 }
 else {
 s->bad_seq = (seq + 1) & (RTP_SEQ_MOD-1);
 return 0;
 }
 } else {
 /* duplicate or reordered packet */
 }
 s->received++;
 return 1;
 }

 The validity check can be made stronger requiring more than two
 packets in sequence. The disadvantages are that a larger number of
 initial packets will be discarded and that high packet loss rates
 could prevent validation. However, because the RTCP header validation
 is relatively strong, if an RTCP packet is received from a source
 before the data packets, the count could be adjusted so that only two
 packets are required in sequence. If initial data loss for a few
 seconds can be tolerated, an application MAY choose to discard all
 data packets from a source until a valid RTCP packet has been
 received from that source.

 Depending on the application and encoding, algorithms may exploit
 additional knowledge about the payload format for further validation.
 For payload types where the timestamp increment is the same for all
 packets, the timestamp values can be predicted from the previous
 packet received from the same source using the sequence number
 difference (assuming no change in payload type).

 A strong "fast-path" check is possible since with high probability
 the first four octets in the header of a newly received RTP data
 packet will be just the same as that of the previous packet from the
 same SSRC except that the sequence number will have increased by one.
 Similarly, a single-entry cache may be used for faster SSRC lookups
 in applications where data is typically received from one source at a
 time.

Schulzrinne/Casner/Frederick/Jacobson [Page 76]

Internet Draft RTP October 21, 1999

A.2 RTCP Header Validity Checks

 The following checks SHOULD be applied to RTCP packets.

 o RTP version field must equal 2.

 o The payload type field of the first RTCP packet in a compound
 packet must be equal to SR or RR.

 o The padding bit (P) should be zero for the first packet of a
 compound RTCP packet because padding should only be applied,
 if it is needed, to the last packet.

 o The length fields of the individual RTCP packets must total
 to the overall length of the compound RTCP packet as received.
 This is a fairly strong check.

 The code fragment below performs all of these checks. The packet type
 is not checked for subsequent packets since unknown packet types may
 be present and should be ignored.

 u_int32 len; /* length of compound RTCP packet in words */
 rtcp_t *r; /* RTCP header */
 rtcp_t *end; /* end of compound RTCP packet */

 if ((*(u_int16 *)r & RTCP_VALID_MASK) != RTCP_VALID_VALUE) {
 /* something wrong with packet format */
 }
 end = (rtcp_t *)((u_int32 *)r + len);

 do r = (rtcp_t *)((u_int32 *)r + r->common.length + 1);
 while (r < end && r->common.version == 2);

 if (r != end) {
 /* something wrong with packet format */
 }

A.3 Determining the Number of RTP Packets Expected and Lost

 In order to compute packet loss rates, the number of packets expected
 and actually received from each source needs to be known, using per-
 source state information defined in struct source referenced via
 pointer s in the code below. The number of packets received is simply
 the count of packets as they arrive, including any late or duplicate
 packets. The number of packets expected can be computed by the
 receiver as the difference between the highest sequence number

Schulzrinne/Casner/Frederick/Jacobson [Page 77]

Internet Draft RTP October 21, 1999

 received (s->max_seq) and the first sequence number received (s-
 >base_seq). Since the sequence number is only 16 bits and will wrap
 around, it is necessary to extend the highest sequence number with
 the (shifted) count of sequence number wraparounds (s->cycles).
 Both the received packet count and the count of cycles are maintained
 the RTP header validity check routine in Appendix A.1.

 extended_max = s->cycles + s->max_seq;
 expected = extended_max - s->base_seq + 1;

 The number of packets lost is defined to be the number of packets
 expected less the number of packets actually received:

 lost = expected - s->received;

 Since this signed number is carried in 24 bits, it SHOULD be clamped
 at 0x7fffff for positive loss or 0xffffff for negative loss rather
 than wrapping around.

 The fraction of packets lost during the last reporting interval
 (since the previous SR or RR packet was sent) is calculated from
 differences in the expected and received packet counts across the
 interval, where expected_prior and received_prior are the values
 saved when the previous reception report was generated:

 expected_interval = expected - s->expected_prior;
 s->expected_prior = expected;
 received_interval = s->received - s->received_prior;
 s->received_prior = s->received;
 lost_interval = expected_interval - received_interval;
 if (expected_interval == 0 || lost_interval <= 0) fraction = 0;
 else fraction = (lost_interval << 8) / expected_interval;

 The resulting fraction is an 8-bit fixed point number with the binary
 point at the left edge.

A.4 Generating SDES RTCP Packets

 This function builds one SDES chunk into buffer b composed of argc

Schulzrinne/Casner/Frederick/Jacobson [Page 78]

Internet Draft RTP October 21, 1999

 items supplied in arrays type , value and length b

 char *rtp_write_sdes(char *b, u_int32 src, int argc,
 rtcp_sdes_type_t type[], char *value[],
 int length[])
 {
 rtcp_sdes_t *s = (rtcp_sdes_t *)b;
 rtcp_sdes_item_t *rsp;
 int i;
 int len;
 int pad;

 /* SSRC header */
 s->src = src;
 rsp = &s->item[0];

 /* SDES items */
 for (i = 0; i < argc; i++) {
 rsp->type = type[i];
 len = length[i];
 if (len > RTP_MAX_SDES) {
 /* invalid length, may want to take other action */
 len = RTP_MAX_SDES;
 }
 rsp->length = len;
 memcpy(rsp->data, value[i], len);
 rsp = (rtcp_sdes_item_t *)&rsp->data[len];
 }

 /* terminate with end marker and pad to next 4-octet boundary */
 len = ((char *) rsp) - b;
 pad = 4 - (len & 0x3);
 b = (char *) rsp;
 while (pad--) *b++ = RTCP_SDES_END;

 return b;
 }

A.5 Parsing RTCP SDES Packets

 This function parses an SDES packet, calling functions find_member()
 to find a pointer to the information for a session member given the
 SSRC identifier and member_sdes() to store the new SDES information
 for that member. This function expects a pointer to the header of the
 RTCP packet.

Schulzrinne/Casner/Frederick/Jacobson [Page 79]

Internet Draft RTP October 21, 1999

 void rtp_read_sdes(rtcp_t *r)
 {
 int count = r->common.count;
 rtcp_sdes_t *sd = &r->r.sdes;
 rtcp_sdes_item_t *rsp, *rspn;
 rtcp_sdes_item_t *end = (rtcp_sdes_item_t *)
 ((u_int32 *)r + r->common.length + 1);
 source *s;

 while (--count >= 0) {
 rsp = &sd->item[0];
 if (rsp >= end) break;
 s = find_member(sd->src);

 for (; rsp->type; rsp = rspn) {
 rspn = (rtcp_sdes_item_t *)((char*)rsp+rsp->length+2);
 if (rspn >= end) {
 rsp = rspn;
 break;
 }
 member_sdes(s, rsp->type, rsp->data, rsp->length);
 }
 sd = (rtcp_sdes_t *)
 ((u_int32 *)sd + (((char *)rsp - (char *)sd) >> 2)+1);
 }
 if (count >= 0) {
 /* invalid packet format */
 }
 }

A.6 Generating a Random 32-bit Identifier

 The following subroutine generates a random 32-bit identifier using
 the MD5 routines published in RFC 1321 [29]. The system routines may
 not be present on all operating systems, but they should serve as
 hints as to what kinds of information may be used. Other system calls
 that may be appropriate include

 o getdomainname() ,

 o getwd() , or

 o getrusage()

 "Live" video or audio samples are also a good source of random
 numbers, but care must be taken to avoid using a turned-off

https://datatracker.ietf.org/doc/html/rfc1321

Schulzrinne/Casner/Frederick/Jacobson [Page 80]

Internet Draft RTP October 21, 1999

 microphone or blinded camera as a source [12].

 Use of this or similar routine is RECOMMENDED to generate the initial
 seed for the random number generator producing the RTCP period (as
 shown in Appendix A.7), to generate the initial values for the
 sequence number and timestamp, and to generate SSRC values. Since
 this routine is likely to be CPU-intensive, its direct use to
 generate RTCP periods is inappropriate because predictability is not
 an issue. Note that this routine produces the same result on repeated
 calls until the value of the system clock changes unless different
 values are supplied for the type argument.

Schulzrinne/Casner/Frederick/Jacobson [Page 81]

Internet Draft RTP October 21, 1999

 /*
 * Generate a random 32-bit quantity.
 */
 #include <sys/types.h> /* u_long */
 #include <sys/time.h> /* gettimeofday() */
 #include <unistd.h> /* get..() */
 #include <stdio.h> /* printf() */
 #include <time.h> /* clock() */
 #include <sys/utsname.h> /* uname() */
 #include "global.h" /* from RFC 1321 */
 #include "md5.h" /* from RFC 1321 */

 #define MD_CTX MD5_CTX
 #define MDInit MD5Init
 #define MDUpdate MD5Update
 #define MDFinal MD5Final

 static u_long md_32(char *string, int length)
 {
 MD_CTX context;
 union {
 char c[16];
 u_long x[4];
 } digest;
 u_long r;
 int i;

 MDInit (&context);
 MDUpdate (&context, string, length);
 MDFinal ((unsigned char *)&digest, &context);
 r = 0;
 for (i = 0; i < 3; i++) {
 r ^= digest.x[i];
 }
 return r;
 } /* md_32 */

 /*
 * Return random unsigned 32-bit quantity. Use 'type' argument if you
 * need to generate several different values in close succession.
 */
 u_int32 random32(int type)
 {
 struct {
 int type;
 struct timeval tv;

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321

Schulzrinne/Casner/Frederick/Jacobson [Page 82]

Internet Draft RTP October 21, 1999

 clock_t cpu;
 pid_t pid;
 u_long hid;
 uid_t uid;
 gid_t gid;
 struct utsname name;
 } s;

 gettimeofday(&s.tv, 0);
 uname(&s.name);
 s.type = type;
 s.cpu = clock();
 s.pid = getpid();
 s.hid = gethostid();
 s.uid = getuid();
 s.gid = getgid();
 /* also: system uptime */

 return md_32((char *)&s, sizeof(s));
 } /* random32 */

A.7 Computing the RTCP Transmission Interval

 The following functions implement the RTCP transmission and reception
 rules described in Section 6.2. These rules are coded in several
 functions:

 o rtcp_interval() computes the deterministic calculated
 interval, measured in seconds. The parameters are defined in

Section 6.3.

 o OnExpire() is called when the RTCP transmission timer
 expires.

 o OnReceive() is called whenever an RTCP packet is received.

 Both OnExpire() and OnReceive() have event e as an argument. This is
 the next scheduled event for that participant, either an RTCP report
 or a BYE packet. It is assumed that the following functions are
 available:

 o Schedule(time t, event e) schedules an event e to occur at
 time t. When time t arrives, the funcion OnExpire is called
 with e as an argument.

 o Reschedule(time t, event e) reschedules a previously
 scheduled event e for time t.

Schulzrinne/Casner/Frederick/Jacobson [Page 83]

Internet Draft RTP October 21, 1999

 o SendRTCPReport(event e) sends an RTCP report.

 o SendBYEPacket(event e) sends a BYE packet.

 o TypeOfEvent(event e) returns EVENT_BYE if the event being
 processed is for a BYE packet to be sent, else it returns
 EVENT_REPORT.

 o PacketType(p) returns PACKET_RTCP_REPORT if packet p is an
 RTCP report (not BYE), PACKET_BYE if its a BYE RTCP packet,
 and PACKET_RTP if its a regular RTP data packet.

 o ReceivedPacketSize() and SentPacketSize() return the size of
 the referenced packet in octets.

 o NewMember(p) returns a 1 if the participant who sent packet p
 is not currently in the member list, 0 otherwise. Note this
 function is not sufficient for a complete implementation
 because each CSRC identifier in an RTP packet and each SSRC in
 a BYE packet should be processed.

 o NewSender(p) returns a 1 if the participant who sent packet p
 is not currently in the sender sublist of the member list, 0
 otherwise.

 o AddMember() and RemoveMember() to add and remove participants
 from the member list.

 o AddSender() and RemoveSender() to add and remove participants
 from the sender sublist of the member list.

Schulzrinne/Casner/Frederick/Jacobson [Page 84]

Internet Draft RTP October 21, 1999

 double rtcp_interval(int members,
 int senders,
 double rtcp_bw,
 int we_sent,
 double avg_rtcp_size,
 int initial)
 {
 /*
 * Minimum average time between RTCP packets from this site (in
 * seconds). This time prevents the reports from `clumping' when
 * sessions are small and the law of large numbers isn't helping
 * to smooth out the traffic. It also keeps the report interval
 * from becoming ridiculously small during transient outages like
 * a network partition.
 */
 double const RTCP_MIN_TIME = 5.;
 /*
 * Fraction of the RTCP bandwidth to be shared among active
 * senders. (This fraction was chosen so that in a typical
 * session with one or two active senders, the computed report
 * time would be roughly equal to the minimum report time so that
 * we don't unnecessarily slow down receiver reports.) The
 * receiver fraction must be 1 - the sender fraction.
 */
 double const RTCP_SENDER_BW_FRACTION = 0.25;
 double const RTCP_RCVR_BW_FRACTION = (1-RTCP_SENDER_BW_FRACTION);
 /*
 /* To compensate for "unconditional reconsideration" converging to a
 * value below the intended average.
 */
 double const COMPENSATION = 2.71828 - 1.5;

 double t; /* interval */
 double rtcp_min_time = RTCP_MIN_TIME;
 int n; /* no. of members for computation */

 /*
 * Very first call at application start-up uses half the min
 * delay for quicker notification while still allowing some time
 * before reporting for randomization and to learn about other
 * sources so the report interval will converge to the correct
 * interval more quickly.
 */
 if (initial) {
 rtcp_min_time /= 2;
 }

Schulzrinne/Casner/Frederick/Jacobson [Page 85]

Internet Draft RTP October 21, 1999

 /*
 * If there were active senders, give them at least a minimum
 * share of the RTCP bandwidth. Otherwise all participants share
 * the RTCP bandwidth equally.
 */
 n = members;
 if (senders > 0 && senders < members * RTCP_SENDER_BW_FRACTION) {
 if (we_sent) {
 rtcp_bw *= RTCP_SENDER_BW_FRACTION;
 n = senders;
 } else {
 rtcp_bw *= RTCP_RCVR_BW_FRACTION;
 n -= senders;
 }
 }

 /*
 * The effective number of sites times the average packet size is
 * the total number of octets sent when each site sends a report.
 * Dividing this by the effective bandwidth gives the time
 * interval over which those packets must be sent in order to
 * meet the bandwidth target, with a minimum enforced. In that
 * time interval we send one report so this time is also our
 * average time between reports.
 */
 t = avg_rtcp_size * n / rtcp_bw;
 if (t < rtcp_min_time) t = rtcp_min_time;

 /*
 * To avoid traffic bursts from unintended synchronization with
 * other sites, we then pick our actual next report interval as a
 * random number uniformly distributed between 0.5*t and 1.5*t.
 */
 t = t * (drand48() + 0.5);
 t = t / COMPENSATION;
 return t;
 }

Schulzrinne/Casner/Frederick/Jacobson [Page 86]

Internet Draft RTP October 21, 1999

 void OnExpire(event e,
 int members,
 int senders,
 double rtcp_bw,
 int we_sent,
 double *avg_rtcp_size,
 int *initial,
 time_tp tc,
 time_tp *tp,
 int *pmembers)
 {
 /* This function is responsible for deciding whether to send
 * an RTCP report or BYE packet now, or to reschedule transmission.
 * It is also responsible for updating the pmembers, initial, tp,
 * and avg_rtcp_size state variables. This function should be called
 * upon expiration of the event timer used by Schedule(). */

 double t; /* Interval */
 double tn; /* Next transmit time */

 /* In the case of a BYE, we use "unconditional reconsideration" to
 * reschedule the transmission of the BYE if necessary */

 if (TypeOfEvent(e) == EVENT_BYE) {
 t = rtcp_interval(members,
 senders,
 rtcp_bw,
 we_sent,
 *avg_rtcp_size,
 *initial);
 tn = *tp + t;
 if (tn <= tc) {
 SendBYEPacket(e);
 exit(1);
 } else {
 Schedule(tn, e);
 }

 } else if (TypeOfEvent(e) == EVENT_REPORT) {
 t = rtcp_interval(members,
 senders,
 rtcp_bw,
 we_sent,
 *avg_rtcp_size,
 *initial);
 tn = *tp + t;

Schulzrinne/Casner/Frederick/Jacobson [Page 87]

Internet Draft RTP October 21, 1999

 if (tn <= tc) {
 SendRTCPReport(e);
 *avg_rtcp_size = (1./16.)*SentPacketSize(e) +
 (15./16.)*(*avg_rtcp_size);
 *tp = tc;

 /* We must redraw the interval. Don't reuse the
 one computed above, since its not actually
 distributed the same, as we are conditioned
 on it being small enough to cause a packet to
 be sent */

 t = rtcp_interval(members,
 senders,
 rtcp_bw,
 we_sent,
 *avg_rtcp_size,
 *initial);

 Schedule(t+tc,e);
 *initial = 0;
 } else {
 Schedule(tn, e);
 }
 *pmembers = members;
 }
 }

Schulzrinne/Casner/Frederick/Jacobson [Page 88]

Internet Draft RTP October 21, 1999

 void OnReceive(packet p,
 event e,
 int *members,
 int *pmembers,
 int *senders,
 double *avg_rtcp_size,
 double *tp,
 double tc,
 double tn)
 {
 /* What we do depends on whether we have left the group, and
 * are waiting to send a BYE (TypeOfEvent(e) == EVENT_BYE) or
 * an RTCP report. p represents the packet that was just received. */

 if (PacketType(p) == PACKET_RTCP_REPORT) {
 if (NewMember(p) && (TypeOfEvent(e) == EVENT_REPORT)) {
 AddMember(p);
 *members += 1;
 }
 *avg_rtcp_size = (1./16.)*ReceivedPacketSize(p) +
 (15./16.)*(*avg_rtcp_size);
 } else if (PacketType(p) == PACKET_RTP) {
 if (NewMember(p) && (TypeOfEvent(e) == EVENT_REPORT)) {
 AddMember(p);
 *members += 1;
 }
 if (NewSender(p) && (TypeOfEvent(e) == EVENT_REPORT)) {
 AddSender(p);
 *senders += 1;
 }
 } else if (PacketType(p) == PACKET_BYE) {
 *avg_rtcp_size = (1./16.)*ReceivedPacketSize(p) +
 (15./16.)*(*avg_rtcp_size);

 if (TypeOfEvent(e) == EVENT_REPORT) {
 if (NewSender(p) == FALSE) {
 RemoveSender(p);
 *senders -= 1;
 }

 if (NewMember(p) == FALSE) {
 RemoveMember(p);
 *members -= 1;
 }

 if(*members < *pmembers) {
 tn = tc + (((double) *members)/(*pmembers))*(tn - tc);

Schulzrinne/Casner/Frederick/Jacobson [Page 89]

Internet Draft RTP October 21, 1999

 *tp = tc - (((double) *members)/(*pmembers))*(tc - *tp);

 /* Reschedule the next report for time tn */

 Reschedule(tn, e);
 *pmembers = *members;
 }

 } else if (TypeOfEvent(e) == EVENT_BYE) {
 *members += 1;
 }
 }
 }

A.8 Estimating the Interarrival Jitter

 The code fragments below implement the algorithm given in Section
6.4.1 for calculating an estimate of the statistical variance of the

 RTP data interarrival time to be inserted in the interarrival jitter
 field of reception reports. The inputs are r->ts , the timestamp from
 the incoming packet, and arrival , the current time in the same
 units. Here s points to state for the source; s->transit holds the
 relative transit time for the previous packet, and s->jitter holds
 the estimated jitter. The jitter field of the reception report is
 measured in timestamp units and expressed as an unsigned integer, but
 the jitter estimate is kept in a floating point. As each data packet
 arrives, the jitter estimate is updated:

 int transit = arrival - r->ts;
 int d = transit - s->transit;
 s->transit = transit;
 if (d < 0) d = -d;
 s->jitter += (1./16.) * ((double)d - s->jitter);

 When a reception report block (to which rr points) is generated for
 this member, the current jitter estimate is returned:

 rr->jitter = (u_int32) s->jitter;

 Alternatively, the jitter estimate can be kept as an integer, but

Schulzrinne/Casner/Frederick/Jacobson [Page 90]

Internet Draft RTP October 21, 1999

 scaled to reduce round-off error. The calculation is the same except
 for the last line:

 s->jitter += d - ((s->jitter + 8) >> 4);

 In this case, the estimate is sampled for the reception report as:

 rr->jitter = s->jitter >> 4;

B Changes from RFC 1889

 Most of this RFC is identical to RFC 1889. The changes are listed
 below.

 o The algorithm for calculating the RTCP transmission interval
 specified in Sections 6.2 and 6.3 and illustrated in Appendix

A.7 is augmented to include "reconsideration" to minimize
 transmission over the intended rate when many participants
 join a session simultaneously, and "reverse reconsideration"
 to reduce the incidence and duration of false participant
 timeouts when the number of participants drops rapidly.
 Reverse reconsideration is also used to possibly shorten the
 delay before sending RTCP SR when transitioning from passive
 receiver to active sender mode.

 o Section 6.3.7 specifies new rules controlling when an RTCP
 BYE packet should be sent in order to avoid a flood of packets
 when many participants leave a session simultaneously.
 Sections 7.2 and 7.3 specify that translators and mixers
 should send BYE packets for the sources they are no longer
 forwarding.

 o Section 6.2.1 specifies that implementations may store only a
 sampling of the participants' SSRC identifiers to allow
 scaling to very large sessions. Algorithms are specified in a
 separate RFC.

 o In Section 6.2 it is specified that RTCP sender and receiver
 bandwidths to be set as separate parameters of the session
 rather than a strict percentage of the session bandwidth, and
 may be set to zero. The requirement that RTCP was mandatory
 for RTP sessions using IP multicast was relaxed.

https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc1889

Schulzrinne/Casner/Frederick/Jacobson [Page 91]

Internet Draft RTP October 21, 1999

 o Also in Section 6.2 it is specified that the minimum RTCP
 interval may be scaled to smaller values for high bandwidth
 sessions, and may be set to zero for unicast sessions.

 o The requirement to retain state for inactive participants for
 a period long enough to span typical network partitions was
 removed from Section 6.2.1. In a session where many
 participants join for a brief time and fail to send BYE, this
 requirement would cause a significant overestimate of the
 number of participants. The reconsideration algorithm added in
 this revision compensates for the large number of new
 participants joining simultaneously when a partition heals.

 o Timing out a participant is to be based on inactivity for a
 number of RTCP report intervals calculated using the receiver
 RTCP bandwidth fraction even for active senders.

 o Rule changes for layered encodings are defined in Sections
 2.4, 6.3.9, 8.3 and 10.

 o An indentation bug in the RFC 1889 printing of the pseudo-
 code for the collision detection and resolution algorithm in

Section 8.2 has been corrected by translating the syntax to
 pseudo C language, and the algorithm has been modified to
 remove the restriction that both RTP and RTCP must be sent
 from the same source port number.

 o For unicast RTP sessions, distinct port pairs may be used for
 the two ends (Sections 3 and 7.1).

 o The description of the padding mechanism for RTCP packets was
 clarified and it is specified that padding MUST be applied to
 the last packet of a compound RTCP packet.

 o It is specified that a receiver MUST ignore packets with
 payload types it does not understand.

 o The specification of "relative" NTP timestamp in the RTCP SR
 section now defines these timestamps to be based on the most
 common system-specific clock, such as system uptime, rather
 than on session elapsed time which would not be the same for
 multiple applications started on the same machine at different
 times.

 o The inconsequence of NTP timestamps wrapping around in the
 year 2036 is explained.

 o The policy for registration of RTCP packet types and SDES

https://datatracker.ietf.org/doc/html/rfc1889

Schulzrinne/Casner/Frederick/Jacobson [Page 92]

Internet Draft RTP October 21, 1999

 types was clarified in a new Section 11.3, IANA
 Considerations. The suggestion that experimenters register
 the numbers they need and then unregister those which prove to
 be unneeded has been removed in in favor of using APP and
 PRIV.

 o The reference for the UTF-8 character set was changed to be
RFC 2279.

 o The last paragraph of the introduction in RFC 1889, which
 cautioned implementers to limit deployment in the Internet,
 was removed because it was deemed no longer relevant.

 o Small clarifications of the text have been made in several
 places, some in response to questions from readers. In
 particular:

 - A definition for "RTP media type" is given in Section 3 to
 allow the explanation of multiplexing RTP sessions in

Section 5.2 to be more clear regarding the multiplexing of
 multiple media.

 - The definition for "non-RTP means" was expanded to include
 examples of other protocols constituting non-RTP means.

 - The description of the session bandwidth parameter is
 expanded in Section 6.2.

 - The method for terminating and padding a sequence of SDES
 items is clarified in Section 6.5.

 - It was clarified in Section 8.2 that an implementation MAY
 choose a different policy than the example algorithm in
 keeping packets when a collision occurs, and SHOULD do so
 for applications where source addresses may change during
 the course of an RTP session.

 - The Security section adds a formal reference to IPSEC now
 that it is available, and says that the confidentiality
 method defined in this specification is primarily to codify
 existing practice.

 - The terms MUST, SHOULD, MAY, etc. are used as defined in RFC
2119.

C Security Considerations

 RTP suffers from the same security liabilities as the underlying

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Schulzrinne/Casner/Frederick/Jacobson [Page 93]

Internet Draft RTP October 21, 1999

 protocols. For example, an impostor can fake source or destination
 network addresses, or change the header or payload. Within RTCP, the
 CNAME and NAME information may be used to impersonate another
 participant. In addition, RTP may be sent via IP multicast, which
 provides no direct means for a sender to know all the receivers of
 the data sent and therefore no measure of privacy. Rightly or not,
 users may be more sensitive to privacy concerns with audio and video
 communication than they have been with more traditional forms of
 network communication [30]. Therefore, the use of security mechanisms
 with RTP is important. These mechanisms are discussed in Section 9.

 RTP-level translators or mixers may be used to allow RTP traffic to
 reach hosts behind firewalls. Appropriate firewall security
 principles and practices, which are beyond the scope of this
 document, should be followed in the design and installation of these
 devices and in the admission of RTP applications for use behind the
 firewall.

D Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implmentation may be prepared, copied, published and
 distributed, in whole or in part, without restriction of any kind,
 provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

E Addresses of Authors

Schulzrinne/Casner/Frederick/Jacobson [Page 94]

Internet Draft RTP October 21, 1999

 Henning Schulzrinne
 Dept. of Computer Science
 Columbia University
 1214 Amsterdam Avenue
 New York, NY 10027
 USA
 electronic mail: schulzrinne@cs.columbia.edu

 Stephen L. Casner
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134
 United States
 electronic mail: casner@cisco.com

 Ron Frederick
 Xerox Palo Alto Research Center
 3333 Coyote Hill Road
 Palo Alto, CA 94304
 United States
 electronic mail: frederic@parc.xerox.com

 Van Jacobson
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134
 United States
 electronic mail: van@cisco.com

 Acknowledgments

 This memorandum is based on discussions within the IETF Audio/Video
 Transport working group chaired by Stephen Casner. The current
 protocol has its origins in the Network Voice Protocol and the Packet
 Video Protocol (Danny Cohen and Randy Cole) and the protocol
 implemented by the vat application (Van Jacobson and Steve McCanne).
 Christian Huitema provided ideas for the random identifier generator.
 Extensive analysis and simulation of the timer reconsideration
 algorithm was done by Jonathan Rosenberg.

F Bibliography

 [1] D. D. Clark and D. L. Tennenhouse, "Architectural considerations
 for a new generation of protocols," in SIGCOMM Symposium on
 Communications Architectures and Protocols , (Philadelphia,
 Pennsylvania), pp. 200--208, IEEE, Sept. 1990. Computer
 Communications Review, Vol. 20(4), Sept. 1990.

Schulzrinne/Casner/Frederick/Jacobson [Page 95]

Internet Draft RTP October 21, 1999

 [2] H. Schulzrinne and S. Casner, "RTP profile for audio and video
 conferences with minimal control," Internet Draft, Internet
 Engineering Task Force, June 1999. Work in progress.

 [3] H. Schulzrinne, "Issues in designing a transport protocol for
 audio and video conferences and other multiparticipant real-time
 applications." expired Internet draft, Oct. 1993.

 [4] S. Bradner, "Key words for use in RFCs to indicate requirement
 levels," Request for Comments (Best Current Practice) 2119, Internet
 Engineering Task Force, Mar. 1997.

 [5] D. E. Comer, Internetworking with TCP/IP , vol. 1. Englewood
 Cliffs, New Jersey: Prentice Hall, 1991.

 [6] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP:
 session initiation protocol," Request for Comments (Proposed
 Standard) 2543, Internet Engineering Task Force, Mar. 1999.

 [7] International Telecommunication Union, "Visual telephone systems
 and equipment for local area networks which provide a non-guaranteed
 quality of service," Recommendation H.323, Telecommunication
 Standardization Sector of ITU, Geneva, Switzerland, May 1996.

 [8] M. Handley and V. Jacobson, "SDP: session description protocol,"
 Request for Comments (Proposed Standard) 2327, Internet Engineering
 Task Force, Apr. 1998.

 [9] H. Schulzrinne, A. Rao, and R. Lanphier, "Real time streaming
 protocol (RTSP)," Request for Comments (Proposed Standard) 2326,
 Internet Engineering Task Force, Apr. 1998.

 [10] J. Postel, "Internet protocol," Request for Comments (Standard)
791, Internet Engineering Task Force, Sept. 1981.

 [11] D. L. Mills, "Network time protocol (version 3) specification,
 implementation," Request for Comments (Draft Standard) 1305, Internet
 Engineering Task Force, Mar. 1992.

 [12] D. Eastlake, 3rd, S. Crocker, and J. Schiller, "Randomness
 recommendations for security," Request for Comments (Informational)

1750, Internet Engineering Task Force, Dec. 1994.

 [13] J.-C. Bolot, T. Turletti, and I. Wakeman, "Scalable feedback
 control for multicast video distribution in the internet," in SIGCOMM
 Symposium on Communications Architectures and Protocols , (London,
 England), pp. 58--67, ACM, Aug. 1994.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2543
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc2326
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc1305
https://datatracker.ietf.org/doc/html/rfc1750

Schulzrinne/Casner/Frederick/Jacobson [Page 96]

Internet Draft RTP October 21, 1999

 [14] I. Busse, B. Deffner, and H. Schulzrinne, "Dynamic QoS control
 of multimedia applications based on RTP," Computer Communications ,
 vol. 19, pp. 49--58, Jan. 1996.

 [15] S. Floyd and V. Jacobson, "The synchronization of periodic
 routing messages," in SIGCOMM Symposium on Communications
 Architectures and Protocols (D. P. Sidhu, ed.), (San Francisco,
 California), pp. 33--44, ACM, Sept. 1993. also in [31].

 [16] J. Rosenberg and H. Schulzrinne, "Sampling of the group
 membership in RTP," Internet Draft, Internet Engineering Task Force,
 May 1999. Work in progress.

 [17] J. A. Cadzow, Foundations of digital signal processing and data
 analysis New York, New York: Macmillan, 1987.

 [18] F. Yergeau, "UTF-8, a transformation format of ISO 10646,"
 Request for Comments (Proposed Standard) 2279, Internet Engineering
 Task Force, Jan. 1998.

 [19] P. V. Mockapetris, "Domain names - concepts and facilities,"
 Request for Comments (Standard) 1034, Internet Engineering Task
 Force, Nov. 1987.

 [20] P. V. Mockapetris, "Domain names - implementation and
 specification," Request for Comments (Standard) 1035, Internet
 Engineering Task Force, Nov. 1987.

 [21] R. T. Braden, "Requirements for internet hosts - application and
 support," Request for Comments (Standard) 1123, Internet Engineering
 Task Force, Oct. 1989.

 [22] Y. Rekhter, B. Moskowitz, D. Karrenberg, and G. de Groot,
 "Address allocation for private internets," Request for Comments
 (Informational) 1597, Internet Engineering Task Force, Mar. 1994.

 [23] E. Lear, E. Fair, D. Crocker, and T. Kessler, "Network 10
 considered harmful (some practices shouldn't be codified)," Request
 for Comments (Informational) 1627, Internet Engineering Task Force,
 June 1994.

 [24] D. Crocker, "Standard for the format of ARPA internet text
 messages," Request for Comments (Standard) 822, Internet Engineering
 Task Force, Aug. 1982.

 [25] W. Feller, An Introduction to Probability Theory and its
 Applications, Volume 1 , vol. 1. New York, New York: John Wiley and
 Sons, third ed., 1968.

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1597
https://datatracker.ietf.org/doc/html/rfc1627
https://datatracker.ietf.org/doc/html/rfc822

Schulzrinne/Casner/Frederick/Jacobson [Page 97]

Internet Draft RTP October 21, 1999

 [26] S. Kent and R. Atkinson, "Security architecture for the internet
 protocol," Request for Comments (Proposed Standard) 2401, Internet
 Engineering Task Force, Nov. 1998.

 [27] D. Balenson, "Privacy enhancement for internet electronic mail:
 Part III: algorithms, modes, and identifiers," Request for Comments
 (Proposed Standard) 1423, Internet Engineering Task Force, Feb. 1993.

 [28] V. L. Voydock and S. T. Kent, "Security mechanisms in high-level
 network protocols," ACM Computing Surveys , vol. 15, pp. 135--171,
 June 1983.

 [29] R. Rivest, "The MD5 message-digest algorithm," Request for
 Comments (Informational) 1321, Internet Engineering Task Force, Apr.
 1992.

 [30] S. Stubblebine, "Security services for multimedia conferencing,"
 in 16th National Computer Security Conference , (Baltimore,
 Maryland), pp. 391--395, Sept. 1993.

 [31] S. Floyd and V. Jacobson, "The synchronization of periodic
 routing messages," IEEE/ACM Transactions on Networking , vol. 2, pp.
 122--136, Apr. 1994.

 Table of Contents

1 Introduction .. 3
1.1 Terminology ... 5
2 RTP Use Scenarios 5
2.1 Simple Multicast Audio Conference 5
2.2 Audio and Video Conference 6
2.3 Mixers and Translators 6
2.4 Layered Encodings 7
3 Definitions ... 8
4 Byte Order, Alignment, and Time Format 11
5 RTP Data Transfer Protocol 11
5.1 RTP Fixed Header Fields 11
5.2 Multiplexing RTP Sessions 14
5.3 Profile-Specific Modifications to the RTP Header

 .. 15
5.3.1 RTP Header Extension 16
6 RTP Control Protocol -- RTCP 17
6.1 RTCP Packet Format 19

https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc1423
https://datatracker.ietf.org/doc/html/rfc1321

Schulzrinne/Casner/Frederick/Jacobson [Page 98]

Internet Draft RTP October 21, 1999

6.2 RTCP Transmission Interval 21
6.2.1 Maintaining the number of session members 25
6.3 RTCP Packet Send and Receive Rules 26
6.3.1 Computing the RTCP transmission interval 27
6.3.2 Initialization 28
6.3.3 Receiving an RTP or non-BYE RTCP packet 28
6.3.4 Receiving an RTCP BYE packet 28
6.3.5 Timing Out an SSRC 29
6.3.6 Expiration of transmission timer 29
6.3.7 Transmitting a BYE packet 30
6.3.8 Updating we_sent 31
6.3.9 Allocation of source description bandwidth 31
6.4 Sender and Receiver Reports 32
6.4.1 SR: Sender report RTCP packet 32
6.4.2 RR: Receiver report RTCP packet 38
6.4.3 Extending the sender and receiver reports 39
6.4.4 Analyzing sender and receiver reports 40
6.5 SDES: Source description RTCP packet 41
6.5.1 CNAME: Canonical end-point identifier SDES item 43
6.5.2 NAME: User name SDES item 44
6.5.3 EMAIL: Electronic mail address SDES item 45
6.5.4 PHONE: Phone number SDES item 45
6.5.5 LOC: Geographic user location SDES item 45
6.5.6 TOOL: Application or tool name SDES item 46
6.5.7 NOTE: Notice/status SDES item 46
6.5.8 PRIV: Private extensions SDES item 47
6.6 BYE: Goodbye RTCP packet 48
6.7 APP: Application-defined RTCP packet 48
7 RTP Translators and Mixers 50
7.1 General Description 50
7.2 RTCP Processing in Translators 52
7.3 RTCP Processing in Mixers 54
7.4 Cascaded Mixers 55
8 SSRC Identifier Allocation and Use 55
8.1 Probability of Collision 56
8.2 Collision Resolution and Loop Detection 56
8.3 Use with Layered Encodings 61
9 Security .. 61
9.1 Confidentiality 62
9.2 Authentication and Message Integrity 63
10 RTP over Network and Transport Protocols 63
11 Summary of Protocol Constants 64
11.1 RTCP packet types 65
11.2 SDES types .. 65
11.3 IANA Considerations 66
12 RTP Profiles and Payload Format Specifications 66
A Algorithms .. 68
A.1 RTP Data Header Validity Checks 72

Schulzrinne/Casner/Frederick/Jacobson [Page 99]

Internet Draft RTP October 21, 1999

A.2 RTCP Header Validity Checks 77
 A.3 Determining the Number of RTP Packets Expected and
 Lost ... 77

A.4 Generating SDES RTCP Packets 78
A.5 Parsing RTCP SDES Packets 79
A.6 Generating a Random 32-bit Identifier 80
A.7 Computing the RTCP Transmission Interval 83
A.8 Estimating the Interarrival Jitter 90
B Changes from RFC 1889 91
C Security Considerations 93
D Full Copyright Statement 94
E Addresses of Authors 94
F Bibliography .. 95

https://datatracker.ietf.org/doc/html/rfc1889

Schulzrinne/Casner/Frederick/Jacobson [Page 100]

