
AVT Working Group D.A.M. McGrew

Internet-Draft F.A. Andreasen

Intended status: Standards

Track
D. Wing

Expires: May 04, 2012 Cisco

K. Fischer

Siemens Enterprise

Communications

November 01, 2011

Encrypted Key Transport for Secure RTP

draft-ietf-avt-srtp-ekt-03

Abstract

SRTP Encrypted Key Transport (EKT) is an extension to SRTP that

provides for the secure transport of SRTP master keys, Rollover

Counters, and other information, within SRTP or SRTCP. This facility

enables SRTP to work for decentralized conferences with minimal

control, and to handle situations caused by early media.

This note defines EKT, and also describes how to use it with SDP

Security Descriptions, DTLS-SRTP, and MIKEY. These other key management

protocols provide an EKT key to everyone in a session, and EKT

coordinates the keys within the session.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on May 04, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Conventions Used In This Document

2. Encrypted Key Transport

2.1. Authentication Tag Formats

2.2. Packet Processing and State Machine

2.2.1. Outbound (Tag Generation)

2.2.1.1. Computing the Base Authentication Tag

2.2.1.2. Computing the Abbreviated Authentication Tag

2.2.2. Inbound (Tag Verification)

2.3. Ciphers

2.3.1. The Default Cipher

2.3.2. AES ECB

2.3.3. Other EKT Ciphers

2.4. Synchronizing Operation

2.5. Transport

2.6. Timing and Reliability Consideration

3. Use of EKT with SDP Security Descriptions

3.1. SDP Security Descriptions Recap

3.2. Relationship between EKT and SDP Security Descriptions

3.3. Overview of Combined EKT and SDP Security Description

Operation

3.4. EKT Extensions to SDP Security Descriptions

3.4.1. EKT_Cipher

3.4.2. EKT_Key

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

3.4.3. EKT_SPI

3.5. Offer/Answer Procedures

3.5.1. Generating the Initial Offer - Unicast Streams

3.5.2. Generating the Initial Answer - Unicast Streams

3.5.3. Processing of the Initial Answer - Unicast Streams

3.6. SRTP-Specific Use Outside Offer/Answer

3.7. Modifying the Session

3.8. Backwards Compatibility Considerations

3.9. Grammar

4. Use of EKT with DTLS-SRTP Key Transport

4.1. EKT Extensions to DTLS-SRTP

4.1.1. Scaling to Large Groups

4.2. Offer/Answer Considerations

4.2.1. Generating the Initial Offer

4.2.2. Generating the Initial Answer

4.2.3. Processing the Initial Answer

4.2.4. Modifying the Session

5. Use of EKT with MIKEY

5.1. EKT extensions to MIKEY

5.2. Offer/Answer considerations

5.2.1. Generating the Initial Offer

5.2.2. Generating the Initial Answer

5.2.3. Processing the Initial Answer

5.2.4. Modifying the Session

6. Design Rationale

6.1. Alternatives

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

7. Security Considerations

8. IANA Considerations

9. Acknowledgements

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Using EKT to Optimize Interworking DTLS-SRTP with

Security Descriptions

Authors' Addresses

1. Introduction

RTP is designed to allow decentralized groups with minimal control to

establish sessions, such as for multimedia conferences. Unfortunately,

Secure RTP (SRTP [RFC3711]) cannot be used in many minimal-control

scenarios, because it requires that SSRC values and other data be

coordinated among all of the participants in a session. For example, if

a participant joins a session that is already in progress, the SRTP

rollover counter (ROC) of each SRTP source in the session needs to be

provided to that participant.

The inability of SRTP to work in the absence of central control was

well understood during the design of that protocol; that omission was

considered less important than optimizations such as bandwidth

conservation. Additionally, in many situations SRTP is used in

conjunction with a signaling system that can provide most of the

central control needed by SRTP. However, there are several cases in

which conventional signaling systems cannot easily provide all of the

coordination required. It is also desirable to eliminate the layer

violations that occur when signaling systems coordinate certain SRTP

parameters, such as SSRC values and ROCs.

This document defines Encrypted Key Transport (EKT) for SRTP, an

extension to SRTP that fits within the SRTP framework and reduces the

amount of signaling control that is needed in an SRTP session. EKT

securely distributes the SRTP master key and other information for each

SRTP source, using SRTCP or SRTP to transport that information. With

this method, SRTP entities are free to choose SSRC values as they see

fit, and to start up new SRTP sources with new SRTP master keys (see

Section 2.2) within a session without coordinating with other entities

via signaling or other external means. This fact allows to reinstate

the RTP collision detection and repair mechanism, which is nullified by

the current SRTP specification because of the need to control SSRC

values closely. An SRTP endpoint using EKT can generate new keys

whenever an existing SRTP master key has been overused, or start up a

*

*

*

*

*

*

*

*

new SRTP source to replace an old SRTP source that has reached the

packet-count limit. EKT also solves the problem in which the burst loss

of the N initial SRTP packets can confuse an SRTP receiver, when the

initial RTP sequence number is greater than or equal to 2^16 - N. These

features simplify many architectures that implement SRTP.

EKT provides a way for an SRTP session participant, either sender or

receiver, to securely transport its SRTP master key and current SRTP

rollover counter to the other participants in the session. This data,

possibly in conjunction with additional data provided by an external

signaling protocol, furnishes the information needed by the receiver to

instantiate an SRTP/SRTCP receiver context.

EKT does not control the manner in which the SSRC and master key are

generated; it is concerned only with their secure transport. Those

values may be generated on demand by the SRTP endpoint, or may be

dictated by an external mechanism such as a signaling agent or a secure

group controller.

EKT is not intended to replace external key establishment mechanisms

such as SDP Security Descriptions [RFC4568], DTLS-SRTP [RFC5764], or

MIKEY [RFC3830][RFC4563]. Instead, it is used in conjunction with those

methods, and it relieves them of the burden of tightly coordinating

every SRTP source among every SRTP participant.

This document is organized as follows. A complete normative definition

of EKT is provided in Section 2. It consists of packet processing

algorithms (Section 2.2) and cryptographic definitions (Section 2.3) .

In Section 3, the use of EKT with SDP Security Descriptions is defined,

and in Section 4 its use with DTLS-SRTP is defined. In Section 5 we

outline the use of EKT with MIKEY. Section 6 provides a design

rationale. Security Considerations are provided in Section 7, and IANA

considerations are provided in Section 8.

1.1. Conventions Used In This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2. Encrypted Key Transport

In EKT, an SRTP master key is encrypted with a Key Encrypting Key

(KEK), and the resulting ciphertext is transported (using the EKT Base

Authentication Tag) in selected SRTCP or in selected SRTP packets. A

single KEK suffices for a single SRTP session, regardless of the number

of participants in the session. However, there can be multiple KEKs

used within a particular session. We use terms "KEK" or "EKT key" to

mean the same thing; the latter term is used when describing the

relation of EKT to external key management.

In order to convey the ciphertext of the SRTP master key, and other

additional information, the Authentication Tag field is subdivided as

defined in Section 2.1. EKT defines new SRTP and SRTCP authentication

Base Authentication Tag:

Encrypted Master Key:

functions, which use this format. It incorporates a conventional

authentication function, which is called the base authentication

function in this specification. Any authentication function, such as

the default one of HMAC-SHA1 with a 160-bit key and an 80-bit

authentication tag, can be used as a base authentication function. EKT

also defines a new method of providing SRTP master keys to an endpoint.

2.1. Authentication Tag Formats

The EKT Authentication Tag uses one of the two formats defined below.

These two formats can always be unambiguously distinguished on receipt

by examining the final bit of the EKT Authentication Tag, which is also

the final bit of the SRTP packet. The first format is the Full EKT

Authentication Tag (Figure 1), and the second is the Abbreviated EKT

Authentication Tag (Figure 2).

The following figure shows the packet layout for the Full EKT

Authentication Tag:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

: Base Authentication Tag :

+-+

: Encrypted Master Key :

+-+

| Rollover Counter |

+-+

| Initial Sequence Number | Security Parameter Index |1|

+-+

The Full EKT Authentication Tag field contains the following sub-

fields:

This field contains the authentication tag

computed by the base authentication function. The value of this

field is used to check the authenticity of the packet.

The length of this field is variable, and is

equal to the ciphertext size N defined in Section 2.3. Note that the

length of the field is inferable from the SPI field, since the

particular EKT cipher used by the sender of a packet is inferable

from that field. The Encrypted Master Key field is included outside

of the authenticated portion of the SRTCP packet, immediately

following the Authentication Tag. It contains the ciphertext value

resulting from the encryption of the SRTP master key corresponding

Rollover Counter:

Initial Sequence Number (ISN):

Security Parameter Index (SPI):

Final bit:

to the SSRC contained in the packet. The encryption and decryption

of this value is done using a cipher as defined in Section 2.3.

The length of this field is fixed at 32 bits. This

field is set to the current value of the SRTP rollover counter in

the SRTP context associated with the SSRC in the SRTCP packet. This

field immediately follows the Encrypted Master Key field.

The length of this field is fixed at 16

bits. If this field is nonzero, then it indicates the RTP sequence

number of the initial RTP packet that is protected using the SRTP

master key conveyed (in encrypted form) by the Encrypted Master Key

field of this packet. If this field is zero, it indicates that the

initial RTP packet protected using the SRTP master key conveyed in

this packet preceded, or was concurrent with, the last roll-over of

the RTP sequence number.

The length of this field is fixed at

15 bits. This field indicates the appropriate Key Encrypting Key and

other parameters for the receiver to use when processing the packet.

It is an "index" into a table of possibilities (which are

established via signaling or some other out-of-band means), much

like the IPsec Security Parameter Index [RFC4301]. The parameters

that are identified by this field are:

The Key Encrypting Key used to process the packet.

The EKT cipher used to process the packet.

The Secure RTP parameters associated with the SRTP Master Key

carried by the packet and the SSRC value in the packet.

Section 8.2. of [RFC3711] summarizes the parameters defined by

that specification.

The Master Salt associated with the Master Key. (This value is

part of the parameters mentioned above, but we call it out for

emphasis.) The Master Salt is communicated separately, via

signaling, typically along with the EKT Key Encrypting Key.

Together, these elements are called an EKT parameter set. Within

each SRTP session, each distinct EKT parameter set that may be used

MUST be associated with a distinct SPI value, to avoid ambiguity.

The SPI field follows the Initial Sequence Number. Since it appears

at the end of the packet, and has a fixed length, it is always

possible to unambiguously parse this field.

This MUST be 1. This flag distinguishes the packet layout

between Figure 2 or Figure 1.

*

*

*

*

Base Authentication Tag:

Reserved:

Final Bit:

The following figure shows the packet layout of the Abbreviated EKT

Authentication Tag:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

: Base Authentication Tag :

+-+

| Reserved |0|

+-+-+-+-+-+-+-+-+

The Abbreviated EKT Authentication Tag field contains the following

sub-fields:

same as described above.

7 bits. MUST be 0 on transmission and MUST be ignored on

reception.

This MUST be 0. This flag distinguishes the packet layout

betweenFigure 1 or Figure 2.s

2.2. Packet Processing and State Machine

At any given time, each SRTP/SRTCP source has associated with it a

single EKT parameter set. This parameter set is used to process all

outbound packets, and is called the outbound parameter set. There may

be other EKT parameter sets that are used by other SRTP/SRTCP sources

in the same session. All of these EKT parameter sets SHOULD be stored

by all of the participants in an SRTP session, for use in processing

inbound SRTCP traffic.

We next review SRTP authentication and show how the EKT authentication

method is built on top of a base authentication method. An SRTP or

SRTCP authentication method consists of a tag-generation function and a

verification function. The tag-generation function takes as input a

secret key, the data to be authenticated, and the packet index. It

provides an authentication tag as its sole output, and is used in the

processing of outbound packets. The verification function takes as

input a secret key, the data to be authenticated, the packet index, and

the authentication tag. It returns an indication of whether or not the

data, index, and tag are valid or not. It is used in the processing of

inbound packets. EKT defines a tag-generation function in terms of the

base tag-generation function, and defines a verification function in

terms of the base verification function. The tag-generation function is

used to process outbound packets, and the verification function is used

to process inbound packets.

2.2.1. Outbound (Tag Generation)

When an SRTP or SRTCP packet needs to be sent, the EKT tag generation

function works as follows. The Rollover Counter field in the packet is

set to the current value of the SRTP rollover counter (represented as

an unsigned integer in network byte order).

The Initial Sequence Number field is set to zero, if the initial RTP

packet protected using the current SRTP master key for this source

preceded, or was concurrent with, the last roll-over of the RTP

sequence number. Otherwise, that field is set to the value of the RTP

sequence number of the initial RTP packet that was or will be protected

by that key. When the SRTP master key corresponding to a source is

changed, the new key SHOULD be communicated in advance via EKT. (Note

that the ISN field allows the receiver to know when it should start

using the new key to process SRTP packets.) This enables the rekeying

event to be communicated before any RTP packets are protected with the

new key. The rekeying event MUST NOT change the value of ROC

(otherwise, the current value of the ROC would not be known to late

joiners of existing sessions).

The Security Parameter Index field is set to the value of the Security

Parameter Index that is associated with the outbound parameter set.

The Encrypted Master Key field is set to the ciphertext created by

encrypting the SRTP master key with the EKT cipher, using the KEK as

the encryption key. The encryption process is detailed in Section 2.3.

Implementations MAY cache the value of this field to avoid recomputing

it for each packet that is sent.

2.2.1.1. Computing the Base Authentication Tag

If using the Base Authentication Tag format, the field is computed

using the base tag-generation function as follows. It can only be

computed after all of the other fields have been set. The authenticated

input consists of the following elements, in order:

the SRTP or SRTCP authenticated portion,

a string of zero bits whose length exactly matches that of the

Base Authentication Tag field,

the Encrypted Master Key field,

the Rollover Counter field,

the Initial Sequence Number field, and

the Security Parameter Index field.

Implementation note: the string of zero bits is included in the

authenticated input in order to allow implementations to compute

the base authentication tag using a single pass of the base

1.

2.

3.

4.

5.

6.

*

authentication function. Implementations MAY write zeros into the

Base Authentication Tag field prior to computing that function,

on the sending side.

2.2.1.2. Computing the Abbreviated Authentication Tag

If using the Abbreviated Authentication Tag format, the field is

computed using the base tag-generation function as follows. It can only

be computed after all of the other fields have been set. The

authenticated input consists of the following elements, in order:

the SRTP or SRTCP authenticated portion,

a string of zero bits whose length exactly matches that of the

Base Authentication Tag field. Then for SRTP only, place the

ROC (in network order) into the first 4 bytes of the "base

authentication tag" field.

set reserved bits and final bit to zeros.

2.2.2. Inbound (Tag Verification)

The EKT verification function proceeds as follows (see Figure 3), or

uses an equivalent set of steps. Recall that the verification function

is a component of SRTP and SRTCP processing. When a packet does not

pass the verification step, the function indicates this fact to the

SRTCP packet processing function when it returns control to that

function.

The Security Parameter Index field is checked to determine

which EKT parameter set should be used when processing the

packet. If multiple parameter sets been defined for the SRTP

session, then the one that is associated with the Security

Parameter Index value that matches the Security Parameter Index

field in the packet is used. This parameter set is called the

matching parameter set below. If there is no matching SPI, then

the verification function MUST return an indication of

authentication failure, and the steps described below are not

performed.

If there is already an SRTP crypto context associated with the

SSRC in the packet, and replay protection is in use, then the

receiver performs the replay check described in Section 3.3.2

of [RFC3711]. If the EKT fields are conveyed in an RTCP packet,

then the packet index used in that check is formed from the

Rollover Counter and the Initial Sequence Number fields in that

packet. If the EKT fields are conveyed in an SRTP packet, then

the packet index used in that check is formed from the EKT

Rollover Counter field and the RTP Sequence Number in that

packet.

1.

2.

3.

1.

2.

The Encrypted Master Key field is decrypted using the EKT

cipher's decryption function. That field is used as the

ciphertext input, and the Key Encrypting Key in the matching

parameter set is used as the decryption key. The decryption

process is detailed in Section 2.3. The plaintext resulting

from this decryption is provisionally accepted as the SRTP

master key corresponding to the SSRC in the packet. If an SRTP

master key identifier (MKI) is present in the packet, then the

provisional key corresponds to the particular SSRC and MKI

combination. A provisional key MUST be used only to process one

single packet. A provisional SRTP or SRTCP authentication key

is generated from the provisional master key, and the SRTP

master salt from the matching parameter set, using the SRTP key

derivation algorithm (see Section 4.3 of [RFC3711]).

An authentication check is performed on the packet, using the

provisional SRTP or SRTCP authentication key. This key is

provided to the base authentication function (see Figure 3),

which is evaluated as described in Section 2.2.1.1. If the Base

Authentication Tag field matches the tag computed by the base

authentication function, then the packet passes the check.

Implementation note: a receiver MAY copy the Base

Authentication Tag field into temporary storage, then write

zeros into that field, prior to computing the base

authentication tag value. This step allows the base

authentication function to be computed in a single pass over

the data in the packet.

If the base authentication check using the provisional key

fails, then the provisional key MUST be discarded and it MUST

NOT affect any subsequent processing. The verification function

MUST return an indication of authentication failure, and the

steps described below are not performed.

Otherwise, if the base authentication check is passed, the

provisional key is also accepted as the SRTP master key

corresponding to the SRTP source that sent the packet. If an

MKI is present in the packet, then the master key corresponds

to the particular SSRC and MKI combination. If there is no SRTP

crypto context corresponding to the SSRC in the packet, then a

new crypto context is created. The rollover counter in the

context is set to the value of the Rollover Counter field. If

the crypto context is not new, then the rollover counter in the

context MUST NOT be set to a value lower than its current

value. (If the replay protection step described above is

performed, it ensures that this requirement is satisfied.)

3.

4.

*

5.

6.

If the Initial Sequence Number field is nonzero, then the

initial sequence number for the SRTP master key is set to the

packet index created by appending that field to the current

rollover counter and treating the result as a 48-bit unsigned

integer. The initial sequence number for the master key is

equivalent to the "From" value of the <From, To> pair of

indices (Section 8.1.1 of [RFC3711]) that can be associated

with a master key.

The newly accepted SRTP master key, the SRTP parameters from

the matching parameter set, the SSRC from the packet, and the

MKI from the packet, if one is present, are stored in the

crypto context associated with the SRTP source. The SRTP Key

Derivation algorithm is run in order to compute the SRTP

encryption and authentication keys, and those keys are stored

for use in SRTP processing of inbound packets. The Key

Derivation algorithm takes as input the newly accepted SRTP

master key, along with the Master Salt from the matching

parameter set.

Implementation note: the receiver may want to retain old

master keys for some brief period of time, so that out of

order packets can be processed.

The verification function then returns an indication that the

packet passed the verification.

Implementation note: the value of the Encrypted Master Key

field is identical in successive packets protected by the

same KEK and SRTP master key. This value MAY be cached by an

SRTP receiver to minimize computational effort, by allowing

it to recognize when the SRTP master key is unchanged, and

thus avoid repeating Steps 2, 6, and 7.

7.

8.

*

9.

*

 +------- Encrypted Master Key

 |

 v

 +------------+

 | Decryption |

 | Function |<-------------------------- Key Encrypting Key

 +------------+

 | +----------------+ EKT

 +--------+-- provisional ---->| SRTCP |<-- master

 | master key | Key Derivation | salt

 | +----------------+

 | |

 | provisional SRTCP authentication key

 | |

 | v

 | +----------------+

 | authenticated portion --> | Base SRTCP |

 | authentication tag -----> | Verification |

 | +----------------+

 | |

 | +----------------+ +---+

 | | return FAIL |<- FAIL -| ? |

 | +----------------+ +---+

 | |

 | +----------------+ |

 +------->| set master key,|<- PASS ---+

 | ROC, and MKI |

 +----------------+

 |

 v

 +----------------+

 | return PASS |

 +----------------+

2.3. Ciphers

EKT uses a cipher to encrypt the SRTP master keys. We first specify the

interface to the cipher, in order to abstract the interface away from

the details of that function. We then define the cipher that is used in

EKT by default. This cipher MUST be implemented, but another cipher

that conforms to this interface MAY be used, in which case its use MUST

be coordinated by external means (e.g., call signaling).

An EKT cipher consists of an encryption function and a decryption

function. The encryption function E(K, P) takes the following inputs:

a secret key K with a length of L bytes, and

a plaintext value P with a length of M bytes.

*

*

The encryption function returns a ciphertext value C whose length is N

bytes, where N is at least M. The decryption function D(K, C) takes the

following inputs:

a secret key K with a length of L bytes, and

a ciphertext value C with a length of N bytes.

The decryption function returns a plaintext value P that is M bytes

long. These functions have the property that D(K, E(K, P)) = P for all

values of K and P. Each cipher also has a limit T on the number of

times that it can be used with any fixed key value. For each key, the

encryption function MUST NOT be invoked on more than T distinct values

of P, and the decryption function MUST NOT be invoked on more than T

distinct values of C.

An EKT cipher MUST resist attacks in which both ciphertexts and

plaintexts can be adaptively chosen. For each randomly chosen key, the

encryption and decryption functions cannot be distinguished from a

random permutation and its inverse with non-negligible advantage. This

must be true even for adversaries that can query both the encryption

and decryption functions adaptively. The advantage is defined as the

difference between the probability that the adversary will identify the

cipher as such and the probability that the adversary will identify the

random permutation as the cipher, when each case is equally likely.

2.3.1. The Default Cipher

The default EKT Cipher is the AES Key Wrap [RFC3394] algorithm, which

can be used with plaintexts larger than 16 bytes in length, and is thus

suitable for keys of any size. It requires a plaintext length M that is

a multiple of eight bytes, and it returns a ciphertext with a length of

N = M + 8 bytes. It can be used with key sizes of L = 16, 24, and 32,

and its use with those key sizes is indicated as AESKW_128, AESKW_192,

and AESKW_256, respectively. The key size determines the length of the

AES key used by the Key Wrap algorithm. With this cipher, T=2^48.

2.3.2. AES ECB

The simplest EKT cipher is the Advanced Encryption Standard (AES)

[FIPS197] with 128-bit keys, in Electronic Codebook (ECB) Mode. Its use

is indicated as AES_ECB, and its parameters are fixed at L=16, M=16,

and T=2^48. Note that M matches the size of the SRTP master keys used

by the default SRTP key derivation function; if an SRTP cipher with a

different SRTP master key length is to be used with EKT, then another

EKT cipher must be used. ECB is the simplest mode of operation of a

block cipher, in which the block cipher is used in its raw form.

*

*

2.3.3. Other EKT Ciphers

Other specification MAY extend this one by defining other EKT ciphers

per Section 8. This section defines how those ciphers interact with

this specification.

An EKT cipher determines how the Encrypted Master Key field is written,

and how it is processed when it is read. This field is opaque to the

other aspects of EKT processing. EKT ciphers are free to use this field

in any way, but they SHOULD NOT use other EKT or SRTP fields as an

input. The values of the parameters L, M, N, and T MUST be defined by

each EKT cipher, and those values MUST be inferable from the EKT

parameter set.

2.4. Synchronizing Operation

A participant in a session MAY opt to use a particular EKT key to

protect outbound packets after it accepts that EKT key for protecting

inbound traffic. In this case, the fact that one participant has

changed to using a new EKT key for outbound traffic can trigger other

participants to switch to using the same key.

An SRTP/SRTCP source SHOULD change its SRTP master key after its EKT

key has been changed. This will ensure that the set of participants

able to decrypt the traffic will be limited to those who know the

current EKT key.

EKT can be transported over SRTCP, but some of the information that it

conveys is used for SRTP processing; some elements of the EKT parameter

set apply to both SRTP and SRTCP. Furthermore, SRTCP packets can be

lost and both SRTP and SRTCP packets may be delivered out of order.

This can lead to various race conditions, which we review below.

When joining an SRTP session, SRTP packets may be received before any

EKT over SRTCP packets, which implies the crypto context has not been

established, unless other external signaling mechanism has done so.

Rather than automatically discarding such SRTP packets, the receiver

MAY want to provisionally place them in a jitter buffer and delay

discarding them until playout time.

When an SRTP source using EKT over SRTCP performs a rekeying operation,

there is a race between the actual rekeying signaled via SRTCP and the

SRTP packets secured by the new keying material. If the SRTP packets

are received first, they will fail authentication; alternatively, if

authentication is not being used, they will decrypt to unintelligible

random-looking plaintext. (Note, however, that [RFC3711] says that SRTP

"SHOULD NOT be used without message authentication".) In order to

address this problem, the rekeying event can be sent before packets

using the new SRTP master key are sent (by use of the ISN field).

Another solution involves using an MKI at the expense of added overhead

in each SRTP packet. Alternatively, receivers MAY want to delay

discarding packets from known SSRCs that fail authentication in

anticipation of receiving a rekeying event via EKT (SRTCP) shortly.

The ROC signaled via EKT over SRTCP may be off by one when it is

received by the other party(ies) in the session. In order to deal with

this, receivers should simply follow the SRTP packet index estimation

procedures defined in Section 3.3.1 [RFC3711].

2.5. Transport

EKT MUST be used over SRTCP, whenever RTCP is in use. EKT MAY be used

over SRTP. When EKT over SRTP is used in an SRTP session in which SRTCP

is available, then EKT MUST be used for both SRTP and SRTCP.

The packet processing, state machine, and Authentication Tag format for

EKT over SRTP are nearly identical to that for EKT over SRTCP.

Differences are highlighted in Section 2.2.1 and Section 2.2.2.

2.6. Timing and Reliability Consideration

SRTCP communicates the master key and ROC for the SRTP session. Thus,

as explained above, if SRTP packets are received prior to the

corresponding SRTCP (EKT) packet, a race condition occurs. From an EKT

point of view, it is therefore desirable for an SRTP sender to send an

EKT packet containing the Base Authentication Tag as soon as possible,

and in no case any later than when the initial SRTP packet is sent. It

is RECOMMENDED that the Base Authentication Tag be transmitted 3 times

(to accomodate packet loss) and to provide a reliable indication to the

receiver that the sender is now using the EKT key. If the Base

Authentication Tag sent in SRTCP, the SRTCP timing rules associated

with the profile under which it runs (e.g., RTP/SAVP or RTP/SAVPF) MUST

be obeyed. Subject to that constraint, SRTP senders using EKT over

SRTCP SHOULD send an SRTCP packet as soon as possible after joining a

session. Note that there is no need for SRTP receivers to do so. Also

note, that per RFC 3550, Section 6.2, it is permissible to send a

compound RTCP packet immediately after joining a unicast session (but

not a multicast session).

SRTCP is not reliable and hence SRTCP packets may be lost. This is

obviously a problem for endpoints joining an SRTP session and receiving

SRTP traffic (as opposed to SRTCP), or for endpoints receiving SRTP

traffic following a rekeying event. To reduce the impact of lost

packets, SRTP senders using EKT over SRTCP SHOULD send SRTCP packets as

often as allowed by the profile under which they operate.

3. Use of EKT with SDP Security Descriptions

The SDP Security Descriptions (SDESC) [RFC4568] specification defines a

generic framework for negotiating security parameters for media streams

negotiated via the Session Description Protocol by use of a new SDP

"crypto" attribute and the Offer/Answer procedures defined in

[RFC3264]. In addition to the general framework, SDES also defines how

to use that framework specifically to negotiate security parameters for

Secure RTP. Below, we first provide a brief recap of the crypto

attribute when used for SRTP and we then explain how it is

complementary to EKT. In the rest of this Section, we provide

extensions to the crypto attribute and associated offer/answer

procedures to define its use with EKT.

3.1. SDP Security Descriptions Recap

The SRTP crypto attribute defined for SDESC contains a tag followed by

three types of parameters (refer to [RFC4568] for details): Figure 4

illustrate these parameters.

Crypto-suite. Identifies the encryption and authentication

transform

Key parameters. SRTP keying material and parameters.

Session parameters. Additional (optional) SRTP parameters such as

Key Derivation Rate, Forward Error Correction Order, use of

unencrypted SRTP, and other parameters defined by SDESC.

The crypto attributes in the example SDP in

v=0

o=sam 2890844526 2890842807 IN IP4 192.0.2.5

s=SRTP Discussion

i=A discussion of Secure RTP

u=http://www.example.com/seminars/srtp.pdf

e=marge@example.com (Marge Simpson)

c=IN IP4 192.0.2.12

t=2873397496 2873404696

m=audio 49170 RTP/SAVP 0

a=crypto:1 AES_CM_128_HMAC_SHA1_80

 inline:WVNfX19zZW1jdGwgKCkgewkyMjA7fQp9CnVubGVz|2^20|1:4

 FEC_ORDER=FEC_SRTP

a=crypto:2 F8_128_HMAC_SHA1_80

 inline:MTIzNDU2Nzg5QUJDREUwMTIzNDU2Nzg5QUJjZGVm|2^20|1:4;

 inline:QUJjZGVmMTIzNDU2Nzg5QUJDREUwMTIzNDU2Nzg5|2^20|2:4

 FEC_ORDER=FEC_SRTP

For legibility the SDP shows line breaks that are not present on the

wire.

The first crypto attribute has the tag "1" and uses the crypto-suite

AES_CM_128_HMAC_SHA1_80. The "inline" parameter provides the SRTP

master key and salt, the master key lifetime (number of packets), and

the (optional) Master Key Identifier (MKI) whose value is "1" and has a

byte length of "4" in the SRTP packets. Finally, the FEC_ORDER session

parameter indicates the order of Forward Error Correction used (FEC is

applied before SRTP processing by the sender of the SRTP media).

The second crypto attribute has the tag "2" and uses the crypto-suite

F8_128_HMAC_SHA1_80. It includes two SRTP master keys and associated

*

*

*

salts. The first one is used with the MKI value 1, whereas the second

one is used with the MKI value 2. Finally, the FEC_ORDER session

parameter indicates the order of Forward Error Correction used.

3.2. Relationship between EKT and SDP Security Descriptions

SDP Security Descriptions [RFC4568] define a generic framework for

negotiating security parameters for media streams negotiated via the

Session Description Protocol by use of the Offer/Answer procedures

defined in [RFC3264]. In addition to the general framework, SDESC also

defines how to use it specifically to negotiate security parameters for

Secure RTP.

EKT and SDESC are complementary. SDESC can negotiate several of the

SRTP security parameters (e.g., cipher and use of Master Key

Identifier/MKI) as well as SRTP master keys. SDESC, however, does not

negotiate SSRCs and their associated Rollover Counter (ROC). Instead,

SDESC relies on a so-called "late binding", where a newly observed SSRC

will have its crypto context initialized to a ROC value of zero.

Clearly, this does not work for participants joining an SRTP session

that has been established for a while and hence has a non-zero ROC. It

is impossible to use SDESC to join an SRTP session that is already in

progress. In this case, EKT on the endpoint running SDP Security can

provide the additional signaling necessary to communicate the ROC

(Section 6.4.1 of [RFC4568]). The use of EKT solves this problem by

communicating the ROC associated with the SSRC in the media plane.

SDP Security Descriptions negotiates different SRTP master keys in the

send and receive direction. The offer contains the master key used by

the offerer to send media, and the answer contains the master key used

by the answerer to send media. Consequently, if media is received by

the offerer prior to the answer being received, the offerer does not

know the master key being used. Use of SDP security preconditions can

solve this problem, however it requires an additional round-trip as

well as a more complicated state machine. EKT solves this problem by

simply sending the master key used in the media plane thereby avoiding

the need for security preconditions.

If multiple crypto-suites were offered, the offerer also will not know

which of the crypto-suites offered was selected until the answer is

received. EKT solves this problem by using a correlator, the Security

Parameter Index (SPI), which uniquely identifies each crypto attribute

in the offer.

One of the primary call signaling protocols using offer/answer is the

Session Initiation Protocol (SIP) [RFC3261]. SIP uses the INVITE

message to initiate a media session and typically includes an offer SDP

in the INVITE. An INVITE may be "forked" to multiple recipients which

potentially can lead to multiple answers being received. SDESC,

however, does not properly support this scenario, mainly because SDP

and RTP/RTCP does not contain sufficient information to allow for

correlation of an incoming RTP/RTCP packet with a particular answer

SDP. Note that extensions providing this correlation do exist (e.g.,

EKT_Cipher:

EKT_Key:

EKT_SPI:

Interactive Connectivity Establishment (ICE)). SDESC addresses this

point-to-multipoint problem by moving each answer to a separate RTP

transport address thereby turning a point-to-multipoint scenario into

multiple point-to-point scenarios. There are however significant

disadvantages to doing so. As long as the crypto attribute in the

answer does not contain any declarative parameters that differ from

those in the offer, EKT solves this problem by use of the SPI

correlator and communication of the answerer's SRTP master key in EKT.

As can be seen from the above, the combination of EKT and SDESC

provides a better solution to SRTP negotiation for offer/answer than

either of them alone. SDESC negotiates the various SRTP crypto

parameters (which EKT does not), whereas EKT addresses the shortcomings

of SDESC.

3.3. Overview of Combined EKT and SDP Security Description Operation

We define three session extension parameters to SDESC to communicate

the EKT cipher, EKT key, and Security Parameter Index to the peer. The

original SDESC parameters are used as defined in [RFC4568], however the

procedures associated with the SRTP master key differ slightly, since

both SDESC and EKT communicate an SRTP master key. In particular, the

SRTP master key communicated via SDESC is used only if there is

currently no crypto context established for the SSRC in question. This

will be the case when an entity has received only the offer or answer,

but has yet to receive a valid EKT message from the peer. Once a valid

EKT message is received for the SSRC, the crypto context is initialized

accordingly, and the SRTP master key will then be derived from the EKT

message. Subsequent offer/answer exchanges do not change this: The most

recent SRTP master key negotiated via EKT will be used, or, if none is

available for the SSRC in question, the most recent SRTP master key

negotiated via offer/answer will be used. Note that with these rules,

once a valid EKT message has been received for a given SSRC, rekeying

for that SSRC can only be done via EKT. The associated SRTP crypto

parameters however can be changed via SDESC.

3.4. EKT Extensions to SDP Security Descriptions

In order to use EKT and SDESC in conjunction with each other, the

following new SDES session parameters are defined. These MUST NOT

appear more than once in a given crypto attribute:

The EKT cipher used to encrypt the SRTP Master Key

The EKT key used to encrypt the SRTP Master Key

The EKT Security Parameter Index

Below are details on each of these attributes.

3.4.1. EKT_Cipher

The (optional) EKT_Cipher parameter defines the EKT cipher used to

encrypt the EKT key with in SRTCP packets. The default value is

"AESKW_128" in accordance with Section 2.3.1. For the AES Key Wrap

cipher, the values "AESKW_128", "AESKW_192", and "AESKW_256" are

defined for values of L=16, 24, and 32 respectively. For the AES ECB

cipher, "AES_ECB" is defined. In the Offer/Answer model, the EKT_Cipher

parameter is a negotiated parameter.

3.4.2. EKT_Key

The (mandatory) EKT_Key parameter is the key K used to encrypt the SRTP

Master Key in SRTCP packets. The value is base64 encoded as described

in Section 4 [RFC4648]. When base64 decoding the key, padding

characters (i.e., one or two "=" at the end of the base64 encoded data)

are discarded (see [RFC4648] for details). Base64 encoding assumes that

the base64 encoding input is an integral number of octets. If a given

EKT cipher requires the use of a key with a length that is not an

integral number of octets, said cipher MUST define a padding scheme

that results in the base64 input being an integral number of octets.

For example, if the length defined was 250 bits, then 6 padding bits

would be needed, which could be defined to be the last 6 bits in a 256

bit input. In the Offer/Answer model, the EKT_Key parameter is a

negotiated parameter.

3.4.3. EKT_SPI

The (mandatory) EKT_SPI parameter is the Security Parameter Index. It

is encoded as an ASCII string representing the hexadecimal value of the

Security Parameter Index. The SPI identifies the *offer* crypto

attribute (including the EKT Key and Cipher) being used for the

associated SRTP session. A crypto attribute corresponds to an EKT

Parameter Set and hence the SPI effectively identifies a particular EKT

parameter set. Note that the scope of the SPI is the SRTP session,

which may or may not be limited to the scope of the associated SIP

dialog. In particular, if one of the participants in an SRTP session is

an SRTP translator, the scope of the SRTP session is not limited to the

scope of a single SIP dialog. However, if all of the participants in

the session are endpoints or mixers, the scope of the SRTP session will

correspond to a single SIP dialog. In the Offer/Answer model, the

EKT_SPI parameter is a negotiated parameter.

3.5. Offer/Answer Procedures

In this section, we provide the offer/answer procedures associated with

use of the three new SDESC parameters defined in Section Section 3.4.

Since SDESC is defined only for unicast streams, we provide only offer/

answer procedures for unicast streams here as well.

Important Note:

3.5.1. Generating the Initial Offer - Unicast Streams

When the initial offer is generated, the offerer MUST follow the steps

defined in [RFC4568] Section 7.1.1 as well as the following steps.

For each unicast media line using SDESC and where use of EKT is

desired, the offerer MUST include one EKT_Key parameter and one EKT_SPI

parameter in at least one "crypto" attribute (see [RFC4568]). The

EKT_SPI parameter serves to identify the EKT parameter set used for a

particular SRTCP packet. Consequently, within a single media line, a

given EKT_SPI value MUST NOT be used with multiple crypto attributes.

Note that the EKT parameter set to use for the session is not yet

established at this point; each offered crypto attribute contains a

candidate EKT parameter set. Furthermore, if the media line refers to

an existing SRTP session, then any SPI values used for EKT parameter

sets in that session MUST NOT be remapped to any different EKT

parameter sets. When an offer describes an SRTP session that is already

in progress, the offer SHOULD use an EKT parameter set (incl. EKT_SPI

and EKT_KEY) that is already in use.

If an EKT_Cipher other than the default cipher is to be used, then the

EKT_Cipher parameter MUST be included as well.

If a given crypto attribute includes more than one set of SRTP key

parameters (SRTP master key, salt, lifetime, MKI), they MUST all use

the same salt. (EKT requires a single shared salt between all the

participants in the direct SRTP session).

The scope of the offer/answer exchange is the SIP

dialog(s) established as a result of the INVITE, however the scope

of EKT is the direct SRTP session, i.e., all the participants that

are able to receive SRTP and SRTCP packets directly. If an SRTP

session spans multiple SIP dialogs, the EKT parameter sets MUST be

synchronized between all the SIP dialogs where SRTP and SRTCP

packets can be exchanged. In the case where the SIP entity operates

as an RTP mixer (and hence re-originates SRTP and SRTCP packets with

its own SSRC), this is not an issue, unless the mixer receives

traffic from the various participants on the same destination IP

address and port, in which case further coordination of SPI values

and crypto parameters may be needed between the SIP dialogs (note

that SIP forking with multiple early media senders is an example of

this). However if it operates as an RTP translator, synchronized

negotiation of the EKT parameter sets on *all* the involved SIP

dialogs will be needed. This is non-trivial in a variety of use

cases, and hence use of the combined SDES/EKT mechanism with RTP

translators should be considered very carefully. It should be noted,

that use of SRTP with RTP translators in general should be

considered very carefully as well.

The EKT session parameters can either be included as optional or

mandatory parameters, however within a given crypto attribute, they

MUST all be either optional or mandatory.

3.5.2. Generating the Initial Answer - Unicast Streams

When the initial answer is generated, the answerer MUST follow the

steps defined in [RFC4568] Section 7.1.2 as well as the following

steps.

For each unicast media line using SDESC, the answerer examines the

associated crypto attribute(s) for the presence of EKT parameters. If

mandatory EKT parameters are included with a "crypto" attribute, the

answerer MUST support those parameters in order to accept that offered

crypto attribute. If optional EKT parameters are included instead, the

answerer MAY accept the offered crypto attribute without using EKT.

However, doing so will prevent the offerer from processing any packets

received before the answer. If neither optional nor mandatory EKT

parameters are included with a crypto attribute, and that crypto

attribute is accepted in the answer, EKT MUST NOT be used. If a given a

crypto attribute includes a mixture of optional and mandatory EKT

parameters, or an incomplete set of mandatory EKT parameters, that

crypto attribute MUST be considered invalid.

When EKT is used with SDESC, the offerer and answerer MUST use the same

SRTP master salt. Thus, the SRTP key parameter(s) in the answer crypto

attribute MUST use the same master salt as the one accepted from the

offer.

When the answerer accepts the offered media line and EKT is being used,

the crypto attribute included in the answer MUST include the same EKT

parameter values as found in the accepted crypto attribute from the

offer (however, if the default EKT cipher is being used, it may be

omitted). Furthermore, the EKT parameters included MUST be mandatory

(i.e., no "-" prefix).

Acceptance of a crypto attribute with EKT parameters leads to

establishment of the EKT parameter set for the corresponding SRTP

session. Consequently, the answerer MUST send packets in accordance

with that particular EKT parameter set only. If the answerer wants to

enable the offerer to process SRTP packets received by the offerer

before it receives the answer, the answerer MUST NOT include any

declarative session parameters that either were not present in the

offered crypto attribute, or were present but with a different value.

Otherwise, the offerer's view of the EKT parameter set would differ

from the answerer's until the answer is received. Similarly, unless the

offerer and answerer has other means for correlating an answer with a

particular SRTP session, the answer SHOULD NOT include any declarative

session parameters that either were not present in the offered crypto

attribute, or were present but with a different value. If this

recommendation is not followed and the offerer receives multiple

answers (e.g., due to SIP forking), the offerer may not be able to

process incoming media stream packets correctly.

3.5.3. Processing of the Initial Answer - Unicast Streams

When the offerer receives the answer, it MUST perform the steps in

[RFC4568] Section 7.1.3 as well as the following steps for each SRTP

media stream it offered with one or more crypto lines containing EKT

parameters in it.

If the answer crypto line contains EKT parameters, and the

corresponding crypto line from the offer contained the same EKT values,

use of EKT has been negotiated successfully and MUST be used for the

media stream. When determining whether the values match, optional and

mandatory parameters MUST be considered equal. Furthermore, if the

default EKT cipher is being used, it MAY be either present or absent in

the offer and/or answer.

If the answer crypto line does not contain EKT parameters, then EKT

MUST NOT be used for the corresponding SRTP session. Note that if the

accepted crypto attribute contained mandatory EKT parameters in the

offer, and the crypto attribute in the answer does not contain EKT

parameters, then negotiation has failed (Section 5.1.3 of [RFC4568]).

If the answer crypto line contains EKT parameters but the corresponding

offered crypto line did not, or if the parameters don't match or are

invalid, then the offerer MUST consider the crypto line invalid (see

Section 7.1.3 of [RFC4568] for further operation).

The EKT parameter set is established when the answer is received,

however there are a couple of special cases to consider here. First of

all, if an SRTCP packet is received prior to the answer, then the EKT

parameter set is established provisionally based on the SPI included.

Once the answer (which may include declarative session parameters) is

received, the EKT parameter set is fully established. The second case

involves receipt of multiple answers due to SIP forking. In this case,

there will be multiple EKT parameter sets; one for each SRTP session.

As mentioned earlier, reliable correlation of SIP dialogs to SRTP

sessions requires extensions, and hence if one or more of the answers

include declarative session parameters, it may be difficult to fully

establish the EKT parameter set for each SRTP session. In the absence

of a specific correlation mechanism, it is RECOMMENDED, that such

correlation be done based on the signaled receive IP-address in the SDP

and the observed source IP-address in incoming SRTP/SRTCP packets, and,

if necessary, the signaled receive UDP port and the observed source UDP

port.

3.6. SRTP-Specific Use Outside Offer/Answer

Security Descriptions use for SRTP is not defined outside offer/answer

and hence neither does Security Descriptions with EKT.

3.7. Modifying the Session

When a media stream using the SRTP security descriptions has been

established, and a new offer/answer exchange is performed, the offerer

and answerer MUST follow the steps in Section 7.1.4 of [RFC4568] as

well as the following steps. SDESC allows for all parameters of the

session to be modified, and the EKT session parameters are no exception

to that, however, there are a few additional rules to be adhered to

when using EKT.

It is permissible to start a session without the use of EKT, and then

subsequently start using EKT, however the converse is not. Thus, once

use of EKT has been negotiated on a particular media stream, EKT MUST

continue to be used on that media stream in all subsequent offer/answer

exchanges.

The reason for this is that both SDESC and EKT communicate the SRTP

Master Key with EKT Master Keys taking precedence. Reverting back to an

SDESC-controlled master key in a synchronized manner is difficult.

Once EKT is being used, the salt for the direct SRTP session MUST NOT

be changed. Thus, a new offer/answer which does not create a new SRTP

session (e.g., because it reuses the same IP address and port) MUST use

the same salt for all crypto attributes as is currently used for the

direct SRTP session.

Finally, subsequent offer/answer exchanges MUST NOT remap a given SPI

value to a different EKT parameter set until 2^32 other mappings have

been used within the SRTP session. In practice, this requirements is

most easily met by using a monotonically increasing SPI value (modulo

2^32 and starting with zero) per direct SRTP session. Note that a

direct SRTP session may span multiple SIP dialogs, and in such cases

coordination of SPI values across those SIP dialogs will be required.

In the simple point-to-point unicast case without translators, the

requirement simply applies within each media line in the SDP. In the

point-to-multipoint case, the requirement applies across all the

associated SIP dialogs.

3.8. Backwards Compatibility Considerations

Backwards compatibility can be achieved in a couple of ways. First of

all, SDESC allows for session parameters to be prefixed with "-" to

indicate that they are optional. If the answerer does not support the

EKT session parameters, such optional parameters will simply be

ignored. When the answer is received, absence of the parameters will

indicate that EKT is not being used. Receipt of SRTCP packets prior to

receipt of such an answer will obviously be problematic (as is normally

the case for SDESC without EKT).

Alternatively, SDESC allows for multiple crypto lines to be included

for a particular media stream. Thus, two crypto lines that differ in

their use of EKT parameters (presence in one, absence in the other) can

be used as a way to negotiate use of EKT. When the answer is received,

the accepted crypto attribute will indicate whether EKT is being used

or not.

3.9. Grammar

The ABNF [RFC5234] syntax for the three new SDP Security Descriptions

session parameters is shown in Figure 5.

EKT = EKT_Cipher "|" EKT_Key "|" EKT_SPI

EKT_Cipher = "EKT=" EKT_Cipher_Name

EKT_Cipher_Name = 1*(ALPHA / DIGIT / "_") ; "AES_128", "AESKW_128"

 ; "AESKW_192" and

 ; "AESKW_256" defined in

 ; this document.

EKT_Key = 1*(base64) ; See Section 4 of [RFC4648]

base64 = ALPHA / DIGIT / "+" / "/" / "="

EKT_SPI = 4HEXDIG ; See [RFC5234]

Using the example from Figure 5 with the EKT extensions to SDP Security

Descriptions results in the following example SDP:

v=0

o=sam 2890844526 2890842807 IN IP4 192.0.2.5

s=SRTP Discussion

i=A discussion of Secure RTP

u=http://www.example.com/seminars/srtp.pdf

e=marge@example.com (Marge Simpson)

c=IN IP4 192.0.2.12

t=2873397496 2873404696

m=audio 49170 RTP/SAVP 0

a=crypto:1 AES_CM_128_HMAC_SHA1_80

 inline:WVNfX19zZW1jdGwgKCkgewkyMjA7fQp9CnVubGVz|2^20|1:4

 FEC_ORDER=FEC_SRTP EKT=AES_128|FE9C|AAE0

a=crypto:2 F8_128_HMAC_SHA1_80

 inline:MTIzNDU2Nzg5QUJDREUwMTIzNDU2Nzg5QUJjZGVm|2^20|1:4;

 inline:QUJjZGVmMTIzNDU2Nzg5QUJDREUwMTIzNDU2Nzg5|2^20|2:4

 FEC_ORDER=FEC_SRTP EKT=AES_128|FE9C|AAE0

For legibility the SDP shows line breaks that are not present on the

wire.

4. Use of EKT with DTLS-SRTP Key Transport

This document defines an extension to DTLS-SRTP called Key Transport.

Using EKT with the DTLS-SRTP Key Transport extensions allows securely

transporting SRTP keying material from one DTLS-SRTP peer to another,

so the same SRTP keying material can be used by those peers and so

those peers can process EKT keys. This combination of protocols is

valuable because it combines the advantages of DTLS (strong

authentication of the endpoint and flexibility) with the advantages of

EKT (allowing secure multiparty RTP with loose coordination and

efficient communication of per-source keys).

4.1. EKT Extensions to DTLS-SRTP

This document adds a new TLS negotiated extension called "ekt". This

adds a new TLS content type, EKT, and a new negotiated extension EKT.

The negotiated extension MUST only be requested in conjunction with the

"use_srtp" extension (Section 3.2 of [RFC5764]). The DTLS server

indicates its support for EKT by including "dtls-srtp-ekt" in its SDP

and "ekt" in its TLS ServerHello message. If a DTLS client includes

"ekt" in its ClientHello, but does not receive "ekt" in the

ServerHello, the DTLS client MUST NOT send DTLS packets with the "ekt"

content-type.

Using the syntax described in DTLS [I-D.ietf-tls-rfc4347-bis], the

following structures are used:

enum {

 ekt_key(0),

 ekt_key_ack(1),

 ekt_key_error(254),

 (255)

} SRTPKeyTransportType;

struct {

 SRTPKeyTransportType keytrans_type;

 uint24 length;

 uint16 message_seq;

 uint24 fragment_offset;

 uint24 fragment_length;

 select (SRTPKeyTransportType) {

 case ekt_key:

 EKTkey;

 };

} KeyTransport;

enum {

 AES_128(0),

 AESKW_128(1),

 AESKW_192(2),

 AESKW_256(3),

} ektcipher;

struct {

 ektcipher EKT_Cipher;

 uint EKT_Key_Value<1..256>;

 uint EKT_Master_Salt<1..256>;

 uint16 EKT_SPI;

} EKTkey;

The diagram below shows a message flow of DTLS client and DTLS server

using the DTLS-SRTP Key Transport extension. SRTP packets exchanged

prior to the ekt_message are encrypted using the SRTP master key

derived from the normal DTLS-SRTP key derivation function. After the

ekt_key message, they can be encrypted using the EKT key.

Editor's note: do we need reliability for the ekt_key messages?

Client Server

ClientHello + use_srtp + EKT

 -------->

 ServerHello + use_srtp + EKT

 Certificate*

 ServerKeyExchange*

 CertificateRequest*

 <-------- ServerHelloDone

Certificate*

ClientKeyExchange

CertificateVerify*

[ChangeCipherSpec]

Finished -------->

 [ChangeCipherSpec]

 <-------- Finished

SRTP packets <-------> SRTP packets

SRTP packets <-------> SRTP packets

ekt_key -------->

SRTP packets <-------> SRTP packets

SRTP packets <-------> SRTP packets

4.1.1. Scaling to Large Groups

In certain scenarios it is useful to perform DTLS-SRTP with a device

that is not the RTP peer. A common scenario is multicast, where it is

necessary to distribute the DTLS-SRTP (and EKT distribution) to several

devices. To allow for this, a new SDP attribute, dtls-srtp-host, is

defined which follows the general syntax specified in Section 5.13 of

[RFC4566]. When signaled, it indicates this host controls the EKT

keying for all group members. For the dtls-srtp-host attribute: ABNF

[RFC5234] syntax:

the name is the ASCII string "dtls-srtp-host" (lowercase)

the value is the IP address and port number used for DTLS-SRTP

This is a media-level attribute and MUST NOT appear at the

session level

The formal description of the attribute is defined by the following

*

*

*

*

attribute = "a=dtls-srtp-host:"

 dtls-srtp-host-info *(SP dtls-srtp-host-info)

host-info = nettype space addrtype space

 connection-address space port CRLF

Multiple IP/port pairs are provided for IPv6/IPv4 interworking, and to

allow failover. The receiving host SHOULD attempt to use them in the

order provided.

An example of SDP containing the dtls-srtp-host attribute:

v=0

o=sam 2890844526 2890842807 IN IP4 192.0.2.5

s=SRTP Discussion

i=A discussion of Secure RTP

u=http://www.example.com/seminars/srtp.pdf

e=marge@example.com (Marge Simpson)

c=IN IP4 192.0.2.12

t=2873397496 2873404696

m=audio 49170 UDP/TLS/RTP/SAVP 0

a=fingerprint:SHA-1

 4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB

a=dtls-srtp-ekt

a=dtls-srtp-host:IN IP4 192.0.2.13 56789

For legibility the SDP shows line breaks that are not present on the

wire.

4.2. Offer/Answer Considerations

This section describes Offer/Answer considerations for the use of EKT

together with DTLS-SRTP for unicast and multicast streams. The offerer

and answerer MUST follow the procedures specified in [RFC5764] as well

as the following ones.

As most DTLS-SRTP processing is performed on the media channel, rather

than in SDP, there is little processing performed in SDP other than

informational and to redirect DTLS-SRTP to an alternate host.

Advertising support for the extension is necessary in SDP because in

some cases it is required to establish an SRTP call. For example, a

mixer may be able to only support SRTP listeners if those listeners

implement DTLS Key Transport (because it lacks the CPU cycles necessary

to encrypt SRTP uniquely for each listener).

4.2.1. Generating the Initial Offer

The initial offer contains a new SDP attribute, "dtls-srtp-ekt", which

contains no value. This indicates the offerer is capable of supporting

DTLS-SRTP with EKT extensions, and indicates the desire to use the

"ekt" extension during the DTLS-SRTP handshake. If the offerer wants

another host to perform DTLS-SRTP-EKT processing, it also includes the

dtls-srtp-host attribute in its offer (Section 4.1).

An example of SDP containing the dtls-srtp-ekt attribute::

v=0

o=sam 2890844526 2890842807 IN IP4 192.0.2.5

s=SRTP Discussion

i=A discussion of Secure RTP

u=http://www.example.com/seminars/srtp.pdf

e=marge@example.com (Marge Simpson)

c=IN IP4 192.0.2.12

t=2873397496 2873404696

m=audio 49170 UDP/TLS/RTP/SAVP 0

a=fingerprint:SHA-1

 4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB

a=dtls-srtp-ekt

For legibility the SDP shows line breaks that are not present on the

wire.

4.2.2. Generating the Initial Answer

Upon receiving the initial offer, the presence of the dtls-srtp-ekt

attribute indicates a desire to receive the EKT extension in the DTLS-

SRTP handshake. The presence of the dtls-srtp-host attribute indicates

an alternate host to send the DTLS-SRTP handshake (instead of the host

on the c/m lines). DTLS messages should be constructed according to

those two attributes.

The SDP answer SHOULD contain the dtls-srtp-ekt attribute to indicate

the answerer understands dtls-srtp. It should only contain the dtls-

srtp-host attribute if the answerer also wishes to offload its DTLS-

SRTP processing to another host.

4.2.3. Processing the Initial Answer

The presence of the dtls-srtp-ekt attribute indicates a desire by the

answerer to perform DTLS-SRTP with EKT extensions, and the dtls-srtp-

host attribute indicates an alternate host for DTLS-SRTP processing.

After successful negotiation of the key_transport extension, the DTLS

client and server MAY exchange SRTP packets, encrypted using the KDF

described in [RFC5764]. This is normal and expected, even if Key

Transport was negotiated by both sides, as neither side may (yet) have

a need to alter the SRTP key. However, it is also possible that one (or

both) peers will immediately send new_srtp_key message before sending

any SRTP, and also possible that SRTP, encrypted with an unknown key,

may be received before the new_srtp_key message is received.

4.2.4. Modifying the Session

As DTLS-SRTP-EKT processing is done on the DTLS-SRTP channel (media

channel) rather than signaling, no special processing for modifying the

session is necessary.

5. Use of EKT with MIKEY

The advantages outlined in Section 1 are useful in some scenarios in

which MIKEY is used to establish SRTP sessions. In this section, we

briefly review MIKEY and related work, and discuss these scenarios.

An SRTP sender or a group controller can use MIKEY to establish a SRTP

cryptographic context. This capability includes the distribution of a

TEK generation key (TGK) or the TEK itself, security policy payload,

crypto session bundle ID (CSB_ID) and a crypto session ID (CS_ID). The

TEK directly maps to an SRTP master key, whereas the TGK is used along

with the CSB_ID and a CS_ID to generate a TEK. The CS_ID is used to

generate multiple TEKs (SRTP master keys) from a single TGK. For a

media stream in SDP, MIKEY allocates two consecutive numbers for the

crypto session IDs, so that each direction uses a different SRTP master

key (see [RFC4567]).

The MIKEY specification [RFC3830] defines three modes to exchange keys,

associated parameters and to protect the MIKEY message: pre-shared key,

public-key encryption and Diffie-Hellman key exchange. In the first two

modes the MIKEY initiator only chooses and distributes the TGK or TEK,

whereas in the third mode both MIKEY entities (the initiator and

responder) contribute to the keys. All three MIKEY modes have in common

that for establishing a SRTP session the exchanged key is valid for the

send and receive direction. Especially for group communications it is

desirable to update the SRTP master key individually per direction. EKT

provides this property by distributing the SRTP master key within the

SRTP/SRTCP packet.

MIKEY already supports synchronization of ROC values between the MIKEY

initiator and responder. The SSRC / ROC value pair is part of the MIKEY

Common Header payload. This allows providing the current ROC value to

late joiners of a session. However, in some scenarios a key management

based ROC synchronization is not sufficient. For example, in mobile and

wireless environments, members may go in and out of coverage and may

miss a sequence number overrun. In point-to-multipoint translator

scenarios it is desirable to not require the group controller to track

the ROC values of each member, but to provide the ROC value by the

originator of the SRTP packet. A better alternative to synchronize the

ROC values is to send them directly via SRTP/SRTCP, as EKT does. A

separate SRTP extension is being proposed [RFC4771] to include the ROC

as part of a modified authentication tag. Unlike EKT, this extension

uses only SRTP and not SRTCP as its transport and does not allow

updating the SRTP master key.

Besides the ROC, MIKEY synchronizes also the SSRC values of the SRTP

streams. Each sender of a stream sends the associated SSRC within the

MIKEY message to the other party. If a SRTP session participant starts

a new SRTP source or a new participant is added to a group, subsequent

SDP offer/answer and MIKEY exchanges are necessary to update the SSRC

values. EKT improves these scenarios by updating the keys and SSRC

values without coordination on the signaling channel. With EKT, SRTP

can handle early media, since the EKT SPI allows the receiver to

identify the cryptographic keys and parameters used by the source.

The MIKEY specification [RFC3830] suggests the use of unicast for

rekeying. This method does not scale well to large groups or

interactive groups. The EKT extension of SRTP/SRTCP provides a solution

for rekeying the SRTP master key and for ROC/SSRC synchronization. EKT

is not a substitution for MIKEY, but rather a complementary addition to

address the above described limitations of MIKEY.

In the next section we provide an extension to MIKEY for support of

EKT. EKT can be used only with the pre-shared key or public-key

encryption MIKEY mode of [RFC3830]. The Diffie-Hellman exchange mode is

not suitable in conjunction with EKT, because it is not possible to

establish one common EKT key over multiple EKT entities. Additional

MIKEY modes specified in separate documents are not considered for EKT.

5.1. EKT extensions to MIKEY

In order to use EKT with MIKEY, the EKT cipher, EKT key and EKT SPI

must be negotiated in the MIKEY message exchange.

For EKT we specify a new SRTP Policy Type in the Security Policy (SP)

payload of MIKEY (see Section 6.10 of [RFC3830]). The SP payload

contains a set of policies. Each policy consists of a number Policy

Param TLVs.

Prot type | Value

EKT | TBD (will be requested from IANA)

For legibility the SDP shows line breaks that are not present on the

wire.

The EKT Security Policy has one parameter representing the EKT cipher.

Type | Meaning | Possible values

--

 0 | EKT cipher | see below

EKT cipher | Value

AES_128 | 0

AESKW_128 | 1

AESKW_192 | 2

AESKW_256 | 3

AES_128 is the default value for the EKT cipher.

Type:

KV:

Salt length, Salt Data:

KV Data:

The two mandatory EKT parameters (EKT_Key and EKT_SPI) are transported

in the MIKEY KEMAC payload within one separate Key Data sub-payload. As

specified in Section 6.2 of [RFC3830], the KEMAC payload carries the

TEK Generation Key (TGK) or the Traffic Encryption Key (TEK). One or

more TGKs or TEKs are carried in individual Key Data sub-payloads

within the KEMAC payload. The KEMAC payload is encrypted as part of

MIKEY. The Key Data sub- payload, specified in Section 6.13 of

[RFC3830], has the following format:

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Next Payload | Type | KV | Key data length |

+-+

: Key data :

+-+

: Salt length (optional) ! Salt data (optional) :

+-+

: KV data (optional) :

+-+

These fields are described below:

4 bits in length, indicates the type of key included in the

payload. We define Type = TBD (will be requested from IANA) to

indicate transport of the EKT key.

(4 bits): indicates the type of key validity period specified.

KV=1 is currently specified as an SPI. We use that value to indicate

the KV_data contains the ETK_SPI for the key type EKT_Key. KV_data

would be 16 bits in length, but it is also possible to interpret the

length from the 'Key data len' field. KV data MUST NOT be optional

for the key type EKT_Key when KV = 1.

These optional fields SHOULD be omitted for

the key type EKT_Key, if the SRTP master salt is already present in

the TGK or TEK Key Data sub-payload. The EKT_Key sub-payload MUST

contain a SRTP master salt, if the SRTP master salt is not already

present in the TGK or TEK Key Data sub-payload.

length determined by Key Data Length field.

5.2. Offer/Answer considerations

This section describes Offer/Answer considerations for the use of EKT

together with MIKEY for unicast streams. The offerer and answerer MUST

follow the procedures specified in [RFC3830] and [RFC4567] as well as

the following ones.

5.2.1. Generating the Initial Offer

If it is intended to use MIKEY together with EKT, the offerer MUST

include at least one MIKEY key-mgmt attribute with one EKT_Key Key Data

sub-payload and the EKT_Cipher Security Policy payload. MIKEY can be

used on session or media level. On session level, MIKEY provides the

keys for multiple SRTP sessions in the SDP offer. The EKT SPI

references a EKT parameter set including the Secure RTP parameters as

specified in Section 8.2 in [RFC3711]. If MIKEY is used on session

level, it is only possible to use one EKT SPI value. Therefore, the

session-level MIKEY message MUST contain one SRTP Security Policy

payload only, which is valid for all related SRTP media lines. If MIKEY

is used on media level, different SRTP Security Policy parameters (and

consequently different EKT SPI values) can be used for each media line.

If MIKEY is used on session and media level, the medial level content

overrides the session level content.

EKT requires a single shared SRTP master salt between all participants

in the direct SRTP session. If a MIKEY key-mgmt attribute contains more

than one TGK or TEK Key Data sub-payload, all the sub-payloads MUST

contain the same master salt value. Consequently, the EKT_Key Key Data

sub-payload MAY also contain the same salt or MAY omit the salt value.

If the SRTP master salt is not present in the TGK and TEK Key Data sub-

payloads, the EKT_Key sub-payload MUST contain a master salt.

5.2.2. Generating the Initial Answer

For each media line in the offer using MIKEY, provided on session or/

and on media level, the answerer examines the related MIKEY key-mgmt

attributes for the presence of EKT parameters. In order to accept the

offered key-mgmt attribute, the MIKEY message MUST contain one EKT_Key

Key Data sub-payload and the EKT_Cipher Security Policy payload. The

answerer examines also the existence of a SRTP master salt in the TGK/

TEK and/or the EKT_Key sub-payloads. If multiple salts are available,

all values MUST be equal. If the salt values differ or no salt is

present, the key-mgmt attribute MUST be considered as invalid.

The MIKEY responder message in the SDP answer does not contain a MIKEY

KEMAC or Security Policy payload and consequently does not contain any

EKT parameters. If the key-mgmt attribute for a media line was accepted

by the answerer, the EKT parameter set of the offerer is valid for both

directions of the SRTP session.

5.2.3. Processing the Initial Answer

On reception of the answer, the offerer examines if EKT has been

accepted for the offered media lines. If a MIKEY key-mgmt attribute is

received containing a valid MIKEY responder message, EKT has been

successfully negotiated. On receipt of a MIKEY error message, EKT

negotiation has failed. For example, this may happen if an EKT extended

MIKEY initiator message is sent to a MIKEY entity not supporting EKT. A

MIKEY error code 'Invalid SP' or 'Invalid DT' is returned to indicate

that the EKT_Cipher Security Policy payload or the EKT_Key sub-payload

is not supported. In this case, the offerer may send a second SDP offer

with a MIKEY key-mgmt attribute without the additional EKT extensions.

This behavior can be improved by defining an additional key-mgmt prtcl-

id value 'mikeyekt' and offering two key-mgmt SDP attributes. One

attribute offers MIKEY together with EKT and the other one offers MIKEY

without EKT. This is for further discussion.

5.2.4. Modifying the Session

Once a SRTP stream has been established, a new offer/answer exchange

can modify the session including the EKT parameters. If the EKT key or

EKT cipher is modified (i.e., a new EKT parameter set is created) the

offerer MUST also provide a new EKT SPI value. The offerer MUST NOT

remap an existing EKT SPI value to a new EKT parameter set. Similar, a

modification of the SRTP Security Policy leads to a new EKT parameter

set and requires a fresh EKT SPI, even the EKT key or cipher did not

change.

Once EKT is being used, the SRTP master salt for the SRTP session MUST

NOT be changed. The salt in the Key Data sub-payloads within the

subsequent offers MUST be the same as the one already used.

After EKT has been successfully negotiated for a session and a SRTP

master key has been transported by EKT, it is difficult to switch back

to a pure MIKEY based key exchange in a synchronized way. Therefore,

once EKT is being used for a session, EKT MUST be used also in all

subsequent offer/answer exchanges for that session.

6. Design Rationale

From [RFC3550], a primary function of RTCP is to carry the CNAME, a

"persistent transport-level identifier for an RTP source" since

"receivers require the CNAME to keep track of each participant." EKT

works in much the same way, using SRTCP to carry information needed for

the proper processing of the SRTP traffic.

With EKT, SRTP gains the ability to synchronize the creation of

cryptographic contexts across all of the participants in a single

session. This feature provides some, but not all, of the functionality

that is present in IKE phase two (but not phase one). Importantly, EKT

does not provide a way to indicate SRTP options.

With EKT, external signaling mechanisms provide the SRTP options and

the EKT Key, but need not provide the key(s) for each individual SRTP

source. EKT provides a separation between the signaling mechanisms and

the details of SRTP. The signaling system need not coordinate all SRTP

streams, nor predict in advance how many streams will be present, nor

communicate SRTP-level information (e.g., rollover counters) of current

sessions.

EKT is especially useful for multi-party sessions, and for the case

where multiple RTP sessions are sent to the same destination transport

address (see the example in the definition of "RTP session" in

[RFC3550]). A SIP offer that is forked in parallel (sent to multiple

endpoints at the same time) can cause multiple RTP sessions to be sent

to the same transport address, making EKT useful for use with SIP.

EKT can also be used in conjunction with a scalable group-key

management system like GDOI [RFC3547]. Such a system provides a secure

entity authentication method and a way to revoke group membership, both

of which are out of scope of EKT.

It is natural to use SRTCP to transport encrypted keying material for

SRTP, as it provides a secure control channel for (S)RTP. However,

there are several different places in SRTCP in which the encrypted SRTP

master key and ROC could be conveyed. We briefly review some of the

alternatives in order to motivate the particular choice used in this

specification. One alternative is to have those values carried as a new

SDESC item or RTCP packet. This would require that the normal SRTCP

encryption be turned off for the packets containing that SDESC item,

since on the receiver's side, SRTCP processing completes before the

RTCP processing starts. This tension between encryption and the desire

for RTCP privacy is highly undesirable. Additionally, this alternative

makes SRTCP dependent upon the parsing of the RTCP compound packet,

which adds complexity. It is simpler to carry the encrypted key in a

new SRTCP field. One way to do this and to be backwards compatible with

the existing specification is to define a new crypto function that

incorporates the encrypted key. We define a new authentication

transform because EKT relies on the normal SRTCP authentication to

provide implicit authentication of the encrypted key.

An SRTP packet containing an SSRC that has not been seen will be

discarded. This practice may induce a burst of packet loss at the

outset of an SRTP stream, due to the loss or reorder of the first SRTCP

packet with the EKT containing the key and rollover counter for that

stream. However, this practice matches the conservative RTP memory-

allocation strategy; many existing applications accept this risk of

initial packet loss. Alternatively, implementations may wish to delay

discarding such packets for a short period of time as described in

Section 2.4.

When EKT is carried in SRTCP, it adds eight additional bytes to each

SRTCP packet, plus the length of the Encrypted Master Key field. Using

the SRTP and EKT defaults, the total overhead is 24 bytes. This

overhead does not detract from the total bandwidth used by SRTP, since

it is included in the RTCP bandwidth computation. However, it will

cause the control protocol to issue packets less frequently.

The main motivation for the use of the variable-length format is

bandwidth conservation. If EKT is used of SRTP, there will be a loss of

bandwidth due to the additional 24 bytes in each RTP packet. For some

applications, this bandwidth loss is significant.

6.1. Alternatives

In its current design, EKT requires that the Master Salt be established

out of band. That requirement is undesirable. In an offer/answer

environment, it forces the answerer to re-use the same Master Salt

value used by the offerer. The Master Salt value could be carried in

EKT packets though that would consume yet more bandwidth.

In some scenarios, two SRTP sessions may be combined into a single

session. When using EKT in such sessions, it is desirable to have an

SPI value that is larger than 15 bits, so that collisions between SPI

values in use in the two different sessions are unlikely (since each

collision would confuse the members of one of the sessions.)

An alternative that addresses both of these needs is as follows: the

SPI value can be lengthed from 15 bits to 63 bits, and the Master Salt

can be identical to, or constructed from, the SPI value. SRTP

conventionally uses a 14-byte Master Salt, but shorter values are

acceptable. This alternative would add six bytes to each EKT packet;

that overhead may be a reasonable tradeoff for addressing the problems

outlined above.

7. Security Considerations

With EKT, each SRTP sender and receiver can generate distinct SRTP

master keys. This property avoids any security concern over the re-use

of keys, by empowering the SRTP layer to create keys on demand. Note

that the inputs of EKT are the same as for SRTP with key-sharing: a

single key is provided to protect an entire SRTP session. However, EKT

provides complete security, even in the absence of further out-of-band

coordination of SSRCs, and even when SSRC values collide.

EKT uses encrypted key transport with implicit authentication. A strong

cipher is used to ensure the confidentiality of the master keys as they

are transported. The authenticity of the master keys is ensured by the

base authentication check, which uses the plaintext form of that key.

If the base authentication function and the cipher cannot be defeated

by a particular attacker, then that attacker will be unable to defeat

the implicit authentication.

In order to avoid potential security issues, the SRTP authentication

tag length used by the base authentication method MUST be at least ten

octets.

8. IANA Considerations

This section registers with IANA the following SRTP session parameters

for SDP Security Descriptions [RFC4568]: Section 3.4.

EKT_KEY

EKT_CIPHER

EKT_SPI

*

*

*

The definition of these parameters is provided in

We request the following IANA assignments from existing MIKEY IANA

tables:

From the Key Data payload name spaces, a value to indicate the

type as the 'EKT_Key'.

From the Security Policy table name space, a new value to be

assigned for 'EKT' (see Figure 12).

Furthermore, we need the following two new IANA registries created,

populated with the initial values in this document. New values for both

of these registries can be defined via Specification Required

[RFC5226].

EKT parameter type (initially populated with the list from Figure

13)

EKT cipher (initially populated with the list from Figure 14)

9. Acknowledgements

Thanks to Lakshminath Dondeti for assistance with earlier versions of

this document. Thanks to Nermeen Ismail, Eddy Lem, and Rob Raymond for

fruitful discussions and comments. Thanks to Romain Biehlmann for his

encouragement to add support DTLS-SRTP-EKT key servers for multicast.

Thanks to Felix Wyss for his review and comments regarding ciphers.

10. References

10.1. Normative References

, "

[FIPS197]
The Advanced Encryption Standard (AES)", FIPS-197

Federal Information Processing Standard, .

[RFC4563]

Carrara, E., Lehtovirta, V. and K. Norrman, "The Key

ID Information Type for the General Extension

Payload in Multimedia Internet KEYing (MIKEY)", RFC

4563, June 2006.

[RFC4567]

Arkko, J., Lindholm, F., Naslund, M., Norrman, K.

and E. Carrara, "Key Management Extensions for

Session Description Protocol (SDP) and Real Time

Streaming Protocol (RTSP)", RFC 4567, July 2006.

[RFC4568]

Andreasen, F., Baugher, M. and D. Wing, "Session

Description Protocol (SDP) Security Descriptions for

Media Streams", RFC 4568, July 2006.

[RFC4771]
Lehtovirta, V., Naslund, M. and K. Norrman,

"Integrity Transform Carrying Roll-Over Counter for

*

*

*

*

http://tools.ietf.org/html/rfc4563
http://tools.ietf.org/html/rfc4563
http://tools.ietf.org/html/rfc4563
http://tools.ietf.org/html/rfc4567
http://tools.ietf.org/html/rfc4567
http://tools.ietf.org/html/rfc4567
http://tools.ietf.org/html/rfc4568
http://tools.ietf.org/html/rfc4568
http://tools.ietf.org/html/rfc4568
http://tools.ietf.org/html/rfc4771

the Secure Real-time Transport Protocol (SRTP)", RFC

4771, January 2007.

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3261]

Rosenberg, J., Schulzrinne, H., Camarillo, G.,

Johnston, A., Peterson, J., Sparks, R., Handley, M.

and E. Schooler, "SIP: Session Initiation Protocol",

RFC 3261, June 2002.

[RFC3264]

Rosenberg, J. and H. Schulzrinne, "An Offer/Answer

Model with Session Description Protocol (SDP)", RFC

3264, June 2002.

[RFC3394]

Schaad, J. and R. Housley, "Advanced Encryption

Standard (AES) Key Wrap Algorithm", RFC 3394,

September 2002.

[RFC3550]

Schulzrinne, H., Casner, S., Frederick, R. and V.

Jacobson, "RTP: A Transport Protocol for Real-Time

Applications", STD 64, RFC 3550, July 2003.

[RFC4648]
Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, October 2006.

[RFC3711]

Baugher, M., McGrew, D., Naslund, M., Carrara, E.

and K. Norrman, "The Secure Real-time Transport

Protocol (SRTP)", RFC 3711, March 2004.

[RFC5234]

Crocker, D. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234,

January 2008.

[I-D.ietf-

tls-rfc4347-

bis]

Rescorla, E and N Modadugu, "Datagram Transport

Layer Security version 1.2", Internet-Draft draft-

ietf-tls-rfc4347-bis-06, July 2011.

[RFC5764]

McGrew, D. and E. Rescorla, "Datagram Transport

Layer Security (DTLS) Extension to Establish Keys

for the Secure Real-time Transport Protocol (SRTP)",

RFC 5764, May 2010.

[RFC4566]
Handley, M., Jacobson, V. and C. Perkins, "SDP:

Session Description Protocol", RFC 4566, July 2006.

[RFC5226]

Narten, T. and H. Alvestrand, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP

26, RFC 5226, May 2008.

10.2. Informative References

[RFC3830]

Arkko, J., Carrara, E., Lindholm, F., Naslund, M. and

K. Norrman, "MIKEY: Multimedia Internet KEYing", RFC

3830, August 2004.

[RFC4301]
Kent, S. and K. Seo, "Security Architecture for the

Internet Protocol", RFC 4301, December 2005.

[RFC3547]
Baugher, M., Weis, B., Hardjono, T. and H. Harney, "The

Group Domain of Interpretation", RFC 3547, July 2003.

http://tools.ietf.org/html/rfc4771
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3264
http://tools.ietf.org/html/rfc3264
http://tools.ietf.org/html/rfc3394
http://tools.ietf.org/html/rfc3394
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc3711
http://tools.ietf.org/html/rfc3711
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/draft-ietf-tls-rfc4347-bis-06
http://tools.ietf.org/html/draft-ietf-tls-rfc4347-bis-06
http://tools.ietf.org/html/rfc5764
http://tools.ietf.org/html/rfc5764
http://tools.ietf.org/html/rfc5764
http://tools.ietf.org/html/rfc4566
http://tools.ietf.org/html/rfc4566
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc3830
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc3547
http://tools.ietf.org/html/rfc3547

Appendix A. Using EKT to Optimize Interworking DTLS-SRTP with Security

Descriptions

Today, SDP Security Descriptions [RFC4568] is used for distributing

SRTP keys in several different IP PBX systems and is expected to be

used by 3GPP's Long Term Evolution (LTE). The IP PBX systems are

typically used within a single enterprise, and LTE is used within the

confines of a mobile operator's network. A Session Border Controller is

a reasonable solution to interwork between Security Descriptions in one

network and DTLS-SRTP in another network. For example, a mobile

operator (or an Enterprise) could operate Security Descriptions within

their network and DTLS-SRTP towards the Internet.

However, due to the way Security Descriptions and DTLS-SRTP manage

their SRTP keys, such an SBC has to authenticate, decrypt, re-encrypt,

and re-authenticate the SRTP (and SRTCP) packets in one direction, as

shown in Figure 16, below. This is computationally expensive.

RFC4568 endpoint SBC DTLS-SRTP endpoint

 | | |

 1. |---key=A------------->| |

 2. | |<-DTLS-SRTP handshake->|

 3. |<--key=B--------------| |

 4. | |<--SRTP, encrypted w/B-|

 5. |<-SRTP, encrypted w/B-| |

 6. |-SRTP, encrypted w/A->| |

 7. | (decrypt, re-encrypt) |

 8. | |-SRTP, encrypted w/C-->|

 | | |

The message flow is as follows (similar steps occur with SRTCP):

The Security Descriptions [RFC4568] endpoint discloses its SRTP

key to the SBC, using a=crypto in its SDP.

SBC completes DTLS-SRTP handshake. From this handshake, the SBC

derives the SRTP key for traffic from the DTLS-SRTP endpoint

(key B) and to the DTLS-SRTP endpoint (key C).

The SBC communicates the SRTP encryption key (key B) to the

Security Descriptions endpoint (using a=crypto). (There is no

way, with DTLS-SRTP, to communicate the Security Descriptions

key to the DTLS-SRTP key endpoint.)

The DTLS-SRTP endpoint sends an SRTP key, encrypted with its

key B. This is received by the SBC.

The received SRTP packet is simply forwarded; the SBC does not

need to do anything with this packet as its key (key B) was

already communicated in step 3.

1.

2.

3.

4.

5.

The Security Descriptions endpoint sends an SRTP packet,

encrypted with its key A.

The SBC has to authenticate and decrypt the SRTP packet (using

key A), and re-encrypt it and generate an HMAC (using key C).

The SBC sends the new SRTP packet.

If EKT is deployed on the DTLS-SRTP endpoints, EKT helps to avoid the

computationally expensive operation so the SBC does not need not

perform any per-packet operations on the SRTP (or SRTCP) packets in

either direction. With EKT the SBC can simply forward the SRTP (and

SRTCP) packets in both directions without per-packet HMAC or

cryptographic operations.

To accomplish this interworking, DTLS-SRTP EKT must be supported on the

DTLS-SRTP endpoint, which allows the SBC to transport the Security

Description key to the EKT endpoint and send the DTLS-SRTP key to the

Security Descriptions endpoint. This works equally well for both

incoming and outgoing calls. An abbreviated message flow is shown in

Figure 17, below.

RFC4568 endpoint SBC DTLS-SRTP endpoint

 | | |

 1. |---key=A------------->| |

 2. | |<-DTLS-SRTP handshake->|

 3. |<--key=B--------------| |

 4. | |--new_srtp_key:A------>|

 5. | |<--SRTP, encrypted w/B-|

 5. |<-SRTP, encrypted w/B-| |

 6. |-SRTP, encrypted w/A->| |

 7. | |-SRTP, encrypted w/A-->|

 | | |

The message flow is as follows (similar steps occur with SRTCP):

Security Descriptions endpoint discloses its SRTP key to the

SBC (a=crypto).

SBC completes DTLS-SRTP handshake. From this handshake, the SBC

derives the SRTP key for traffic from the DTLS-SRTP endpoint

(key B) and to the DTLS-SRTP endpoint (key C).

The SBC communicates the SRTP encryption key (key B) to the

Security Descriptions endpoint.

The SBC uses the EKT to indicate that SRTP packets will be

encrypted with 'key A' towards the DTLS-SRTP endpoint.

The DTLS-SRTP endpoint sends an SRTP key, encrypted with its

key B. This is received by the SBC.

6.

7.

8.

1.

2.

3.

4.

5.

The received SRTP packet is simply forwarded; the SBC does not

need to do anything with this packet as its key (key B) was

communicated in step 3.

The Security Descriptions endpoint sends an SRTP packet,

encrypted with its key A.

The received SRTP packet is simply forwarded; the SBC does not

need to do anything with this packet as its key (key A) was

communicated in step 4.

Authors' Addresses

David A. McGrew McGrew Cisco Systems, Inc. 510 McCarthy Blvd.

Milpitas, CA 95035 US Phone: (408) 525 8651 EMail: mcgrew@cisco.com

URI: http://www.mindspring.com/~dmcgrew/dam.htm

Flemming Andreason Andreasen Cisco Systems, Inc.

499 Thornall Street Edison, NJ 08837 US EMail: fandreas@cisco.com

Dan Wing Wing Cisco Systems, Inc. 510 McCarthy Blvd. Milpitas, CA

95035 US Phone: (408) 853 4197 EMail: dwing@cisco.com

Kai Fischer Fischer Siemens Enterprise Communications GmbH & Co. KG

Hofmannstr. 51 Munich, Bavaria 81739 Germany EMail:

kai.fischer@siemens-enterprise.com

6.

7.

8.

mailto:mcgrew@cisco.com
http://www.mindspring.com/~dmcgrew/dam.htm
mailto:fandreas@cisco.com
mailto:dwing@cisco.com
mailto:kai.fischer@siemens-enterprise.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions Used In This Document
	2. Encrypted Key Transport
	2.1. Authentication Tag Formats
	2.2. Packet Processing and State Machine
	2.2.1. Outbound (Tag Generation)
	2.2.1.1. Computing the Base Authentication Tag
	2.2.1.2. Computing the Abbreviated Authentication Tag
	2.2.2. Inbound (Tag Verification)
	2.3. Ciphers
	2.3.1. The Default Cipher
	2.3.2. AES ECB
	2.3.3. Other EKT Ciphers
	2.4. Synchronizing Operation
	2.5. Transport
	2.6. Timing and Reliability Consideration
	3. Use of EKT with SDP Security Descriptions
	3.1. SDP Security Descriptions Recap
	3.2. Relationship between EKT and SDP Security Descriptions
	3.3. Overview of Combined EKT and SDP Security Description Operation
	3.4. EKT Extensions to SDP Security Descriptions
	3.4.1. EKT_Cipher
	3.4.2. EKT_Key
	3.4.3. EKT_SPI
	3.5. Offer/Answer Procedures
	3.5.1. Generating the Initial Offer - Unicast Streams
	3.5.2. Generating the Initial Answer - Unicast Streams
	3.5.3. Processing of the Initial Answer - Unicast Streams
	3.6. SRTP-Specific Use Outside Offer/Answer
	3.7. Modifying the Session
	3.8. Backwards Compatibility Considerations
	3.9. Grammar
	4. Use of EKT with DTLS-SRTP Key Transport
	4.1. EKT Extensions to DTLS-SRTP
	4.1.1. Scaling to Large Groups
	4.2. Offer/Answer Considerations
	4.2.1. Generating the Initial Offer
	4.2.2. Generating the Initial Answer
	4.2.3. Processing the Initial Answer
	4.2.4. Modifying the Session
	5. Use of EKT with MIKEY
	5.1. EKT extensions to MIKEY
	5.2. Offer/Answer considerations
	5.2.1. Generating the Initial Offer
	5.2.2. Generating the Initial Answer
	5.2.3. Processing the Initial Answer
	5.2.4. Modifying the Session
	6. Design Rationale
	6.1. Alternatives
	7. Security Considerations
	8. IANA Considerations
	9. Acknowledgements
	10. References
	10.1. Normative References
	10.2. Informative References
	Appendix A. Using EKT to Optimize Interworking DTLS-SRTP with Security Descriptions
	Authors' Addresses

