AVTCORE

Internet-Draft

Updates: <u>5764</u> (if approved) Intended status: Standards Track

Expires: November 26, 2016

M. Petit-Huguenin Impedance Mismatch G. Salgueiro Cisco Systems May 25, 2016

Multiplexing Scheme Updates for Secure Real-time Transport Protocol (SRTP) Extension for Datagram Transport Layer Security (DTLS) draft-ietf-avtcore-rfc5764-mux-fixes-08

Abstract

This document defines how Datagram Transport Layer Security (DTLS), Real-time Transport Protocol (RTP), RTP Control Protocol (RTCP), Session Traversal Utilities for NAT (STUN), and Traversal Using Relays around NAT (TURN) packets are multiplexed on a single receiving socket. It overrides the guidance from SRTP Extension for DTLS [RFC5764], which suffered from three issues described and fixed in this document.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 26, 2016.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

<u>3</u>
<u>4</u>
<u>4</u>
5
<u>6</u>
<u>7</u>
8
8
<u>9</u> 9
9
9
0
.0
.0
.0
1
2
2
2
2
2
2
2
.3
.3
.3
.3
.3

1. Introduction

Section 5.1.2 of Secure Real-time Transport Protocol (SRTP) Extension for DTLS [RFC5764] defines a scheme for a Real-time Transport Protocol (RTP) [RFC3550] receiver to demultiplex Datagram Transport Layer Security (DTLS) [RFC6347], Session Traversal Utilities for NAT (STUN) [RFC5389] and Secure Real-time Transport Protocol (SRTP)/Secure RTP Control Protocol (SRTCP) [RFC3711] packets that are arriving on the RTP port. Unfortunately, this demultiplexing scheme has created problematic issues:

- 1. It implicitly allocated codepoints for new STUN methods without an IANA registry reflecting these new allocations.
- It implicitly allocated codepoints for new Transport Layer Security (TLS) ContentTypes without an IANA registry reflecting these new allocations.
- 3. It did not take into account the fact that the Traversal Using Relays around NAT (TURN) usage of STUN can create TURN channels that also need to be demultiplexed with the other packet types explicitly mentioned in Section 5.1.2 of RFC 5764.

Having overlapping ranges between different IANA registries becomes an issue when a new codepoint is allocated in one of these registries without carefully analyzing the impact it could have on the other registries when that codepoint is demultiplexed. Among other downsides of the bad design of the demultiplexing algorithm detailed in [RFC5764], it creates a requirement for coordination between codepoint assignments where none should exist, and that is organizationally and socially undesirable. However, RFC 5764 has been widely deployed so there must be an awareness of this issue and how it must be dealt with. Thus, even if a codepoint is not initially thought to be useful, the respective IANA registry expert should at least raise a flag when the allocated codepoint irrevocably prevents multiplexing.

The first goal of this document is to make sure that future allocations in any of the affected protocols are done with the full knowledge of their impact on multiplexing. This is achieved by modifying the IANA registries with instructions for coordination between the protocols at risk.

A second goal is to permit the addition of new protocols to the list of existing multiplexed protocols in a manner that does not break existing implementations. The flaws in the demultiplexing scheme were unavoidably inherited by other documents, such as [RFC7345] and [I-D.ietf-mmusic-sdp-bundle-negotiation]. So in addition, these and any other affected documents will need to be corrected with the updates this document provides.

Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] when they appear in ALL CAPS. When these words are not in ALL CAPS (such as "must" or "Must"), they have their usual English meanings, and are not to be interpreted as RFC 2119 key words.

3. Implicit Allocation of Codepoints for New STUN Methods

The demultiplexing scheme in [RFC5764] states that the receiver can identify the packet type by looking at the first byte. If the value of this first byte is 0 or 1, the packet is identified to be STUN. The problem that arises as a result of this implicit allocation is that this restricts the codepoints for STUN methods (as described in Section 18.1 of [RFC5389]) to values between 0x000 and 0x07F, which in turn reduces the number of possible STUN method codepoints assigned by IETF Review (i.e., the range from (0x000 - 0x7FF) from 2048 to only 128 and eliminating the possibility of having STUN method codepoints assigned by Designated Expert (i.e., the range 0x800 - 0xFFF).

To preserve the Designated Expert range, this document allocates the value 2 and 3 to also identify STUN methods.

The IANA Registry for STUN methods is modified to mark the codepoints from 0x100 to 0xFFF as Reserved. These codepoints can still be allocated, but require IETF Review with a document that will properly evaluate the risk of an assignment overlapping with other registries.

In addition, this document also updates the IANA registry such that the STUN method codepoints assigned in the 0x080-0x0FF range are also assigned via Designated Expert. The proposed changes to the STUN Method Registry are:

OLD:

0x000-0x7FF IETF Review

0x800-0xFFF Designated Expert

NEW:

0x080-0x0FF Designated Expert

0x100-0xFFF Reserved

4. Implicit Allocation of New Codepoints for TLS ContentTypes

The demultiplexing scheme in [RFC5764] dictates that if the value of the first byte is between 20 and 63 (inclusive), then the packet is identified to be DTLS. For DTLS 1.0 [RFC4347] and DTLS 1.2 [RFC6347] that first byte corresponds to the TLS ContentType field.

Considerations must be taken into account when assigning additional ContentTypes in the code point ranges 0 to 19 and 64 to 255 so this does not prevent demultiplexing when this functionality is desirable. Note that [RFC5764] describes a narrow use of DTLS that works as long as the specific DTLS version used abides by the restrictions on the demultiplexing byte (the ones that this document imposes on the TLS ContentType Registry). Any extension or revision to DTLS that causes it to no longer meet these constraints should consider what values may occur in the first byte of the DTLS message and what impact it would have on the multiplexing that [RFC5764] describes.

With respect to TLS packet identification, this document explicitly adds a warning to the codepoints from 0 to 19 and from 64 to 255 indicating that allocations in these ranges require coordination, as described in this document. The proposed changes to the TLS ContentType Registry are:

OLD:

- 0-19 Unassigned
- 20 change_cipher_spec
- 21 alert
- 22 handshake
- 23 application_data
- 24 heartbeat
- 25-255 Unassigned

NEW:

- 0-19 Unassigned (Requires coordination, see RFCXXXX)
- 20 change_cipher_spec
- 21 alert
- 22 handshake
- 23 application_data
- 24 heartbeat
- 25-63 Unassigned
- 64-255 Unassigned (Requires coordination, see RFCXXXX)

5. Multiplexing of TURN Channels

When used with ICE [RFC5245], an RFC 5764 implementation can receive packets on the same socket from three different paths, as shown in Figure 1:

- 1. Directly from the source
- 2. Through a NAT
- 3. Relayed by a TURN server

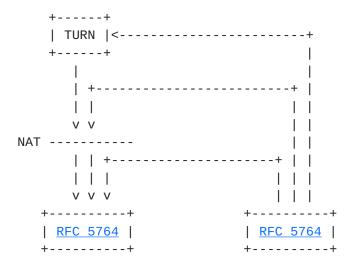


Figure 1: Packet Reception by an RFC 5764 Implementation

Even if the ICE algorithm succeeded in selecting a non-relayed path, it is still possible to receive data from the TURN server. For instance, when ICE is used with aggressive nomination the media path can quickly change until it stabilizes. Also, freeing ICE candidates is optional, so the TURN server can restart forwarding STUN connectivity checks during an ICE restart.

TURN channels are an optimization where data packets are exchanged with a 4-byte prefix, instead of the standard 36-byte STUN overhead (see Section 2.5 of [RFC5766]). The problem is that the RFC 5764 demultiplexing scheme does not define what to do with packets received over a TURN channel since these packets will start with a first byte whose value will be between 64 and 127 (inclusive). If the TURN server was instructed to send data over a TURN channel, then the current RFC 5764 demultiplexing scheme will reject these packets. Current implementations violate RFC 5764 for values 64 to 127 (inclusive) and they instead parse packets with such values as TURN.

In order to prevent future documents from assigning values from the unused range to a new protocol, this document modifies the <u>RFC 5764</u> demultiplexing algorithm to properly account for TURN channels by allocating the values from 64 to 79 for this purpose.

6. RFC 5764 Updates

This document updates the text in <u>Section 5.1.2 of [RFC5764]</u> as follows:

OLD TEXT

The process for demultiplexing a packet is as follows. The receiver looks at the first byte of the packet. If the value of this byte is 0 or 1, then the packet is STUN. If the value is in between 128 and 191 (inclusive), then the packet is RTP (or RTCP, if both RTCP and RTP are being multiplexed over the same destination port). If the value is between 20 and 63 (inclusive), the packet is DTLS. This process is summarized in Figure 3.

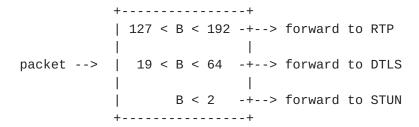


Figure 3: The DTLS-SRTP receiver's packet demultiplexing algorithm. Here the field B denotes the leading byte of the packet.

END OLD TEXT

NEW TEXT

The process for demultiplexing a packet is as follows. The receiver looks at the first byte of the packet. If the value of this byte is in between 0 and 3 (inclusive), then the packet is STUN. If the value is between 20 and 63 (inclusive), then the packet is DTLS. If the value is between 64 and 79 (inclusive), then the packet is TURN Channel. If the value is in between 128 and 191 (inclusive), then the packet is RTP (or RTCP, if both RTCP and RTP are being multiplexed over the same destination port). If the value does not match any known range then the packet MUST be dropped and an alert MAY be logged. This process is summarized in Figure 3.

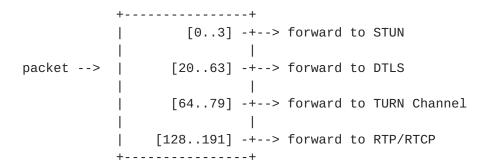


Figure 3: The DTLS-SRTP receiver's packet demultiplexing algorithm.

END NEW TEXT

7. Implementation Status

[[Note to RFC Editor: Please remove this section and the reference to [RFC6982] before publication.]]

This section records the status of known implementations of the protocol defined by this specification at the time of posting of this Internet-Draft, and is based on a proposal described in [RFC6982]. The description of implementations in this section is intended to assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the listing of any individual implementation here does not imply endorsement by the IETF. Furthermore, no effort has been spent to verify the information presented here that was supplied by IETF contributors. This is not intended as, and must not be construed to be, a catalog of available implementations or their features. Readers are advised to note that other implementations may exist.

According to [RFC6982], "this will allow reviewers and working groups to assign due consideration to documents that have the benefit of running code, which may serve as evidence of valuable experimentation and feedback that have made the implemented protocols more mature. It is up to the individual working groups to use this information as they see fit".

Note that there is currently no implementation declared in this section, but the intent is to add $\frac{RFC\ 6982}{RFC\ 6982}$ templates here from implementers that support the modifications in this document.

8. Security Considerations

This document updates existing IANA registries and adds a new range for TURN channels in the demuxing algorithm.

These modifications do not introduce any specific security considerations beyond those detailed in [RFC5764].

9. IANA Considerations

9.1. STUN Methods

This specification contains the registration information for reserved STUN Methods codepoints, as explained in <u>Section 3</u> and in accordance with the procedures defined in <u>Section 18.1 of [RFC5389]</u>.

Value: 0x100-0xFFF

Name: Reserved (MUST be allocated with IETF Review. For DTLS-SRTP multiplexing collision avoidance see RFC XXXX)

Reference: RFC5764, RFCXXXX

This specification also reassigns the ranges in the STUN Methods Registry as follow:

Range: 0x000-0x07F

Registration Procedures: IETF Review

Range: 0x080-0x0FF

Registration Procedures: Designated Expert

9.2. TLS ContentType

This specification contains the registration information for reserved TLS ContentType codepoints, as explained in <u>Section 4</u> and in accordance with the procedures defined in <u>Section 12 of [RFC5246]</u>.

Value: 0-19

Description: Unassigned (Requires coordination, see RFCXXXX)

DTLS-OK: N/A

Reference: RFCXXXX

Value: 64-255

Description: Unassigned (Requires coordination, see RFCXXXX))

DTLS-OK: N/A

Reference: <u>RFC5764</u>, RFCXXXX

9.3. TURN Channel Numbers

This specification contains the registration information for reserved TURN Channel Numbers codepoints, as explained in <u>Section 5</u> and in accordance with the procedures defined in <u>Section 18 of [RFC5766]</u>.

Value: 0x5000-0xFFFF

Name: Reserved (For DTLS-SRTP multiplexing collision avoidance see RFC XXXX)

Reference: RFCXXXX

[RFC EDITOR NOTE: Please replace RFCXXXX with the RFC number of this document.]

10. Acknowledgements

The implicit STUN Method codepoint allocations problem was first reported by Martin Thomson in the RTCWEB mailing-list and discussed further with Magnus Westerlund.

Thanks to Simon Perreault, Colton Shields, Cullen Jennings, Colin Perkins, Magnus Westerlund, Paul Jones, Jonathan Lennox, Varun Singh, Justin Uberti, Joseph Salowey, Martin Thomson, Ben Campbell, Stephen Farrell and Paul Kyzivat for the comments, suggestions, and questions that helped improve this document.

11. References

11.1. Normative References

- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 http://www.rfc-editor.org/info/rfc2119.
- [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
 July 2003, http://www.rfc-editor.org/info/rfc3550>.

- [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer Security", RFC 4347, DOI 10.17487/RFC4347, April 2006, http://www.rfc-editor.org/info/rfc4347.
- [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols", RFC 5245, DOI 10.17487/RFC5245, April 2010, http://www.rfc-editor.org/info/rfc5245>.
- [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008,
 http://www.rfc-editor.org/info/rfc5389.
- [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)", RFC 5764, DOI 10.17487/RFC5764, May 2010, http://www.rfc-editor.org/info/rfc5764.
- [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766,
 DOI 10.17487/RFC5766, April 2010,
 <http://www.rfc-editor.org/info/rfc5766>.
- [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347, January 2012, http://www.rfc-editor.org/info/rfc6347.

11.2. Informative References

- [RFC7345] Holmberg, C., Sedlacek, I., and G. Salgueiro, "UDP Transport Layer (UDPTL) over Datagram Transport Layer Security (DTLS)", RFC 7345, DOI 10.17487/RFC7345, August 2014, http://www.rfc-editor.org/info/rfc7345>.

Appendix A. Release notes

This section must be removed before publication as an RFC.

- A.1. Modifications between <u>draft-ietf-avtcore-rfc5764-mux-fixes-08</u> and <u>draft-ietf-avtcore-rfc5764-mux-fixes-07</u>
 - o Minor update to Security Considerations section.
- <u>A.2.</u> Modifications between <u>draft-ietf-avtcore-rfc5764-mux-fixes-07</u> and <u>draft-ietf-avtcore-rfc5764-mux-fixes-06</u>
 - o Addresses Martin Thomson, Ben Campbell and Stephen Farrell's review comments about TLS ContentType registrations.
- - o Addresses Colin's WGLC review comments
- <u>A.4</u>. Modifications between <u>draft-ietf-avtcore-rfc5764-mux-fixes-05</u> and draft-ietf-avtcore-rfc5764-mux-fixes-04
 - o Removed some remnants of the ordering from <u>Section 6</u>
 - o Moved Terminology from <u>Section 5</u> to <u>Section 2</u>
- <u>A.5</u>. Modifications between <u>draft-ietf-avtcore-rfc5764-mux-fixes-04</u> and <u>draft-ietf-avtcore-rfc5764-mux-fixes-03</u>
 - o Removed Section on "Demultiplexing Algorithm Test Order"
 - o Split the Introduction into separate sections
- - o Revert to the <u>RFC 5389</u>, as the stunbis reference was needed only for STUN over SCTP.

- o Remove any discussion about SCTP until a consensus emerges in TRAM.
- - o Instead of allocating the values that are common on each registry, the specification now only reserves them, giving the possibility to allocate them in case muxing is irrelevant.
 - o STUN range is now 0-3m with 2-3 being Designated Expert.
 - o TLS ContentType 0-19 and 64-255 are now reserved.
 - o Add SCTP over UDP value.
 - o If an implementation uses the source IP address/port to separate TURN channels packets then the whole channel numbers are available.
 - o If not the prefix is between 64 and 79.
 - o First byte test order is now by incremental values, so failure is deterministic.
 - o Redraw the demuxing diagram.
- A.9. Modifications between <u>draft-ietf-avtcore-rfc5764-mux-fixes-00</u> and draft-petithuguenin-avtcore-rfc5764-mux-fixes-02
 - o Adoption by WG.
 - o Add reference to STUNbis.
- A.10. Modifications between <u>draft-petithuguenin-avtcore-rfc5764-mux-fixes-00</u> and draft-petithuguenin-avtcore-rfc5764-mux-fixes-01
 - o Change affiliation.

Authors' Addresses

Marc Petit-Huguenin Impedance Mismatch

Email: marc@petit-huguenin.org

Gonzalo Salgueiro Cisco Systems 7200-12 Kit Creek Road Research Triangle Park, NC 27709 US

Email: gsalguei@cisco.com