
AVTCORE J. Lennox

Internet-Draft Vidyo

Intended status: Standards Track October 29, 2011

Expires: May 01, 2012

Encryption of Header Extensions in the Secure Real-Time Transport

Protocol (SRTP)

draft-ietf-avtcore-srtp-encrypted-header-ext-01

Abstract

The Secure Real-Time Transport Protocol (SRTP) provides authentication,

but not encryption, of the headers of Real-Time Transport Protocol

(RTP) packets. However, RTP header extensions may carry sensitive

information for which participants in multimedia sessions want

confidentiality. This document provides a mechanism, extending the

mechanisms of SRTP, to selectively encrypt RTP header extensions in

SRTP.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on May 01, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction*

2. Terminology

3. Encryption Mechanism

3.1. Example Encryption Mask

4. Signaling (Setup) Information

4.1. Backward compatibility

5. Security Considerations

6. IANA Considerations

7. Acknowledgments

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Test Vectors

Appendix A.1. Key derivation test vectors

Appendix A.2. Header Encryption Test Vectors using AES-CM

Appendix B. Changes From Earlier Versions

Appendix B.1. Changes from draft-ietf-avtcore -00

Appendix B.2. Changes from draft-lennox-avtcore -00

Appendix B.3. Changes from draft-lennox-avt -02

Appendix B.4. Changes From Individual Submission Draft -01

Appendix B.5. Changes From Individual Submission Draft -00

Author's Address

1. Introduction

The Secure Real-Time Transport Protocol [RFC3711] specification

provides confidentiality, message authentication, and replay protection

for multimedia payloads sent using of the Real-Time Protocol (RTP)

[RFC3550]. However, in order to preserve RTP header compression

efficiency, SRTP provides only authentication and replay protection for

the headers of RTP packets, not confidentiality.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

For the standard portions of an RTP header, this does not normally

present a problem, as the information carried in an RTP header does not

provide much information beyond that which an attacker could infer by

observing the size and timing of RTP packets. Thus, there is little

need for confidentiality of the header information.

However, this is not necessarily true for information carried in RTP

header extensions. A number of recent proposals for header extensions

using the General Mechanism for RTP Header Extensions [RFC5285] carry

information for which confidentiality could be desired or essential.

Notably, two recent drafts ([I-D.ietf-avtext-client-to-mixer-audio-

level] and [I-D.ietf-avtext-mixer-to-client-audio-level]) carry

information about per-packet sound levels of the media data carried in

the RTP payload, and exposing this to an eavesdropper may be

unacceptable in many circumstances.

This document, therefore, defines a mechanism by which encryption can

be applied to RTP header extensions when they are transported using

SRTP. As an RTP sender may wish some extension information to be sent

in the clear (for example, it may be useful for a network monitoring

device to be aware of RTP transmission time offsets [RFC5450]), this

mechanism can be selectively applied to a subset of the header

extension elements carried in an SRTP packet.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119] and

indicate requirement levels for compliant implementations.

3. Encryption Mechanism

Encrypted header extension elements are carried in the same manner as

non-encrypted header extension elements, as defined by [RFC5285]. The

(one- or two-byte) header of the extension elements is not encrypted,

nor is any of the header extension padding. If multiple different

header extension elements are being encrypted, they have separate

element identifier values, just as they would if they were not

encrypted; similarly, encrypted and non-encrypted header extension

elements have separate identifier values.

Encrypted extension headers are only carried in packets encrypted using

the Secure Real-Time Transport Protocol [RFC3711]. To encrypt (or

decrypt) encrypted extension headers, an SRTP participant first uses

the SRTP Key Derivation Algorithm, specified in Section 4.3.1 of

[RFC3711], to generate header encryption and header salting keys, using

the same pseudo-random function family as are used for the key

derivation for the SRTP session. These keys are derived as follows:

k_he (SRTP header encryption): <label> = 0x06, n=n_e.*

k_hs (SRTP header salting key): <label> = 0x07, n=n_s.

where n_e and n_s are from the cryptographic context: the same size

encryption key and salting key are used as are used for the SRTP

payload. (Note that since RTP headers, including extension headers, are

authenticated in SRTP, no new authentication key is needed for

extension headers.)

For SRTP encryption transforms that operate by generating a keystream,

a header keystream is generated for each packet containing an encrypted

header, using the same encryption transform and Initialization Vector

(IV) as is used for the SRTP payload, except that the SRTP encryption

and salting keys k_e and k_s are replaced by the SRTP header encryption

and header salting keys k_he and k_hs, respectively.

The AES-CM and AES-f8 transforms defined in [RFC3711] both operate in

this keystream mode, as do the AES_192_CM and AES_256_CM transforms

defined in [RFC6188]. For other transforms (for example, Authenticated

Encryption with Associated Data (AEAD) cryptographic transforms, such

as AES_GCM and AES_CCM [I-D.ietf-avt-srtp-aes-gcm]) their usage of

header extensions MUST be specified explicitly. (As of this writing, it

is believed that it will be sufficient for SRTP packets protected with

AEAD transforms to use a CM transform with equivalent algorithms and

key lengths for their encrypted headers; however, this guidance is not

normative.)

Once the header keystream is generated, the SRTP participant then

computes an encryption mask for the header extension, identifying the

portions of the header extension that are, or are to be, encrypted.

This encryption mask corresponds to the entire payload of each header

extension element that is encrypted. It does not include any non-

encrypted header extension elements, any extension element headers, or

any padding octets. The encryption mask has all-bits-1 octets (i.e.,

hexadecimal 0xff) for header extension octets which are to be

encrypted, and all-bits-0 octets for header extension octets which are

not to be.

For those octets indicated in the encryption mask, the SRTP participant

bitwise exclusive-ors the header extension with the keystream to

produce the ciphertext version of the header extension. Those octets

not indicated in the encryption mask are left unmodified. Thus,

conceptually, the encryption mask is logically ANDed with the keystream

to produce a masked keystream. The sender and receiver MUST use the

same encryption mask. The set of extension elements to be encrypted is

communicated between the sender and the receiver using the signaling

mechanisms described in Section 4.

The SRTP authentication tag is computed across the encrypted header

extension, i.e., the data that is actually transmitted on the wire.

Thus, header extension encryption MUST be done before the

authentication tag is computed, and authentication tag validation MUST

be done on the encrypted header extensions. For receivers, header

extension decryption SHOULD be done only after the receiver has

validated the packet's message authentication tag, and the receiver

*

MUST NOT take any actions based on decrypted headers that could affect

the security or proper functioning of the system, prior to validating

the authentication tag.

3.1. Example Encryption Mask

If a sender wished to send a header extension containing an encrypted

SMPTE timecode [RFC5484] with ID 1, a plaintext transmission time

offset [RFC5450] with ID 2, an encrypted audio level indication [I-

D.ietf-avtext-client-to-mixer-audio-level] with ID 3, and an encrypted

NTP Timestamp [RFC6051] with ID 4, the plaintext RTP header extension

might look like this:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| ID=1 | len=7 | SMTPE timecode (long form) |

+-+

| SMTPE timecode (continued) |

+-+

| SMTPE (cont'd)| ID=2 | len=2 | toffset |

+-+

| toffset (ct'd)| ID=3 | len=0 | audio level | ID=4 | len=6 |

+-+

| NTP Timestamp (Variant B) |

+-+

| NTP Timestamp (Variant B, cont.) | padding = 0 |

+-+

The corresponding encryption mask would then be:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|0 0 0 0 0 0 0 0|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|

+-+

|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|

+-+

|1 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0|

+-+

|0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0|1 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0|

+-+

|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|

+-+

|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1|0 0 0 0 0 0 0 0|

+-+

In the mask, the octets corresponding to the payloads of the encrypted

header extension elements are set to all-1 values, and octets

corresponding to non-encrypted elements, element headers, and header

extension padding are set to all-0 values.

4. Signaling (Setup) Information

Encrypted header extension elements are signaled in the SDP extmap

attribute, using the URI "urn:ietf:params:rtp-hdrext:encrypt", followed

by the URI of the header extension element being encrypted as well as

any extensionattributes that extension normally takes. Thus, for

example, to signal an SRTP session using encrypted SMPTE timecodes

[RFC5484], while simultaneously signaling plaintext transmission time

offsets [RFC5450], an SDP document could contain (line breaks added for

formatting):

m=audio 49170 RTP/SAVP 0

a=crypto:1 AES_CM_128_HMAC_SHA1_32 \

 inline:NzB4d1BINUAvLEw6UzF3WSJ+PSdFcGdUJShpX1Zj|2^20|1:32

a=extmap:1 urn:ietf:params:rtp-hdrext:encrypt \

 urn:ietf:params:rtp-hdrext:smpte-tc 25@600/24

a=extmap:2 urn:ietf:params:rtp-hdrext:toffset

This example uses SDP Security Descriptions [RFC4568] for SRTP keying,

but this is merely for illustration; any SRTP keying mechanism to

establish session keys will work.

The extmap SDP attribute is defined in [RFC5285] as being either a

session or media attribute. If the extmap for an encrypted header

extension is specified as a media attribute, it MUST only be specified

for media which use SRTP-based RTP profiles. If such an extmap is

specified as a session attribute, there MUST be at least one media in

the SDP session which uses an SRTP-based RTP profile; the session-level

extmap applies to all the SRTP-based media in the session, and MUST be

ignored for all other (non-SRTP or non-RTP) media.

4.1. Backward compatibility

Following the procedures in [RFC5285], an SDP endpoint which does not

understand the "urn:ietf:params:rtp-hdrext:encrypt" extension URI will

ignore the extension, and (for SDP offer/answer) negotiate not to use

it.

In a negotiated session (whether using offer/answer or some other

means), best-effort encryption of a header extension element is

possible: an endpoint MAY offer the same header extension element both

encrypted and unencrypted. Receivers which understand header extension

encryption SHOULD choose the encrypted form and mark the unencrypted

form "inactive", unless they have an explicit reason to prefer the

unencrypted form. (Note that, as always, users of best-effort

Extension URI:

Description:

Contact:

Reference:

encryption MUST be cautious of bid-down attacks, and ensure, for

example, that signaling is integrity-protected.)

5. Security Considerations

The security properties of header extension elements protected by the

mechanism in this document are equivalent to those for SRTP payloads.

The mechanism defined in this document does not provide confidentiality

about which header extension elements are used for a given SRTP packet,

only for the content of those header extension elements. This appears

to be in the spirit of SRTP itself, which does not encrypt RTP headers.

If this is a concern, an alternate mechanism would be needed to provide

confidentiality.

For the two-byte-header form of header extension elements (0x100x),

this mechanism does not provide any protection to zero-length header

extension elements (for which their presence or absence is the only

information they carry). It also does not provide any protection for

the two-byte-headers' app bits (field 256, the lowest four bits of the

"defined by profile" field). Neither of these features are used in for

one-byte-header form of header extension elements (0xBEDE), so these

limitations do not apply in that case.

This document does not specify the circumstances in which extension

header encryption should be used. Documents defining specific header

extension elements should provide guidance on when encryption is

appropriate for these elements.

If a middlebox does not have access to the SRTP authentication keys, it

has no way to verify the authenticity of unencrypted RTP header

extension elements (or the unencrypted RTP header), even though it can

monitor them. Therefore, such middleboxes MUST treat such headers as

untrusted and potentially generated by an attacker.

6. IANA Considerations

This document defines a new extension URI to the RTP Compact Header

Extensions subregistry of the Real-Time Transport Protocol (RTP)

Parameters registry, according to the following data:

urn:ietf:params:rtp-hdrext:encrypt

Encrypted extension header element

jonathan@vidyo.com

RFC XXXX

(Note to the RFC-Editor: please replace "XXXX" with the number of this

document prior to publication as an RFC.)

7. Acknowledgments

Thanks to Roni Even, Kevin Igoe, David McGrew, David Singer, Qin Wu,

and Felix Wyss for their comments and suggestions in the development of

this specification.

8. References

8.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC5285]
Singer, D. and H. Desineni, "A General Mechanism for

RTP Header Extensions", RFC 5285, July 2008.

[RFC3711]

Baugher, M., McGrew, D., Naslund, M., Carrara, E. and

K. Norrman, "The Secure Real-time Transport Protocol

(SRTP)", RFC 3711, March 2004.

[RFC3550]

Schulzrinne, H., Casner, S., Frederick, R. and V.

Jacobson, "RTP: A Transport Protocol for Real-Time

Applications", STD 64, RFC 3550, July 2003.

[RFC6188]
McGrew, D., "The Use of AES-192 and AES-256 in Secure

RTP", RFC 6188, March 2011.

8.2. Informative References

[RFC5450]
Singer, D. and H. Desineni, "Transmission Time

Offsets in RTP Streams", RFC 5450, March 2009.

[I-D.ietf-

avtext-client-

to-mixer-audio-

level]

Lennox, J, Ivov, E and E Marocco, "A Real-Time

Transport Protocol (RTP) Header Extension for

Client-to- Mixer Audio Level Indication",

Internet-Draft draft-ietf-avtext-client-to-mixer-

audio-level-06, November 2011.

[RFC4568]

Andreasen, F., Baugher, M. and D. Wing, "Session

Description Protocol (SDP) Security Descriptions

for Media Streams", RFC 4568, July 2006.

[I-D.ietf-

avtext-mixer-

to-client-

audio-level]

Ivov, E, Marocco, E and J Lennox, "A Real-Time

Transport Protocol (RTP) Header Extension for

Mixer-to- Client Audio Level Indication",

Internet-Draft draft-ietf-avtext-mixer-to-client-

audio-level-06, November 2011.

[RFC5484]
Singer, D., "Associating Time-Codes with RTP

Streams", RFC 5484, March 2009.

[RFC6051]

Perkins, C. and T. Schierl, "Rapid

Synchronisation of RTP Flows", RFC 6051, November

2010.

[I-D.ietf-avt-

srtp-aes-gcm]

McGrew, D and K Igoe, "AES-GCM and AES-CCM

Authenticated Encryption in Secure RTP (SRTP)",

Internet-Draft draft-ietf-avt-srtp-aes-gcm-02,

October 2011.

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc5285
http://tools.ietf.org/html/rfc5285
http://tools.ietf.org/html/rfc3711
http://tools.ietf.org/html/rfc3711
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc6188
http://tools.ietf.org/html/rfc6188
http://tools.ietf.org/html/rfc5450
http://tools.ietf.org/html/rfc5450
http://tools.ietf.org/html/draft-ietf-avtext-client-to-mixer-audio-level-06
http://tools.ietf.org/html/draft-ietf-avtext-client-to-mixer-audio-level-06
http://tools.ietf.org/html/draft-ietf-avtext-client-to-mixer-audio-level-06
http://tools.ietf.org/html/rfc4568
http://tools.ietf.org/html/rfc4568
http://tools.ietf.org/html/rfc4568
http://tools.ietf.org/html/draft-ietf-avtext-mixer-to-client-audio-level-06
http://tools.ietf.org/html/draft-ietf-avtext-mixer-to-client-audio-level-06
http://tools.ietf.org/html/draft-ietf-avtext-mixer-to-client-audio-level-06
http://tools.ietf.org/html/rfc5484
http://tools.ietf.org/html/rfc5484
http://tools.ietf.org/html/rfc6051
http://tools.ietf.org/html/rfc6051
http://tools.ietf.org/html/draft-ietf-avt-srtp-aes-gcm-02
http://tools.ietf.org/html/draft-ietf-avt-srtp-aes-gcm-02

Appendix A. Test Vectors

Appendix A.1. Key derivation test vectors

This section provides test data for the header extension key derivation

function, using AES-128 in Counter Mode. (The algorithms and keys used

are the same as those for the the test vectors in Appendix B.3 of

[RFC3711].)

The inputs to the key derivation function are the 16 octet master key

and the 14 octet master salt:

master key: E1F97A0D3E018BE0D64FA32C06DE4139

master salt: 0EC675AD498AFEEBB6960B3AABE6

Following [RFC3711], the input block for AES-CM is generated by

exclusive-oring the master salt with the concatenation of the

encryption key label 0x06 with (index DIV kdr), then padding on the

right with two null octets (which implements the multiply-by-2^16

operation, see Section 4.3.3 of [RFC3711]). The resulting value is then

AES-CM- encrypted using the master key to get the cipher key.

 index DIV kdr: 000000000000

 label: 06

 master salt: 0EC675AD498AFEEBB6960B3AABE6

 --

 xor: 0EC675AD498AFEEDB6960B3AABE6 (x, PRF input)

 x*2^16: 0EC675AD498AFEEDB6960B3AABE60000 (AES-CM input)

 hdr. cipher key: 549752054D6FB708622C4A2E596A1B93 (AES-CM output)

Next, we show how the cipher salt is generated. The input block for

AES-CM is generated by exclusive-oring the master salt with the

concatenation of the encryption salt label. That value is padded and

encrypted as above.

 index DIV kdr: 000000000000

 label: 07

 master salt: 0EC675AD498AFEEBB6960B3AABE6

 --

 xor: 0EC675AD498AFEECB6960B3AABE6 (x, PRF input)

 x*2^16: 0EC675AD498AFEECB6960B3AABE60000 (AES-CM input)

 AB01818174C40D39A3781F7C2D270733 (AES-CM ouptut)

 hdr. cipher salt: AB01818174C40D39A3781F7C2D27

*

*

Appendix A.2. Header Encryption Test Vectors using AES-CM

This section provides test vectors for the encryption of a header

extension, using the AES_CM cryptographic transform.

The header extension element is encrypted using the header cipher key

and header cipher salt computed in Appendix Appendix A.1.

 Session Key: 549752054D6FB708622C4A2E596A1B93

 Session Salt: AB01818174C40D39A3781F7C2D27

 SSRC: CAFEBABE

 Rollover Counter: 00000000

 Sequence Number: 1234

 --

 Init. Counter: AB018181BE3AB787A3781F7C3F130000

The RTP session was negotiated to indicate that header extension ID

values 1, 3 and 4 are encrypted.

In hexidecimal, the header extension being encrypted is (spaces added

to show the internal structure of the header extension):

 17 414273A475262748 22 0000C8 30 8E 46 55996386B395FB 00

This header extension is 24 bytes long. (Its values are intended to

represent plausible values of the header extension elements shown in

Section 3.1, but their specific meaning is not important for the

example.)

In hexidecimal, the corresponding encryption mask selecting the bodies

of header extensions 1, 2, and 4 (corresponding to the mask in Figure 2

is:

 00 FFFFFFFFFFFFFFFF 00 000000 00 FF 00 FFFFFFFFFFFFFF 00

Finally, we compute the keystream from the session key and the initial

counter, apply the mask to the keystream, and then xor the keystream

with the plaintext:

 Initial keystream: 1E19C8E1D481C779549ED1617AAA1B7A

 FC0D933AE7ED6CC8

 Mask (Hex): 00FFFFFFFFFFFFFFFF0000000000FF00

 FFFFFFFFFFFFFF00

 Masked keystream: 0019C8E1D481C7795400000000001B00

 FC0D933AE7ED6C00

 Plaintext: 17414273A475262748220000C8308E46

 55996386B395FB00

 Ciphertext: 17588A9270F4E15E1C220000C8309546

 A994F0BC54789700

Appendix B. Changes From Earlier Versions

Note to the RFC-Editor: please remove this section prior to publication

as an RFC.

Appendix B.1. Changes from draft-ietf-avtcore -00

Clarified usage of Key Derivation Algorithm

Provided non-normative guidance for how to use this mechanism with

Authenticated Encryption with Associated Data (AEAD) transforms.

Corrected SMPTE Timecode header extension element in example header

extension (it's eight bytes, not sixteen). Added an NTP timestamp to

the example to fill it back out to original size.

Specified applicability of the extmap attribute if it's specified as a

session-level attribute.

Added description of backward compatibility, including a description of

how you can negotiate best-effort encryption.

Added a note to the security considerations about the dangers for

middleboxes observing unencrypted headers (both header extension

elements and RTP headers) without being able to verify the

authentication keys.

Added test vectors.

Added acknowledgments section.

Appendix B.2. Changes from draft-lennox-avtcore -00

Published as working group item.

Added discussion of limitations when used with the two-byte-

header form of header extension elements.

Added open issue about how to use this mechanism with

Authenticated Encryption with Associated Data (AEAD) transforms.

Updated references.

Appendix B.3. Changes from draft-lennox-avt -02

Retargeted at AVTCORE working group.

Updated references.

Appendix B.4. Changes From Individual Submission Draft -01

Minor editorial changes.

Appendix B.5. Changes From Individual Submission Draft -00

Clarified description of encryption mask creation.

*

*

*

*

*

*

*

*

Added example encryption mask.

Editorial changes.

Author's Address

Jonathan Lennox Lennox Vidyo, Inc. 433 Hackensack Avenue Seventh

Floor Hackensack, NJ 07601 US EMail: jonathan@vidyo.com

*

*

mailto:jonathan@vidyo.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Encryption Mechanism
	3.1. Example Encryption Mask
	4. Signaling (Setup) Information
	4.1. Backward compatibility
	5. Security Considerations
	6. IANA Considerations
	7. Acknowledgments
	8. References
	8.1. Normative References
	8.2. Informative References
	Appendix A. Test Vectors
	Appendix A.1. Key derivation test vectors
	Appendix A.2. Header Encryption Test Vectors using AES-CM
	Appendix B. Changes From Earlier Versions
	Appendix B.1. Changes from draft-ietf-avtcore -00
	Appendix B.2. Changes from draft-lennox-avtcore -00
	Appendix B.3. Changes from draft-lennox-avt -02
	Appendix B.4. Changes From Individual Submission Draft -01
	Appendix B.5. Changes From Individual Submission Draft -00
	Author's Address

