
Network Working Group C. Do
Internet-Draft W. Kolodziejak
Obsoletes: 7298 (if approved) J. Chroboczek
Intended status: Standards Track IRIF, University of Paris-Diderot
Expires: March 8, 2021 September 4, 2020

MAC authentication for the Babel routing protocol
draft-ietf-babel-hmac-12

Abstract

 This document describes a cryptographic authentication mechanism for
 the Babel routing protocol that has provisions for replay avoidance.
 This document obsoletes RFC 7298.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 8, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Do, et al. Expires March 8, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7298
https://datatracker.ietf.org/doc/html/rfc7298
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft MAC authentication for Babel September 2020

Table of Contents

1. Introduction . 2
1.1. Applicability . 3
1.2. Assumptions and security properties 3
1.3. Specification of Requirements 4

2. Conceptual overview of the protocol 4
3. Data Structures . 6
3.1. The Interface Table 6
3.2. The Neighbour table 6

4. Protocol Operation . 7
4.1. MAC computation . 7
4.2. Packet Transmission 8
4.3. Packet Reception . 8
4.4. Expiring per-neighbour state 12

5. Incremental deployment and key rotation 12
6. Packet Format . 13
6.1. MAC TLV . 13
6.2. PC TLV . 13
6.3. Challenge Request TLV 14
6.4. Challenge Reply TLV 14

7. Security Considerations 15
8. IANA Considerations . 17
9. Acknowledgments . 17
10. References . 17
10.1. Normative References 17
10.2. Informational References 18

Appendix A. Changes from previous versions 19
A.1. Changes since draft-ietf-babel-hmac-00 19
A.2. Changes since draft-ietf-babel-hmac-01 19
A.3. Changes since draft-ietf-babel-hmac-02 19
A.4. Changes since draft-ietf-babel-hmac-03 19
A.5. Changes since draft-ietf-babel-hmac-04 20
A.6. Changes since draft-ietf-babel-hmac-05 20
A.7. Changes since draft-ietf-babel-hmac-06 20
A.8. Changes since draft-ietf-babel-hmac-07 20

 Authors' Addresses . 21

1. Introduction

 By default, the Babel routing protocol trusts the information
 contained in every UDP datagram that it receives on the Babel port.
 An attacker can redirect traffic to itself or to a different node in
 the network, causing a variety of potential issues. In particular,
 an attacker might:

https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-00
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-01
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-02
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-03
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-04
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-05
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-06
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-07

Do, et al. Expires March 8, 2021 [Page 2]

Internet-Draft MAC authentication for Babel September 2020

 o spoof a Babel packet, and redirect traffic by announcing a route
 with a smaller metric, a larger sequence number, or a longer
 prefix;

 o spoof a malformed packet, which could cause an insufficiently
 robust implementation to crash or interfere with the rest of the
 network;

 o replay a previously captured Babel packet, which could cause
 traffic to be redirected or otherwise interfere with the network.

 Protecting a Babel network is challenging due to the fact that the
 Babel protocol uses both unicast and multicast communication. One
 possible approach, used notably by the Babel over Datagram Transport
 Layer Security (DTLS) protocol [I-D.ietf-babel-dtls], is to use
 unicast communication for all semantically significant communication,
 and then use a standard unicast security protocol to protect the
 Babel traffic. In this document, we take the opposite approach: we
 define a cryptographic extension to the Babel protocol that is able
 to protect both unicast and multicast traffic, and thus requires very
 few changes to the core protocol. This document obsoletes [RFC7298].

1.1. Applicability

 The protocol defined in this document assumes that all interfaces on
 a given link are equally trusted and share a small set of symmetric
 keys (usually just one, and two during key rotation). The protocol
 is inapplicable in situations where asymmetric keying is required,
 where the trust relationship is partial, or where large numbers of
 trusted keys are provisioned on a single link at the same time.

 This protocol supports incremental deployment (where an insecure
 Babel network is made secure with no service interruption), and it
 supports graceful key rotation (where the set of keys is changed with
 no service interruption).

 This protocol does not require synchronised clocks, it does not
 require persistently monotonic clocks, and it does not require
 persistent storage except for what might be required for storing
 cryptographic keys.

1.2. Assumptions and security properties

 The correctness of the protocol relies on the following assumptions:

 o that the Message Authentication Code (MAC) being used is
 invulnerable to forgery, i.e., that an attacker is unable to

https://datatracker.ietf.org/doc/html/rfc7298

Do, et al. Expires March 8, 2021 [Page 3]

Internet-Draft MAC authentication for Babel September 2020

 generate a packet with a correct MAC without access to the secret
 key;

 o that a node never generates the same index or nonce twice over the
 lifetime of a key.

 The first assumption is a property of the MAC being used. The second
 assumption can be met either by using a robust random number
 generator [RFC4086] and sufficiently large indices and nonces, by
 using a reliable hardware clock, or by rekeying often enough that
 collisions are unlikely.

 If the assumptions above are met, the protocol described in this
 document has the following properties:

 o it is invulnerable to spoofing: any Babel packet accepted as
 authentic is the exact copy of a packet originally sent by an
 authorised node;

 o locally to a single node, it is invulnerable to replay: if a node
 has previously accepted a given packet, then it will never again
 accept a copy of this packet or an earlier packet from the same
 sender;

 o among different nodes, it is only vulnerable to immediate replay:
 if a node A has accepted an authentic packet from C, then a node B
 will only accept a copy of that packet if B has accepted an older
 packet from C and B has received no later packet from C.

 While this protocol makes efforts to mitigate the effects of a denial
 of service attack, it does not fully protect against such attacks.

1.3. Specification of Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Conceptual overview of the protocol

 When a node B sends out a Babel packet through an interface that is
 configured for MAC cryptographic protection, it computes one or more
 MACs (one per key) which it appends to the packet. When a node A
 receives a packet over an interface that requires MAC cryptographic
 protection, it independently computes a set of MACs and compares them

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Do, et al. Expires March 8, 2021 [Page 4]

Internet-Draft MAC authentication for Babel September 2020

 to the MACs appended to the packet; if there is no match, the packet
 is discarded.

 In order to protect against replay, B maintains a per-interface
 32-bit integer known as the "packet counter" (PC). Whenever B sends
 a packet through the interface, it embeds the current value of the PC
 within the region of the packet that is protected by the MACs and
 increases the PC by at least one. When A receives the packet, it
 compares the value of the PC with the one contained in the previous
 packet received from B, and unless it is strictly greater, the packet
 is discarded.

 By itself, the PC mechanism is not sufficient to protect against
 replay. Consider a peer A that has no information about a peer B
 (e.g., because it has recently rebooted). Suppose that A receives a
 packet ostensibly from B carrying a given PC; since A has no
 information about B, it has no way to determine whether the packet is
 freshly generated or a replay of a previously sent packet.

 In this situation, A discards the packet and challenges B to prove
 that it knows the MAC key. It sends a "challenge request", a TLV
 containing a unique nonce, a value that has never been used before
 and will never be used again. B replies to the challenge request
 with a "challenge reply", a TLV containing a copy of the nonce chosen
 by A, in a packet protected by MAC and containing the new value of
 B's PC. Since the nonce has never been used before, B's reply proves
 B's knowledge of the MAC key and the freshness of the PC.

 By itself, this mechanism is safe against replay if B never resets
 its PC. In practice, however, this is difficult to ensure, as
 persistent storage is prone to failure, and hardware clocks, even
 when available, are occasionally reset. Suppose that B resets its PC
 to an earlier value, and sends a packet with a previously used PC n.
 A challenges B, B successfully responds to the challenge, and A
 accepts the PC equal to n + 1. At this point, an attacker C may send
 a replayed packet with PC equal to n + 2, which will be accepted by
 A.

 Another mechanism is needed to protect against this attack. In this
 protocol, every PC is tagged with an "index", an arbitrary string of
 octets. Whenever B resets its PC, or whenever B doesn't know whether
 its PC has been reset, it picks an index that it has never used
 before (either by drawing it randomly or by using a reliable hardware
 clock) and starts sending PCs with that index. Whenever A detects
 that B has changed its index, it challenges B again.

 With this additional mechanism, this protocol is invulnerable to
 replay attacks (see Section 1.2 above).

Do, et al. Expires March 8, 2021 [Page 5]

Internet-Draft MAC authentication for Babel September 2020

3. Data Structures

 Every Babel node maintains a set of conceptual data structures
 described in Section 3.2 of [RFC6126bis]. This protocol extends
 these data structures as follows.

3.1. The Interface Table

 Every Babel node maintains an interface table, as described in
 Section 3.2.3 of [RFC6126bis]. Implementations of this protocol MUST
 allow each interface to be provisioned with a set of one or more MAC
 keys and the associated MAC algorithms (see Section 4.1 for suggested
 algorithms, and Section 7 for suggested methods for key generation).
 In order to allow incremental deployment of this protocol (see

Section 5), implementations SHOULD allow an interface to be
 configured in a mode in which it participates in the MAC
 authentication protocol but accepts packets that are not
 authenticated.

 This protocol extends each entry in this table that is associated
 with an interface on which MAC authentication has been configured
 with two new pieces of data:

 o a set of one or more MAC keys, each associated with a given MAC
 algorithm;

 o a pair (Index, PC), where Index is an arbitrary string of 0 to 32
 octets, and PC is a 32-bit (4-octet) integer.

 We say that an index is fresh when it has never been used before with
 any of the keys currently configured on the interface. The Index
 field is initialised to a fresh index, for example by drawing a
 random string of sufficient length (see Section 7 for suggested
 sizes), and the PC is initialised to an arbitrary value (typically
 0).

3.2. The Neighbour table

 Every Babel node maintains a neighbour table, as described in
 Section 3.2.4 of [RFC6126bis]. This protocol extends each entry in
 this table with two new pieces of data:

 o a pair (Index, PC), where Index is a string of 0 to 32 octets, and
 PC is a 32-bit (4-octet) integer;

 o a Nonce, which is an arbitrary string of 0 to 192 octets, and an
 associated challenge expiry timer.

Do, et al. Expires March 8, 2021 [Page 6]

Internet-Draft MAC authentication for Babel September 2020

 The Index and PC are initially undefined, and are managed as
 described in Section 4.3. The Nonce and challenge expiry timer are
 initially undefined, and used as described in Section 4.3.1.1.

4. Protocol Operation

4.1. MAC computation

 A Babel node computes the MAC of a Babel packet as follows.

 First, the node builds a pseudo-header that will participate in MAC
 computation but will not be sent. If the packet is carried over
 IPv6, the pseudo-header has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + +
 | |
 + Src address +
 | |
 + +
 | |
 +-+
 | Src port | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 + +
 | Dest address |
 + +
 | |
 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Dest port |
 +-+

 If the packet is carried over IPv4, the pseudo-header has the
 following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Src address |
 +-+
 | Src port | Dest address |
 +-+
 | | Dest port |
 +-+

Do, et al. Expires March 8, 2021 [Page 7]

Internet-Draft MAC authentication for Babel September 2020

 Fields :

 Src address The source IP address of the packet.

 Src port The source UDP port number of the packet.

 Dest address The destination IP address of the packet.

 Src port The destination UDP port number of the packet.

 The node takes the concatenation of the pseudo-header and the Babel
 packet including the packet header but excluding the packet trailer
 (from octet 0 inclusive up to (Body Length + 4) exclusive) and
 computes a MAC with one of the implemented algorithms. Every
 implementation MUST implement HMAC-SHA256 as defined in [RFC6234] and

Section 2 of [RFC2104], SHOULD implement keyed BLAKE2s [RFC7693], and
 MAY implement other MAC algorithms.

4.2. Packet Transmission

 A Babel node might delay actually sending TLVs by a small amount, in
 order to aggregate multiple TLVs in a single packet up to the
 interface MTU (Section 4 of [RFC6126bis]). For an interface on which
 MAC protection is configured, the TLV aggregation logic MUST take
 into account the overhead due to PC TLVs (one in each packet) and MAC
 TLVs (one per configured key).

 Before sending a packet, the following actions are performed:

 o a PC TLV containing the PC and Index associated with the outgoing
 interface MUST be appended to the packet body; the PC MUST be
 incremented by a strictly positive amount (typically just 1); if
 the PC overflows, a fresh index MUST be generated (as defined in

Section 3.1); a node MUST NOT include multiple PC TLVs in a single
 packet;

 o for each key configured on the interface, a MAC is computed as
 specified in Section 4.1 above, and stored in a MAC TLV that MUST
 be appended to the packet trailer (see Section 4.2 of
 [RFC6126bis]).

4.3. Packet Reception

 When a packet is received on an interface that is configured for MAC
 protection, the following steps are performed before the packet is
 passed to normal processing:

https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc2104#section-2
https://datatracker.ietf.org/doc/html/rfc7693

Do, et al. Expires March 8, 2021 [Page 8]

Internet-Draft MAC authentication for Babel September 2020

 o First, the receiver checks whether the trailer of the received
 packet carries at least one MAC TLV; if not, the packet MUST be
 immediately dropped and processing stops. Then, for each key
 configured on the receiving interface, the receiver computes the
 MAC of the packet. It then compares every generated MAC against
 every MAC included in the packet; if there is at least one match,
 the packet passes the MAC test; if there is none, the packet MUST
 be silently dropped and processing stops at this point. In order
 to avoid memory exhaustion attacks, an entry in the Neighbour
 Table MUST NOT be created before the MAC test has passed
 successfully. The MAC of the packet MUST NOT be computed for each
 MAC TLV contained in the packet, but only once for each configured
 key.

 o If an entry for the sender does not exist in the Neighbour Table,
 it MAY be created at this point (or, alternatively, its creation
 can be delayed until a challenge needs to be sent, see below);

 o The packet body is then parsed a first time. During this
 "preparse" phase, the packet body is traversed and all TLVs are
 ignored except PC, Challenge Request and Challenge Reply TLVs.
 When a PC TLV is encountered, the enclosed PC and Index are saved
 for later processing; if multiple PCs are found (which should not
 happen, see Section 4.2 above), only the first one is processed,
 the remaining ones MUST be silently ignored. If a Challenge
 Request is encountered, a Challenge Reply MUST be scheduled, as
 described in Section 4.3.1.2. If a Challenge Reply is
 encountered, it is tested for validity as described in

Section 4.3.1.3 and a note is made of the result of the test.

 o The preparse phase above has yielded two pieces of data: the PC
 and Index from the first PC TLV, and a bit indicating whether the
 packet contains a successful Challenge Reply. If the packet does
 not contain a PC TLV, the packet MUST be dropped and processing
 stops at this point. If the packet contains a successful
 Challenge Reply, then the PC and Index contained in the PC TLV
 MUST be stored in the Neighbour Table entry corresponding to the
 sender (which already exists in this case), and the packet is
 accepted.

 o Otherwise, if there is no entry in the Neighbour
 Table corresponding to the sender, or if such an entry exists but
 contains no Index, or if the Index it contains is different from
 the Index contained in the PC TLV, then a challenge MUST be sent
 as described in Section 4.3.1.1, the packet MUST be dropped, and
 processing stops at this stage.

Do, et al. Expires March 8, 2021 [Page 9]

Internet-Draft MAC authentication for Babel September 2020

 o At this stage, the packet contains no successful challenge reply
 and the Index contained in the PC TLV is equal to the Index in the
 Neighbour Table entry corresponding to the sender. The receiver
 compares the received PC with the PC contained in the Neighbour
 Table; if the received PC is smaller or equal than the PC
 contained in the Neighbour Table, the packet MUST be dropped and
 processing stops (no challenge is sent in this case, since the
 mismatch might be caused by harmless packet reordering on the
 link). Otherwise, the PC contained in the Neighbour Table entry
 is set to the received PC, and the packet is accepted.

 In the algorithm described above, challenge requests are processed
 and challenges are sent before the PC/Index pair is verified against
 the neighbour table. This simplifies the implementation somewhat
 (the node may simply schedule outgoing requests as it walks the
 packet during the preparse phase), but relies on the rate-limiting
 described in Section 4.3.1.1 to avoid sending too many challenges in
 response to replayed packets. As an optimisation, a node MAY ignore
 all challenge requests contained in a packet except the last one, and
 it MAY ignore a challenge request in the case where it is contained
 in a packet with an Index that matches the one in the Neighbour
 Table and a PC that is smaller or equal to the one contained in the
 Neighbour Table. Since it is still possible to replay a packet with
 an obsolete Index, the rate-limiting described in Section 4.3.1.1 is
 required even if this optimisation is implemented.

 The same is true of challenge replies. However, since validating a
 challenge reply has minimal additional cost (it's just a bitwise
 comparison of two strings of octets), a similar optimisation for
 challenge replies is not worthwhile.

 After the packet has been accepted, it is processed as normal, except
 that any PC, Challenge Request and Challenge Reply TLVs that it
 contains are silently ignored.

4.3.1. Challenge requests and replies

 During the preparse stage, the receiver might encounter a mismatched
 Index, to which it will react by scheduling a Challenge Request. It
 might encounter a Challenge Request TLV, to which it will reply with
 a Challenge Reply TLV. Finally, it might encounter a Challenge Reply
 TLV, which it will attempt to match with a previously sent Challenge
 Request TLV in order to update the Neighbour Table entry
 corresponding to the sender of the packet.

Do, et al. Expires March 8, 2021 [Page 10]

Internet-Draft MAC authentication for Babel September 2020

4.3.1.1. Sending challenges

 When it encounters a mismatched Index during the preparse phase, a
 node picks a nonce that it has never used with any of the keys
 currently configured on the relevant interface, for example by
 drawing a sufficiently large random string of bytes or by consulting
 a strictly monotonic hardware clock. It MUST then store the nonce in
 the entry of the Neighbour Table associated to the neighbour (the
 entry might need to be created at this stage), initialise the
 neighbour's challenge expiry timer to 30 seconds, and send a
 Challenge Request TLV to the unicast address corresponding to the
 neighbour.

 A node MAY aggregate a Challenge Request with other TLVs; in other
 words, if it has already buffered TLVs to be sent to the unicast
 address of the neighbour, it MAY send the buffered TLVs in the same
 packet as the Challenge Request. However, it MUST arrange for the
 Challenge Request to be sent in a timely manner, as any packets
 received from that neighbour will be silently ignored until the
 challenge completes.

 A node MUST impose a rate limitation to the challenges it sends; the
 limit SHOULD default to one challenge request every 300ms, and MAY be
 configurable. This rate limiting serves two purposes. First, since
 a challenge may be sent in response to a packet replayed by an
 attacker, it limits the number of challenges that an attacker can
 cause a node to send. Second, it limits the number of challenges
 sent when there are multiple packets in flight from a single
 neighbour.

4.3.1.2. Replying to challenges

 When it encounters a Challenge Request during the preparse phase, a
 node constructs a Challenge Reply TLV by copying the Nonce from the
 Challenge Request into the Challenge Reply. It MUST then send the
 Challenge Reply to the unicast address from which the Challenge
 Request was sent. A challenge sent to a multicast address MUST be
 silently ignored.

 A node MAY aggregate a Challenge Reply with other TLVs; in other
 words, if it has already buffered TLVs to be sent to the unicast
 address of the sender of the Challenge Request, it MAY send the
 buffered TLVs in the same packet as the Challenge Reply. However, it
 MUST arrange for the Challenge Reply to be sent in a timely manner
 (within a few seconds), and SHOULD NOT send any other packets over
 the same interface before sending the Challenge Reply, as those would
 be dropped by the challenger.

Do, et al. Expires March 8, 2021 [Page 11]

Internet-Draft MAC authentication for Babel September 2020

 Since a challenge reply might be caused by a replayed challenge
 request, a node MUST impose a rate limitation to the challenge
 replies it sends; the limit SHOULD default to one challenge reply for
 each peer every 300ms and MAY be configurable.

4.3.1.3. Receiving challenge replies

 When it encounters a Challenge Reply during the preparse phase, a
 node consults the Neighbour Table entry corresponding to the
 neighbour that sent the Challenge Reply. If no challenge is in
 progress, i.e., if there is no Nonce stored in the Neighbour
 Table entry or the challenge timer has expired, the Challenge Reply
 MUST be silently ignored and the challenge has failed.

 Otherwise, the node compares the Nonce contained in the Challenge
 Reply with the Nonce contained in the Neighbour Table entry. If the
 two are equal (they have the same length and content), then the
 challenge has succeeded and the nonce stored in the Neighbour
 Table for this neighbour SHOULD be discarded; otherwise, the
 challenge has failed (and the nonce is not discarded).

4.4. Expiring per-neighbour state

 The per-neighbour (Index, PC) pair is maintained in the neighbour
 table, and is normally discarded when the neighbour table entry
 expires. Implementations MUST ensure that an (Index, PC) pair is
 discarded within a finite time since the last time a packet has been
 accepted. In particular, unsuccessful challenges MUST NOT prevent an
 (Index, PC) pair from being discarded for unbounded periods of time.

 A possible implementation strategy for implementations that use a
 Hello history (Appendix A of [RFC6126bis]) is to discard the (Index,
 PC) pair whenever the Hello history becomes empty. Another
 implementation strategy is to use a timer that is reset whenever a
 packet is accepted, and to discard the (Index, PC) pair whenever the
 timer expires. If the latter strategy is being used, the timer
 SHOULD default to a value of 5 min, and MAY be configurable.

5. Incremental deployment and key rotation

 In order to perform incremental deployment, the nodes in the network
 are first configured in a mode where packets are sent with
 authentication but not checked on reception. Once all the nodes in
 the network are configured to send authenticated packets, nodes are
 reconfigured to reject unauthenticated packets.

 In order to perform key rotation, the new key is added to all the
 nodes; once this is done, both the old and the new key are sent in

Do, et al. Expires March 8, 2021 [Page 12]

Internet-Draft MAC authentication for Babel September 2020

 all packets, and packets are accepted if they are properly signed by
 either of the keys. At that point, the old key is removed.

 In order to support the procedures described above, implementations
 of this protocol SHOULD support an interface configuration in which
 packets are sent authenticated but received packets are accepted
 without verification, and they SHOULD allow changing the set of keys
 associated with an interface without a restart.

6. Packet Format

6.1. MAC TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 16 | Length | MAC...
 +-

 Fields :

 Type Set to 16 to indicate a MAC TLV.

 Length The length of the body, in octets, exclusive of the Type
 and Length fields. The length depends on the MAC algorithm
 being used.

 MAC The body contains the MAC of the packet, computed as
 described in Section 4.1.

 This TLV is allowed in the packet trailer (see Section 4.2 of
 [RFC6126bis]), and MUST be ignored if it is found in the packet body.

6.2. PC TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 17 | Length | PC |
 +-+
 | | Index...
 +-

 Fields :

 Type Set to 17 to indicate a PC TLV.

Do, et al. Expires March 8, 2021 [Page 13]

Internet-Draft MAC authentication for Babel September 2020

 Length The length of the body, in octets, exclusive of the Type
 and Length fields.

 PC The Packet Counter (PC), a 32-bit (4-octet) unsigned
 integer which is increased with every packet sent over this
 interface. A fresh index (as defined in Section 3.1) MUST
 be generated whenever the PC overflows.

 Index The sender's Index, an opaque string of 0 to 32 octets.

 Indices are limited to a size of 32 octets: a node MUST NOT send a
 TLV with an index of size strictly larger than 32 octets, and a node
 MAY ignore a PC TLV with an index of length strictly larger than 32
 octets. Indices of length 0 are valid: if a node has reliable stable
 storage and the packet counter never overflows, then only one index
 is necessary, and the value of length 0 is the canonical choice.

6.3. Challenge Request TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 18 | Length | Nonce...
 +-

 Fields :

 Type Set to 18 to indicate a Challenge Request TLV.

 Length The length of the body, in octets, exclusive of the Type
 and Length fields.

 Nonce The nonce uniquely identifying the challenge, an opaque
 string of 0 to 192 octets.

 Nonces are limited to a size of 192 octets: a node MUST NOT send a
 Challenge Request TLV with a nonce of size strictly larger than 192
 octets, and a node MAY ignore a nonce that is of size strictly larger
 than 192 octets. Nonces of length 0 are valid: if a node has
 reliable stable storage, then it may use a sequential counter for
 generating nonces which get encoded in the minimum number of octets
 required; the value 0 is then encoded as the string of length 0.

6.4. Challenge Reply TLV

Do, et al. Expires March 8, 2021 [Page 14]

Internet-Draft MAC authentication for Babel September 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 19 | Length | Nonce...
 +-

 Fields :

 Type Set to 19 to indicate a Challenge Reply TLV.

 Length The length of the body, in octets, exclusive of the Type
 and Length fields.

 Nonce A copy of the nonce contained in the corresponding
 challenge request.

7. Security Considerations

 This document defines a mechanism that provides basic security
 properties for the Babel routing protocol. The scope of this
 protocol is strictly limited: it only provides authentication (we
 assume that routing information is not confidential), it only
 supports symmetric keying, and it only allows for the use of a small
 number of symmetric keys on every link. Deployments that need more
 features, e.g., confidentiality or asymmetric keying, should use a
 more featureful security mechanism such as the one described in
 [I-D.ietf-babel-dtls].

 This mechanism relies on two assumptions, as described in
Section 1.2. First, it assumes that the MAC being used is

 invulnerable to forgery (Section 1.1 of [RFC6039]); at the time of
 writing, HMAC-SHA256, which is mandatory to implement (Section 4.1),
 is believed to be safe against practical attacks.

 Second, it assumes that indices and nonces are generated uniquely
 over the lifetime of a key used for MAC computation (more precisely,
 indices must be unique for a given (key, source) pair, and nonces
 must be unique for a given (key, source, destination) triple). This
 property can be satisfied either by using a cryptographically secure
 random number generator to generate indices and nonces that contain
 enough entropy (64-bit values are believed to be large enough for all
 practical applications), or by using a reliably monotonic hardware
 clock. If uniqueness cannot be guaranteed (e.g., because a hardware
 clock has been reset), then rekeying is necessary.

 The expiry mechanism mandated in Section 4.4 is required to prevent
 an attacker from delaying an authentic packet by an unbounded amount
 of time. If an attacker is able to delay the delivery of a packet

https://datatracker.ietf.org/doc/html/rfc6039#section-1.1

Do, et al. Expires March 8, 2021 [Page 15]

Internet-Draft MAC authentication for Babel September 2020

 (e.g., because it is located at a layer 2 switch), then the packet
 will be accepted as long as the corresponding (Index, PC) pair is
 present at the receiver. If the attacker is able to cause the
 (Index, PC) pair to persist for arbitrary amounts of time (e.g., by
 repeatedly causing failed challenges), then it is able to delay the
 packet by arbitrary amounts of time, even after the sender has left
 the network, which could allow it to redirect or blackhole traffic to
 destinations previously advertised by the sender.

 This protocol exposes large numbers of packets and their MACs to an
 attacker that is able to capture packets; it is therefore vulnerable
 to brute-force attacks. Keys must be chosen in a manner that makes
 them difficult to guess. Ideally, they should have a length of 32
 octets (both for HMAC-SHA256 and Blake2s), and be chosen randomly.
 If, for some reason, it is necessary to derive keys from a human-
 readable passphrase, it is recommended to use a key derivation
 function that hampers dictionary attacks, such as PBKDF2 [RFC2898],
 bcrypt [BCRYPT] or scrypt [RFC7914]. In that case, only the derived
 keys should be communicated to the routers; the original passphrase
 itself should be kept on the host used to perform the key generation
 (e.g., an administator's secure laptop computer).

 While it is probably not possible to be immune against denial of
 service (DoS) attacks in general, this protocol includes a number of
 mechanisms designed to mitigate such attacks. In particular,
 reception of a packet with no correct MAC creates no local Babel
 state (Section 4.3). Reception of a replayed packet with correct
 MAC, on the other hand, causes a challenge to be sent; this is
 mitigated somewhat by requiring that challenges be rate-limited
 (Section 4.3.1.1).

 Receiving a replayed packet with an obsolete index causes an entry to
 be created in the Neighbour Table, which, at first sight, makes the
 protocol susceptible to resource exhaustion attacks (similarly to the
 familiar "TCP SYN Flooding" attack [RFC4987]). However, the MAC
 computation includes the sender address (Section 4.1), and thus the
 amount of storage that an attacker can force a node to consume is
 limited by the number of distinct source addresses used with a single
 MAC key (see also Section 4 of [RFC6126bis], which mandates that the
 source address is a link-local IPv6 address or a local IPv4 address).

 In order to make this kind of resource exhaustion attacks less
 effective, implementations may use a separate table of uncompleted
 challenges that is separate from the Neighbour Table used by the core
 protocol (the data structures described in Section 3.2 of
 [RFC6126bis] are conceptual, and any data structure that yields the
 same result may be used). Implementers might also consider using the
 fact that the nonces included in challenge requests and replies can

https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc7914
https://datatracker.ietf.org/doc/html/rfc4987

Do, et al. Expires March 8, 2021 [Page 16]

Internet-Draft MAC authentication for Babel September 2020

 be fairly large (up to 192 octets), which should in principle allow
 encoding the per-challenge state as a secure "cookie" within the
 nonce itself; note however that any such scheme will need to prevent
 cookie replay.

8. IANA Considerations

 IANA has allocated the following values in the Babel TLV Types
 registry:

 +------+-------------------+---------------+
 | Type | Name | Reference |
 +------+-------------------+---------------+
 | 16 | MAC | this document |
 | | | |
 | 17 | PC | this document |
 | | | |
 | 18 | Challenge Request | this document |
 | | | |
 | 19 | Challenge Reply | this document |
 +------+-------------------+---------------+

9. Acknowledgments

 The protocol described in this document is based on the original HMAC
 protocol defined by Denis Ovsienko [RFC7298]. The use of a pseudo-
 header was suggested by David Schinazi. The use of an index to avoid
 replay was suggested by Markus Stenberg. The authors are also
 indebted to Antonin Decimo, Donald Eastlake, Toke Hoiland-Jorgensen,
 Florian Horn, Benjamin Kaduk, Dave Taht and Martin Vigoureux.

10. References

10.1. Normative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997.

 [RFC6126bis]
 Chroboczek, J. and D. Schinazi, "The Babel Routing
 Protocol", draft-ietf-babel-rfc6126bis-06 (work in
 progress), October 2018.

https://datatracker.ietf.org/doc/html/rfc7298
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-babel-rfc6126bis-06

Do, et al. Expires March 8, 2021 [Page 17]

Internet-Draft MAC authentication for Babel September 2020

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC7693] Saarinen, M-J., Ed. and J-P. Aumasson, "The BLAKE2
 Cryptographic Hash and Message Authentication Code (MAC)",

RFC 7693, DOI 10.17487/RFC7693, November 2015,
 <https://www.rfc-editor.org/info/rfc7693>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017.

10.2. Informational References

 [BCRYPT] Niels, P. and D. Mazieres, "A Future-Adaptable Password
 Scheme", 1999.

 In Proceedings of the 1999 USENIX Annual Technical
 Conference.

 [I-D.ietf-babel-dtls]
 Decimo, A., Schinazi, D., and J. Chroboczek, "Babel
 Routing Protocol over Datagram Transport Layer Security",

draft-ietf-babel-dtls-07 (work in progress), July 2019.

 [RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2.0", RFC 2898,
 DOI 10.17487/RFC2898, September 2000,
 <https://www.rfc-editor.org/info/rfc2898>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <http://www.rfc-editor.org/info/rfc4086>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <https://www.rfc-editor.org/info/rfc4987>.

 [RFC6039] Manral, V., Bhatia, M., Jaeggli, J., and R. White, "Issues
 with Existing Cryptographic Protection Methods for Routing
 Protocols", RFC 6039, DOI 10.17487/RFC6039, October 2010,
 <https://www.rfc-editor.org/info/rfc6039>.

https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/rfc7693
https://www.rfc-editor.org/info/rfc7693
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-babel-dtls-07
https://datatracker.ietf.org/doc/html/rfc2898
https://www.rfc-editor.org/info/rfc2898
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
http://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc4987
https://www.rfc-editor.org/info/rfc4987
https://datatracker.ietf.org/doc/html/rfc6039
https://www.rfc-editor.org/info/rfc6039

Do, et al. Expires March 8, 2021 [Page 18]

Internet-Draft MAC authentication for Babel September 2020

 [RFC7298] Ovsienko, D., "Babel Hashed Message Authentication Code
 (HMAC) Cryptographic Authentication", RFC 7298,
 DOI 10.17487/RFC7298, July 2014,
 <https://www.rfc-editor.org/info/rfc7298>.

 [RFC7914] Percival, C. and S. Josefsson, "The scrypt Password-Based
 Key Derivation Function", RFC 7914, DOI 10.17487/RFC7914,
 August 2016, <https://www.rfc-editor.org/info/rfc7914>.

Appendix A. Changes from previous versions

 [RFC Editor: please remove this section before publication.]

A.1. Changes since draft-ietf-babel-hmac-00

 o Changed the title.

 o Removed the appendix about the packet trailer, this is now in
 rfc6126bis.

 o Removed the appendix with implicit indices.

 o Clarified the definitions of acronyms.

 o Limited the size of nonces and indices.

A.2. Changes since draft-ietf-babel-hmac-01

 o Made BLAKE2s a recommended HMAC algorithm.

 o Added requirement to expire per-neighbour crypto state.

A.3. Changes since draft-ietf-babel-hmac-02

 o Clarified that PCs are 32-bit unsigned integers.

 o Clarified that indices and nonces are of arbitrary size.

 o Added reference to RFC 4086.

A.4. Changes since draft-ietf-babel-hmac-03

 o Use the TLV values allocated by IANA.

 o Fixed an issue with packets that contain a successful challenge
 reply: they should be accepted before checking the PC value.

https://datatracker.ietf.org/doc/html/rfc7298
https://www.rfc-editor.org/info/rfc7298
https://datatracker.ietf.org/doc/html/rfc7914
https://www.rfc-editor.org/info/rfc7914
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-00
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-01
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-02
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-03

Do, et al. Expires March 8, 2021 [Page 19]

Internet-Draft MAC authentication for Babel September 2020

 o Clarified that keys are the exact value of the HMAC hash size, and
 not subject to preprocessing; this makes management more
 deterministic.

A.5. Changes since draft-ietf-babel-hmac-04

 o Use normative language in more places.

A.6. Changes since draft-ietf-babel-hmac-05

 o Do not update RFC 6126bis.

 o Clarify that indices and nonces of length 0 are valid.

 o Clarify that multiple PC TLVs in a single packet are not allowed.

 o Allow discarding challenge requests when they carry an old PC.

A.7. Changes since draft-ietf-babel-hmac-06

 o Do not update RFC 6126bis, for real this time.

A.8. Changes since draft-ietf-babel-hmac-07

 o Clarify that a Neighbour Table entry may be created just after the
 HMAC has been computed.

 o Clarify that a Neighbour Table entry already exists when a
 successful Challenge Reply has been received.

 o Expand the Security Considerations section with information about
 resource exhaustion attacks.

A.8.1. Changes since draft-ietf-babel-hmac-08

 o Fix the size of the key to be equal to the block size, not the
 hash size.

 o Moved the information about incremental deployment to the body.

 o Clarified the double purpose of rate limitation.

 o Editorial changes.

https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-04
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-05
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-06
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-07
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-08

Do, et al. Expires March 8, 2021 [Page 20]

Internet-Draft MAC authentication for Babel September 2020

A.8.2. Changes since draft-ietf-babel-hmac-09

 o Renamed HMAC to MAC throughout, relevant rewording.

 o Made it mandatory to rate-limit challenge replies in addition to
 requests.

 o Added discussion of key generation.

 o Added discussion of the consequences of delaying packets.

A.8.3. Changes since draft-ietf-babel-hmac-10

 o Fixed minor typos.

A.8.4. Changes since draft-ietf-babel-hmac-11

 o Clarified that the state SHOULD be discarded after a successful
 challenge.

 o Replaced "pre-image attack" with "forgery", this is more accurate.

 o Minor editorial changes.

Authors' Addresses

 Clara Do
 IRIF, University of Paris-Diderot
 75205 Paris Cedex 13
 France

 Email: clarado_perso@yahoo.fr

 Weronika Kolodziejak
 IRIF, University of Paris-Diderot
 75205 Paris Cedex 13
 France

 Email: weronika.kolodziejak@gmail.com

https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-09
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-10
https://datatracker.ietf.org/doc/html/draft-ietf-babel-hmac-11

Do, et al. Expires March 8, 2021 [Page 21]

Internet-Draft MAC authentication for Babel September 2020

 Juliusz Chroboczek
 IRIF, University of Paris-Diderot
 Case 7014
 75205 Paris Cedex 13
 France

 Email: jch@irif.fr

Do, et al. Expires March 8, 2021 [Page 22]

