
Workgroup: Babel Working Group

Internet-Draft: draft-ietf-babel-yang-model-12

Published: 17 September 2021

Intended Status: Standards Track

Expires: 21 March 2022

Authors: M. Jethanandani

Kloud Services

B. Stark

AT&T

YANG Data Model for Babel

Abstract

This document defines a data model for the Babel routing protocol.

The data model is defined using the YANG data modeling language.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119][RFC8174] when, and only when, they appear in all

capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 21 March 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Note to RFC Editor

1.2. Tree Diagram Annotations

2. Babel Module

2.1. Information Model

2.2. Tree Diagram

2.3. YANG Module

3. IANA Considerations

3.1. URI Registrations

3.2. YANG Module Name Registration

4. Security Considerations

5. Acknowledgements

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Tree Diagram and Example Configurations

A.1. Complete Tree Diagram

A.2. Statistics Gathering Enabled

A.3. Automatic Detection of Properties

A.4. Override Default Properties

A.5. Configuring other Properties

Authors' Addresses

1. Introduction

This document defines a data model for The Babel Routing Protocol

[RFC8966]. The data model is defined using YANG 1.1 [RFC7950] and is

Network Management Datastore Architecture (NDMA) [RFC8342]

compatible. It is based on the Babel Information Model [RFC9046].

The data model only includes data nodes that are useful for managing

Babel over IPv6.

1.1. Note to RFC Editor

Artwork in this document contains shorthand references to drafts in

progress. Please apply the following replacements and remove this

note before publication.

"XXXX" --> the assigned RFC value for this draft both in this

draft and in the YANG models under the revision statement.

¶

¶

¶

*

¶

Revision date in model, in the format 2021-09-15 needs to get

updated with the date the draft gets approved. The date also

needs to get reflected on the line with <CODE BEGINS>.

1.2. Tree Diagram Annotations

For a reference to the annotations used in tree diagrams included in

this draft, please see YANG Tree Diagrams [RFC8340].

2. Babel Module

This document defines a YANG 1.1 [RFC7950] data model for the

configuration and management of Babel. The YANG module is based on

the Babel Information Model [RFC9046].

2.1. Information Model

There are a few things that should be noted between the Babel

Information Model and this data module. The information model

mandates the definition of some of the attributes, e.g., 'babel-

implementation-version' or the 'babel-self-router-id'. These

attributes are marked as read-only objects in the information module

as well as in this data module. However, there is no way in the data

module to mandate that a read-only attribute be present. It is up to

the implementation of this data module to make sure that the

attributes that are marked read-only and are mandatory are indeed

present.

2.2. Tree Diagram

The following diagram illustrates a top level hierarchy of the

model. In addition to the version implemented by this device, the

model contains subtrees on 'constants', 'interfaces', 'mac-key-set',

'dtls', and 'routes'.

*

¶

¶

¶

¶

¶

The 'interfaces' subtree describes attributes such as the

'interface' object that is being referenced, the type of link, e.g.,

wired, wireless or tunnel, as enumerated by 'metric-algorithm' and

'split-horizon' and whether the interface is enabled or not.

The 'constants' subtree describes the UDP port used for sending and

receiving Babel messages, and the multicast group used to send and

receive announcements on IPv6.

The 'routes' subtree describes objects such as the prefix for which

the route is advertised, a reference to the neighboring route, and

'next-hop' address.

Finally, for security two subtrees are defined to contain MAC keys

and DTLS certificates. The 'mac-key-set' subtree contains keys used

with the MAC security mechanism. The boolean flag 'default-apply'

indicates whether the set of MAC keys is automatically applied to

new interfaces. The 'dtls' subtree contains certificates used with

DTLS security mechanism. Similar to the MAC mechanism, the boolean

flag 'default-apply' indicates whether the set of DTLS certificates

is automatically applied to new interfaces.

2.3. YANG Module

This YANG module augments the YANG Routing Management [RFC8349]

module to provide a common framework for all routing subsystems. By

augmenting the module it provides a common building block for

routes, and Routing Information Bases (RIBs). It also has a

module: ietf-babel

 augment /rt:routing/rt:control-plane-protocols

 /rt:control-plane-protocol:

 +--rw babel!

 +--ro version? string

 +--rw enable boolean

 +--ro router-id? binary

 +--ro seqno? uint16

 +--rw statistics-enabled? boolean

 +--rw constants

 | ...

 +--rw interfaces* [reference]

 | ...

 +--rw mac-key-set* [name]

 | ...

 +--rw dtls* [name]

 | ...

 +--ro routes* [prefix]

 ...

¶

¶

¶

¶

¶

reference to an interface defined by A YANG Data Model for Interface

Management [RFC8343].

A router running Babel routing protocol can sometimes determine the

parameters it needs to use for an interface based on the interface

name. For example, it can detect that eth0 is a wired interface, and

that wlan0 is a wireless interface. This is not true for a tunnel

interface, where the link parameters need to be configured

explicitly.

For a wired interface, it will assume 'two-out-of-three' for

'metric-algorithm', and 'split-horizon' set to true. On the other

hand, for a wireless interface it will assume 'etx' for 'metric-

algorithm', and 'split-horizon' set to false. However, if the wired

link is connected to a wireless radio, the values can be overriden

by setting 'metric-algorithm' to 'etx', and 'split-horizon' to

false. Similarly, an interface that is a metered 3G link, and used

for fallback connectivity needs much higher default time constants,

e.g., 'mcast-hello-interval', and 'update-interval', in order to

avoid carrying control traffic as much as possible.

In addition to the modules used above, this module imports

definitions from Common YANG Data Types [RFC6991], and references

HMAC: Keyed-Hashing for Message Authentication [RFC2104], Using

HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec [RFC4868],

The Datagram Transport Layer Security (DTLS) Version 1.3 [I-D.ietf-

tls-dtls13], The Blake2 Cryptographic Hash and Message

Authentication Code (MAC) [RFC7693], Babel Information Model

[RFC9046], The Babel Routing Protocol [RFC8966], YANG Data Types and

Groupings for Cryptography [I-D.ietf-netconf-crypto-types], Network

Configuration Access Control Model [RFC8341] and MAC Authentication

for Babel [RFC8967].

¶

¶

¶

¶

<CODE BEGINS> file "ietf-babel@2021-09-15.yang"

module ietf-babel {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-babel";

 prefix babel;

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC 6991: Common YANG Data Types.";

 }

 import ietf-inet-types {

 prefix inet;

 reference

 "RFC 6991: Common YANG Data Types.";

 }

 import ietf-interfaces {

 prefix if;

 reference

 "RFC 8343: A YANG Data Model for Interface Management";

 }

 import ietf-routing {

 prefix rt;

 reference

 "RFC 8349: YANG Routing Management";

 }

 import ietf-crypto-types {

 prefix ct;

 reference

 "I-D.ietf-netconf-crypto-types: YANG Data Types and Groupings

 for Cryptographay.";

 }

 import ietf-netconf-acm {

 prefix nacm;

 reference

 "RFC 8341: Network Configuration Access Control Model";

 }

 organization

 "IETF Babel routing protocol Working Group";

 contact

 "WG Web: http://tools.ietf.org/wg/babel/

 WG List: babel@ietf.org

 Editor: Mahesh Jethanandani

 mjethanandani@gmail.com

 Editor: Barbara Stark

 bs7652@att.com";

 description

 "This YANG module defines a model for the Babel routing

 protocol.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

 'MAY', and 'OPTIONAL' in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.

 Copyright (c) 2021 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject to

 the license terms contained in, the Simplified BSD License set

 forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX

 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself

 for full legal notices.";

 revision 2021-09-15 {

 description

 "Initial version.";

 reference

 "RFC XXXX: Babel YANG Data Model.";

 }

 /*

 * Features

 */

 feature two-out-of-three-supported {

 description

 "This implementation supports the '2-out-of-3'

 computation algorithm.";

 }

 feature etx-supported {

 description

 "This implementation supports the Expected Transmission Count

 (ETX) metric computation algorithm.";

 }

 feature mac-supported {

 description

 "This implementation supports MAC-based security.";

 reference

 "RFC 8967: MAC authentication for Babel Routing

 Protocol.";

 }

 feature dtls-supported {

 description

 "This implementation supports DTLS based security.";

 reference

 "RFC 8968: Babel Routing Protocol over Datagram

 Transport Layer Security.";

 }

 feature hmac-sha256-supported {

 description

 "This implementation supports the HMAC-SHA256 MAC algorithm.";

 reference

 "RFC 8967: MAC authentication for Babel Routing

 Protocol.";

 }

 feature blake2s-supported {

 description

 "This implementation supports BLAKE2s MAC algorithms.";

 reference

 "RFC 8967: MAC authentication for Babel Routing

 Protocol.";

 }

 feature x-509-supported {

 description

 "This implementation supports the X.509 certificate type.";

 reference

 "RFC 8968: Babel Routing Protocol over Datagram

 Transport Layer Security.";

 }

 feature raw-public-key-supported {

 description

 "This implementation supports the Raw Public Key certificate

 type.";

 reference

 "RFC 8968: Babel Routing Protocol over Datagram

 Transport Layer Security.";

 }

 /*

 * Identities

 */

 identity metric-comp-algorithms {

 description

 "Base identity from which all Babel metric computation

 algorithms MUST be derived.";

 }

 identity two-out-of-three {

 if-feature "two-out-of-three-supported";

 base metric-comp-algorithms;

 description

 "2-out-of-3 algorithm.";

 reference

 "RFC 8966: The Babel Routing Protocol, Section A.2.1.";

 }

 identity etx {

 if-feature "etx-supported";

 base metric-comp-algorithms;

 description

 "Expected Transmission Count (ETX) metric computation

 algorithm.";

 reference

 "RFC 8966: The Babel Routing Protocol, Section A.2.2.";

 }

 /*

 * Babel MAC algorithms identities.

 */

 identity mac-algorithms {

 description

 "Base identity for all Babel MAC algorithms.";

 }

 identity hmac-sha256 {

 if-feature "mac-supported";

 if-feature "hmac-sha256-supported";

 base mac-algorithms;

 description

 "HMAC-SHA256 algorithm supported.";

 reference

 "RFC 4868: Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512

 with IPsec.";

 }

 identity blake2s {

 if-feature "mac-supported";

 if-feature "blake2s-supported";

 base mac-algorithms;

 description

 "BLAKE2s algorithms supported. Specifically, BLAKE2-128 is

 supported.";

 reference

 "RFC 7693: The BLAKE2 Cryptographic Hash and Message

 Authentication Code (MAC).";

 }

 /*

 * Babel Cert Types

 */

 identity dtls-cert-types {

 description

 "Base identity for Babel DTLS certificate types.";

 }

 identity x-509 {

 if-feature "dtls-supported";

 if-feature "x-509-supported";

 base dtls-cert-types;

 description

 "X.509 certificate type.";

 }

 identity raw-public-key {

 if-feature "dtls-supported";

 if-feature "raw-public-key-supported";

 base dtls-cert-types;

 description

 "Raw Public Key certificate type.";

 }

 /*

 * Babel routing protocol identity.

 */

 identity babel {

 base rt:routing-protocol;

 description

 "Babel routing protocol";

 }

 /*

 * Groupings

 */

 grouping routes {

 list routes {

 key "prefix";

 config false;

 leaf prefix {

 type inet:ip-prefix;

 description

 "Prefix (expressed in ip-address/prefix-length format) for

 which this route is advertised.";

 reference

 "RFC 9046: Babel Information Model, Section 3.6.";

 }

 leaf router-id {

 type binary {

 length 8;

 }

 description

 "router-id of the source router for which this route is

 advertised.";

 reference

 "RFC 9046: Babel Information Model, Section 3.6.";

 }

 leaf neighbor {

 type leafref {

 path "/rt:routing/rt:control-plane-protocols/"

 + "rt:control-plane-protocol/babel/interfaces/"

 + "neighbor-objects/neighbor-address";

 }

 description

 "Reference to the neighbor-objects entry for the neighbor

 that advertised this route.";

 reference

 "RFC 9046: Babel Information Model, Section 3.6.";

 }

 leaf received-metric {

 type union {

 type enumeration {

 enum null {

 description

 "Route was not received from a neighbor.";

 }

 }

 type uint16;

 }

 description

 "The metric with which this route was advertised by the

 neighbor, or maximum value (infinity) to indicate the

 route was recently retracted and is temporarily

 unreachable. This metric will be NULL if the

 route was not received from a neighbor but instead was

 injected through means external to the Babel routing

 protocol. At least one of calculated-metric or

 received-metric MUST be non-NULL.";

 reference

 "RFC 9046: Babel Information Model, Section 3.6,

 RFC 8966: The Babel Routing Protocol, Section 2.1.";

 }

 leaf calculated-metric {

 type union {

 type enumeration {

 enum null {

 description

 "Route has not been calculated.";

 }

 }

 type uint16;

 }

 description

 "A calculated metric for this route. How the metric is

 calculated is implementation-specific. Maximum value

 (infinity) indicates the route was recently retracted

 and is temporarily unreachable. At least one of

 calculated-metric or received-metric MUST be non-NULL.";

 reference

 "RFC 9046: Babel Information Model, Section 3.6,

 RFC 8966: The Babel Routing Protocol, Section 2.1.";

 }

 leaf seqno {

 type uint16;

 description

 "The sequence number with which this route was

 advertised.";

 reference

 "RFC 9046: Babel Information Model, Section 3.6.";

 }

 leaf next-hop {

 type union {

 type enumeration {

 enum null {

 description

 "Route has no next-hop address.";

 }

 }

 type inet:ip-address;

 }

 description

 "The next-hop address of this route. This will be NULL

 if this route has no next-hop address.";

 reference

 "RFC 9046: Babel Information Model, Section 3.6.";

 }

 leaf feasible {

 type boolean;

 description

 "A boolean flag indicating whether this route is

 feasible.";

 reference

 "RFC 9046: Babel Information Model, Section 3.6,

 RFC 8966, The Babel Routing Protocol, Section 3.5.1.";

 }

 leaf selected {

 type boolean;

 description

 "A boolean flag indicating whether this route is selected,

 i.e., whether it is currently being used for forwarding

 and is being advertised.";

 reference

 "RFC 9046: Babel Information Model, Section 3.6.";

 }

 description

 "A set of babel-route-obj objects. Contains routes known to

 this node.";

 reference

 "RFC 9046: Babel Information Model, Section 3.1.";

 }

 description

 "Common grouping for routing used in RIB.";

 }

 /*

 * Data model

 */

 augment "/rt:routing/rt:control-plane-protocols/"

 + "rt:control-plane-protocol" {

 when "derived-from-or-self(rt:type, 'babel')" {

 description

 "Augmentation is valid only when the instance of routing type

 is of type 'babel'.";

 }

 description

 "Augment the routing module to support a common structure

 between routing protocols.";

 reference

 "YANG Routing Management, RFC 8349, Lhotka & Lindem, March

 2018.";

 container babel {

 presence "A Babel container.";

 description

 "Babel Information Objects.";

 reference

 "RFC 9046: Babel Information Model, Section 3.";

 leaf version {

 type string;

 config false;

 description

 "The name and version of this implementation of the Babel

 protocol.";

 reference

 "RFC 9046: Babel Information Model, Section 3.1.";

 }

 leaf enable {

 type boolean;

 mandatory true;

 description

 "When written, it configures whether the protocol should be

 enabled. A read from the <running> or <intended> datastore

 therefore indicates the configured administrative value of

 whether the protocol is enabled or not.

 A read from the <operational> datastore indicates whether

 the protocol is actually running or not, i.e. it indicates

 the operational state of the protocol.";

 reference

 "RFC 9046: Babel Information Model, Section 3.1.";

 }

 leaf router-id {

 type binary;

 must '../enable = "true"';

 config false;

 description

 "Every Babel speaker is assigned a router-id, which is an

 arbitrary string of 8 octets that is assumed to be unique

 across the routing domain.

 The router-id is valid only if the protocol is enabled,

 at which time a non-zero value is assigned.";

 reference

 "RFC 9046: Babel Information Model, Section 3.1,

 RFC 8966: The Babel Routing Protocol,

 Section 3.";

 }

 leaf seqno {

 type uint16;

 config false;

 description

 "Sequence number included in route updates for routes

 originated by this node.";

 reference

 "RFC 9046: Babel Information Model, Section 3.1.";

 }

 leaf statistics-enabled {

 type boolean;

 description

 "Indicates whether statistics collection is enabled (true)

 or disabled (false) on all interfaces. On transition to

 enabled, existing statistics values are not cleared and

 will be incremented as new packets are counted.";

 }

 container constants {

 description

 "Babel Constants object.";

 reference

 "RFC 9046: Babel Information Model, Section 3.1.";

 leaf udp-port {

 type inet:port-number;

 default "6696";

 description

 "UDP port for sending and receiving Babel messages. The

 default port is 6696.";

 reference

 "RFC 9046: Babel Information Model, Section 3.2.";

 }

 leaf mcast-group {

 type inet:ip-address;

 default "ff02::1:6";

 description

 "Multicast group for sending and receiving multicast

 announcements on IPv6.";

 reference

 "RFC 9046: Babel Information Model, Section 3.2.";

 }

 }

 list interfaces {

 key "reference";

 description

 "A set of Babel Interface objects.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 leaf reference {

 type if:interface-ref;

 description

 "References the name of the interface over which Babel

 packets are sent and received.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 leaf enable {

 type boolean;

 default "true";

 description

 "If true, babel sends and receives messages on this

 interface. If false, babel messages received on this

 interface are ignored and none are sent.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 leaf metric-algorithm {

 type identityref {

 base metric-comp-algorithms;

 }

 mandatory true;

 description

 "Indicates the metric computation algorithm used on this

 interface. The value MUST be one of those identities

 based on 'metric-comp-algorithms'.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 leaf split-horizon {

 type boolean;

 description

 "Indicates whether or not the split horizon optimization

 is used when calculating metrics on this interface.

 A value of true indicates the split horizon optimization

 is used.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 leaf mcast-hello-seqno {

 type uint16;

 config false;

 description

 "The current sequence number in use for multicast hellos

 sent on this interface.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 leaf mcast-hello-interval {

 type uint16;

 units "centiseconds";

 description

 "The current multicast hello interval in use for hellos

 sent on this interface.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 leaf update-interval {

 type uint16;

 units "centiseconds";

 description

 "The current update interval in use for this interface.

 Units are centiseconds.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 leaf mac-enable {

 type boolean;

 description

 "Indicates whether the MAC security mechanism is enabled

 (true) or disabled (false).";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 leaf-list mac-key-sets {

 type leafref {

 path "../../mac-key-set/name";

 }

 description

 "List of references to the MAC entries that apply

 to this interface. When an interface instance is

 created, all MAC instances with default-apply 'true'

 will be included in this list.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 leaf mac-verify {

 type boolean;

 description

 "A Boolean flag indicating whether MACs in

 incoming Babel packets are required to be present and

 are verified. If this parameter is 'true', incoming

 packets are required to have a valid MAC.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 leaf dtls-enable {

 type boolean;

 description

 "Indicates whether the DTLS security mechanism is enabled

 (true) or disabled (false).";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 leaf-list dtls-certs {

 type leafref {

 path "../../dtls/name";

 }

 description

 "List of references to the dtls entries that apply to

 this interface. When an interface instance

 is created, all dtls instances with default-apply

 'true' will be included in this list.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 leaf dtls-cached-info {

 type boolean;

 description

 "Indicates whether the cached_info extension is enabled.

 The extension is enabled for inclusion in ClientHello

 and ServerHello messages if the value is 'true'.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.

 RFC 8968: Babel Routing Protocol over

 Datagram Transport Layer Security, Appendix A.";

 }

 leaf-list dtls-cert-prefer {

 type leafref {

 path "../../dtls/certs/type";

 }

 ordered-by user;

 description

 "List of supported certificate types, in order of

 preference. The values MUST be the 'type' attribute

 in the list 'certs' of the list 'dtls'

 (../../dtls/certs/type). This list is used to populate

 the server_certificate_type extension in a ClientHello.

 Values that are present in at least one instance in the

 certs object under dtls of a referenced dtls instance

 and that have a non-empty private-key will be used to

 populate the client_certificate_type extension in a

 ClientHello.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3

 RFC 8968: Babel Routing Protocol over

 Datagram Transport Layer Security, Appendix A.";

 }

 leaf packet-log-enable {

 type boolean;

 description

 "If true, logging of babel packets received on this

 interface is enabled; if false, babel packets are not

 logged.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 leaf packet-log {

 type inet:uri;

 config false;

 description

 "A reference or url link to a file that contains a

 timestamped log of packets received and sent on

 udp-port on this interface. The [libpcap] file

 format with .pcap file extension SHOULD be supported for

 packet log files. Logging is enabled / disabled by

 packet-log-enable.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 }

 container statistics {

 config false;

 description

 "Statistics collection object for this interface.";

 reference

 "RFC 9046: Babel Information Model, Section 3.3.";

 leaf discontinuity-time {

 type yang:date-and-time;

 mandatory true;

 description

 "The time on the most recent occasion at which any one

 or more of counters suffered a discontinuity. If no

 such discontinuities have occurred since the last

 re-initialization of the local management subsystem,

 then this node contains the time the local management

 subsystem re-initialized itself.";

 }

 leaf sent-mcast-hello {

 type yang:counter32;

 description

 "A count of the number of multicast Hello packets sent

 on this interface.";

 reference

 "RFC 9046: Babel Information Model, Section 3.4.";

 }

 leaf sent-mcast-update {

 type yang:counter32;

 description

 "A count of the number of multicast update packets sent

 on this interface.";

 reference

 "RFC 9046: Babel Information Model, Section 3.4.";

 }

 leaf sent-ucast-hello {

 type yang:counter32;

 description

 "A count of the number of unicast Hello packets sent

 on this interface.";

 reference

 "RFC 9046: Babel Information Model, Section 3.6.";

 }

 leaf sent-ucast-update {

 type yang:counter32;

 description

 "A count of the number of unicast update packets sent

 on this interface.";

 reference

 "RFC 9046: Babel Information Model, Section 3.6.";

 }

 leaf sent-ihu {

 type yang:counter32;

 description

 "A count of the number of IHU packets sent on this

 interface.";

 reference

 "RFC 9046: Babel Information Model, Section 3.6.";

 }

 leaf received-packets {

 type yang:counter32;

 description

 "A count of the number of Babel packets received on

 this interface.";

 reference

 "RFC 9046: Babel Information Model, Section 3.4.";

 }

 action reset {

 description

 "The information model [RFC 9046] defines reset

 action as a system-wide reset of Babel statistics.

 In YANG the reset action is associated with the

 container where the action is defined. In this case

 the action is associated with the statistics container

 inside an interface. The action will therefore

 reset statistics at an interface level.

 Implementations that want to support a system-wide

 reset of Babel statistics need to call this action

 for every instance of the interface.";

 input {

 leaf reset-at {

 type yang:date-and-time;

 description

 "The time when the reset was issued.";

 }

 }

 output {

 leaf reset-finished-at {

 type yang:date-and-time;

 description

 "The time when the reset finished.";

 }

 }

 }

 }

 list neighbor-objects {

 key "neighbor-address";

 config false;

 description

 "A set of Babel Neighbor Object.";

 reference

 "RFC 9046: Babel Information Model, Section 3.5.";

 leaf neighbor-address {

 type inet:ip-address;

 description

 "IPv4 or v6 address the neighbor sends packets from.";

 reference

 "RFC 9046: Babel Information Model, Section 3.5.";

 }

 leaf hello-mcast-history {

 type string;

 description

 "The multicast Hello history of whether or not the

 multicast Hello packets prior to exp-mcast-

 hello-seqno were received, with a '1' for the most

 recent Hello placed in the most significant bit and

 prior Hellos shifted right (with '0' bits placed

 between prior Hellos and most recent Hello for any

 not-received Hellos); represented as a string of

 utf-8 encoded hex digits. A bit that is set indicates

 that the corresponding Hello was received, and a bit

 that is cleared indicates that the corresponding Hello

 was not received.";

 reference

 "RFC 9046: Babel Information Model, Section 3.5.";

 }

 leaf hello-ucast-history {

 type string;

 description

 "The unicast Hello history of whether or not the

 unicast Hello packets prior to exp-ucast-hello-seqno

 were received, with a '1' for the most

 recent Hello placed in the most significant bit and

 prior Hellos shifted right (with '0' bits placed

 between prior Hellos and most recent Hello for any

 not-received Hellos); represented as a string using

 utf-8 encoded hex digits where a '1' bit = Hello

 received and a '0' bit = Hello not received.";

 reference

 "RFC 9046: Babel Information Model, Section 3.5.";

 }

 leaf txcost {

 type int32;

 default "0";

 description

 "Transmission cost value from the last IHU packet

 received from this neighbor, or maximum value

 (infinity) to indicate the IHU hold timer for this

 neighbor has expired description.";

 reference

 "RFC 9046: Babel Information Model, Section 3.5.";

 }

 leaf exp-mcast-hello-seqno {

 type union {

 type enumeration {

 enum null {

 description

 "Multicast Hello packets are not expected, or

 processing of multicast packets is not

 enabled.";

 }

 }

 type uint16;

 }

 description

 "Expected multicast Hello sequence number of next Hello

 to be received from this neighbor; if multicast Hello

 packets are not expected, or processing of multicast

 packets is not enabled, this MUST be NULL.";

 reference

 "RFC 9046: Babel Information Model, Section 3.5.";

 }

 leaf exp-ucast-hello-seqno {

 type union {

 type enumeration {

 enum null {

 description

 "Unicast Hello packets are not expected, or

 processing of unicast packets is not enabled.";

 }

 }

 type uint16;

 }

 default null;

 description

 "Expected unicast Hello sequence number of next Hello

 to be received from this neighbor; if unicast Hello

 packets are not expected, or processing of unicast

 packets is not enabled, this MUST be NULL.";

 reference

 "RFC 9046: Babel Information Model, Section 3.5.";

 }

 leaf ucast-hello-seqno {

 type union {

 type enumeration {

 enum null {

 description

 "Unicast Hello packets are not being sent.";

 }

 }

 type uint16;

 }

 default null;

 description

 "The current sequence number in use for unicast Hellos

 sent to this neighbor. If unicast Hellos are not being

 sent, this MUST be NULL.";

 reference

 "RFC 9046: Babel Information Model, Section 3.5.";

 }

 leaf ucast-hello-interval {

 type uint16;

 units "centiseconds";

 description

 "The current interval in use for unicast hellos sent to

 this neighbor. Units are centiseconds.";

 reference

 "RFC 9046: Babel Information Model, Section 3.5.";

 }

 leaf rxcost {

 type uint16;

 description

 "Reception cost calculated for this neighbor. This

 value is usually derived from the Hello history, which

 may be combined with other data, such as statistics

 maintained by the link layer. The rxcost is sent to a

 neighbor in each IHU.";

 reference

 "RFC 9046: Babel Information Model, Section 3.5.";

 }

 leaf cost {

 type int32;

 description

 "Link cost is computed from the values maintained in

 the neighbor table. The statistics kept in the

 neighbor table about the reception of Hellos, and the

 txcost computed from received IHU packets.";

 reference

 "RFC 9046: Babel Information Model, Section 3.5.";

 }

 }

 }

 list mac-key-set {

 key "name";

 description

 "A MAC key set object. If this object is implemented, it

 provides access to parameters related to the MAC security

 mechanism.";

 reference

 "RFC 9046: Babel Information Model, Section 3.7.";

 leaf name {

 type string;

 description

 "A string that uniquely identifies the MAC object.";

 }

 leaf default-apply {

 type boolean;

 description

 "A Boolean flag indicating whether this object

 instance is applied to all new interfaces, by default.

 If 'true', this instance is applied to new babel-

 interfaces instances at the time they are created,

 by including it in the mac-key-sets list under

 the interface. If 'false', this instance is not applied

 to new interface instances when they are created.";

 reference

 "RFC 9046: Babel Information Model, Section 3.7.";

 }

 list keys {

 key "name";

 min-elements 1;

 description

 "A set of keys objects.";

 reference

 "RFC 9046: Babel Information Model, Section 3.8.";

 leaf name {

 type string;

 description

 "A unique name for this MAC key that can be used to

 identify the key in this object instance, since the

 key value is not allowed to be read. This value can

 only be provided when this instance is created, and is

 not subsequently writable.";

 reference

 "RFC 9046: Babel Information Model, Section 3.8.";

 }

 leaf use-send {

 type boolean;

 mandatory true;

 description

 "Indicates whether this key value is used to compute a

 MAC and include that MAC in the sent Babel packet. A

 MAC for sent packets is computed using this key if the

 value is 'true'. If the value is 'false', this key is

 not used to compute a MAC to include in sent Babel

 packets.";

 reference

 "RFC 9046: Babel Information Model, Section 3.8.";

 }

 leaf use-verify {

 type boolean;

 mandatory true;

 description

 "Indicates whether this key value is used to verify

 incoming Babel packets. This key is used to verify

 incoming packets if the value is 'true'. If the value

 is 'false', no MAC is computed from this key for

 comparing an incoming packet.";

 reference

 "RFC 9046: Babel Information Model, Section 3.8.";

 }

 leaf value {

 nacm:default-deny-all;

 type binary;

 mandatory true;

 description

 "The value of the MAC key.

 This value is of a length suitable for the associated

 babel-mac-key-algorithm. If the algorithm is based on

 the HMAC construction [RFC2104], the length MUST be

 between 0 and an upper limit that is at least the size

 of the output length (where 'HMAC-SHA256' output

 length is 32 octets as described in [RFC4868]). Longer

 lengths MAY be supported but are not necessary if the

 management system has the ability to generate a

 suitably random value (e.g., by randomly generating a

 value or by using a key derivation technique as

 recommended in [RFC8967] Security Considerations). If

 the algorithm is 'BLAKE2s-128', the length MUST be

 between 0 and 32 bytes inclusive as specified by

 [RFC7693].";

 reference

 "RFC 9046: Babel Information Model, Section 3.8,

 RFC 2104: HMAC: Keyed-Hashing for Message

 Authentication

 RFC 4868: Using HMAC-SHA-256, HMAC-SHA-384, and

 HMAC-SHA-512 with IPsec,

 RFC 7693: The BLAKE2 Cryptographic Hash and Message

 Authentication Code (MAC).

 RFC 8967: MAC Authentication for Babel.";

 }

 leaf algorithm {

 type identityref {

 base mac-algorithms;

 }

 mandatory true;

 description

 "The MAC algorithm used with this key. The

 value MUST be one of the identities

 listed with the base of 'mac-algorithms'.";

 reference

 "RFC 9046: Babel Information Model, Section 3.8.";

 }

 action test {

 description

 "An operation that allows the MAC key and MAC

 algorithm to be tested to see if they produce an

 expected outcome. Input to this operation are a

 binary string and a calculated MAC (also in the

 format of a binary string) for the binary string.

 The implementation is expected to create a MAC over

 the binary string using the value and algorithm.

 The output of this operation is a binary indication

 that the calculated MAC matched the input MAC (true)

 or the MACs did not match (false).";

 reference

 "RFC 9046: Babel Information Model, Section 3.8.";

 input {

 leaf test-string {

 type binary;

 mandatory true;

 description

 "Input to this operation is a binary string.

 The implementation is expected to create

 a MAC over this string using the value and

 the algorithm defined as part of the

 mac-key-set.";

 reference

 "RFC 9046: Babel Information Model, Section 3.8.";

 }

 leaf mac {

 type binary;

 mandatory true;

 description

 "Input to this operation includes a MAC.

 The implementation is expected to calculate a MAC

 over the string using the value and algorithm of

 this key object and compare its calculated MAC to

 this input MAC.";

 reference

 "RFC 9046: Babel Information Model, Section 3.8.";

 }

 }

 output {

 leaf indication {

 type boolean;

 mandatory true;

 description

 "The output of this operation is a binary

 indication that the calculated MAC matched the

 input MAC (true) or the MACs did not match

 (false).";

 reference

 "RFC 9046: Babel Information Model, Section 3.8.";

 }

 }

 }

 }

 }

 list dtls {

 key "name";

 description

 "A dtls object. If this object is implemented,

 it provides access to parameters related to the DTLS

 security mechanism.";

 reference

 "RFC 9046: Babel Information Model, Section 3.9";

 leaf name {

 type string;

 description

 "A string that uniquely identifies a dtls object.";

 }

 leaf default-apply {

 type boolean;

 mandatory true;

 description

 "A Boolean flag indicating whether this object

 instance is applied to all new interfaces, by default.

 If 'true', this instance is applied to new interfaces

 instances at the time they are created, by including it

 in the dtls-certs list under the interface. If 'false',

 this instance is not applied to new interface

 instances when they are created.";

 reference

 "RFC 9046: Babel Information Model, Section 3.9.";

 }

 list certs {

 key "name";

 min-elements 1;

 description

 "A set of cert objects. This contains

 both certificates for this implementation to present

 for authentication, and to accept from others.

 Certificates with a non-empty private-key

 can be presented by this implementation for

 authentication.";

 reference

 "RFC 9046: Babel Information Model, Section 3.10.";

 leaf name {

 type string;

 description

 "A unique name for this certificate that can be

 used to identify the certificate in this object

 instance, since the value is too long to be useful

 for identification. This value MUST NOT be empty

 and can only be provided when this instance is created

 (i.e., it is not subsequently writable).";

 reference

 "RFC 9046: Babel Information Model, Section 3.10.";

 }

 leaf value {

 nacm:default-deny-write;

 type string;

 mandatory true;

 description

 "The certificate in PEM format [RFC7468]. This

 value can only be provided when this instance is

 created, and is not subsequently writable.";

 reference

 "RFC 9046: Babel Information Model, Section 3.10.";

 }

 leaf type {

 nacm:default-deny-write;

 type identityref {

 base dtls-cert-types;

 }

 mandatory true;

 description

 "The certificate type of this object instance.

 The value MUST be the same as one of the

 identities listed with the base 'dtls-cert-types'.

 This value can only be provided when this

 instance is created, and is not subsequently

 writable.";

 reference

 "RFC 9046: Babel Information Model, Section 3.10.";

 }

 leaf private-key {

 nacm:default-deny-all;

 type binary;

 mandatory true;

 description

 "The value of the private key. If this is non-empty,

 this certificate can be used by this implementation to

 provide a certificate during DTLS handshaking.";

 reference

 "RFC 9046: Babel Information Model, Section 3.10.";

 }

 leaf algorithm {

 nacm:default-deny-write;

 type identityref {

 base ct:private-key-format;

 }

 mandatory true;

 description

 "Identifies the algorithm identity with which the

 private-key has been encoded. This value can only be

 provided when this instance is created, and is not

 subsequently writable.";

 }

 }

 }

 uses routes;

 }

 }

}

<CODE ENDS>

3. IANA Considerations

This document registers a URI and a YANG module.

3.1. URI Registrations

URI: urn:ietf:params:xml:ns:yang:ietf-babel

3.2. YANG Module Name Registration

This document registers a YANG module in the YANG Module Names

registry YANG [RFC6020].

¶

¶

¶

¶

4. Security Considerations

The YANG module specified in this document defines a schema for data

that is designed to be accessed via network management protocol such

as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer

is the secure transport layer and the mandatory-to-implement secure

transport is SSH [RFC6242]. The lowest RESTCONF layer is HTTPS, and

the mandatory-to-implement secure transport is TLS [RFC8446].

The NETCONF Access Control Model (NACM [RFC8341]) provides the means

to restrict access for particular NETCONF users to a pre-configured

subset of all available NETCONF protocol operations and content.

The security considerations outlined here are specific to the YANG

data model, and do not cover security considerations of the Babel

protocol or its security mechanisms in The Babel Routing Protocol

[RFC8966], MAC Authentication for the Babel Routing Protocol

[RFC8967], and Babel Routing Protocol over Data Transport Layer

Security [RFC8968]. Each of these has its own Security

Considerations section for considerations that are specific to it.

There are a number of data nodes defined in the YANG module which

are writable/created/deleted (i.e., config true, which is the

default). These data nodes may be considered sensitive or vulnerable

in some network environments. Write operations (e.g., <edit-config>)

to these data nodes without proper protection can have a negative

effect on network operations. These are the subtrees and data nodes

and their sensitivity/vulnerability from a config true perspective:

'babel': This container includes an 'enable' parameter that can be

used to enable or disable use of Babel on a router

'babel/constants': This container includes configuration parameters

that can prevent reachability if misconfigured.

'babel/interfaces': This leaf-list has configuration parameters that

can enable/disable security mechanisms and change performance

characteristics of the Babel protocol.

'babel/hmac' and 'babel/dtls': These contain security credentials

that influence whether incoming packets are trusted, and whether

outgoing packets are produced in a way such that the receiver will

treat them as trusted.

Name:ietf-babel

Namespace: urn:ietf:params:xml:ns:yang:ietf-babel

prefix: babel

reference: RFC XXXX

¶

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-netconf-crypto-types]

Some of the readable data or config false nodes in this YANG module

may be considered sensitive or vulnerable in some network

environments. It is thus important to control read access (e.g., via

get, get-config, or notification) to these data nodes. These are the

subtrees and data nodes and their sensitivity/vulnerability from a

config false perpective:

'babel': Access to the information in the various nodes can disclose

the network topology. Additionally, the routes used by a network

device may be used to mount a subsequent attack on traffic

traversing the network device.

'babel/hmac' and 'babel/dtls': These contain security credentials,

including private credentials of the router; however it is required

that these values not be readable.

Some of the RPC operations in this YANG module may be considered

sensitive or vulnerable in some network environments. It is thus

important to control access to these operations. These are the

operations and their sensitivity/vulnerability from a RPC operation

perspective:

This model defines two actions. Resetting the statistics within an

interface container would be visible to any monitoring processes,

which should be designed to account for the possibility of such a

reset. The "test" action allows for validation that a MAC key and

MAC algorithm have been properly configured. The MAC key is a

sensitive piece of information, and it is important to prevent an

attacker that does not know the MAC key from being able to determine

the MAC value by trying different input parameters. The "test"

action has been designed to not reveal such information directly.

Such information might also be revealed indirectly, due to side

channels such as the time it takes to produce a response to the

action. Implementations SHOULD use a constant-time comparison

between the input mac and the locally generated MAC value for

comparison, in order to avoid such side channel leakage.

5. Acknowledgements

Juliusz Chroboczek provided most of the example configurations for

babel that are shown in the Appendix.

6. References

6.1. Normative References

Watsen, K., "YANG Data Types and Groupings for

Cryptography", Work in Progress, Internet-Draft, draft-

ietf-netconf-crypto-types-20, 18 May 2021, <https://

¶

¶

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-netconf-crypto-types-20.txt

[I-D.ietf-tls-dtls13]

[RFC2119]

[RFC4868]

[RFC6991]

[RFC7693]

[RFC7950]

[RFC8174]

[RFC8341]

[RFC8343]

[RFC8349]

www.ietf.org/archive/id/draft-ietf-netconf-crypto-

types-20.txt>.

Rescorla, E., Tschofenig, H., and N. Modadugu,

"The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3", Work in Progress, Internet-Draft, draft-

ietf-tls-dtls13-43, 30 April 2021, <https://www.ietf.org/

internet-drafts/draft-ietf-tls-dtls13-43.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-

SHA-384, and HMAC-SHA-512 with IPsec", RFC 4868, DOI

10.17487/RFC4868, May 2007, <https://www.rfc-editor.org/

info/rfc4868>.

Schoenwaelder, J., Ed., "Common YANG Data Types", RFC

6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-

editor.org/info/rfc6991>.

Saarinen, M-J., Ed. and J-P. Aumasson, "The BLAKE2

Cryptographic Hash and Message Authentication Code

(MAC)", RFC 7693, DOI 10.17487/RFC7693, November 2015,

<https://www.rfc-editor.org/info/rfc7693>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

Bjorklund, M., "A YANG Data Model for Interface

Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,

<https://www.rfc-editor.org/info/rfc8343>.

Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for

Routing Management (NMDA Version)", RFC 8349, DOI

10.17487/RFC8349, March 2018, <https://www.rfc-

editor.org/info/rfc8349>.

https://www.ietf.org/archive/id/draft-ietf-netconf-crypto-types-20.txt
https://www.ietf.org/archive/id/draft-ietf-netconf-crypto-types-20.txt
https://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-43.txt
https://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-43.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4868
https://www.rfc-editor.org/info/rfc4868
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc7693
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8343
https://www.rfc-editor.org/info/rfc8349
https://www.rfc-editor.org/info/rfc8349

[RFC8966]

[RFC8967]

[RFC8968]

[RFC9046]

[RFC2104]

[RFC6020]

[RFC6241]

[RFC6242]

[RFC8040]

[RFC8340]

[RFC8342]

Chroboczek, J. and D. Schinazi, "The Babel Routing

Protocol", RFC 8966, DOI 10.17487/RFC8966, January 2021,

<https://www.rfc-editor.org/info/rfc8966>.

Dô, C., Kolodziejak, W., and J. Chroboczek, "MAC

Authentication for the Babel Routing Protocol", RFC 8967,

DOI 10.17487/RFC8967, January 2021, <https://www.rfc-

editor.org/info/rfc8967>.

Décimo, A., Schinazi, D., and J. Chroboczek, "Babel

Routing Protocol over Datagram Transport Layer Security",

RFC 8968, DOI 10.17487/RFC8968, January 2021, <https://

www.rfc-editor.org/info/rfc8968>.

Stark, B. and M. Jethanandani, "Babel Information Model",

RFC 9046, DOI 10.17487/RFC9046, June 2021, <https://

www.rfc-editor.org/info/rfc9046>.

6.2. Informative References

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/info/rfc2104>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Wasserman, M., "Using the NETCONF Protocol over Secure

Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

<https://www.rfc-editor.org/info/rfc6242>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

https://www.rfc-editor.org/info/rfc8966
https://www.rfc-editor.org/info/rfc8967
https://www.rfc-editor.org/info/rfc8967
https://www.rfc-editor.org/info/rfc8968
https://www.rfc-editor.org/info/rfc8968
https://www.rfc-editor.org/info/rfc9046
https://www.rfc-editor.org/info/rfc9046
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8340

[RFC8446]

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Appendix A. Tree Diagram and Example Configurations

This section is devoted to including a complete tree diagram and

examples that demonstrate how Babel can be configured.

A.1. Complete Tree Diagram

This section includes the complete tree diagram for the Babel YANG

module.

¶

¶

https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8446

module: ietf-babel

 augment /rt:routing/rt:control-plane-protocols

 /rt:control-plane-protocol:

 +--rw babel!

 +--ro version? string

 +--rw enable boolean

 +--ro router-id? binary

 +--ro seqno? uint16

 +--rw statistics-enabled? boolean

 +--rw constants

 | +--rw udp-port? inet:port-number

 | +--rw mcast-group? inet:ip-address

 +--rw interfaces* [reference]

 | +--rw reference if:interface-ref

 | +--rw enable? boolean

 | +--rw metric-algorithm identityref

 | +--rw split-horizon? boolean

 | +--ro mcast-hello-seqno? uint16

 | +--rw mcast-hello-interval? uint16

 | +--rw update-interval? uint16

 | +--rw mac-enable? boolean

 | +--rw mac-key-sets* -> ../../mac-key-set/name

 | +--rw mac-verify? boolean

 | +--rw dtls-enable? boolean

 | +--rw dtls-certs* -> ../../dtls/name

 | +--rw dtls-cached-info? boolean

 | +--rw dtls-cert-prefer* -> ../../dtls/certs/type

 | +--rw packet-log-enable? boolean

 | +--ro packet-log? inet:uri

 | +--ro statistics

 | | +--ro discontinuity-time yang:date-and-time

 | | +--ro sent-mcast-hello? yang:counter32

 | | +--ro sent-mcast-update? yang:counter32

 | | +--ro sent-ucast-hello? yang:counter32

 | | +--ro sent-ucast-update? yang:counter32

 | | +--ro sent-ihu? yang:counter32

 | | +--ro received-packets? yang:counter32

 | | +---x reset

 | | +---w input

 | | | +---w reset-at? yang:date-and-time

 | | +--ro output

 | | +--ro reset-finished-at? yang:date-and-time

 | +--ro neighbor-objects* [neighbor-address]

 | +--ro neighbor-address inet:ip-address

 | +--ro hello-mcast-history? string

 | +--ro hello-ucast-history? string

 | +--ro txcost? int32

 | +--ro exp-mcast-hello-seqno? union

 | +--ro exp-ucast-hello-seqno? union

 | +--ro ucast-hello-seqno? union

 | +--ro ucast-hello-interval? uint16

 | +--ro rxcost? uint16

 | +--ro cost? int32

 +--rw mac-key-set* [name]

 | +--rw name string

 | +--rw default-apply? boolean

 | +--rw keys* [name]

 | +--rw name string

 | +--rw use-send boolean

 | +--rw use-verify boolean

 | +--rw value binary

 | +--rw algorithm identityref

 | +---x test

 | +---w input

 | | +---w test-string binary

 | | +---w mac binary

 | +--ro output

 | +--ro indication boolean

 +--rw dtls* [name]

 | +--rw name string

 | +--rw default-apply boolean

 | +--rw certs* [name]

 | +--rw name string

 | +--rw value string

 | +--rw type identityref

 | +--rw private-key binary

 | +--rw algorithm identityref

 +--ro routes* [prefix]

 +--ro prefix inet:ip-prefix

 +--ro router-id? binary

 +--ro neighbor? leafref

 +--ro received-metric? union

 +--ro calculated-metric? union

 +--ro seqno? uint16

 +--ro next-hop? union

 +--ro feasible? boolean

 +--ro selected? boolean

¶

A.2. Statistics Gathering Enabled

In this example, interface eth0 is being configured for routing

protocol Babel, and statistics gathering is enabled. For security,

HMAC-SHA256 is supported. Every sent Babel packets is signed with

the key value provided, and every received Babel packet is verified

with the same key value.¶

<?xml version="1.0" encoding="UTF-8"?>

<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">

 <interface>

 <name>eth0</name>

 <type>ianaift:ethernetCsmacd</type>

 <enabled>true</enabled>

 </interface>

</interfaces>

<routing

 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">

 <control-plane-protocols>

 <control-plane-protocol>

 <type

 xmlns:babel=

 "urn:ietf:params:xml:ns:yang:ietf-babel">babel:babel</type>

 <name>name:babel</name>

 <babel

 xmlns="urn:ietf:params:xml:ns:yang:ietf-babel">

 <enable>true</enable>

 <statistics-enabled>true</statistics-enabled>

 <interfaces>

 <reference>eth0</reference>

 <metric-algorithm>two-out-of-three</metric-algorithm>

 <split-horizon>true</split-horizon>

 </interfaces>

 <mac-key-set>

 <name>hmac-sha256</name>

 <keys>

 <name>hmac-sha256-keys</name>

 <use-send>true</use-send>

 <use-verify>true</use-verify>

 <value>base64encodedvalue==</value>

 <algorithm>hmac-sha256</algorithm>

 </keys>

 </mac-key-set>

 </babel>

 </control-plane-protocol>

 </control-plane-protocols>

</routing>

¶

A.3. Automatic Detection of Properties

<!-- In this example, babeld is configured on two interfaces

 interface eth0

 interface wlan0

 This says to run Babel on interfaces eth0 and wlan0. Babeld will

 automatically detect that eth0 is wired and wlan0 is wireless, and

 will configure the right parameters automatically.

-->

<?xml version="1.0" encoding="UTF-8"?>

<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">

 <interface>

 <name>eth0</name>

 <type>ianaift:ethernetCsmacd</type>

 <enabled>true</enabled>

 </interface>

 <interface>

 <name>wlan0</name>

 <type>ianaift:ieee80211</type>

 <enabled>true</enabled>

 </interface>

</interfaces>

<routing

 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">

 <control-plane-protocols>

 <control-plane-protocol>

 <type

 xmlns:babel=

 "urn:ietf:params:xml:ns:yang:ietf-babel">babel:babel</type>

 <name>name:babel</name>

 <babel

 xmlns="urn:ietf:params:xml:ns:yang:ietf-babel">

 <enable>true</enable>

 <interfaces>

 <reference>eth0</reference>

 <enable>true</enable>

 <metric-algorithm>two-out-of-three</metric-algorithm>

 <split-horizon>true</split-horizon>

 </interfaces>

 <interfaces>

 <reference>wlan0</reference>

 <enable>true</enable>

 <metric-algorithm>etx</metric-algorithm>

 <split-horizon>false</split-horizon>

 </interfaces>

 </babel>

 </control-plane-protocol>

 </control-plane-protocols>

</routing>

¶

A.4. Override Default Properties

<!-- In this example, babeld is configured on three interfaces

 interface eth0

 interface eth1 type wireless

 interface tun0 type tunnel

 Here, interface eth1 is an Ethernet bridged to a wireless radio, so

 babeld's autodetection fails, and the interface type needs to be

 configured manually. Tunnels are not detected automatically, so this

 needs to be specified.

 This is equivalent to the following:

 interface eth0 metric-algorithm 2-out-of-3 split-horizon true

 interface eth1 metric-algorithm etx split-horizon false

 interface tun0 metric-algorithm 2-out-of-3 split-horizon true

-->

<?xml version="1.0" encoding="UTF-8"?>

<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">

 <interface>

 <name>eth0</name>

 <type>ianaift:ethernetCsmacd</type>

 <enabled>true</enabled>

 </interface>

 <interface>

 <name>eth1</name>

 <type>ianaift:ethernetCsmacd</type>

 <enabled>true</enabled>

 </interface>

 <interface>

 <name>tun0</name>

 <type>ianaift:tunnel</type>

 <enabled>true</enabled>

 </interface>

</interfaces>

<routing

 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">

 <control-plane-protocols>

 <control-plane-protocol>

 <type

 xmlns:babel=

 "urn:ietf:params:xml:ns:yang:ietf-babel">babel:babel</type>

 <name>name:babel</name>

 <babel

 xmlns="urn:ietf:params:xml:ns:yang:ietf-babel">

 <enable>true</enable>

 <interfaces>

 <reference>eth0</reference>

 <enable>true</enable>

 <metric-algorithm>two-out-of-three</metric-algorithm>

 <split-horizon>true</split-horizon>

 </interfaces>

 <interfaces>

 <reference>eth1</reference>

 <enable>true</enable>

 <metric-algorithm>etx</metric-algorithm>

 <split-horizon>false</split-horizon>

 </interfaces>

 <interfaces>

 <reference>tun0</reference>

 <enable>true</enable>

 <metric-algorithm>two-out-of-three</metric-algorithm>

 <split-horizon>true</split-horizon>

 </interfaces>

 </babel>

 </control-plane-protocol>

 </control-plane-protocols>

</routing>

¶

A.5. Configuring other Properties

<!-- In this example, two interfaces are configured for babeld

 interface eth0

 interface ppp0 hello-interval 30 update-interval 120

 Here, ppp0 is a metered 3G link used for fallback connectivity. It runs

 with much higher than default time constants in order to avoid control

 traffic as much as possible.

-->

<?xml version="1.0" encoding="UTF-8"?>

<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">

 <interface>

 <name>eth0</name>

 <type>ianaift:ethernetCsmacd</type>

 <enabled>true</enabled>

 </interface>

 <interface>

 <name>ppp0</name>

 <type>ianaift:ppp</type>

 <enabled>true</enabled>

 </interface>

</interfaces>

<routing

 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">

 <control-plane-protocols>

 <control-plane-protocol>

 <type

 xmlns:babel=

 "urn:ietf:params:xml:ns:yang:ietf-babel">babel:babel</type>

 <name>name:babel</name>

 <babel

 xmlns="urn:ietf:params:xml:ns:yang:ietf-babel">

 <enable>true</enable>

 <interfaces>

 <reference>eth0</reference>

 <enable>true</enable>

 <metric-algorithm>two-out-of-three</metric-algorithm>

 <split-horizon>true</split-horizon>

 </interfaces>

 <interfaces>

 <reference>ppp0</reference>

 <enable>true</enable>

 <mcast-hello-interval>30</mcast-hello-interval>

 <update-interval>120</update-interval>

 <metric-algorithm>two-out-of-three</metric-algorithm>

 </interfaces>

 </babel>

 </control-plane-protocol>

 </control-plane-protocols>

</routing>

¶

Authors' Addresses

Mahesh Jethanandani

Kloud Services

California

United States of America

Email: mjethanandani@gmail.com

Barbara Stark

AT&T

Atlanta, GA

United States of America

Email: barbara.stark@att.com

mailto:mjethanandani@gmail.com
mailto:barbara.stark@att.com

	YANG Data Model for Babel
	Abstract
	Requirements Language
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Note to RFC Editor
	1.2. Tree Diagram Annotations

	2. Babel Module
	2.1. Information Model
	2.2. Tree Diagram
	2.3. YANG Module

	3. IANA Considerations
	3.1. URI Registrations
	3.2. YANG Module Name Registration

	4. Security Considerations
	5. Acknowledgements
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Tree Diagram and Example Configurations
	A.1. Complete Tree Diagram
	A.2. Statistics Gathering Enabled
	A.3. Automatic Detection of Properties
	A.4. Override Default Properties
	A.5. Configuring other Properties

	Authors' Addresses

