
BEHAVE J. Rosenberg
Internet-Draft Cisco Systems
Expires: April 26, 2007 C. Huitema
 Microsoft
 R. Mahy
 Plantronics
 D. Wing
 Cisco Systems
 October 23, 2006

Simple Traversal Underneath Network Address Translators (NAT) (STUN)
draft-ietf-behave-rfc3489bis-05

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 26, 2007.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 Simple Traversal Underneath NATs (STUN) is a lightweight protocol
 that serves as a tool for application protocols in dealing with NAT
 traversal. It allows a client to determine the IP address and port

Rosenberg, et al. Expires April 26, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft STUN October 2006

 allocated to them by a NAT and to keep NAT bindings open. It can
 also serve as a check for connectivity between a client and a server
 in the presence of NAT, and for the client to detect failure of the
 server. STUN works with many existing NATs, and does not require any
 special behavior from them. As a result, it allows a wide variety of
 applications to work through existing NAT infrastructure.

Table of Contents

1. Applicability Statement 5
2. Introduction . 5
3. Terminology . 6
4. Definitions . 6
5. Overview of Operation . 7
6. STUN Message Structure . 11
7. STUN Transactions . 14
7.1. Request/Response Transactions 14
7.2. Indications . 15

8. Client Behavior . 15
8.1. Discovery . 15
8.2. Obtaining a Shared Secret 16
8.3. Request/Response Transactions 17
8.3.1. Formulating the Request Message 17
8.3.2. Processing Responses 19
8.3.3. Timeouts . 22

8.4. Indication Transactions 22
9. Server Behavior . 23
9.1. Request/Response Transactions 23
9.1.1. Receive Request Message 23
9.1.2. Constructing the Response 26
9.1.3. Sending the Response 27

9.2. Indication Transactions 27
10. Demultiplexing of STUN and Application Traffic 28
11. STUN Attributes . 29
11.1. MAPPED-ADDRESS . 29
11.2. USERNAME . 30
11.3. PASSWORD . 31
11.4. MESSAGE-INTEGRITY . 31
11.5. FINGERPRINT . 31
11.6. ERROR-CODE . 31
11.7. REALM . 33
11.8. NONCE . 33
11.9. UNKNOWN-ATTRIBUTES 33
11.10. XOR-MAPPED-ADDRESS 34
11.11. SERVER . 35
11.12. ALTERNATE-SERVER . 35
11.13. REFRESH-INTERVAL . 35

Rosenberg, et al. Expires April 26, 2007 [Page 2]

Internet-Draft STUN October 2006

12. STUN Usages . 36
12.1. Binding Discovery . 36
12.1.1. Applicability . 36
12.1.2. Client Discovery of Server 37
12.1.3. Server Determination of Usage 38
12.1.4. New Requests or Indications 38
12.1.5. New Attributes . 38
12.1.6. New Error Response Codes 38
12.1.7. Client Procedures 38
12.1.8. Server Procedures 38
12.1.9. Security Considerations for Binding Discovery 38

12.2. NAT Keepalives . 39
12.2.1. Applicability . 39
12.2.2. Client Discovery of Server 39
12.2.3. Server Determination of Usage 39
12.2.4. New Requests or Indications 39
12.2.5. New Attributes . 39
12.2.6. New Error Response Codes 40
12.2.7. Client Procedures 40
12.2.8. Server Procedures 40
12.2.9. Security Considerations for NAT Keepalives 40

12.3. Short-Term Password 41
12.3.1. Applicability . 41
12.3.2. Client Discovery of Server 41
12.3.3. Server Determination of Usage 41
12.3.4. New Requests or Indications 42
12.3.5. New Attributes . 42
12.3.6. New Error Response Codes 42
12.3.7. Client Procedures 43
12.3.8. Server Procedures 43
12.3.9. Security Considerations for Short-Term Password . . . 44

13. Security Considerations 45
13.1. Attacks on STUN . 45
13.1.1. Attack I: DDoS Against a Target 45
13.1.2. Attack II: Silencing a Client 46
13.1.3. Attack III: Assuming the Identity of a Client 46
13.1.4. Attack IV: Eavesdropping 46

13.2. Launching the Attacks 46
13.2.1. Approach I: Compromise a Legitimate STUN Server . . . 47
13.2.2. Approach II: DNS Attacks 47
13.2.3. Approach III: Rogue Router or NAT 47
13.2.4. Approach IV: Man in the Middle 48
13.2.5. Approach V: Response Injection Plus DoS 48
13.2.6. Approach VI: Duplication 49

13.3. Countermeasures . 50
13.4. Residual Threats . 51

14. IAB Considerations . 51
14.1. Problem Definition 51

Rosenberg, et al. Expires April 26, 2007 [Page 3]

Internet-Draft STUN October 2006

14.2. Exit Strategy . 52
14.3. Brittleness Introduced by STUN 52
14.4. Requirements for a Long Term Solution 53
14.5. Issues with Existing NAPT Boxes 54

15. IANA Considerations . 55
15.1. STUN Methods Registry 55
15.2. STUN Attribute Registry 55

16. Changes Since RFC 3489 . 56
17. Acknowledgements . 57
18. References . 57
18.1. Normative References 57
18.2. Informational References 58

 Authors' Addresses . 60
 Intellectual Property and Copyright Statements 61

https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires April 26, 2007 [Page 4]

Internet-Draft STUN October 2006

1. Applicability Statement

 This protocol is not a cure-all for the problems associated with NAT.
 It is a tool that is typically used in conjunction with other
 protocols, such as Interactive Connectivity Establishment (ICE) [13]
 for a more complete solution. The binding discovery usage, defined
 by this specification, can be used by itself with numerous
 application protocols as a solution for NAT traversal. However, when
 used in that way, STUN will not work with applications that require
 incoming TCP connections through NAT. It will allow incoming UDP
 packets through NAT, but only through a subset of existing NAT types.
 In particular, the STUN binding usage by itself does not enable
 incoming UDP packets through NATs whose mapping property is address
 dependent or address and port dependent [14]. Furthermore, the
 binding usage, when used by itself, does not work when a client is
 communicating with a peer which happens to be behind the same NAT.
 Nor will it work when the STUN server is not in a common shared
 address realm.

 The STUN relay usage, defined in [16], allows a client to obtain an
 IP address and port that actually reside on the STUN server. The
 STUN relay usage, when used by itself, eliminates all of the
 limitations of using the binding usage by itself, as described above.
 However, it requires a server to act as a relay for application
 traffic, which can be expensive to provide, operate, and manage.

 For multimedia protocols based on the offer/answer model [22],
 including the Session Initiation Protocol (SIP) [11], Interactive
 Connectivity Establishment (ICE) uses both the binding usage and
 relay usage, and furthermore defines a connectivity check usage to
 help determine which transport address to use.

 Implementers should be aware of the specific deployment scenarios and
 the specific protocol (SIP, etc) being used to determine whether NAT
 traversal can be facilitated by STUN and which STUN usages are
 required.

2. Introduction

 Network Address Translators (NATs), while providing many benefits,
 also come with many drawbacks. The most troublesome of those
 drawbacks is the fact that they break many existing IP applications
 and make it difficult to deploy new ones. Guidelines have been
 developed [20] that describe how to build "NAT friendly" protocols,
 but many protocols simply cannot be constructed according to those
 guidelines. Examples of such protocols include almost all peer-to-
 peer protocols such as multimedia communications, file sharing and

Rosenberg, et al. Expires April 26, 2007 [Page 5]

Internet-Draft STUN October 2006

 games.

 To combat this problem, Application Layer Gateways (ALGs) have been
 embedded in NATs. ALGs perform the application layer functions
 required for a particular protocol to traverse a NAT. Typically,
 this involves rewriting application layer messages to contain
 translated addresses, rather than the ones inserted by the sender of
 the message. ALGs have serious limitations, including scalability,
 reliability, and speed of deploying new applications.

 Many existing proprietary protocols, such as those for online games
 (such as the games described in RFC3027 [21]) and Voice over IP, have
 developed tricks that allow them to operate through NATs without
 changing those NATs and without relying on ALG behavior in the NATs.
 This document takes some of those ideas and codifies them into an
 interoperable protocol that can meet the needs of many applications.

 The protocol described here, Simple Traversal Underneath NAT (STUN),
 provides a toolkit of functions. These functions allow entities
 behind a NAT to learn the address bindings allocated by the NAT and
 to keep those bindings open. STUN requires no changes to NATs and
 works with an arbitrary number of NATs in tandem between the
 application entity and the public Internet.

3. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [1] and indicate requirement levels for compliant STUN
 implementations.

4. Definitions

 STUN Client: A STUN client (also just referred to as a client) is an
 entity that generates STUN requests and receives STUN responses.
 Clients can also generate STUN indications.

 STUN Server: A STUN Server (also just referred to as a server) is an
 entity that receives STUN requests and sends STUN responses.
 Servers also send STUN indications.

 Transport Address: The combination of an IP address and (UDP or TCP)
 port.

https://datatracker.ietf.org/doc/html/rfc3027
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Rosenberg, et al. Expires April 26, 2007 [Page 6]

Internet-Draft STUN October 2006

 Reflexive Transport Address: A transport address learned by a client
 that identifies that client as seen by another host on an IP
 network, typically a STUN server. When there is an intervening
 NAT between the client and the other host, the reflexive transport
 address represents the binding allocated to the client on the
 public side of the NAT. Reflexive transport addresses are learned
 from the mapped address attribute (MAPPED-ADDRESS or XOR-MAPPED-
 ADDRESS) in STUN responses.

 Mapped Address: The source IP address and port of the STUN Binding
 Request packet received by the STUN server and inserted into the
 mapped address attribute (MAPPED-ADDRESS or XOR-MAPPED-ADDRESS) of
 the Binding Response message.

 Long Term Credential: A username and associated password that
 represent a shared secret between client and server. Long term
 credentials are generally granted to the client when a subscriber
 enrolles in a service and persist until the subscriber leaves the
 service or explicitly changes the credential.

 Long Term Password: The password from a long term credential.

 Short Term Credential: A temporary username and associated password
 which represent a shared secret between client and server. A
 short term credential has an explicit temporal scope, which may be
 based on a specific amount of time (such as 5 minutes) or on an
 event (such as termination of a SIP dialog). The specific scope
 of a short term credential is defined by the application usage. A
 short term credential can be obtained from a Shared Secret
 request, though other mechanisms are possible.

 Short Term Password: The password component of a short term
 credential.

5. Overview of Operation

 This section is descriptive only. Normative behavior is described in
Section 8 and Section 9

Rosenberg, et al. Expires April 26, 2007 [Page 7]

Internet-Draft STUN October 2006

 /-----\
 // STUN \\
 | Server |
 \\ //
 \-----/

 +--------------+ Public Internet
 | NAT 2 |.......................
 +--------------+

 +--------------+ Private NET 2
 | NAT 1 |.......................
 +--------------+

 /-----\
 // STUN \\
 | Client |
 \\ // Private NET 1
 \-----/

 Figure 1: Typical STUN Server Configuration

 The typical STUN configuration is shown in Figure 1. A STUN client
 is connected to private network 1. This network connects to private
 network 2 through NAT 1. Private network 2 connects to the public
 Internet through NAT 2. The STUN server resides on the public
 Internet.

 STUN is a simple client-server protocol. It supports two types of
 transactions. One is a request/response transaction in which client
 sends a request to a server, and the server returns a response. The
 second are indications that are initiated by the server or the client
 and do not elicit a response. There are two types of requests
 defined in this specification - Binding Requests and Shared Secret
 Requests. There are no indications defined by this specification.

 Binding Requests are sent from the client towards the server. When
 the Binding Request arrives at the STUN server, it may have passed
 through one or more NATs between the STUN client and the STUN server
 (in Figure 1, there were two such NATs). As a result, the source
 transport address of the request received by the server will be the
 mapped address created by the NAT closest to the server. The STUN
 server copies that source transport address into a STUN Binding
 Response and sends it back to the source transport address of the
 STUN request. Every type of NAT will route that response so that it

Rosenberg, et al. Expires April 26, 2007 [Page 8]

Internet-Draft STUN October 2006

 arrives at the STUN client. From this response, the client knows its
 transport address allocated by the outermost NAT towards the STUN
 server.

 STUN provides several mechanisms for authentication and message
 integrity. The client and server can share a pre-provisioned shared
 secret, which is used for a digest challenge/response authentication
 operation. This is known as a long-term credential or long-term
 shared secret.

 Alternatively, if the shared secret is obtained by some out-of-bands
 means and has a lifetime that is temporally scoped, a simple HMAC is
 provided, without a challenge operation. This is known as a short
 term credential or short term password. Short-term passwords are
 useful when there is no long-term relationship with a STUN server and
 thus no long-term password is shared between the STUN client and STUN
 server. Even if there is a long-term password, the issuance of a
 short-term password is useful to prevent dictionary attacks.

 STUN itself provides a mechanism for obtaining such short term
 credentials, using the Shared Secret Request. Shared Secret requests
 are sent over TLS [5] over TCP. Shared Secret Requests ask the
 server to return a temporary username and password that can be used
 in subsequent STUN requests.

 There are many ways in which these basic mechanisms can be used to
 accomplish a specific task. As a result, STUN has the notion of a
 usage. A usage is a specific use case for the STUN protocol. The
 usage will define what the client does with the mapped address it
 receives, defines when the client would send Binding requests and
 why, and would constrain the set of authentication mechanisms or
 attributes that get used in that usage. STUN usages can also define
 new attributes and message types, if needed. This specification
 defines three STUN usages - binding discovery, NAT keepalives, and
 short-term password.

 The binding discovery usage is sometimes referred to as 'classic
 STUN,' since it is the usage originally envisioned in RFC 3489 [15],
 the predecessor to this specification. The purpose of the binding
 discovery usage is for the client to obtain a transport address at
 which it is reachable. The client can include these transport
 addresses in application layer signaling messages such as the Session
 Description Protocol (SDP) [19] (present in the body of SIP
 messages), where it indicates where the client wants to receive Real
 Time Transport Protocol (RTP [17]) traffic. In this usage, the STUN
 server is typically located on the public Internet and run by the
 service provider offering the application service (such as a SIP
 provider), though this need not be the case. The client would

https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires April 26, 2007 [Page 9]

Internet-Draft STUN October 2006

 utilize the STUN request just prior to sending a protocol message
 (such as a SIP INVITE request or 200 OK response) that requires the
 client to embed its transport address.

 In the binding keepalive usage, a client sends an application
 protocol message (such as a SIP REGISTER message) to a server. The
 server notes the source transport address of the request, and
 remembers it. Later on, if it needs to reach the client, it sends a
 message to that transport address. However, this message will only
 be received by the client if the binding in the NAT is still alive.
 Since bindings allocated by NAT expire unless refreshed, the client
 must generate keepalive messages toward the server to refresh the
 binding. Rather than use expensive application layer messages, a
 STUN binding request is sent by the client to the server, and is sent
 to the exact same transport address used by the server for the
 application protocol. In the case of SIP, this would typically mean
 port 5060 or 5061. This has the effect of keeping the bindings in
 the NAT alive. The STUN binding responses also inform the client
 that the server is still responsive, and also inform the client if
 its transport address towards the server have changed (its reflexive
 transport address), in which case it may need application layer
 protocol messaging to update its transport address as seen by the
 server. The binding keepalive usage is used by the SIP outbound
 mechanism, for example [18].

 These two usages all utilize the same Binding Request message, and
 all require the same basic processing on the server. They differ
 only in where the server is (a standalone server in the network, or
 embedded in an application layer server), when the Binding Request is
 used and what the client does with the mapped address that is
 returned.

 The short-term password usage makes use of the Shared Secret request
 and response, and allows a client to obtain a temporary set of
 credentials to authenticate itself with the STUN server. The
 credentials obtained from this usage can be used in requests for any
 other usage.

 Some usages (such as the binding keepalive) require STUN messages to
 be sent on the same transport address as some application protocol,
 such as RTP or SIP. To facilitate the demultiplexing of the two,
 STUN defines a special field in the message called the magic cookie,
 which is a fixed 32 bit value that identifies STUN traffic. STUN
 requests also contain a fingerprint, which is a cryptographic hash of
 the message, that allow for validation that the message was a STUN
 request and not a data packet that happened to have the same 32 bit
 value in the right place in the message.

Rosenberg, et al. Expires April 26, 2007 [Page 10]

Internet-Draft STUN October 2006

 STUN servers can be discovered through DNS, though this is not
 necessary in all usages. For those usages where it is needed, STUN
 makes use of SRV records [3] to facilitate discovery. This discovery
 allows for different transport addresses to be found for different
 usages.

6. STUN Message Structure

 STUN messages are TLV (type-length-value) encoded using big endian
 (network ordered) binary. STUN messages are encoded using binary
 fields. All integer fields are carried in network byte order, that
 is, most significant byte (octet) first. This byte order is commonly
 known as big-endian. The transmission order is described in detail
 in Appendix B of RFC791 [2]. Unless otherwise noted, numeric
 constants are in decimal (base 10). All STUN messages start with a
 single STUN header followed by a STUN payload. The payload is a
 series of STUN attributes, the set of which depends on the message
 type. The STUN header contains a STUN message type, magic cookie,
 transaction ID, and length. The length indicates the total length of
 the STUN payload, not including the 20-byte header.

 There are two types of transactions in STUN - request/response
 transactions, which utilize a request message and a response message,
 and indication transactions, which utilizes a single indication
 message. Furthermore, responses are broken into two types - success
 responses and error responses. Two bits in the message type field of
 the STUN header indicate the class of the message - whether the
 message is a request, a success response, an indication, or a failure
 response. An additional 12 bits in the message type indicate the
 method, which is the primary function of the message. This
 specification defines two methods, Binding and Shared Secret.

 STUN Requests are sent reliably. STUN can run over UDP, TCP or TCP/
 TLS. When run over UDP, STUN requests are retransmitted in order to
 achieve reliability. The transaction ID is used to correlate
 requests and responses.

 An indication message can be sent from the client to the server, or
 from the server to the client. Indication messages can be sent over
 TCP or UDP. STUN itself does not provide reliability for these
 messages, though they will be delivered reliably when sent over TCP.
 The transaction ID is used to distinguish indication messages.

https://datatracker.ietf.org/doc/html/rfc791#appendix-B

Rosenberg, et al. Expires April 26, 2007 [Page 11]

Internet-Draft STUN October 2006

 All STUN messages consist of a 20 byte header:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0| STUN Message Type | Message Length |
 +-+
 | Magic Cookie |
 +-+
 |
 +-+
 Transaction ID
 +-+
 |
 +-+

 Figure 2: Format of STUN Message Header

 The most significant two bits of every STUN message are both zeroes.
 This, combined with the magic cookie and the fingerprint attribute,
 aid in differentiating STUN packets from other protocols when STUN is
 multiplexed with other protocols on the same port.

 The message type field is decomposed further into the following
 structure:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |M|M|M|M|M|C|M|M|M|C|M|M|M|M|
 |1|1|9|8|7|1|6|5|4|0|3|2|2|0|
 |1|0| | | | | | | | | | | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 3: Format of STUN Message Type Field

 M11 through M0 represent a 12-bit encoding of the method. C1 through
 C0 represent a 2 bit encoding of the class. A class of 0 is a
 Request, a class of 1 is an indication, a class of 2 is a success
 response, and a class of 3 is an error response. This specification
 defines two methods, Binding and Shared Secret. Their method values
 are enumerated in Section 15.

 The message length is the size, in bytes, of the message not
 including the 20 byte STUN header.

 The magic cookie is a fixed value, 0x2112A442. In the previous
 version of this specification [15] this field was part of the
 transaction ID. This fixed value is used as part of the
 identification of a STUN message when STUN is multiplexed with other

Rosenberg, et al. Expires April 26, 2007 [Page 12]

Internet-Draft STUN October 2006

 protocols on the same port, as is done for example in [13] and [18].
 The magic cookie additionally indicates the STUN client is compliant
 with this specification. The magic cookie is present in all STUN
 messages -- requests, success responses, error responses and
 indications.

 The transaction ID is a 96 bit identifier. STUN transactions are
 identified by their unique 96-bit transaction ID. For request/
 response transactions, the transaction ID is chosen by the STUN
 client and MUST be unique for each new STUN transaction generated by
 that STUN client. The transaction ID MUST be uniformly and randomly
 distributed between 0 and 2**96 - 1. The large range is needed
 because the transaction ID serves as a form of randomization, helping
 to prevent replays of previously signed responses from the server. A
 reponse to the STUN request, whether it be a success or error
 response, carries the same transaction ID as the request.
 Indications are also identified by their transaction ID. The
 transaction ID there MUST also be uniformly and randomly distributed
 between 0 and 2**96 - 1.As with requests, the value is chosen by the
 server and MUST be unique for each unique indication generated by the
 server. Unless a request or indication is bit-wise identical to a
 previous request, and was sent to the same server from the same
 transport address, a client MUST choose a new transaction ID for it.

 After the STUN header are zero or more attributes. Each attribute is
 TLV encoded, with a 16 bit type, 16 bit length, and variable value.
 Each STUN attribute ends on a 32 bit boundary:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Value |
 +-+

 Figure 4: Format of STUN Attributes

 The Length refers to the length of the actual useful content of the
 Value portion of the attribute, measured in bytes. Since STUN aligns
 attributes on 32 bit boundaries, attributes whose content is not a
 multiple of 4 bytes are padded with 1, 2 or 3 bytes of padding so
 that they are a multiple of 4 bytes. Such padding is only needed
 with attributes that take freeform strings, such as USERNAME and
 PASSWORD. For attributes that contain more structured data, the
 attributes are constructed to align on 32 bit boundaries. The value
 in the Length field refers to the length of the Value part of the
 attribute prior to padding - i.e., the useful content. Consequently,

Rosenberg, et al. Expires April 26, 2007 [Page 13]

Internet-Draft STUN October 2006

 when parsing messages, implementations will need to round up the
 Length field to the nearest multiple of four in order to find the
 start of the next attribute.

 The attribute types defined in this specification are in Section 11 .

7. STUN Transactions

 STUN defines two types of transactions - request/response
 transactions and indication transactions.

7.1. Request/Response Transactions

 STUN clients are allowed to pipeline STUN requests. That is, a STUN
 client MAY have multiple outstanding STUN requests with different
 transaction IDs and not wait for completion of a STUN request/
 response exchange before sending another STUN request.

 When running STUN over UDP it is possible that the STUN request or
 its response might be dropped by the network. Reliability of STUN
 request message types is accomplished through client retransmissions.
 Clients SHOULD retransmit the request starting with an interval of
 RTO, doubling after each retransmission. RTO is an estimate of the
 round-trip-time, and is computed as described in RFC 2988 [8], with
 two exceptions. First, the initial value for RTO SHOULD be
 configurable (rather than the 3s recommended in RFC 2988). In fixed-
 line access links, a value of 100ms is RECOMMENDED. Secondly, the
 value of RTO MUST NOT be rounded up to the nearest second. Rather, a
 1ms accuracy MUST be maintained. As with TCP, the usage of Karn's
 algorithm is RECOMMENDED. When applied to STUN, it means that RTT
 estimates SHOULD NOT be computed from STUN transactions which result
 in the retransmission of a request.

 The value for RTO SHOULD be cached by an agent after the completion
 of the transaction, and used as the starting value for RTO for the
 next transaction to the same host (based on equality of IP address).
 The value SHOULD be considered stale and discarded after 10 minutes.

 Retransmissions continue until a response is received, or a total of
 7 requests have been sent. If no response is received by 1.6 seconds
 after the last request has been sent, the client SHOULD consider the
 transaction to have failed. A STUN transaction over UDP is also
 considered failed if there has been a transport failure of some sort,
 such as a fatal ICMP error. For example, assuming an RTO of 100ms,
 requests would be sent at times 0ms, 100ms, 300ms, 700ms, 1500ms,
 3100ms, and 6300ms. At 7900ms, the agent would consider the
 transaction to have timed out if no response has been received.

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988

Rosenberg, et al. Expires April 26, 2007 [Page 14]

Internet-Draft STUN October 2006

 When running STUN over TCP, TCP is responsible for ensuring delivery.
 The STUN application SHOULD NOT retransmit STUN requests when running
 over TCP. If the client has not received a response after 7900ms, it
 considers the transaction to have timed out.

 Regardless of whether TCP or UDP was used for the transaction, if a
 failure occurs and the client has other servers it can reach (as a
 consequence of an SRV query which provides a multiplicity of STUN
 servers Section 8.1, for example), the client SHOULD create a new
 request, which is identical to the previous, but has a different
 transaction ID (and consequently a different MESSAGE INTEGRITY and/or
 FINGERPRINT attribute).

7.2. Indications

 Indications are sent from the client to the server, or from the
 server to the client. Though no indications are used by this
 specification, they are used by the STUN relay usage [16]. When sent
 over UDP, there are no retransmissions, and reliability is not
 provided. When sent over TCP, reliability is provided by TCP.

 Regardless of whether TCP or UDP was used for the indication, if a
 failure occurs (due to a fatal ICMP error or TCP error), and the
 client has other servers it can reach (as a consequence of an SRV
 query which provides a multiplicity of STUN servers Section 8.1, for
 example), the client SHOULD create a new indication, which is
 identical to the previous, but has a different transaction ID (and
 consequently a different MESSAGE INTEGRITY and/or FINGERPRINT
 attribute).

8. Client Behavior

 Client behavior can be broken down into several steps. The first is
 discovery of the STUN server. The next is obtaining a shared secret.
 For request/response transactions, the next steps are formulating the
 request and processing the response. For indication transactions,
 the next step is formulating the indication.

8.1. Discovery

 Unless stated otherwise by a STUN usage, DNS is used to discover the
 STUN server following these procedures.

 The client will be configured with a domain name of the provider of
 the STUN servers. This domain name is resolved to a transport
 address using the SRV procedures specified in RFC2782 [3]. The
 mechanism for configuring the STUN client with the domain name to

https://datatracker.ietf.org/doc/html/rfc2782

Rosenberg, et al. Expires April 26, 2007 [Page 15]

Internet-Draft STUN October 2006

 look up is not in scope of this document.

 The DNS SRV service name depends on the application usage. For the
 binding usage, the service name is "stun". The protocol can be "udp"
 for UDP, "tcp" for TCP and "tls" for TLS over TCP. For the short
 term password application usage, the service name is "stun-pass".
 The protocol is always "tls" for TLS over TCP. The binding keepalive
 usage always starts with a transport address, so no DNS SRV service
 names are defined for it. New STUN usages MAY define additional DNS
 SRV service names. These SHOULD start with "stun".

 The procedures of RFC 2782 are followed to determine the server to
 contact. RFC 2782 spells out the details of how a set of SRV records
 are sorted and then tried. However, RFC2782 only states that the
 client should "try to connect to the (protocol, address, service)"
 without giving any details on what happens in the event of failure;
 those details for STUN are described in Section 8.3.3.

 A STUN server supporting multiple usages (such as the short term
 password and binding discovery usage) MAY use the same ports for
 different usages, as long as ports are not needed to differentiate
 the usages. Different ports are not needed to differentiate the
 usages defined in this specification. Different ports SHOULD be used
 for TCP and TCP/TLS, so that the server can determine whether the
 first message it will receive after the TCP connection is set up is a
 STUN message or a TLS message.

 The default port for STUN requests is 3478, for both TCP and UDP.
 There is no default port for STUN over TLS. Administrators SHOULD
 use this port in their SRV records for UDP and TCP, but MAY use
 others. If no SRV records were found, the client performs an A or
 AAAA record lookup of the domain name. The result will be a list of
 IP addresses, each of which can be contacted at the default port
 using UDP or TCP, independent of the STUN usage. For usages that
 require TLS, such as the short term password usage, lack of SRV
 records is equivalent to a failure of the transaction, since the
 request or indication MUST NOT be sent unless SRV records provided a
 transport address specifically for TLS.

8.2. Obtaining a Shared Secret

 As discussed in Section 13, there are several attacks possible on
 STUN systems. Many of these attacks are prevented through integrity
 protection of requests and responses. To provide that integrity,
 STUN makes use of a shared secret between client and server which is
 used as the keying material for the MESSAGE-INTEGRITY attribute in
 STUN messages. STUN allows for the shared secret to be obtained in
 any way. The application usage defines the mechanism and required

https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782

Rosenberg, et al. Expires April 26, 2007 [Page 16]

Internet-Draft STUN October 2006

 implementation strength for shared secrets.

 Some usages assume that out of band protocols are used to obtain the
 necessary credentials. Other usages, such as binding keepalives,
 don't use authentication, as it is not required. Others, such as the
 binding discovery, allows for authentication using either a long term
 shared secret or a short term shared secret. The latter can be
 obtained by using the short term password usage to obtain a short
 term shared secret.

 Consequently, the STUN usages define rules for obtaining shared
 secrets prior to sending a request.

8.3. Request/Response Transactions

8.3.1. Formulating the Request Message

 The client follows the syntax rules defined in Section 6 and the
 transmission rules of Section 7. The message class MUST be a
 request.

 The client creates a STUN message following the STUN message
 structure described in Section 6. The client SHOULD add a MESSAGE-
 INTEGRITY and USERNAME attribute to the Request message if the usage
 employs authentication. The specific credentials to use are
 described by the STUN usage, which can specify no credentials, a
 short term credential, or a long term credential. The procedures for
 each are:

 1. If the STUN usage specifies that no credentials are used, the
 message is sent without MESSAGE-INTEGRITY

 2. If a short term credential is to be used, the STUN Request or
 STUN Indication would contain the USERNAME and MESSAGE-INTEGRITY
 attributes. The message MUST NOT contain the REALM attribute.
 The key for MESSAGE-INTEGRITY is the password.

 3. If a long term credential is to be used, the STUN request
 contains the USERNAME, REALM, and MESSAGE-INTEGRITY attributes.
 The 16-byte key for MESSAGE-INTEGRITY HMAC is formed by taking
 the MD5 hash of the result of concatenating the following five
 fields: (1) The username, with any quotes and trailing nulls
 removed, (2) A single colon, (3) The realm, with any quotes and
 trailing nulls removed, (4) A single colon, and (5) The password,
 with any trailing nulls removed. For example, if the USERNAME
 field were 'user', the REALM field were '"realm"', and the
 PASSWORD field were 'pass', then the 16-byte HMAC key would be
 the result of performing an MD5 hash on the string 'user:realm:

Rosenberg, et al. Expires April 26, 2007 [Page 17]

Internet-Draft STUN October 2006

 pass', or 0x8493fbc53ba582fb4c044c456bdc40eb.

 This format for the key was chosen so as to enable a common
 authentication database for SIP, which uses digest authentication
 as defined in RFC 2617 [7] and STUN, as it is expected that
 credentials are usually stored in their hashed forms.

 The NONCE is included in the request only if a short or long term
 credential is being used, and only if the STUN request is a retry as
 a consequence of a previous error response which provided the client
 with a NONCE.

 For TCP and TLS-over-TCP, the client opens a TCP connection to the
 server. The TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite MUST be
 supported at a minimum by implementers when TLS is used with STUN.
 Implementers MAY also support any other ciphersuite. When it
 receives the TLS Certificate message, the client SHOULD verify the
 certificate and inspect the site identified by the certificate. If
 the certificate is invalid, revoked, or if it does not identify the
 appropriate party, the client MUST NOT send the STUN message or
 otherwise proceed with the STUN transaction. The client MUST verify
 the identity of the server. To do that, it follows the
 identification procedures defined in Section 3.1 of RFC 2818 [4].
 Those procedures assume the client is dereferencing a URI. For
 purposes of usage with this specification, the client treats the
 domain name or IP address used in Section 8.1 as the host portion of
 the URI that has been dereferenced. If DNS was not used, the client
 MUST be configured with a set of authorized domains whose
 certificates will be accepted.

 When STUN is being multiplexed on the same transport address as
 application data, and there are valid application layer data packets
 which could be confused with STUN packets (because, for example, bits
 32 through 63 can contain an arbitrary binary value which might be
 equal to 0x2112A442), the FINGERPRINT attribute MUST be present.
 Otherwise, its inclusion is RECOMMENDED.

 Next, the client sends the request. For UDP-based requests,
 reliability is accomplished through client retransmissions, following
 the procedure in Section 7.1. For TCP (including TLS over TCP),
 there are no retransmissions.

 For TCP and TLS over TCP, the client MAY send multiple requests on
 the connection. When using TCP or TLS over TCP, the client SHOULD
 close the connection as soon as it has received the STUN Response, if
 it has no plans to send further requests.

 Regardless of the transport protocol, a client MAY pipeline requests

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2818#section-3.1

Rosenberg, et al. Expires April 26, 2007 [Page 18]

Internet-Draft STUN October 2006

 (that is, it can have multiple requests outstanding at the same
 time).

8.3.2. Processing Responses

 Once the client has received a response to its request that it did
 not discard, it MUST discard any further responses for the same
 request.

 All responses that were not discarded, whether success responses or
 error responses, MUST first be authenticated by the client.
 Authentication is performed by first comparing the Transaction ID of
 the response to an oustanding request. If there is no match, the
 client MUST discard the response. Then the client SHOULD check the
 response for a MESSAGE-INTEGRITY attribute. If not present, and the
 client placed a MESSAGE-INTEGRITY attribute into the associated
 request, it MUST discard the response. If MESSAGE-INTEGRITY is
 present, the client computes the HMAC over the response as described
 in Section 11.4. The key that is used MUST be same as used to
 compute the MESSAGE-INTEGRITY attribute in the request. If the
 client did not place a MESSAGE-INTEGRITY attribute into the request,
 it MUST ignore the MESSAGE-INTEGRITY attribute in the response and
 continue processing the response.

 If the computed HMAC matches the one from the response, processing
 continues.

 If the response is an Error Response, the client checks the response
 code from the ERROR-CODE attribute of the response. For a 400 (Bad
 Request) response code, the client SHOULD display the reason phrase
 to the user. For a 420 (Unknown Attribute) response code, the client
 SHOULD retry the request, this time omitting any attributes listed in
 the UNKNOWN-ATTRIBUTES attribute of the response.

 If the client receives a 401 (Unauthorized) response and had not
 included a MESSAGE-INTEGRITY attribute in the request, it is an
 indication from the server that credentials are required. If the
 REALM attribute was present in the response, it is a signal to the
 client to use a long term shared secret and retry the request. The
 client SHOULD retry the request, using the username and password
 associated with the REALM (this username and password are assumed to
 be pre-provisioned into the client through some other means). If the
 REALM attribute was absent in the response, it is a signal to the
 client to use a short term shared secret and retry the request. If
 the client doesn't have a short term shared secret, it SHOULD use the
 Shared Secret request to obtain one, and then retry the request with
 the username and password obtained as a result.

Rosenberg, et al. Expires April 26, 2007 [Page 19]

Internet-Draft STUN October 2006

 If the client receives a 401 (Unauthorized) response but had included
 a MESSAGE-INTEGRITY attribute in the request, there has been an
 unrecoverable error. This shouldn't ever happen, but if it does, the
 client SHOULD NOT retry the request.

 If the client receives a 432 (Missing Username) response, and the
 client had omitted the USERNAME from the request but included a
 MESSAGE-INTEGRITY, the client SHOULD retry the request and include
 both MESSAGE-INTEGRITY and USERNAME. If the client receives a 432
 (Missing Username) but had included both MESSAGE-INTEGRITY and
 USERNAME in the request, there has been an unrecoverable error. This
 shouldn't ever happen, but if it does, the client SHOULD NOT retry
 the request.

 If the client receives a 435 (Missing Nonce) response, but had
 included a NONCE in the request, an unrecoverable error has occurred
 and the client SHOULD NOT retry. However, if it had omitted the
 NONCE in the request and received a 435, or it had included the NONCE
 but received a 438, it is a request from the server to retry using
 the same credential, but with a different nonce. The client SHOULD
 retry the request.

 If the client receives a 430 (Stale Credentials) response, it means
 that the client used a short term credential that has expired. If
 the client had submitted the request using a short term credential
 obtained from a Shared Secret request, the client SHOULD generate a
 new Shared Secret request to obtain a new short term credential and
 then retry the request with that credential. Note that the Shared
 Secret request may or may not go to the same server which generated
 the 430 (Stale Credentials) response; the server that receives the
 Shared Secret request is determined by the DNS procedures defined
 above. If a 430 (Stale Credentials) response was received and the
 client had used a short term credential provided through some other
 means, the client SHOULD obtain a new short term credential using
 that mechanism. If the client had not used a short term credential
 in the request, the 430 (Stale Credentials) error is unrecoverable
 and the request SHOULD NOT be retried.

 For a 431 (Integrity Check Failure) response code, the client SHOULD
 alert the user, and if a short term credential obtained from a Shared
 Secret request had been used previously, the client MAY try the
 request again after obtaining a new short term username and password.

 If the client receives a 433 (Use TLS) response, and the request was
 a Shared Secret request which was not sent over TLS, the client
 SHOULD retry the request, and MUST send it using TLS. If this
 response is received to any other request except for a Shared Secret
 request, or if the client had sent the Shared Secret request over

Rosenberg, et al. Expires April 26, 2007 [Page 20]

Internet-Draft STUN October 2006

 TLS, it is an unrecoverable error and the client SHOULD NOT retry.

 If the client receives a 434 (Missing Realm) response, and had
 omitted the REALM in the request, but had included MESSAGE-INTEGRITY,
 it is an indication that, though a short-term credential was used for
 the request, the server desires the client to use a long term
 credential. The client SHOULD retry the request using the username
 and password associated with the REALM. If the 434 (Missing Realm)
 was received but the request had contained a REALM, and the REALM in
 the response differs from the REALM in the request, the client SHOULD
 retry using the username and password associated with the REALM in
 the response. If the REALMS were equal, this is an unrecoverable
 error and the client SHOULD NOT retry.

 It the client receives a 436 (Unknown Username) response, it means
 that the username it provided in the request is unknown. For usages
 where the username was collected from the user, the client SHOULD
 alert the user. The client SHOULD NOT retry with the same username.
 If the username was obtained using the Shared Secret request, the
 client SHOULD obtain a new credential and retry. However, if the
 retries are repeatedly rejected with a 436 (Unknown Username), it
 SHOULD cease retrying.

 For error responses which can contain a NONCE, if the error response
 results in a retry, the client MUST include the NONCE in a subsequent
 retry. Furthermore, the client SHOULD cache the nonce, and continue
 using it in subsequent requests sent to the same server, identified
 by transport address.

 For a 300 (Try Alternate) response code, the client SHOULD attempt a
 new transaction to the server indicated in the ALTERNATE-SERVER
 attribute. The client SHOULD reuse its credentials (username and
 password) when retrying. This is useful for load balancing requests
 across a STUN server cluster, when those requests require some amount
 of resources to process. Though this specification allows the 300
 (Try Alternate) response to be applied to Binding Requests, it is
 generally not useful to do so, since the work of redirecting a
 Binding Request is equal to, if not more than, the work of just
 processing the Binding Request. Consequently, the 300 (Try
 Alternate) response code is targeted for other usages of STUN, such
 as the relay usage [16].

 For a 500 (Server Error) response code, the client MAY wait several
 seconds and then retry the request on the same server. Or, if the
 server was learned through DNS SRV records, the client MAY try the
 request on the next server in the list. The same username and
 password MAY be used. For a 600 (Global Failure) response code,
 client MUST NOT retry the request on this server, or if the server

Rosenberg, et al. Expires April 26, 2007 [Page 21]

Internet-Draft STUN October 2006

 was learned through DNS, any other server found through the DNS
 resolution procedures.

 Unknown response codes between 300 and 399 are treated like a 300.
 Unknown response codes between 400 and 499 are treated like a 400,
 unknown response codes between 500 and 599 are treated like a 500,
 and unknown response codes between 600 and 699 are treated like a
 600. Any response between 100 and 299 MUST result in the cessation
 of request retransmissions, but otherwise is discarded.

 Unknown optional attributes in a response (greater than 0x7FFF) MUST
 be ignored by the STUN client. Responses containing unknown
 mandatory attributions (less than or equal to 0x7FFF) MUST be
 discarded and considered immediately as a failed transaction.

 For a success response, the client SHOULD cache any nonce present in
 the response, and continue using it in subsequent requests sent to
 the same server, identified by transport address.

8.3.3. Timeouts

 If the STUN transaction times out without receipt of a response, the
 client SHOULD consider it a failure and retry the request to the next
 server in the list of servers from the DNS SRV response, as specified
 in RFC 2782.

8.4. Indication Transactions

 This section applies to client and server behavior for sending an
 Indication message.

 The client or server follows the syntax rules defined in Section 6
 and the transmission rules of Section 7. The message class MUST be
 an indication.

 Indication messages cannot be challenged or rejected. Consequently,
 they cannot be authenticated using long term credentials. If a STUN
 usage specifies that authentication is needed for an indication
 message, it can only be done using a short term credential. In that
 case, the client or server MUST add a MESSAGE-INTEGRITY and USERNAME
 attribute to the Request message. The key for MESSAGE-INTEGRITY is
 the password.

 When STUN is being multiplexed on the same transport address as
 application data, and there are valid application layer data packets
 which could be confused with STUN packets (because, for example, bits
 32 through 63 can contain an arbitrary binary value which might be
 equal to 0x2112A442), the FINGERPRINT attribute MUST be present.

https://datatracker.ietf.org/doc/html/rfc2782

Rosenberg, et al. Expires April 26, 2007 [Page 22]

Internet-Draft STUN October 2006

 Otherwise, its inclusion is RECOMMENDED.

 Typically, indication messages are sent to the same transport
 address, or over the same TCP connections as a previous request
 message. However, a usage can specify that indication messages are
 sent based on a DNS query, in which case the discovery procedures in

Section 8.1 are followed, along with the TCP/TLS connection
 establishment procedures defined in Section 8.3.1.

 Indication message types are not sent reliably, do not elicit a
 response from the server, and are not retransmitted.

 For TCP and TLS over TCP, the client or server MAY send multiple
 indications on the connection. When using TCP or TLS over TCP, the
 client SHOULD close the connection as soon as it determines it has no
 further messages to send to the server.

 By definition, since indications do not generate a response, they can
 be pipelined, regardless of the transport protocol.

9. Server Behavior

 As with clients, server behavior depends on whether it is a request/
 response transaction or indication.

9.1. Request/Response Transactions

9.1.1. Receive Request Message

 A STUN server MUST be prepared to receive request messages on the
 transport address that will be discovered by the STUN client when the
 STUN client follows its discovery procedures described in

Section 8.1. Depending on the usage, the STUN server will listen for
 incoming UDP STUN messages, incoming TCP STUN messages, or incoming
 TLS exchanges followed by TCP STUN messages.

 If the request is a retransmission of a request for which the server
 has already generated a response within the last 10 seconds, the
 server MUST retransmit the response. A server can do this either by
 remembering the response it transmitted, or by re-processing the
 request and computing the response. The latter technique can only be
 applied to requests which are idempotent and would result in the same
 response for the same request. This is the case for the Binding
 Request, but not for the Shared Secret Request. Extensions to STUN
 SHOULD state whether their request types have this property or not.

 When a STUN request is received, the server determines the usage.

Rosenberg, et al. Expires April 26, 2007 [Page 23]

Internet-Draft STUN October 2006

 The usages describe how the STUN server makes this determination.

 Based on the usage, the server determines whether the request
 requires any authentication and message integrity checks. It can
 require none, short-term credential based authentication, or long-
 term credential authentication.

 If authentication is required, the server checks for the presence of
 the MESSAGE-INTEGRITY attribute. If not present, the server
 generates an error response with an ERROR-CODE attribute and a
 response code of 401 (Unauthorized). If the server wishes the client
 to use a short term credential, the REALM is omitted from the
 response. If the server wishes the client to use a long term
 credential, the REALM is included in the response containing a realm
 from which the username and password are scoped [7].

 If the MESSAGE-INTEGRITY attribute was present, the server checks for
 the existence of the USERNAME attribute. If it was not present, the
 server MUST generate an error response. The error response MUST
 include an ERROR-CODE attribute with a response code of 432 (Missing
 Username). If the server is using a long term credential for
 authentication, the response MUST include a REALM. If the server is
 using a short-term credential, it MUST NOT include a REALM in the
 response.

 If the server is using long term credentials for authentication, and
 the request contained the MESSAGE-INTEGRITY and USERNAME attributes,
 the server checks for the existence of the REALM attribute. If the
 attribute is not present, the server MUST generate an error response.
 That error response MUST include an ERROR-CODE attribute with
 response code of 434 (Missing Realm). That error response MUST also
 include a REALM attribute.

 If the REALM attribute was present and the server is using a long
 term credential for authentication, the server checks for the
 existence of the NONCE attribute. If the NONCE attribute is not
 present, the server MUST generate an error response. That error
 response MUST include an ERROR-CODE attribute with a response code of
 435 (Missing Nonce). That error response MUST include a REALM
 attribute. If the NONCE was absent and the server is authenticating
 with short term credentials, the server MAY generate an error
 response with an ERROR-CODE attribute with a response code of 435
 (Missing Nonce). This response MUST include a NONCE. If the NONCE
 was present in the request, but the server has determined it is
 stale, the server MUST generate an error response with an ERROR-CODE
 attribute with a response code of 438 (Stale Nonce).

 If the server is authenticating the request with a short term

Rosenberg, et al. Expires April 26, 2007 [Page 24]

Internet-Draft STUN October 2006

 credential, it checks the value of the USERNAME field. If the
 USERNAME was previously valid but has expired, the server generates
 an error response with an ERROR-CODE attribute with a response code
 of 430 (Stale Credentials). If the server is authenticating with
 either short or long term credentials, it determines whether the
 USERNAME contains a known entity, and in the case of a long-term
 credential, known within the realm of the REALM attribute of the
 request. If the USERNAME is unknown, the server generates an error
 response with an ERROR-CODE attribute with a response code of 436
 (Unknown Username). For authentication using long-term credentials,
 that error response MUST include a REALM attribute. For
 authentication using short-term credentials, it MUST NOT include a
 REALM.

 At this point, if the server is doing authentication, the request
 contains everything needed for that purpose. The server computes the
 HMAC over the request as described in Section 11.4. The key depends
 on the credential. For short-term credentials, it equals the
 password associated with the username. For long term credentials, it
 is computed as described in Section 8.3.1.

 If the computed HMAC differs from the one from the MESSAGE-INTEGRITY
 attribute in the request, the server MUST generate an error response
 with an ERROR-CODE attribute with a response code of 431 (Integrity
 Check Failure). If long term credentials are being used for
 authentication, this response MUST include a REALM attribute. If
 short term credentials are being used, it MUST NOT include a REALM.

 When an error response is to be generated by the server as a
 consequence of authentication problems (error codes 401, 432, 434,
 435, 430 and 436, and the REALM is present in the response
 (signifying the usage of a long term credential), the server MUST
 include a NONCE attribute in the response. The nonce includes a
 random value that the server wishes the client to reflect back in a
 subsequent request (and therefore include in the message integrity
 computation). When the REALM is absent in the response, the server
 MAY include a NONCE in the response if it wishes to use nonces along
 with short-term shared secrets (with the exception of 435, where
 NONCE is mandatory even for short term credentials). However, there
 is little reason to do so, since the short-term password is, by
 definition, short-term, and thus additional temporal scoping through
 the nonce is not needed.

 At this point, the request has been authentication checked and
 integrity verified.

 If the method of the request is unknown to the server, it MUST
 generate an error response which includes an ERROR-CORE attribute

Rosenberg, et al. Expires April 26, 2007 [Page 25]

Internet-Draft STUN October 2006

 with a 400 response code.

 Next, the server MUST check for any mandatory attributes in the
 request (values less than or equal to 0x7fff) which it does not
 understand. If it encounters any, the server MUST generate an error
 response, and it MUST include an ERROR-CODE attribute with a 420
 response code. Any attributes that are known, but are not supposed
 to be present in a message (MAPPED-ADDRESS in a request, for example)
 MUST be ignored.

9.1.2. Constructing the Response

 To construct the STUN Response the STUN server follows the message
 structure described in Section 6. The message type MUST indicate
 either a success response or error response class and MUST indicate
 the same method as the request. The server MUST copy the transaction
 ID from the request to the response.

 The attributes that get added to the response depend on the type of
 response. See Figure 5 for a summary.

 If the response is a type which can carry either MAPPED-ADDRESS or
 XOR-MAPPED-ADDRESS (the Binding Response as defined in this
 specification meets that criteria), the server examines the magic
 cookie in the STUN header. If it has the value 0x2112A442, it
 indicates that the client supports this version of the specification.
 The server MUST insert a XOR-MAPPED-ADDRESS into the response,
 carrying the exclusive-or of the source transport address and magic
 cookie. If the magic cookie did not have this value, it indicates
 that the client supports the previous version of this specification.
 The server MUST insert a MAPPED-ADDRESS attribute into the response,
 carrying the souce transport address from the request. Insertion of
 either XOR-MAPPED-ADDRESS or MAPPED-ADDRESS happens regardless of the
 transport protocol used for the request.

 XOR-MAPPED-ADDRESS and MAPPED-ADDRESS differ only in their encoding
 of the transport address. The former, as implied by the name,
 encodes the transport address by exclusive-or'ing them with the magic
 cookie. The latter encodes them directly in binary. RFC 3489
 originally specified only MAPPED-ADDRESS. However, deployment
 experience found that some NATs rewrite the 32-bit binary payloads
 containing the NAT's public IP address, such as STUN's MAPPED-ADDRESS
 attribute, in the well-meaning but misguided attempt at providing a
 generic ALG function. Such behavior interferes with the operation of
 STUN and also causes failure of STUN's message integrity checking.

 If the request contained the MESSAGE-INTEGRITY attribute, the server
 MUST include a MESSAGE-INTEGRITY attribute in a successful response.

https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires April 26, 2007 [Page 26]

Internet-Draft STUN October 2006

 The MESSAGE-INTEGRITY attribute MUST use the same username and
 password used to authenticate the request. If long term credentials
 were used, the response MUST include a NONCE. For short term
 credentials, a NONCE MAY be included.

 The server SHOULD include a SERVER attribute in all responses,
 indicating the identity of the server generating the response. This
 is useful for diagnostic purposes.

 When STUN is being multiplexed on the same transport address as
 application data, and there are valid application layer data packets
 which could be confused with STUN packets (because, for example, bits
 32 through 63 can contain an arbitrary binary value which might be
 equal to 0x2112A442), the FINGERPRINT attribute MUST be present in
 the response. Otherwise, its inclusion is RECOMMENDED.

 In cases where the server cannot handle the request, due to
 exhaustion of resources, the server MAY generate a 300 response with
 an ALTERNATE-SERVER attribute. This attribute identifies an
 alternate server which can service the requests. It is not expected
 that 300 responses or this attribute would be used by the methods
 defined in this specification.

9.1.3. Sending the Response

 All UDP response messages are sent to the transport address the
 associated Binding Request came from, and sent from the transport
 address the Binding Request was sent to. All TCP or TLS over TCP
 responses messages are sent on the TCP connections that the request
 arrived on.

9.2. Indication Transactions

 Indication messages cause the server to change its state. Indication
 message types do not cause the server to send a response message.

 A STUN server MUST be prepared to receive indication messages on the
 transport address that will be discovered by the STUN client when the
 STUN client follows its discovery procedures described in

Section 8.1. Depending on the usage, the STUN server will listen for
 incoming UDP STUN messages, incoming TCP STUN messages, or incoming
 TLS exchanges followed by TCP STUN messages.

 When a STUN indication is received, the server determines the usage.
 The usages describe how the STUN server makes this determination.

 Based on the usage, the server determines whether the indication
 requires any authentication and message integrity checks. It can

Rosenberg, et al. Expires April 26, 2007 [Page 27]

Internet-Draft STUN October 2006

 require none or short-term credential based authentication. If
 short-term credentials are utilized, the server follows the same
 procedures as defined in Section 9.1.1, but if those procedures
 require transmission of an error response, the server MUST instead
 silently discard the indication.

 Once authenticated (if authentication was in use), the processing of
 the indication message depends on the method. This specification
 doesn't define any indication messages.

10. Demultiplexing of STUN and Application Traffic

 In the binding refresh usage, STUN traffic is multiplexed on the same
 transport address as application traffic, such as RTP. In order to
 apply the processing described in this specification, STUN messages
 must first be separated from the application packets. This
 disambiguation is done identically for all message types.

 First, all STUN messages start with two bits equal to zero. If STUN
 is being multiplexed with application traffic where it is known that
 the topmost two bits are never zeroes, the presence of these two
 zeroes signals STUN traffic.

 If this mechanism doesn't suffice, the magic cookie can be used. All
 STUN messages have the value 0x2112A442 as the second 32 bit word.
 If the application traffic can not have this value as the second 32
 bit word, then any packets with this value are STUN packets. Even if
 the application packet can have this value (for example, in cases
 where the application packets contain random binary data), there is
 only a one in 2^32 chance that an application packet will have a
 value of 0x2112A442 in its second 32 bit word. If this probability
 is deemed sufficiently small for the application at hand (for
 example, it is considered adequate for Voice over IP applications),
 then any packet with this value in its second 32 bit word is
 processed as a STUN packet.

 However, a mis-classification of 1 in 2^32 may still be too high for
 some usages of STUN. Consequently, STUN messages can contain a
 FINGERPRINT attribute. This is a cryptographic hash over the
 message, covering everything prior to the attribute. This attribute
 is different from MESSAGE-INTEGRITY. The latter uses a keyed HMAC,
 and thus requires a shared secret. FINGERPRINT does not use a
 password, and can be computed just by examining the STUN message.
 Thus, if a packet appears to be a STUN message because it has a value
 of 0x2112A442 in its second 32 bit word, a client or server then
 assumes the message is a STUN message, and computes the value for the
 fingerprint. It then looks for the FINGERPRINT attribute in the

Rosenberg, et al. Expires April 26, 2007 [Page 28]

Internet-Draft STUN October 2006

 message, and if the value equals the computed value, the message is
 considered to be a STUN message. If not, it is considered to be an
 application packet.

11. STUN Attributes

 To allow future revisions of this specification to add new attributes
 if needed, the attribute space is divided into optional and mandatory
 ones. Attributes with values greater than 0x7fff are optional, which
 means that the message can be processed by the client or server even
 though the attribute is not understood. Attributes with values less
 than or equal to 0x7fff are mandatory to understand, which means that
 the client or server cannot successfully process the message unless
 it understands the attribute.

 The values of the message attributes are enumerated in Section 15.

 The following figure indicates which attributes are present in which
 messages. An M indicates that inclusion of the attribute in the
 message is mandatory, O means its optional, C means it's conditional
 based on some other aspect of the message, and - means that the
 attribute is not applicable to that message type.

 Error
 Attribute Request Response Response Indication

 MAPPED-ADDRESS - C - -
 USERNAME C - - O
 PASSWORD - C - -
 MESSAGE-INTEGRITY O C C O
 ERROR-CODE - - M -
 ALTERNATE-SERVER - - C -
 REALM C - C -
 NONCE C - C -
 UNKNOWN-ATTRIBUTES - - C -
 XOR-MAPPED-ADDRESS - C - -
 SERVER - O O O
 REFRESH-INTERVAL - O - -
 FINGERPRINT O O O O

 Figure 5: Mandatory Attributes and Message Types

11.1. MAPPED-ADDRESS

 The MAPPED-ADDRESS attribute indicates the mapped transport address.
 It consists of an eight bit address family, and a sixteen bit port,
 followed by a fixed length value representing the IP address. If the

Rosenberg, et al. Expires April 26, 2007 [Page 29]

Internet-Draft STUN October 2006

 address family is IPv4, the address is 32 bits, in network byte
 order. If the address family is IPv6, the address is 128 bits in
 network byte order.

 The format of the MAPPED-ADDRESS attribute is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |x x x x x x x x| Family | Port |
 +-+
 | Address (variable)
 +-+

 Figure 6: Format of MAPPED-ADDRESS attribute

 The address family can take on the following values:

 0x01:IPv4
 0x02:IPv6

 The port is a network byte ordered representation of the port the
 request arrived from.

 The first 8 bits of the MAPPED-ADDRESS are ignored for the purposes
 of aligning parameters on natural 32 bit boundaries.

 It is possible for an IPv4 host to receive a MAPPED-ADDRESS
 containing an IPv6 address, or for an IPv6 host to receive a MAPPED-
 ADDRESS containing an IPv4 address. Clients MUST be prepared for
 this case.

11.2. USERNAME

 The USERNAME attribute is used for message integrity. It identifies
 the shared secret used in the message integrity check. Consequently,
 the USERNAME MUST be included in any request that contains the
 MESSAGE-INTEGRITY attribute.

 The USERNAME is also always present in a Shared Secret Response,
 along with the PASSWORD, which informs a client of a short term
 password.

 The value of USERNAME is a variable length opaque value. Note that,
 as described above, if the USERNAME is not a multiple of four bytes
 it is padded for encoding into the STUN message, in which case the
 attribute length represents the length of the USERNAME prior to
 padding.

Rosenberg, et al. Expires April 26, 2007 [Page 30]

Internet-Draft STUN October 2006

11.3. PASSWORD

 If the message type is Shared Secret Response it MUST include the
 PASSWORD attribute.

 The value of PASSWORD is a variable length opaque value. The
 password returned in the Shared Secret Response is used as the HMAC
 key in the MESSAGE-INTEGRITY attribute of a subsequent STUN
 transaction. Note that, as described above, if the USERNAME is not a
 multiple of four bytes it is padded for encoding into the STUN
 message, in which case the attribute length represents the length of
 the USERNAME prior to padding.

11.4. MESSAGE-INTEGRITY

 The MESSAGE-INTEGRITY attribute contains an HMAC-SHA1 [10] of the
 STUN message. The MESSAGE-INTEGRITY attribute can be present in any
 STUN message type. Since it uses the SHA1 hash, the HMAC will be 20
 bytes. The text used as input to HMAC is the STUN message, including
 the header, up to and including the attribute preceding the MESSAGE-
 INTEGRITY attribute. That text is then padded with zeroes so as to
 be a multiple of 64 bytes. As a result, the MESSAGE-INTEGRITY
 attribute is either the last attribute, or the next to last attribute
 in any STUN message (depending on whether FINGERPRINT is present).
 With the exception of the FINGERPRINT attribute, which appears after
 MESSAGE-INTEGRITY, elements MUST ignore all other attributes that
 follow MESSAGE-INTEGRITY.

 The key used as input to HMAC depends on the STUN usage and the
 shared secret mechanism.

11.5. FINGERPRINT

 The FINGERPRINT attribute can be present in all STUN messages. It is
 computed as the CRC-32 of the STUN message up to (but excluding) the
 FINGERPRINT attribute itself, xor-d with the 32 bit value 0x5354554e
 (the XOR helps in cases where an application packet is also using
 CRC-32 in it). The 32 bit CRC is the one defined in ITU V.42 [9],
 which has a generator polynomial of x32+x26+x23+x22+x16+x12+x11+x10+
 x8+x7+x5+x4+x2+x+1. When present, the FINGERPRINT attribute MUST be
 the last attribute in the message.

11.6. ERROR-CODE

 The ERROR-CODE attribute is present in the Binding Error Response and
 Shared Secret Error Response. It is a numeric value in the range of
 100 to 699 plus a textual reason phrase encoded in UTF-8, and is
 consistent in its code assignments and semantics with SIP [11] and

Rosenberg, et al. Expires April 26, 2007 [Page 31]

Internet-Draft STUN October 2006

 HTTP [12]. The reason phrase is meant for user consumption, and can
 be anything appropriate for the response code. Recommended reason
 phrases for the defined response codes are presented below.

 To facilitate processing, the class of the error code (the hundreds
 digit) is encoded separately from the rest of the code.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0 |Class| Number |
 +-+
 | Reason Phrase (variable) ..
 +-+

 The class represents the hundreds digit of the response code. The
 value MUST be between 1 and 6. The number represents the response
 code modulo 100, and its value MUST be between 0 and 99.

 If the reason phrase has a length that is not a multiple of four
 bytes, it is padded for encoding into the STUN message, in which case
 the attribute length represents the length of the entire ERROR-CODE
 attribute (including the reason phrase) prior to padding.

 The following response codes, along with their recommended reason
 phrases (in brackets) are defined at this time:

 300 (Try Alternate): The client should contact an alternate server
 for this request.

 400 (Bad Request): The request was malformed. The client should not
 retry the request without modification from the previous
 attempt.

 401 (Unauthorized): The request did not contain a MESSAGE-INTEGRITY
 attribute.

 420 (Unknown Attribute): The server did not understand a mandatory
 attribute in the request.

 430 (Stale Credentials): The request did contain a MESSAGE-INTEGRITY
 attribute, but it used a shared secret that has expired. The
 client should obtain a new shared secret and try again.

 431 (Integrity Check Failure): The request contained a MESSAGE-
 INTEGRITY attribute, but the HMAC failed verification. This
 could be a sign of a potential attack, or client implementation
 error.

Rosenberg, et al. Expires April 26, 2007 [Page 32]

Internet-Draft STUN October 2006

 432 (Missing Username): The request contained a MESSAGE-INTEGRITY
 attribute, but not a USERNAME attribute. Both USERNAME and
 MESSAGE-INTEGRITY must be present for integrity checks.

 433 (Use TLS): The Shared Secret request has to be sent over TLS,
 but was not received over TLS.

 434 (Missing Realm): The REALM attribute was not present in the
 request.

 435 (Missing Nonce): The NONCE attribute was not present in the
 request.

 436 (Unknown Username): The USERNAME supplied in the request is not
 known or is not known to the server.

 438 (Stale Nonce): The NONCE attribute was present in the request
 but wasn't valid.

 500 (Server Error): The server has suffered a temporary error. The
 client should try again.

 600 (Global Failure): The server is refusing to fulfill the request.
 The client should not retry.

11.7. REALM

 The REALM attribute is present in requests and responses. It
 contains text which meets the grammar for "realm" as described in RFC

3261 [11], and will thus contain a quoted string (including the
 quotes).

 Presence of the REALM attribute in a request indicates that long-term
 credentials are being used for authentication. Presence in certain
 error responses indicates that the server wishes the client to use a
 long-term credential for authentication.

11.8. NONCE

 The NONCE attribute is present in requests and in error responses.
 It contains a sequence of qdtext or quoted-pair, which are defined in

RFC 3261 [11]. See RFC 2617 [7] for guidance on selection of nonce
 values in a server.

11.9. UNKNOWN-ATTRIBUTES

 The UNKNOWN-ATTRIBUTES attribute is present only in an error response
 when the response code in the ERROR-CODE attribute is 420.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2617

Rosenberg, et al. Expires April 26, 2007 [Page 33]

Internet-Draft STUN October 2006

 The attribute contains a list of 16 bit values, each of which
 represents an attribute type that was not understood by the server.
 If the number of unknown attributes is an odd number, one of the
 attributes MUST be repeated in the list, so that the total length of
 the list is a multiple of 4 bytes.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Attribute 1 Type | Attribute 2 Type |
 +-+
 | Attribute 3 Type | Attribute 4 Type ...
 +-+

 Figure 9: Format of UNKNOWN-ATTRIBUTES attribute

11.10. XOR-MAPPED-ADDRESS

 The XOR-MAPPED-ADDRESS attribute is present in responses. It
 provides the same information that would present in the MAPPED-
 ADDRESS attribute but because the NAT's public IP address is
 obfuscated through the XOR function, STUN messages are able to pass
 through NATs which would otherwise interfere with STUN.

 This attribute MUST always be present in a Binding Response and may
 be used in other responses as well. Usages defining new requests and
 responses should specify if XOR-MAPPED-ADDRESS is applicable to their
 responses.

 The format of the XOR-MAPPED-ADDRESS is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |x x x x x x x x| Family | X-Port |
 +-+
 | X-Address (Variable)
 +-+

 Figure 10: Format of XOR-MAPPED-ADDRESS Attribute

 The Family represents the IP address family, and is encoded
 identically to the Family in MAPPED-ADDRESS.

 X-Port is the mapped port, exclusive or'd with most significant 16
 bits of the magic cookie. If the IP address family is IPv4,
 X-Address is the mapped IP address exclusive or'd with the magic

Rosenberg, et al. Expires April 26, 2007 [Page 34]

Internet-Draft STUN October 2006

 cookie. If the IP address family is IPv6, the X-Address is the
 mapped IP address exclusively or'ed with the magic cookie and the 96-
 bit transaction ID.

 For example, using the "^" character to indicate exclusive or, if the
 IP address is 192.168.1.1 (0xc0a80101) and the port is 5555 (0x15B3),
 the X-Port would be 0x15B3 ^ 0x2112 = 0x34A1, and the X-Address would
 be 0xc0a80101 ^ 0x2112A442 = 0xe1baa543.

 It is possible for an IPv4 host to receive a XOR-MAPPED-ADDRESS
 containing an IPv6 address, or for an IPv6 host to receive a XOR-
 MAPPED-ADDRESS containing an IPv4 address. Clients MUST be prepared
 for this case.

11.11. SERVER

 The server attribute contains a textual description of the software
 being used by the server, including manufacturer and version number.
 The attribute has no impact on operation of the protocol, and serves
 only as a tool for diagnostic and debugging purposes. The value of
 SERVER is variable length. If the value of SERVER is not a multiple
 of four bytes, it is padded for encoding into the STUN message, in
 which case the attribute length represents the length of the USERNAME
 prior to padding.

11.12. ALTERNATE-SERVER

 The alternate server represents an alternate transport address for a
 different STUN server to try. It is encoded in the same way as
 MAPPED-ADDRESS.

 This attribute MUST only appear in an error response.

11.13. REFRESH-INTERVAL

 The REFRESH-INTERVAL indicates the number of milliseconds that the
 server suggests the client should use between refreshes of the NAT
 bindings between the client and server. Even though the server may
 not know the binding lifetimes in intervening NATs, this attribute
 serves as a useful configuration mechanism for suggesting a value for
 use by the client. Furthermore, when the NAT Keepalive usage is
 being used, the server may become overloaded with Binding Requests
 that are being used for keepalives. The REFRESH-INTERVAL provies a
 mechanism for the server to gradually reduce the load on itself by
 pushing back on the client.

 REFRESH-INTERVAL is specified as an unsigned 32 bit integer, and
 represents an interval measured in millseconds. It can be present in

Rosenberg, et al. Expires April 26, 2007 [Page 35]

Internet-Draft STUN October 2006

 Binding Responses.

12. STUN Usages

 STUN is a simple request/response protocol that provides a useful
 capability in several situations. In this section, different usages
 of STUN are described. Each usage may differ in how STUN servers are
 discovered, when the STUN requests are sent, what message types are
 used, what message attributes are used, and how authentication is
 performed.

 This specification defines the STUN usages for binding discovery
 (Section 12.1), NAT keepalives (Section 12.2) and short-term password
 (Section 12.3).

 New STUN usages may be defined by other standards-track documents.
 New STUN usages MUST describe their applicability, client discovery
 of the STUN server, how the server determines the usage, new message
 types (requests or indications), new message attributes, new error
 response codes, and new client and server procedures.

12.1. Binding Discovery

 The previous version of this specification, RFC3489 [15], described
 only this binding discovery usage.

12.1.1. Applicability

 Binding discovery is used to learn reflexive addresses from servers
 on the network, generally the public Internet. That is, it is used
 by a client to determine its dynamically-bound 'public' UDP transport
 address that is assigned by a NAT between a STUN client and a STUN
 server. This transport address will be present in the mapped address
 of the STUN Binding Response.

 The mapped address present in the binding response can be used by
 clients to facilitate traversal of NATs for many applications. NAT
 traversal is problematic for applications that require a client to
 insert a transport address into a message, to which subsequent
 messages will be delivered by other entities in a network. Normally,
 the client would insert the transport address from a local interface
 into the message. However, if the client is behind a NAT, this local
 interface will be a private address. Clients within other address
 realms will not be able to send messages to that address.

 An example of a such an application is SIP, which requires a client
 to include transport address information in several places, including

https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires April 26, 2007 [Page 36]

Internet-Draft STUN October 2006

 the Session Description Protocol (SDP [19]) body carried by SIP. The
 transport address present in the SDP is used for receipt of media.

 To use STUN as a technique for traversal of SIP and other protocols,
 when the client wishes to send a protocol message, it figures out the
 places in the protocol data unit where it is supposed to insert its
 own transport address. Instead of directly using a port allocated
 from a local interface, the client allocates a port from the local
 interface, and from that port, generates a STUN Binding Request. The
 mapped address in the Binding Response (XOR-MAPPED-ADDRESS or MAPPED-
 ADDRESS) provides the client with an alternative transport address
 that it can then include in the protocol payload. This transport
 address may be within a different address family than the local
 interfaces used by the client. This is not an error condition. In
 such a case, the client would use the learned IP address and port as
 if the client was a host with an interface within that address
 family.

 In the case of SIP, to populate the SDP appropriately, a client would
 generate two STUN Binding Request messages at the time a call is
 initiated or answered. One is used to obtain the transport address
 for RTP, and the other, for the Real Time Control Protocol
 (RTCP)[17]. The client might also need to use STUN to obtain
 transport addresses for usage in other parts of the SIP message. The
 detailed usage of STUN to facilitate SIP NAT traversal is outside the
 scope of this specification.

 As discussed above, the transport addresses learned by STUN may not
 be usable with all entities with whom a client might wish to
 communicate. The way in which this problem is handled depends on the
 application protocol. The ideal solution is for a protocol to allow
 a client to include a multiplicity of transport addresses in the PDU.
 One of those can be the transport address determined from STUN, and
 the others can include transport addresses learned from other
 techniques. The application protocol would then provide a means for
 dynamically detecting which one works. An example of such an an
 approach is Interactive Connectivity Establishment (ICE [13]).

12.1.2. Client Discovery of Server

 Clients SHOULD be configured with a domain name for a STUN server to
 use. In cases where the client has no explicit configuration
 mechanism for STUN, but knows the domain of its service provider, the
 client SHOULD use that domain (in the case of SIP, this would be the
 domain from their Address-of-Record). The discovery mechanisms
 defined in Section 8.1 are then applied to that domain name.

Rosenberg, et al. Expires April 26, 2007 [Page 37]

Internet-Draft STUN October 2006

12.1.3. Server Determination of Usage

 It is anticipated that servers would advertise a specific port in the
 DNS for the Binding Discovery usage. Thus, when a request arrives at
 that particular port, the server knows that the binding usage is in
 use. This fact is only needed for purposes of determining the
 authentication and message integrity mechanism to apply.

12.1.4. New Requests or Indications

 This usage does not define any new message types.

12.1.5. New Attributes

 This usage does not define any new message attributes.

12.1.6. New Error Response Codes

 This usage does not define any new error response codes.

12.1.7. Client Procedures

 The binding discovery is utilized by a client just prior to
 generating an application PDU that requires the client to include its
 transport address. The client MAY first obtain a short term
 credential using the short term password STUN usage. The credential
 that is obtained is then using in Binding Request messages. A
 Binding Request message is generated for each distinct transport
 address that the client requires to formulate the application PDU.

 A successful response message will carry either an XOR-MAPPED-ADDRESS
 or MAPPED-ADDRESS attribute, depending on the version of the server.
 A client SHOULD use the XOR-MAPPED-ADDRESS if present. If not, it
 uses the MAPPED-ADDRESS.

12.1.8. Server Procedures

 It is RECOMMENDED that servers utilize short term credentials,
 obtained by the client from a Shared Secret request, for
 authentication and message integrity. Consequently, if a Binding
 Request is generated without a short term credential, the server
 SHOULD challenge for one.

12.1.9. Security Considerations for Binding Discovery

 There are no security considerations for this usage beyond those
 described in Section 13.

Rosenberg, et al. Expires April 26, 2007 [Page 38]

Internet-Draft STUN October 2006

12.2. NAT Keepalives

12.2.1. Applicability

 In this STUN usage, a client is connected to a server for a
 particular application protocol (for example, a SIP proxy server).
 The connection is long-lived, allowing for asynchronous messaging
 from the server to the client. The client is connected to the server
 either using TCP, in which case there is a long-lived TCP connection
 from the client to the server, or using UDP, in which case the server
 stores the source transport address of a message from a client (such
 as SIP REGISTER), and sends messages to the client using that
 transport address.

 Since the connection between the client and server is very-long
 lived, the bindings established by that connection need to be
 maintained in any intervening NATs. Rather than implement expensive
 application-layer keepalives, the keepalives can be accomplished
 using STUN Binding Requests. The client will periodically send a
 Binding Request to the server, using the same transport addresses
 used for the application protocol. These Binding Requests are
 demultiplexed at the server using the magic cookie and possibly
 FINGERPRINT. The response from the server informs the client that
 the server is still alive. The STUN message also keeps the binding
 active in intervening NATs. The client can also examine the mapped
 address in the Binding Response. If it has changed, the client can
 re-initiate application layer procedures to inform the server of its
 new transport address.

12.2.2. Client Discovery of Server

 In this usage, the STUN server and the application protocol are using
 the same fixed port.

12.2.3. Server Determination of Usage

 The server multiplexes both STUN and its application protocol on the
 same port. The server knows it is has this usage because the URI
 that gets resolved to this port indicates the server supports this
 multiplexing.

12.2.4. New Requests or Indications

 This usage does not define any new message types.

12.2.5. New Attributes

 This usage does not define any new message attributes.

Rosenberg, et al. Expires April 26, 2007 [Page 39]

Internet-Draft STUN October 2006

12.2.6. New Error Response Codes

 This usage does not define any new error response codes.

12.2.7. Client Procedures

 If the STUN Response indicates the client's mapped address has
 changed from the client's expected mapped address, the client SHOULD
 inform other applications of its new mapped address. For example, a
 SIP client could use the binding discovery usage to obtain a new
 mapped address, and then register it using SIP registration
 procedures.

 The client SHOULD NOT include a MESSAGE-INTEGRITY attribute unless
 prompted for one by the server, since authentication is not generally
 used with this STUN usage.

12.2.8. Server Procedures

 The server SHOULD NOT authenticate the client or look for a MESSAGE-
 INTEGRITY attribute. Since the keepalives come with some regularity,
 and will come for each client that is connected to the server, the
 processing cost associated with authenticating each request is very
 high. Consequently, authentication should only be used by small
 servers, for whom the processing cost is not an issue, or when used
 with application protocols where the consequences of a fake response
 are very significant.

12.2.9. Security Considerations for NAT Keepalives

 This STUN usage does not recommend the usage of message integrity or
 authentication. This is because the client never actually uses the
 mapped address from the STUN response. It merely treats a change in
 that address as a hint that the client should re-apply application
 layer procedures for connection establishment and registration.

 An attacker could attempt to inject faked responses, or modify
 responses in transit. Such an attack would require the attacker to
 be on-path in order to determine the transaction ID. In the worst
 case, the attack would cause the client to see a change in IP address
 or port, and then perform an application layer re-registration. Such
 a re-registration would not use the transport address obtained from
 the Binding Response. Thus, the worst that the attacker can do is
 cause the client to re-register every half minute or so, when it
 otherwise wouldn't need to. Given the difficulty in launching this
 attack (it requires the attacker to be on-path and to disrupt the
 actual response from the server) compared to the benefit, there is
 little motivation for authentication or integrity mechanisms.

Rosenberg, et al. Expires April 26, 2007 [Page 40]

Internet-Draft STUN October 2006

 When used with application protocols where the cost of "re-
 registration" is in fact high, the keepalive usage can still be used
 without authentication. However, the usage would serve ONLY to keep
 NAT bindings alive; it would not be useful for detecting failures of
 the server or of intervening NAT. In such a case, the client would
 not perform any application layer processing based on the STUN
 response, even if it indicated a change in transport address.

12.3. Short-Term Password

 In order to ensure interoperability, this usage describes a TLS-based
 mechanism to obtain a short-term credential. The usage makes use of
 the Shared Secret Request and Response messages. It is defined as a
 separate usage in order to allow it to run on a separate port, and to
 allow it to be more easily separated from the different STUN usages,
 only some of which require this mechanism.

12.3.1. Applicability

 To thwart some on-path attacks described in Section 13, it is
 necessary for the STUN client and STUN server to integrity protect
 the information they exchange over UDP. In the absence of a long-
 term secret (password) that is shared between them, a short-term
 password can be obtained using the usage described in this section.

 The username and password returned in the STUN Shared Secret Response
 are valid for use in subsequent STUN transactions for nine (9)
 minutes with any applicable hosts as described in Section 12.3.2.
 The username and password obtained with this usage are used as the
 USERNAME and in the HMAC for the MESSAGE-INTEGRITY in a subsequent
 STUN message, respectively.

12.3.2. Client Discovery of Server

 The client follows the procedures in Section 8.1. The SRV protocol
 is "tls" and the service name "stun-pass".

 For example a client would look up "_stun-pass._tls.example.com" in
 DNS.

12.3.3. Server Determination of Usage

 The server advertises this port in the DNS as capable of receiving
 TLS over TCP connections, along with the Shared Secret messages that
 run over it. The server MAY also advertise this same port in DNS for
 other TLS over TCP usages if the server is capable of multiplexing
 those different usages. For example, the server could advertise the
 short-term password and binding discovery usages on the same TLS/TCP

Rosenberg, et al. Expires April 26, 2007 [Page 41]

Internet-Draft STUN October 2006

 port.

12.3.4. New Requests or Indications

 The message type Shared Secret Request and its associated Shared
 Secret Response and Shared Secret Error Response are defined in this
 section. Their values are enumerated in Section 15.

 The following figure indicates which attributes are present in the
 Shared Secret Request, Response, and Error Response. An M indicates
 that inclusion of the attribute in the message is mandatory, O means
 its optional, C means it's conditional based on some other aspect of
 the message, and - means that the attribute is not applicable to that
 message type. Attributes not listed are not applicable to Shared
 Secret Request, Response, or Error Response.

 Shared Shared Shared
 Secret Secret Secret
 Attribute Request Response Error
 Response

 USERNAME O M -
 PASSWORD - M -
 MESSAGE-INTEGRITY O O O
 ERROR-CODE - - M
 ALTERNATE-SERVER - - C
 UNKNOWN-ATTRIBUTES - - C
 SERVER - O O
 REALM C - C
 NONCE C - C

 The Shared Secret requests, like other STUN requests, can be
 authenticated. However, since its purpose is to obtain a short-term
 credential, the Shared Secret request itself cannot be authenticated
 with a short-term credential. However, it can be authenticated with
 a long-term credential.

12.3.5. New Attributes

 No new attributes are defined by this usage.

12.3.6. New Error Response Codes

 This usage defines the 433 error response. Only the MESSAGE-
 INTEGRITY, ERROR-CODE and SERVER attributes are applicable to this
 response.

Rosenberg, et al. Expires April 26, 2007 [Page 42]

Internet-Draft STUN October 2006

12.3.7. Client Procedures

 Shared Secret requests are formed like other STUN requests, with the
 following additions. Clients MUST NOT use a short-term credential
 with a Shared Secret request. They SHOULD send the request with no
 credentials (omitting MESSAGE-INTEGRITY and USERNAME).

 Processing of the Shared Secret response follows that of any other
 STUN response. Note that clients MUST be prepared to be challenged
 for a long-term credential.

 If the response was a Shared Secret Response, it will contain a short
 lived username and password, encoded in the USERNAME and PASSWORD
 attributes, respectively. A client SHOULD use these credentials
 whenever short term credentials are needed for any server discovered
 using the same domain name as was used to discover the one which
 returned those credentials. For example, if a client used a domain
 name of example.com, it would have looked up _stun-
 pass._tls.example.com in DNS, found a server, and sent a Shared
 Secret request that provided a credential to the client. The client
 would use this credential with a server discovered by looking up
 _stun._udp.example.com in the DNS.

 If the response was a Shared Secret Error Response, and ERROR-CODE
 attribute was present with a response code of 433, and the client had
 not sent the request over TLS, the client SHOULD establish a TLS
 connection to the server and retry the request over that connection.
 If the client had used TLS, this error response is unrecoverable and
 the client SHOULD NOT retry.

12.3.8. Server Procedures

 The procedures for general processing of STUN requests apply to
 Shared Secret requests. Servers MAY challenge the client for a long-
 term credential if one was not provided in a request. However, they
 MUST NOT challenge the request for a short-term credential.

 If the Shared Secret Request did not arrive over a TLS connection,
 the server MUST generate a Shared Secret Error response with an
 ERROR-CODE attribute that has a response code of 433.

 If the request is valid and authenticated (assuming the server is
 performing authentication), the server MUST create a short term
 credential for the user. This credential consists of a username and
 password. The credentials MUST be valid for a duration of at least
 nine minutes, and SHOULD NOT be valid for a duration of longer than
 thirty minutes. The username MUST be distinct, with extremely high
 probabilities, from all usernames that have been handed out across

Rosenberg, et al. Expires April 26, 2007 [Page 43]

Internet-Draft STUN October 2006

 all servers that are returned from DNS SRV queries for the same
 domain name. Extremely high probability means that the likelihood of
 collision SHOULD be better than 1 in 2**64. The password for each
 username MUST be cryptographically random with at least 128 bits of
 entropy.

12.3.9. Security Considerations for Short-Term Password

 The security considerations in Section 13 do not apply to the Shared
 Secret request and response, since these messages do not make use of
 mapped addresses, which is the primary source of security
 consideration discussed there. Rather, shared secret requests are
 used to obtain short term credentials that are used in the
 authentication of other messages.

 Because the Shared Secret response itself carries a credential, in
 the form of a username and password, it must be sent encrypted. For
 this reason, STUN servers MUST reject any Shared Secret request that
 has not arrived over a TLS connection.

 Malicious clients could generate a multiplicity of Shared Secret
 requests, each of which causes the server to allocate shared secrets,
 each of which might consume memory and processing resources. If
 shared secret requests are not being authenticated, this leads to a
 possible denial-of-service attack. Indeed, even if the requestor is
 authenticated, attacks are still possible.

 To prevent being swamped with traffic, a STUN server SHOULD limit the
 number of simultaneous TLS connections it will hold open by dropping
 an existing connection when a new connection request arrives (based
 on an Least Recently Used (LRU) policy, for example).

 Similarly, servers SHOULD allocate only a small number of shared
 secrets to a host with a particular source transport address.
 Requests from the same transport address which exceed this limit
 SHOULD be rejected with a 600 response. Servers SHOULD also limit
 the total number of shared secrets they will provide at a time across
 all clients, based on the number of users and expected loads during
 normal peak usage. If a Shared Secret request arrives and the server
 has exceeded its limit, it SHOULD reject the request with a 500
 response.

 Furthermore, for servers that are not authenticating shared secret
 requests, it is RECOMMENDED that short-term credentials be
 constructed in a way such that they do not require memory or disk to
 store.

 This can be done by intelligently computing the username and

Rosenberg, et al. Expires April 26, 2007 [Page 44]

Internet-Draft STUN October 2006

 password. One approach is to construct the USERNAME as:

 USERNAME = <prefix,rounded-time,hmac>

 Where prefix is some random text string (different for each shared
 secret request), rounded-time is the current time modulo 20 minutes,
 and hmac is an HMAC [13] over the prefix and rounded-time, using a
 server private key.

 The password is then computed as:

 password = <hmac(USERNAME,anotherprivatekey)>

 With this structure the server can verify that the username was not
 tampered with using the hmac present in the username.

13. Security Considerations

 Attacks on STUN systems vary depending on the usage. The short term
 password usage is quite different from the other usages defined here,
 and its security considerations are unique to it and discussed as
 part of the usage definition. However, all of the other usages are
 very similar and share a similar set of security considerations as a
 consequence of their usage of the mapped address from STUN Binding
 Responses. Consequently, these security considerations apply to
 usage of the mapped address.

13.1. Attacks on STUN

 Generally speaking, attacks on STUN can be classified into denial of
 service attacks and eavesdropping attacks. Denial of service attacks
 can be launched against a STUN server itself or against other
 elements using the STUN protocol. The attacks of greater interest
 are those in which the STUN server and client are used to launch
 denial of service (DoS) attacks against other entities, including the
 client itself. Many of the attacks require the attacker to generate
 a response to a legitimate STUN request, in order to provide the
 client with a faked mapped address. The attacks that can be launched
 using such a technique include:

13.1.1. Attack I: DDoS Against a Target

 In this case, the attacker provides a large number of clients with
 the same faked mapped address that points to the intended target.
 This will trick all the STUN clients into thinking that their
 addresses are equal to that of the target. The clients then hand out
 that address in order to receive traffic on it (for example, in SIP

Rosenberg, et al. Expires April 26, 2007 [Page 45]

Internet-Draft STUN October 2006

 or H.323 messages). However, all of that traffic becomes focused at
 the intended target. The attack can provide substantial
 amplification, especially when used with clients that are using STUN
 to enable multimedia applications.

13.1.2. Attack II: Silencing a Client

 In this attack, the attacker seeks to deny a client access to
 services enabled by STUN (for example, a client using STUN to enable
 SIP-based multimedia traffic). To do that, the attacker provides
 that client with a faked mapped address. The mapped address it
 provides is a transport address that routes to nowhere. As a result,
 the client won't receive any of the packets it expects to receive
 when it hands out the mapped address. This exploitation is not very
 interesting for the attacker. It impacts a single client, which is
 frequently not the desired target. Moreover, any attacker that can
 mount the attack could also deny service to the client by other
 means, such as preventing the client from receiving any response from
 the STUN server, or even a DHCP server.

13.1.3. Attack III: Assuming the Identity of a Client

 This attack is similar to attack II. However, the faked mapped
 address points to the attacker themself. This allows the attacker to
 receive traffic which was destined for the client.

13.1.4. Attack IV: Eavesdropping

 In this attack, the attacker forces the client to use a mapped
 address that routes to itself. It then forwards any packets it
 receives to the client. This attack would allow the attacker to
 observe all packets sent to the client. However, in order to launch
 the attack, the attacker must have already been able to observe
 packets from the client to the STUN server. In most cases (such as
 when the attack is launched from an access network), this means that
 the attacker could already observe packets sent to the client. This
 attack is, as a result, only useful for observing traffic by
 attackers on the path from the client to the STUN server, but not
 generally on the path of packets being routed towards the client.

13.2. Launching the Attacks

 It is important to note that attacks of this nature (injecting
 responses with fake mapped addresses) require that the attacker be
 capable of eavesdropping requests sent from the client to the server
 (or to act as a man in the middle for such attacks). This is because
 STUN requests contain a transaction identifier, selected by the
 client, which is random with 96 bits of entropy. The server echoes

Rosenberg, et al. Expires April 26, 2007 [Page 46]

Internet-Draft STUN October 2006

 this value in the response, and the client ignores any responses that
 don't have a matching transaction ID. Therefore, in order for an
 attacker to provide a faked response that is accepted by the client,
 the attacker needs to know the transaction ID of the request. The
 large amount of randomness, combined with the need to know when the
 client sends a request and the transport addresses used for that
 request, precludes attacks that involve guessing the transaction ID.

 Since all of the above attacks rely on this one primitive - injecting
 a response with a faked mapped address - preventing the attacks is
 accomplished by preventing this one operation. To prevent it, we
 need to consider the various ways in which it can be accomplished.
 There are several:

13.2.1. Approach I: Compromise a Legitimate STUN Server

 In this attack, the attacker compromises a legitimate STUN server
 through a virus or Trojan horse. Presumably, this would allow the
 attacker to take over the STUN server, and control the types of
 responses it generates. Compromise of a STUN server can also lead to
 discovery of open ports. Knowledge of an open port creates an
 opportunity for DoS attacks on those ports (or DDoS attacks if the
 traversed NAT is a full cone NAT). Discovering open ports is already
 fairly trivial using port probing, so this does not represent a major
 threat.

13.2.2. Approach II: DNS Attacks

 STUN servers are discovered using DNS SRV records. If an attacker
 can compromise the DNS, it can inject fake records which map a domain
 name to the IP address of a STUN server run by the attacker. This
 will allow it to inject fake responses to launch any of the attacks
 above. Clearly, this attack is only applicable for usages which
 discover servers through DNS.

13.2.3. Approach III: Rogue Router or NAT

 Rather than compromise the STUN server, an attacker can cause a STUN
 server to generate responses with the wrong mapped address by
 compromising a router or NAT on the path from the client to the STUN
 server. When the STUN request passes through the rogue router or
 NAT, it rewrites the source transport address of the packet to be
 that of the desired mapped address. This address cannot be
 arbitrary. If the attacker is on the public Internet (that is, there
 are no NATs between it and the STUN server), and the attacker doesn't
 modify the STUN request, the address has to have the property that
 packets sent from the STUN server to that address would route through
 the compromised router. This is because the STUN server will send

Rosenberg, et al. Expires April 26, 2007 [Page 47]

Internet-Draft STUN October 2006

 the responses back to the source transport address of the request.
 With a modified source transport address, the only way they can reach
 the client is if the compromised router directs them there.

 If the attacker is on a private network (that is, there are NATs
 between it and the STUN server), the attacker will not be able to
 force the server to generate arbitrary mapped addresses in responses.
 They will only be able force the STUN server to generate mapped
 addresses which route to the private network. This is because the
 NAT between the attacker and the STUN server will rewrite the source
 transport address of the STUN request, mapping it to a public address
 that routes to the private network. Because of this, the attacker
 can only force the server to generate faked mapped addresses that
 route to the private network. Unfortunately, it is possible that a
 low quality NAT would be willing to map an allocated public address
 to another public address (as opposed to an internal private
 address), in which case the attacker could forge the source address
 in a STUN request to be an arbitrary public address. This kind of
 behavior from NATs does appear to be rare.

13.2.4. Approach IV: Man in the Middle

 As an alternative to approach III (Section 13.2.3), if the attacker
 can place an element on the path from the client to the server, the
 element can act as a man-in-the-middle. In that case, it can
 intercept a STUN request, and generate a STUN response directly with
 any desired value of the mapped address field. Alternatively, it can
 forward the STUN request to the server (after potential
 modification), receive the response, and forward it to the client.
 When forwarding the request and response, this attack is subject to
 the same limitations on the mapped address described in Approach III
 (Section 13.2.3).

13.2.5. Approach V: Response Injection Plus DoS

 In this approach, the attacker does not need to be a MitM (as in
 approaches III and IV). Rather, it only needs to be able to
 eavesdrop onto a network segment that carries STUN requests. This is
 easily done in multiple access networks such as ethernet or
 unprotected 802.11. To inject the fake response, the attacker
 listens on the network for a STUN request. When it sees one, it
 simultaneously launches a DoS attack on the STUN server, and
 generates its own STUN response with the desired mapped address
 value. The STUN response generated by the attacker will reach the
 client, and the DoS attack against the server is aimed at preventing
 the legitimate response from the server from reaching the client.
 Arguably, the attacker can do without the DoS attack on the server,
 so long as the faked response beats the real response back to the

Rosenberg, et al. Expires April 26, 2007 [Page 48]

Internet-Draft STUN October 2006

 client, and the client uses the first response, and ignores the
 second (even though it's different).

13.2.6. Approach VI: Duplication

 This approach is similar to approach V (Section 13.2.5). The
 attacker listens on the network for a STUN request. When it sees
 one, it generates its own STUN request towards the server. This STUN
 request is identical to the one it saw, but with a spoofed source IP
 address. The spoofed address is equal to the one that the attacker
 desires to have placed in the mapped address of the STUN response.
 In fact, the attacker generates a flood of such packets. The STUN
 server will receive the one original request, plus a flood of
 duplicate fake ones. It generates responses to all of them. If the
 flood is sufficiently large for the responses to congest routers or
 some other equipment, there is a reasonable probability that the one
 real response is lost (along with many of the faked ones), but the
 net result is that only the faked responses are received by the STUN
 client. These responses are all identical and all contain the mapped
 address that the attacker wanted the client to use.

 The flood of duplicate packets is not needed (that is, only one faked
 request is sent), so long as the faked response beats the real
 response back to the client, and the client uses the first response,
 and ignores the second (even though it's different).

 Note that, in this approach, launching a DoS attack against the STUN
 server or the IP network, to prevent the valid response from being
 sent or received, is problematic. The attacker needs the STUN server
 to be available to handle its own request. Due to the periodic
 retransmissions of the request from the client, this leaves a very
 tiny window of opportunity. The attacker must start the DoS attack
 immediately after the actual request from the client, causing the
 correct response to be discarded, and then cease the DoS attack in
 order to send its own request, all before the next retransmission
 from the client. Due to the close spacing of the retransmits (100ms
 to a few seconds), this is very difficult to do.

 Besides DoS attacks, there may be other ways to prevent the actual
 request from the client from reaching the server. Layer 2
 manipulations, for example, might be able to accomplish it.

 Fortunately, this approach is subject to the same limitations
 documented in Approach III (Section 13.2.3), which limit the range of
 mapped addresses the attacker can cause the STUN server to generate.

Rosenberg, et al. Expires April 26, 2007 [Page 49]

Internet-Draft STUN October 2006

13.3. Countermeasures

 STUN provides mechanisms to counter the approaches described above,
 and additional, non-STUN techniques can be used as well.

 First off, it is RECOMMENDED that networks with STUN clients
 implement ingress source filtering [6]. This is particularly
 important for the NATs themselves. As Section 13.2.3 explains, NATs
 which do not perform this check can be used as "reflectors" in DDoS
 attacks. Most NATs do perform this check as a default mode of
 operation. We strongly advise people who purchase NATs to ensure
 that this capability is present and enabled.

 Secondly, for usages where the STUN server is not co-located with
 some kind of application (such as the binding discovery usage), it is
 RECOMMENDED that STUN servers be run on hosts dedicated to STUN, with
 all UDP and TCP ports disabled except for the STUN ports. This is to
 prevent viruses and Trojan horses from infecting STUN servers, in
 order to prevent their compromise. This helps mitigate Approach I
 (Section 13.2.1).

 Thirdly, to prevent the DNS attack of Section 13.2.2, Section 8.2
 recommends that the client verify the credentials provided by the
 server with the name used in the DNS lookup.

 Finally, all of the attacks above rely on the client taking the
 mapped address it learned from STUN, and using it in application
 layer protocols. If encryption and message integrity are provided
 within those protocols, the eavesdropping and identity assumption
 attacks can be prevented. As such, applications that make use of
 STUN addresses in application protocols SHOULD use integrity and
 encryption, even if a SHOULD level strength is not specified for that
 protocol. For example, multimedia applications using STUN addresses
 to receive RTP traffic would use secure RTP [23].

 The above three techniques are non-STUN mechanisms. STUN itself
 provides several countermeasures.

 Approaches IV (Section 13.2.4), when generating the response locally,
 and V (Section 13.2.5) require an attacker to generate a faked
 response. A faked response must match the 96-bit transaction ID of
 the request. The attack is further prevented by using the message
 integrity mechanism provided in STUN, described in Section 11.4.

 Approaches III (Section 13.2.3), IV (Section 13.2.4), when using the
 relaying technique, and VI (Section 13.2.6), however, are not
 preventable through server signatures. These three approaches are
 functional when the attacker modifies nothing but the source address

Rosenberg, et al. Expires April 26, 2007 [Page 50]

Internet-Draft STUN October 2006

 of the STUN request. Sadly, this is the one thing that cannot be
 protected through cryptographic means, as this is the change that
 STUN itself is seeking to detect and report. It is therefore an
 inherent weakness in NAT, and not fixable in STUN.

13.4. Residual Threats

 None of the countermeasures listed above can prevent the attacks
 described in Section 13.2.3 if the attacker is in the appropriate
 network paths. Specifically, consider the case in which the attacker
 wishes to convince client C that it has address V. The attacker needs
 to have a network element on the path between A and the server (in
 order to modify the request) and on the path between the server and V
 so that it can forward the response to C. Furthermore, if there is a
 NAT between the attacker and the server, V must also be behind the
 same NAT. In such a situation, the attacker can either gain access
 to all the application-layer traffic or mount the DDOS attack
 described in Section 13.1.1. Note that any host which exists in the
 correct topological relationship can be DDOSed. It need not be using
 STUN.

14. IAB Considerations

 The IAB has studied the problem of "Unilateral Self Address Fixing"
 (UNSAF), which is the general process by which a client attempts to
 determine its address in another realm on the other side of a NAT
 through a collaborative protocol reflection mechanism (RFC3424 [24]).
 STUN is an example of a protocol that performs this type of function
 for the binding discovery usage. The IAB has mandated that any
 protocols developed for this purpose document a specific set of
 considerations. This section meets those requirements for the
 binding discovery usage.

14.1. Problem Definition

 From RFC3424 [24], any UNSAF proposal must provide:

 Precise definition of a specific, limited-scope problem that is to
 be solved with the UNSAF proposal. A short term fix should not be
 generalized to solve other problems; this is why "short term fixes
 usually aren't".

 The specific problem being solved by STUN is to provide the
 functionality necessary to describe how to connect two endpoints
 regardless of the location of type of NATs in the topology.

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424

Rosenberg, et al. Expires April 26, 2007 [Page 51]

Internet-Draft STUN October 2006

14.2. Exit Strategy

 From RFC3424 [24], any UNSAF proposal must provide:

 Description of an exit strategy/transition plan. The better short
 term fixes are the ones that will naturally see less and less use
 as the appropriate technology is deployed.

 STUN by itself does not provide an exit strategy. This is provided
 by techniques, such as Interactive Connectivity Establishment (ICE
 [13]), that allow a client to determine whether addresses learned
 from STUN are needed, or whether other addresses, such as the one on
 the local interface, will work when communicating with another host.
 With such a detection technique, as a client finds that the addresses
 provided by STUN are never used, STUN queries can cease to be made,
 thus allowing them to phase out.

14.3. Brittleness Introduced by STUN

 From RFC3424 [24], any UNSAF proposal must provide:

 Discussion of specific issues that may render systems more
 "brittle". For example, approaches that involve using data at
 multiple network layers create more dependencies, increase
 debugging challenges, and make it harder to transition.

 STUN introduces brittleness into the system in several ways:

 o Transport addresses discovered by STUN in the Binding Discovery
 usage will only be useful for receiving packets from a peer if the
 NAT does not have address or address and port dependent mapping
 properties. When this usage is used in isolation, this makes STUN
 brittle, since its effectiveness depends on the type of NAT. This
 brittleness is eliminated when the Binding Discovery usage is used
 in concert with mechanisms which can verify the transport address
 and use others if it doesn't work. ICE is an example of such a
 mechanism.

 o Transport addresses discovered by STUN in the Binding Discovery
 usage will only be useful for receiving packets from a peer if the
 STUN server subtends the address realm of the peer. For example,
 consider client A and B, both of which have residential NAT
 devices. Both devices connect them to their cable operators, but
 both clients have different providers. Each provider has a NAT in
 front of their entire network, connecting it to the public
 Internet. If the STUN server used by A is in A's cable operator's
 network, an address obtained by it will not be usable by B. The
 STUN server must be in the network which is a common ancestor to

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424

Rosenberg, et al. Expires April 26, 2007 [Page 52]

Internet-Draft STUN October 2006

 both - in this case, the public Internet. When this usage is used
 in isolation, this makes STUN brittle, since its effectiveness
 depends on the topological placement of the STUN server. This
 brittleness is eliminated when the Binding Discovery usage is used
 in concert with mechanisms which can verify the transport address
 and use others if it doesn't work. ICE is an example of such a
 mechanism.

 o The bindings allocated from the NAT need to be continuously
 refreshed. Since the timeouts for these bindings is very
 implementation specific, the refresh interval cannot easily be
 determined. When the binding is not being actively used to
 receive traffic, but to wait for an incoming message, the binding
 refresh will needlessly consume network bandwidth.

 o The use of the STUN server in the Binding Discovery usage as an
 additional network element introduces another point of potential
 security attack. These attacks are largely prevented by the
 security measures provided by STUN, but not entirely.

 o The use of the STUN server as an additional network element
 introduces another point of failure. If the client cannot locate
 a STUN server, or if the server should be unavailable due to
 failure, the application cannot function.

 o The use of STUN to discover address bindings may result in an
 increase in latency for applications.

 o Transport addresses discovered by STUN in the Binding Discovery
 usage will only be useful for receiving packets from a peer behind
 the same NAT if the STUN server supports hairpinning [14]. When
 this usage is used in isolation, this makes STUN brittle, since
 its effectiveness depends on the topological placement of the STUN
 server. This brittleness is eliminated when the Binding Discovery
 usage is used in concert with mechanisms which can verify the
 transport address and use others if it doesn't work. ICE is an
 example of such a mechanism.

 o Most significantly, STUN introduces potential security threats
 which cannot be eliminated through cryptographic means. These
 security problems are described fully in Section 13.

14.4. Requirements for a Long Term Solution

 From RFC3424 [24], any UNSAF proposal must provide:

 Identify requirements for longer term, sound technical solutions
 -- contribute to the process of finding the right longer term

https://datatracker.ietf.org/doc/html/rfc3424

Rosenberg, et al. Expires April 26, 2007 [Page 53]

Internet-Draft STUN October 2006

 solution.

 Our experience with STUN has led to the following requirements for a
 long term solution to the NAT problem:

 o Requests for bindings and control of other resources in a NAT need
 to be explicit. Much of the brittleness in STUN derives from its
 guessing at the parameters of the NAT, rather than telling the NAT
 what parameters to use, or knowing what parameters the NAT will
 use.

 o Control needs to be in-band. There are far too many scenarios in
 which the client will not know about the location of middleboxes
 ahead of time. Instead, control of such boxes needs to occur in-
 band, traveling along the same path as the data will itself
 travel. This guarantees that the right set of middleboxes are
 controlled.

 o Control needs to be limited. Users will need to communicate
 through NATs which are outside of their administrative control.
 In order for providers to be willing to deploy NATs which can be
 controlled by users in different domains, the scope of such
 controls needs to be extremely limited - typically, allocating a
 binding to reach the address where the control packets are coming
 from.

 o Simplicity is Paramount. The control protocol will need to be
 implemented in very simple clients. The servers will need to
 support extremely high loads. The protocol will need to be
 extremely robust, being the precursor to a host of application
 protocols. As such, simplicity is key.

14.5. Issues with Existing NAPT Boxes

 From RFC3424 [24], any UNSAF proposal must provide:

 Discussion of the impact of the noted practical issues with
 existing, deployed NA[P]Ts and experience reports.

 Originally, RFC 3489 was developed as a standalone solution for NAT
 traversal for several types of applications, including VoIP.
 However, practical experience found that the limitations of its usage
 in isolation made it impractical as a complete solution. There were
 too many NATs which didn't support hairpinning or which had address
 and port dependent mapping properties.

 Consequently, STUN was revised to produce this specification, which
 turns STUN into a tool that is used as part of a broader solution.

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires April 26, 2007 [Page 54]

Internet-Draft STUN October 2006

 For multimedia communications protocols, this broader solution is
 ICE. ICE uses the binding discovery usage and defines its own
 connectivity check usage, and then utilizes them together. When done
 this way, ICE eliminates almost all of the brittleness and issues
 found with RFC 3489 alone.

15. IANA Considerations

 IANA is hereby requested to create two new registries - STUN methods
 and STUN Attributes. IANA must assign the following values to both
 registries before publication of this document as an RFC. New values
 for both STUN methods and STUN attributes are assigned through the
 IETF consensus process via RFCs approved by the IESG [25].

15.1. STUN Methods Registry

 The initial STUN methods are:

 0x001:Binding
 0x002:Shared Secret

15.2. STUN Attribute Registry

 STUN attributes values above 0x7FFF are considered optional
 attributes; attributes equal to 0x7FFF or below are considered
 mandatory attributes. The STUN client and STUN server process
 optional and mandatory attributes differently. IANA should assign
 values based on the RFC consensus process.

 The initial STUN Attributes are:

 0x0001: MAPPED-ADDRESS
 0x0006: USERNAME
 0x0007: PASSWORD
 0x0008: MESSAGE-INTEGRITY
 0x0009: ERROR-CODE
 0x000A: UNKNOWN-ATTRIBUTES
 0x0014: REALM
 0x0015: NONCE
 0x0020: XOR-MAPPED-ADDRESS
 0x8023: FINGERPRINT
 0x8022: SERVER
 0x8023: ALTERNATE-SERVER
 0x8024: REFRESH-INTERVAL

https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires April 26, 2007 [Page 55]

Internet-Draft STUN October 2006

16. Changes Since RFC 3489

 This specification updates RFC3489 [15]. This specification differs
 from RFC3489 in the following ways:

 o Removed the usage of STUN for NAT type detection and binding
 lifetime discovery. These techniques have proven overly brittle
 due to wider variations in the types of NAT devices than described
 in this document. Removed the RESPONSE-ADDRESS, CHANGED-ADDRESS,
 CHANGE-REQUEST, SOURCE-ADDRESS, and REFLECTED-FROM attributes.

 o Added a fixed 32-bit magic cookie and reduced length of
 transaction ID by 32 bits. The magic cookie begins at the same
 offset as the original transaction ID.

 o Added the XOR-MAPPED-ADDRESS attribute, which is included in
 Binding Responses if the magic cookie is present in the request.
 Otherwise the RFC3489 behavior is retained (that is, Binding
 Response includes MAPPED-ADDRESS). See discussion in XOR-MAPPED-
 ADDRESS regarding this change.

 o Introduced formal structure into the Message Type header field,
 with an explicit pair of bits for indication of request, response,
 error response or indication. Consequently, the message type
 field is split into the class (one of the previous four) and
 method.

 o Explicitly point out that the most significant two bits of STUN
 are 0b00, allowing easy differentiation with RTP packets when used
 with ICE.

 o Added support for IPv6. Made it clear that an IPv4 client could
 get a v6 mapped address, and vice-a-versa.

 o Added long-term credential-based authentication.

 o Added the SERVER, REALM, NONCE, and ALTERNATE-SERVER attributes.

 o Removed recommendation to continue listening for STUN Responses
 for 10 seconds in an attempt to recognize an attack.

 o Introduced the concept of STUN usages and defined three usages -
 Binding Discovery, NAT Keepalive, and Short term password.

 o Changed transaction timers to be more TCP friendly.

 o Removed the STUN example that centered around the separation of
 the control and media planes. Instead, provided more information

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires April 26, 2007 [Page 56]

Internet-Draft STUN October 2006

 on using STUN with protocols.

17. Acknowledgements

 The authors would like to thank Cedric Aoun, Pete Cordell, Cullen
 Jennings, Bob Penfield, Xavier Marjou, Bruce Lowekamp and Chris
 Sullivan for their comments, and Baruch Sterman and Alan Hawrylyshen
 for initial implementations. Thanks for Leslie Daigle, Allison
 Mankin, Eric Rescorla, and Henning Schulzrinne for IESG and IAB input
 on this work.

18. References

18.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.

 [3] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [4] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [5] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [6] Ferguson, P. and D. Senie, "Network Ingress Filtering: Defeating
 Denial of Service Attacks which employ IP Source Address
 Spoofing", BCP 38, RFC 2827, May 2000.

 [7] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP Authentication:
 Basic and Digest Access Authentication", RFC 2617, June 1999.

 [8] Paxson, V. and M. Allman, "Computing TCP's Retransmission
 Timer", RFC 2988, November 2000.

 [9] International Telecommunications Union, "Error-correcting
 Procedures for DCEs Using Asynchronous-to-Synchronous
 Conversion", ITU-T Recommendation V.42, 1994.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2988

Rosenberg, et al. Expires April 26, 2007 [Page 57]

Internet-Draft STUN October 2006

18.2. Informational References

 [10] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing
 for Message Authentication", RFC 2104, February 1997.

 [11] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [12] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [13] Rosenberg, J., "Interactive Connectivity Establishment (ICE): A
 Methodology for Network Address Translator (NAT) Traversal for
 Offer/Answer Protocols", draft-ietf-mmusic-ice-11 (work in
 progress), October 2006.

 [14] Audet, F. and C. Jennings, "NAT Behavioral Requirements for
 Unicast UDP", draft-ietf-behave-nat-udp-08 (work in progress),
 October 2006.

 [15] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy, "STUN
 - Simple Traversal of User Datagram Protocol (UDP) Through
 Network Address Translators (NATs)", RFC 3489, March 2003.

 [16] Rosenberg, J., "Obtaining Relay Addresses from Simple Traversal
 Underneath NAT (STUN)", draft-ietf-behave-turn-02 (work in
 progress), October 2006.

 [17] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications",

RFC 3550, July 2003.

 [18] Jennings, C. and R. Mahy, "Managing Client Initiated
 Connections in the Session Initiation Protocol (SIP)",

draft-ietf-sip-outbound-04 (work in progress), June 2006.

 [19] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [20] Senie, D., "Network Address Translator (NAT)-Friendly
 Application Design Guidelines", RFC 3235, January 2002.

 [21] Holdrege, M. and P. Srisuresh, "Protocol Complications with the
 IP Network Address Translator", RFC 3027, January 2001.

 [22] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-11
https://datatracker.ietf.org/doc/html/draft-ietf-behave-nat-udp-08
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/draft-ietf-behave-turn-02
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/draft-ietf-sip-outbound-04
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc3235
https://datatracker.ietf.org/doc/html/rfc3027

Rosenberg, et al. Expires April 26, 2007 [Page 58]

Internet-Draft STUN October 2006

 Session Description Protocol (SDP)", RFC 3264, June 2002.

 [23] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

RFC 3711, March 2004.

 [24] Daigle, L. and IAB, "IAB Considerations for UNilateral Self-
 Address Fixing (UNSAF) Across Network Address Translation",

RFC 3424, November 2002.

 [25] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434

Rosenberg, et al. Expires April 26, 2007 [Page 59]

Internet-Draft STUN October 2006

Authors' Addresses

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 Email: jdrosen@cisco.com
 URI: http://www.jdrosen.net

 Christian Huitema
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 US

 Email: huitema@microsoft.com

 Rohan Mahy
 Plantronics
 345 Encinal Street
 Santa Cruz, CA 95060
 US

 Email: rohan@ekabal.com

 Dan Wing
 Cisco Systems
 771 Alder Drive
 San Jose, CA 95035
 US

 Email: dwing@cisco.com

http://www.jdrosen.net

Rosenberg, et al. Expires April 26, 2007 [Page 60]

Internet-Draft STUN October 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Rosenberg, et al. Expires April 26, 2007 [Page 61]

