
BEHAVE Working Group J. Rosenberg
Internet-Draft Cisco
Obsoletes: 3489 (if approved) R. Mahy
Intended status: Standards Track Plantronics
Expires: August 26, 2008 P. Matthews
 Avaya
 D. Wing
 Cisco
 February 23, 2008

Session Traversal Utilities for (NAT) (STUN)
draft-ietf-behave-rfc3489bis-15

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 26, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Abstract

 Session Traversal Utilities for NAT (STUN) is a protocol that serves
 as a tool for other protocols in dealing with NAT traversal. It can
 be used by an endpoint to determine the IP address and port allocated

Rosenberg, et al. Expires August 26, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft STUN February 2008

 to it by a NAT. It can also be used to check connectivity between
 two endpoints, and as a keep-alive protocol to maintain NAT bindings.
 STUN works with many existing NATs, and does not require any special
 behavior from them.

 STUN is not a NAT traversal solution by itself. Rather, it is a tool
 to be used in the context of a NAT traversal solution. This is an
 important change from the previous version of this specification (RFC

3489), which presented STUN as a complete solution.

 This document obsoletes RFC 3489.

Table of Contents

1. Introduction . 4
2. Evolution from RFC 3489 4
3. Overview of Operation . 5
4. Terminology . 8
5. Definitions . 8
6. STUN Message Structure . 10
7. Base Protocol Procedures 12
7.1. Forming a Request or an Indication 12
7.2. Sending the Request or Indication 13
7.2.1. Sending over UDP 13
7.2.2. Sending over TCP or TLS-over-TCP 14

7.3. Receiving a STUN Message 16
7.3.1. Processing a Request 17
7.3.1.1. Forming a Success or Error Response 17
7.3.1.2. Sending the Success or Error Response 18

7.3.2. Processing an Indication 18
7.3.3. Processing a Success Response 19
7.3.4. Processing an Error Response 19

8. FINGERPRINT Mechanism . 20
9. DNS Discovery of a Server 20
10. Authentication and Message-Integrity Mechanisms 21
10.1. Short-Term Credential Mechanism 22
10.1.1. Forming a Request or Indication 22
10.1.2. Receiving a Request or Indication 22
10.1.3. Receiving a Response 23

10.2. Long-term Credential Mechanism 24
10.2.1. Forming a Request 25
10.2.1.1. First Request 25
10.2.1.2. Subsequent Requests 25

10.2.2. Receiving a Request 25
10.2.3. Receiving a Response 26

11. ALTERNATE-SERVER Mechanism 27
12. Backwards Compatibility with RFC 3489 28

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires August 26, 2008 [Page 2]

Internet-Draft STUN February 2008

12.1. Changes to Client Processing 28
12.2. Changes to Server Processing 28

13. Basic Server Behavior . 29
14. STUN Usages . 29
15. STUN Attributes . 31
15.1. MAPPED-ADDRESS . 32
15.2. XOR-MAPPED-ADDRESS 33
15.3. USERNAME . 34
15.4. MESSAGE-INTEGRITY . 34
15.5. FINGERPRINT . 35
15.6. ERROR-CODE . 36
15.7. REALM . 37
15.8. NONCE . 38
15.9. UNKNOWN-ATTRIBUTES 38
15.10. SERVER . 38
15.11. ALTERNATE-SERVER . 38

16. Security Considerations 39
16.1. Attacks against the Protocol 39
16.1.1. Outside Attacks 39
16.1.2. Inside Attacks . 40

16.2. Attacks Affecting the Usage 40
16.2.1. Attack I: DDoS Against a Target 41
16.2.2. Attack II: Silencing a Client 41
16.2.3. Attack III: Assuming the Identity of a Client 41
16.2.4. Attack IV: Eavesdropping 41

16.3. Hash Agility Plan . 42
17. IAB Considerations . 42
18. IANA Considerations . 42
18.1. STUN Methods Registry 42
18.2. STUN Attribute Registry 43
18.3. STUN Error Code Registry 44
18.4. STUN UDP and TCP Port Numbers 44

19. Changes Since RFC 3489 . 44
20. Contributors . 46
21. Acknowledgements . 46
22. References . 46
22.1. Normative References 46
22.2. Informational References 47

Appendix A. C Snippet to Determine STUN Message Types 49
 Authors' Addresses . 49
 Intellectual Property and Copyright Statements 51

https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires August 26, 2008 [Page 3]

Internet-Draft STUN February 2008

1. Introduction

 The protocol defined in this specification, Session Traversal
 Utilities for NAT, provides a tool for dealing with NATs. It
 provides a means for an endpoint to determine the IP address and port
 allocated by a NAT that corresponds to its private IP address and
 port. It also provides a way for an endpoint to keep a NAT binding
 alive. With some extensions, the protocol can be used to do
 connectivity checks between two endpoints [I-D.ietf-mmusic-ice], or
 to relay packets between two endpoints [I-D.ietf-behave-turn].

 In keeping with its tool nature, this specification defines an
 extensible packet format, defines operation over several transport
 protocols, and provides for two forms of authentication.

 STUN is intended to be used in context of one or more NAT traversal
 solutions. These solutions are known as STUN usages. Each usage
 describes how STUN is utilized to achieve the NAT traversal solution.
 Typically, a usage indicates when STUN messages get sent, which
 optional attributes to include, what server is used, and what
 authentication mechanism is to be used. Interactive Connectivity
 Establishment (ICE) [I-D.ietf-mmusic-ice] is one usage of STUN. SIP
 Outbound [I-D.ietf-sip-outbound] is another usage of STUN. In some
 cases, a usage will require extensions to STUN. A STUN extension can
 be in the form of new methods, attributes, or error response codes.
 More information on STUN usages can be found in Section 14.

2. Evolution from RFC 3489

 STUN was originally defined in RFC 3489 [RFC3489]. That
 specification, sometimes referred to as "classic STUN", represented
 itself as a complete solution to the NAT traversal problem. In that
 solution, a client would discover whether it was behind a NAT,
 determine its NAT type, discover its IP address and port on the
 public side of the outermost NAT, and then utilize that IP address
 and port within the body of protocols, such as the Session Initiation
 Protocol (SIP) [RFC3261]. However, experience since the publication
 of RFC 3489 has found that classic STUN simply does not work
 sufficiently well to be a deployable solution. The address and port
 learned through classic STUN are sometimes usable for communications
 with a peer, and sometimes not. Classic STUN provided no way to
 discover whether it would, in fact, work or not, and it provided no
 remedy in cases where it did not. Furthermore, classic STUN's
 algorithm for classification of NAT types was found to be faulty, as
 many NATs did not fit cleanly into the types defined there.

 Classic STUN also had a security vulnerability - attackers could

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires August 26, 2008 [Page 4]

Internet-Draft STUN February 2008

 provide the client with incorrect mapped addresses under certain
 topologies and constraints, and this was fundamentally not solvable
 through any cryptographic means. Though this problem remains with
 this specification, those attacks are now mitigated through the use
 of more complete solutions that make use of STUN.

 For these reasons, this specification obsoletes RFC 3489, and instead
 describes STUN as a tool that is utilized as part of a complete NAT
 traversal solution. ICE [I-D.ietf-mmusic-ice] is a complete NAT
 traversal solution for protocols based on the offer/answer [RFC3264]
 methodology, such as SIP. SIP Outbound [I-D.ietf-sip-outbound] is a
 complete solution for traversal of SIP signaling, and it uses STUN in
 a very different way. Though it is possible that a protocol may be
 able to use STUN by itself (classic STUN) as a traversal solution,
 such usage is not described here and is strongly discouraged for the
 reasons described above.

 The on-the-wire protocol described here is changed only slightly from
 classic STUN. The protocol now runs over TCP in addition to UDP.
 Extensibility was added to the protocol in a more structured way. A
 magic-cookie mechanism for demultiplexing STUN with application
 protocols was added by stealing 32 bits from the 128 bit transaction
 ID defined in RFC 3489, allowing the change to be backwards
 compatible. Mapped addresses are encoded using a new exclusive-or
 format. There are other, more minor changes. See Section 19 for a
 more complete listing.

 Due to the change in scope, STUN has also been renamed from "Simple
 Traversal of UDP Through NAT" to "Session Traversal Utilities for
 NAT". The acronym remains STUN, which is all anyone ever remembers
 anyway.

3. Overview of Operation

 This section is descriptive only.

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires August 26, 2008 [Page 5]

Internet-Draft STUN February 2008

 /-----\
 // STUN \\
 | Server |
 \\ //
 \-----/

 +--------------+ Public Internet
 | NAT 2 |.......................
 +--------------+

 +--------------+ Private NET 2
 | NAT 1 |.......................
 +--------------+

 /-----\
 // STUN \\
 | Client |
 \\ // Private NET 1
 \-----/

 Figure 1: One possible STUN Configuration

 One possible STUN configuration is shown in Figure 1. In this
 configuration, there are two entities (called STUN agents) that
 implement the STUN protocol. The lower agent in the figure is the
 client, and is connected to private network 1. This network connects
 to private network 2 through NAT 1. Private network 2 connects to
 the public Internet through NAT 2. The upper agent in the figure is
 the server, and resides on the public Internet.

 STUN is a client-server protocol. It supports two types of
 transactions. One is a request/response transaction in which a
 client sends a request to a server, and the server returns a
 response. The second is an indication transaction in which either
 agent - client or server - sends an indication which generates no
 response. Both types of transactions include a transaction ID, which
 is a randomly selected 96-bit number. For request/response
 transactions, this transaction ID allows the client to associate the
 response with the request that generated it; for indications, this

Rosenberg, et al. Expires August 26, 2008 [Page 6]

Internet-Draft STUN February 2008

 simply serves as a debugging aid.

 All STUN messages start with a fixed header that includes a method, a
 class, and the transaction ID. The method indicates which of the
 various requests or indications this is; this specification defines
 just one method, Binding, but other methods are expected to be
 defined in other documents. The class indicates whether this is a
 request, a success response, an error response, or an indication.
 Following the fixed header comes zero or more attributes, which are
 type-length-value extensions that convey additional information for
 the specific message.

 This document defines a single method called Binding. The Binding
 method can be used either in request/response transactions or in
 indication transactions. When used in request/response transactions,
 the Binding method can be used to determine the particular "binding"
 a NAT has allocated to a STUN client. When used in either request/
 response or in indication transactions, the Binding method can also
 be used to keep these "bindings" alive.

 In the Binding request/response transaction, a Binding Request is
 sent from a STUN client to a STUN server. When the Binding Request
 arrives at the STUN server, it may have passed through one or more
 NATs between the STUN client and the STUN server (in Figure 1, there
 were two such NATs). As the Binding Request message passes through a
 NAT, the NAT will modify the source transport address (that is, the
 source IP address and the source port) of the packet. As a result,
 the source transport address of the request received by the server
 will be the public IP address and port created by the NAT closest to
 the server. This is called a reflexive transport address. The STUN
 server copies that source transport address into an XOR-MAPPED-
 ADDRESS attribute in the STUN Binding Response and sends the Binding
 Response back to the STUN client. As this packet passes back through
 a NAT, the NAT will modify the destination transport address in the
 IP header, but the transport address in the XOR-MAPPED-ADDRESS
 attribute within the body of the STUN response will remain untouched.
 In this way, the client can learn its reflexive transport address
 allocated by the outermost NAT with respect to the STUN server.

 In some usages, STUN must be multiplexed with other protocols (e.g.,
 [I-D.ietf-mmusic-ice], [I-D.ietf-sip-outbound]). In these usages,
 there must be a way to inspect a packet and determine if it is a STUN
 packet or not. STUN provides three fields in the STUN header with
 fixed values that can be used for this purpose. If this is not
 sufficient, then STUN packets can also contain a FINGERPRINT value
 which can further be used to distinguish the packets.

 STUN defines a set of optional procedures that a usage can decide to

Rosenberg, et al. Expires August 26, 2008 [Page 7]

Internet-Draft STUN February 2008

 use, called mechanisms. These mechanisms include DNS discovery, a
 redirection technique to an alternate server, a fingerprint attribute
 for demultiplexing, and two authentication and message integrity
 exchanges. The authentication mechanisms revolve around the use of a
 username, password, and message-integrity value. Two authentication
 mechanisms, the long-term credential mechanism and the short-term
 credential mechanism, are defined in this specification. Each usage
 specifies the mechanisms allowed with that usage.

 In the long-term credential mechanism, the client and server share a
 pre-provisioned username and password and perform a digest challenge/
 response exchange inspired by (but differing in details) to the one
 defined for HTTP [RFC2617]. In the short-term credential mechanism,
 the client and the server exchange a username and password through
 some out-of-band method prior to the STUN exchange. For example, in
 the ICE usage [I-D.ietf-mmusic-ice] the two endpoints use out-of-band
 signaling to exchange a username and password. These are used to
 integrity protect and authenticate the request and response. There
 is no challenge or nonce used.

4. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119] and indicate requirement levels for compliant STUN
 implementations.

5. Definitions

 STUN Agent: An entity that implements the STUN protocol. The entity
 can either be a STUN client or a STUN server.

 STUN Client: A STUN client is an entity that sends STUN requests,
 and receives STUN responses. STUN clients can also send
 indications. In this specification, the terms STUN client and
 client are synonymous.

 STUN Server: A STUN server is an entity that receives STUN requests
 and sends STUN responses. A STUN server can also send
 indications. In this specification, the terms STUN server and
 server are synonymous.

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Rosenberg, et al. Expires August 26, 2008 [Page 8]

Internet-Draft STUN February 2008

 Transport Address: The combination of an IP address and port number
 (such as a UDP or TCP port number).

 Reflexive Transport Address: A transport address learned by a client
 that identifies that client as seen by another host on an IP
 network, typically a STUN server. When there is an intervening
 NAT between the client and the other host, the reflexive transport
 address represents the mapped address allocated to the client on
 the public side of the NAT. Reflexive transport addresses are
 learned from the mapped address attribute (MAPPED-ADDRESS or XOR-
 MAPPED-ADDRESS) in STUN responses.

 Mapped Address: Same meaning as Reflexive Address. This term is
 retained only for for historic reasons and due to the naming of
 the MAPPED-ADDRESS and XOR-MAPPED-ADDRESS attributes.

 Long Term Credential: A username and associated password that
 represent a shared secret between client and server. Long term
 credentials are generally granted to the client when a subscriber
 enrolls in a service and persist until the subscriber leaves the
 service or explicitly changes the credential.

 Long Term Password: The password from a long term credential.

 Short Term Credential: A temporary username and associated password
 which represent a shared secret between client and server. Short
 term credentials are obtained through some kind of protocol
 mechanism between the client and server, preceding the STUN
 exchange. A short term credential has an explicit temporal scope,
 which may be based on a specific amount of time (such as 5
 minutes) or on an event (such as termination of a SIP dialog).
 The specific scope of a short term credential is defined by the
 application usage.

 Short Term Password: The password component of a short term
 credential.

 STUN Indication: A STUN message that does not receive a response

 Attribute: The STUN term for a Type-Length-Value (TLV) object that
 can be added to a STUN message. Attributes are divided into two
 types: comprehension-required and comprehension-optional. STUN
 agents can safely ignore comprehension-optional attributes they
 don't understand, but cannot successfully process a message if it
 contains comprehension-required attributes that are not
 understood.

Rosenberg, et al. Expires August 26, 2008 [Page 9]

Internet-Draft STUN February 2008

 RTO: Retransmission TimeOut, which defines the initial period of
 time between transmission of a request and the first retransmit of
 that request.

6. STUN Message Structure

 STUN messages are encoded in binary using network-oriented format
 (most significant byte or octet first, also commonly known as big-
 endian). The transmission order is described in detail in Appendix B
 of RFC791 [RFC0791]. Unless otherwise noted, numeric constants are
 in decimal (base 10).

 All STUN messages MUST start with a 20-byte header followed by zero
 or more Attributes. The STUN header contains a STUN message type,
 magic cookie, transaction ID, and message length.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0| STUN Message Type | Message Length |
 +-+
 | Magic Cookie |
 +-+
 | |
 | Transaction ID (96 bits) |
 | |
 +-+

 Figure 2: Format of STUN Message Header

 The most significant two bits of every STUN message MUST be zeroes.
 This can be used to differentiate STUN packets from other protocols
 when STUN is multiplexed with other protocols on the same port.

 The message type defines the message class (request, success
 response, failure response, or indication) and the message method
 (the primary function) of the STUN message. Although there are four
 message classes, there are only two types of transactions in STUN:
 request/response transactions (which consist of a request message and
 a response message), and indication transactions (which consists of a
 single indication message). Response classes are split into error
 and success responses to aid in quickly processing the STUN message.

https://datatracker.ietf.org/doc/html/rfc791#appendix-B
https://datatracker.ietf.org/doc/html/rfc791#appendix-B
https://datatracker.ietf.org/doc/html/rfc0791

Rosenberg, et al. Expires August 26, 2008 [Page 10]

Internet-Draft STUN February 2008

 The message type field is decomposed further into the following
 structure:

 0 1
 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +--+--+-+-+-+-+-+-+-+-+-+-+-+-+
 |M |M |M|M|M|C|M|M|M|C|M|M|M|M|
 |11|10|9|8|7|1|6|5|4|0|3|2|1|0|
 +--+--+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 3: Format of STUN Message Type Field

 Here the bits in the message type field are shown as most-significant
 (M11) through least-significant (M0). M11 through M0 represent a 12-
 bit encoding of the method. C1 and C0 represent a 2 bit encoding of
 the class. A class of 0b00 is a Request, a class of 0b01 is an
 indication, a class of 0b10 is a success response, and a class of
 0b11 is an error response. This specification defines a single
 method, Binding. The method and class are orthogonal, so that for
 each method, a request, success response, error response and
 indication are defined for that method.

 For example, a Binding Request has class=0b00 (request) and
 method=0b000000000001 (Binding), and is encoded into the first 16
 bits as 0x0001. A Binding response has class=0b10 (success response)
 and method=0b000000000001, and is encoded into the first 16 bits as
 0x0101.

 Note: This unfortunate encoding is due to assignment of values in
 [RFC3489] which did not consider encoding Indications, Success,
 and Errors using bit fields.

 The magic cookie field MUST contain the fixed value 0x2112A442 in
 network byte order. In RFC 3489 [RFC3489], this field was part of
 the transaction ID; placing the magic cookie in this location allows
 a server to detect if the client will understand certain attributes
 that were added in this revised specification. In addition, it aids
 in distinguishing STUN packets from packets of other protocols when
 STUN is multiplexed with those other protocols on the same port.

 The transaction ID is a 96 bit identifier, used to uniquely identify
 STUN transactions. For request/response transactions, the
 transaction ID is chosen by the STUN client for the request and
 echoed by the server in the response. For indications, it is chosen
 by the agent sending the indication. It primarily serves to
 correlate requests with responses, though it also plays a small role
 in helping to prevent certain types of attacks. As such, the

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires August 26, 2008 [Page 11]

Internet-Draft STUN February 2008

 transaction ID MUST be uniformly and randomly chosen from the
 interval 0 .. 2**96-1. Resends of the same request reuse the same
 transaction ID, but the client MUST choose a new transaction ID for
 new transactions unless the new request is bit-wise identical to the
 previous request and sent from the same transport address to the same
 IP address. Success and error responses MUST carry the same
 transaction ID as their corresponding request. When an agent is
 acting as a STUN server and STUN client on the same port, the
 transaction IDs in requests sent by the agent have no relationship to
 the transaction IDs in requests received by the agent.

 The message length MUST contain the size, in bytes, of the message
 not including the 20 byte STUN header. Since all STUN attributes are
 padded to a multiple of four bytes, the last two bits of this field
 are always zero. This provides another way to distinguish STUN
 packets from packets of other protocols.

 Following the STUN fixed portion of the header are zero or more
 attributes. Each attribute is TLV (type-length-value) encoded. The
 details of the encoding, and of the attributes themselves is given in

Section 15.

7. Base Protocol Procedures

 This section defines the base procedures of the STUN protocol. It
 describes how messages are formed, how they are sent, and how they
 are processed when they are received. It also defines the detailed
 processing of the Binding method. Other sections in this document
 describe optional procedures that a usage may elect to use in certain
 situations. Other documents may define other extensions to STUN, by
 adding new methods, new attributes, or new error response codes.

7.1. Forming a Request or an Indication

 When formulating a request or indication message, the agent MUST
 follow the rules in Section 6 when creating the header. In addition,
 the message class MUST be either "Request" or "Indication" (as
 appropriate), and the method must be either Binding or some method
 defined in another document.

 The agent then adds any attributes specified by the method or the
 usage. For example, some usages may specify that the agent use an
 authentication method (Section 10) or the FINGERPRINT attribute
 (Section 8).

 For the Binding method with no authentication, no attributes are
 required unless the usage specifies otherwise.

Rosenberg, et al. Expires August 26, 2008 [Page 12]

Internet-Draft STUN February 2008

 All STUN requests and responses sent over UDP SHOULD be less than the
 path MTU, if known. If the path MTU is unknown, requests and
 responses SHOULD be the smaller of 576 bytes and the first-hop MTU
 for IPv4 [RFC1122] and 1280 bytes for IPv6 [RFC2460]. This value
 corresponds to the overall size of the IP packet. Consequently, for
 IPv4, the actual STUN message would need to be less than 548 bytes
 (576 minus 20 bytes IP header, minus 8 byte UDP header, assuming no
 IP options are used). STUN provides no ability to handle the case
 where the request is under the MTU but the response would be larger
 than the MTU. It is not envisioned that this limitation will be an
 issue for STUN. The MTU limitation is a SHOULD, and not a MUST, to
 account for cases where STUN itself is being used to probe for MTU
 characteristics [I-D.ietf-behave-nat-behavior-discovery]. Outside of
 this or similar applications, the MTU constraint MUST be followed.

7.2. Sending the Request or Indication

 The agent then sends the request or indication. This document
 specifies how to send STUN messages over UDP, TCP, or TLS-over-TCP;
 other transport protocols may be added in the future. The STUN usage
 must specify which transport protocol is used, and how the agent
 determines the IP address and port of the recipient. Section 9
 describes a DNS-based method of determining the IP address and port
 of a server which a usage may elect to use. STUN may be used with
 anycast addresses, but only with UDP and in usages where
 authentication is not used.

 At any time, a client MAY have multiple outstanding STUN requests
 with the same STUN server (that is, multiple transactions in
 progress, with different transaction ids). Absent other limits to
 the rate of new transactions (such as those specified by ICE for
 connectivity checks), a client SHOULD space new transactions to a
 server by RTO and SHOULD limit itself to ten outstanding transactions
 to the same sevrer.

7.2.1. Sending over UDP

 When running STUN over UDP it is possible that the STUN message might
 be dropped by the network. Reliability of STUN request/response
 transactions is accomplished through retransmissions of the request
 message by the client application itself. STUN indications are not
 retransmitted; thus indication transactions over UDP are not
 reliable.

 A client SHOULD retransmit a STUN request message starting with an
 interval of RTO ("Retransmission TimeOut"), doubling after each
 retransmission. The RTO is an estimate of the round-trip-time, and
 is computed as described in RFC 2988 [RFC2988], with two exceptions.

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988

Rosenberg, et al. Expires August 26, 2008 [Page 13]

Internet-Draft STUN February 2008

 First, the initial value for RTO SHOULD be configurable (rather than
 the 3s recommended in RFC 2988) and SHOULD be greater than 500ms.
 The exception cases for this SHOULD are when other mechanisms are
 used to derive congestion thresholds (such as the ones defined in ICE
 for fixed rate streams), or when STUN is used in non-Internet
 environments with known network capacities. In fixed-line access
 links, a value of 500ms is RECOMMENDED. Secondly, the value of RTO
 MUST NOT be rounded up to the nearest second. Rather, a 1ms accuracy
 MUST be maintained. As with TCP, the usage of Karn's algorithm is
 RECOMMENDED [KARN87]. When applied to STUN, it means that RTT
 estimates SHOULD NOT be computed from STUN transactions which result
 in the retransmission of a request.

 The value for RTO SHOULD be cached by a client after the completion
 of the transaction, and used as the starting value for RTO for the
 next transaction to the same server (based on equality of IP
 address). The value SHOULD be considered stale and discarded after
 10 minutes.

 Retransmissions continue until a response is received, or until a
 total of Rc requests have been sent. Rc SHOULD be configurable and
 SHOULD have a default of 7. If, after the last request, a duration
 equal to 16 times the RTO has passed without a response (providing
 ample time to get a response if only this final request actually
 succeeds), the client SHOULD consider the transaction to have failed.
 A STUN transaction over UDP is also considered failed if there has
 been a hard ICMP error [RFC1122]. For example, assuming an RTO of
 500ms, requests would be sent at times 0ms, 500ms, 1500ms, 3500ms,
 7500ms, 15500ms, and 31500ms. If the client has not received a
 response after 39500ms, the client will consider the transaction to
 have timed out.

7.2.2. Sending over TCP or TLS-over-TCP

 For TCP and TLS-over-TCP, the client opens a TCP connection to the
 server.

 In some usages of STUN, STUN is sent as the only protocol over the
 TCP connection. In this case, it can be sent without the aid of any
 additional framing or demultiplexing. In other usages, or with other
 extensions, it may be multiplexed with other data over a TCP
 connection. In that case, STUN MUST be run on top of some kind of
 framing protocol, specified by the usage or extension, which allows
 for the agent to extract complete STUN messages and complete
 application layer messages. The STUN service running on the well
 known port or ports discovered through the the DNS procedures in

Section 9 is for STUN alone, and not for STUN multiplexed with other
 data. Consequently, no framing protocols are used in connections to

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc1122

Rosenberg, et al. Expires August 26, 2008 [Page 14]

Internet-Draft STUN February 2008

 those servers. When additional framing is utilized, the usage will
 specify how the client knows to apply it and what port to connect to.
 For example, in the case of ICE connectivity checks, this information
 is learned through out-of-band negotiation between client and server.

 When STUN is run by itself over TLS-over-TCP, the
 TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite MUST be supported at a
 minimum. Implementations MAY also support any other ciphersuite.
 When it receives the TLS Certificate message, the client SHOULD
 verify the certificate and inspect the site identified by the
 certificate. If the certificate is invalid, revoked, or if it does
 not identify the appropriate party, the client MUST NOT send the STUN
 message or otherwise proceed with the STUN transaction. The client
 MUST verify the identity of the server. To do that, it follows the
 identification procedures defined in Section 3.1 of RFC 2818
 [RFC2818]. Those procedures assume the client is dereferencing a
 URI. For purposes of usage with this specification, the client
 treats the domain name or IP address used in Section 8.1 as the host
 portion of the URI that has been dereferenced. If DNS was not used,
 the client MUST be configured with a set of authorized domains whose
 certificates will be accepted.

 When STUN is run multiplexed with other protocols over a TLS-over-TCP
 connection, the mandatory ciphersuites and TLS handling procedures
 operate as defined by those protocols.

 Reliability of STUN over TCP and TLS-over-TCP is handled by TCP
 itself, and there are no retransmissions at the STUN protocol level.
 However, for a request/response transaction, if the client has not
 received a response 39500ms after it sent the SYN to establish the
 connection, it considers the transaction to have timed out. This
 value has been chosen to equalize the TCP and UDP timeouts for the
 default initial RTO.

 In addition, if the client is unable to establish the TCP connection,
 or the TCP connection is reset or fails before a response is
 received, any request/response transaction in progress is considered
 to have failed

 The client MAY send multiple transactions over a single TCP (or TLS-
 over-TCP) connection, and it MAY send another request before
 receiving a response to the previous. The client SHOULD keep the
 connection open until it

 o has no further STUN requests or indications to send over that
 connection, and;

https://datatracker.ietf.org/doc/html/rfc2818#section-3.1
https://datatracker.ietf.org/doc/html/rfc2818

Rosenberg, et al. Expires August 26, 2008 [Page 15]

Internet-Draft STUN February 2008

 o has no plans to use any resources (such as a mapped address
 (MAPPED-ADDRESS or XOR-MAPPED-ADDRESS) or relayed address
 [I-D.ietf-behave-turn]) that were learned though STUN requests
 sent over that connection, and;

 o if multiplexing other application protocols over that port, has
 finished using that other application, and;

 o if using that learned port with a remote peer, has established
 communications with that remote peer, as is required by some TCP
 NAT traversal techniques (e.g., [I-D.ietf-mmusic-ice-tcp]).

 At the server end, the server SHOULD keep the connection open, and
 let the client close it. Bindings learned by the client will remain
 valid in intervening NATs only while the connection remains open.
 Only the client knows how long it needs the binding. The server
 SHOULD NOT close a connection if a request was received over that
 connection for which a response was not sent. A server MUST NOT ever
 open a connection back towards the client in order to send a
 response. Servers SHOULD follow best practices regarding connection
 management in cases of overload.

7.3. Receiving a STUN Message

 This section specifies the processing of a STUN message. The
 processing specified here is for STUN messages as defined in this
 specification; additional rules for backwards compatibility are
 defined in in Section 12. Those additional procedures are optional,
 and usages can elect to utilize them. First, a set of processing
 operations are applied that are independent of the class. This is
 followed by class-specific processing, described in the subsections
 which follow.

 When a STUN agent receives a STUN message, it first checks that the
 message obeys the rules of Section 6. It checks that the first two
 bits are 0, that the magic cookie field has the correct value, that
 the message length is sensible, and that the method value is a
 supported method. If the message-class is Success Response or Error
 Response, the agent checks that the transaction ID matches a
 transaction that is still in progress. If the FINGERPRINT extension
 is being used, the agent checks that the FINGERPRINT attribute is
 present and contains the correct value. If any errors are detected,
 the message is silently discarded. In the case when STUN is being
 multiplexed with another protocol, an error may indicate that this is
 not really a STUN message; in this case, the agent should try to
 parse the message as a different protocol.

 The STUN agent then does any checks that are required by a

Rosenberg, et al. Expires August 26, 2008 [Page 16]

Internet-Draft STUN February 2008

 authentication mechanism that the usage has specified (see
Section 10.

 Once the authentication checks are done, the STUN agent checks for
 unknown attributes and known-but-unexpected attributes in the
 message. Unknown comprehension-optional attributes MUST be ignored
 by the agent. Known-but-unexpected attributes SHOULD be ignored by
 the agent. Unknown comprehension-required attributes cause
 processing that depends on the message-class and is described below.

 At this point, further processing depends on the message class of the
 request.

7.3.1. Processing a Request

 If the request contains one or more unknown comprehension-required
 attributes, the server replies with an error response with an error
 code of 420 (Unknown Attribute), and includes an UNKNOWN-ATTRIBUTES
 attribute in the response that lists the unknown comprehension-
 required attributes.

 The server then does any additional checking that the method or the
 specific usage requires. If all the checks succeed, the server
 formulates a success response as described below.

 If the request uses UDP transport and is a retransmission of a
 request for which the server has already generated a success response
 within the last 40 seconds, the server MUST retransmit the same
 success response. One way for a server to do this is to remember all
 transaction IDs received over UDP and their corresponding responses
 in the last 10 seconds. Another way is to reprocess the request and
 recompute the response. The latter technique MUST only be applied to
 requests which are idempotent (a request is considered idempotent
 when the same request can be safely repeated without impacting the
 overall state of the system) and result in the same success response
 for the same request. The Binding method is considered to idempotent
 in this way (even though certain rare network events could cause the
 reflexive transport address value to change). Extensions to STUN
 SHOULD state whether their request types have this property or not.

7.3.1.1. Forming a Success or Error Response

 When forming the response (success or error), the server follows the
 rules of section 6. The method of the response is the same as that
 of the request, and the message class is either "Success Response" or
 "Error Response".

 For an error response, the server MUST add an ERROR-CODE attribute

Rosenberg, et al. Expires August 26, 2008 [Page 17]

Internet-Draft STUN February 2008

 containing the error code specified in the processing above. The
 reason phrase is not fixed, but SHOULD be something suitable for the
 error code. For certain errors, additional attributes are added to
 the message. These attributes are spelled out in the description
 where the error code is specified. For example, for an error code of
 420 (Unknown Attribute), the server MUST include an UNKNOWN-
 ATTRIBUTES attribute. Certain authentication errors also cause
 attributes to be added (see Section 10). Extensions may define other
 errors and/or additional attributes to add in error cases.

 If the server authenticated the request using an authentication
 mechanism, then the server SHOULD add the appropriate authentication
 attributes to the response (see Section 10).

 The server also adds any attributes required by the specific method
 or usage. In addition, the server SHOULD add a SERVER attribute to
 the message.

 For the Binding method, no additional checking is required unless the
 usage specifies otherwise. When forming the success response, the
 server adds a XOR-MAPPED-ADDRESS attribute to the response, where the
 contents of the attribute are the source transport address of the
 request message. For UDP, this is the source IP address and source
 UDP port of the request message. For TCP and TLS-over-TCP, this is
 the source IP address and source TCP port of the TCP connection as
 seen by the server.

7.3.1.2. Sending the Success or Error Response

 The response (success or error) is sent over the same transport as
 the request was received on. If the request was received over UDP,
 the destination IP address and port of the response is the source IP
 address and port of the received request message, and the source IP
 address and port of the response is equal to the destination IP
 address and port of the received request message. If the request was
 received over TCP or TLS-over-TCP, the response is sent back on the
 same TCP connection as the request was received on.

7.3.2. Processing an Indication

 If the indication contains unknown comprehension-required attributes,
 the indication is discarded and processing ceases.

 The agent then does any additional checking that the method or the
 specific usage requires. If all the checks succeed, the agent then
 processes the indication. No response is generated for an
 indication.

Rosenberg, et al. Expires August 26, 2008 [Page 18]

Internet-Draft STUN February 2008

 For the Binding method, no additional checking or processing is
 required, unless the usage specifies otherwise. The mere receipt of
 the message by the agent has refreshed the "bindings" in the
 intervening NATs.

 Since indications are not re-transmitted over UDP (unlike requests),
 there is no need to handle re-transmissions of indications at the
 sending agent.

7.3.3. Processing a Success Response

 If the success response contains unknown comprehension-required
 attributes, the response is discarded and the transaction is
 considered to have failed.

 The client then does any additional checking that the method or the
 specific usage requires. If all the checks succeed, the client then
 processes the success response.

 For the Binding method, the client checks that the XOR-MAPPED-ADDRESS
 attribute is present in the response. The client checks the address
 family specified. If it is an unsupported address family, the
 attribute SHOULD be ignored. If it is an unexpected but supported
 address family (for example, the Binding transaction was sent over
 IPv4, but the address family specified is IPv6), then the client MAY
 accept and use the value.

7.3.4. Processing an Error Response

 If the error response contains unknown comprehension-required
 attributes, or if the error response does not contain an ERROR-CODE
 attribute, then the transaction is simply considered to have failed.

 The client then does any processing specified by the authentication
 mechanism (see Section 10). This may result in a new transaction
 attempt.

 The processing at this point depends on the error-code, the method,
 and the usage; the following are the default rules:

 o If the error code is 300 through 399, the client SHOULD consider
 the transaction as failed unless the ALTERNATE-SERVER extension is
 being used. See Section 11.

 o If the error code is 400 through 499, the client declares the
 transaction failed; in the case of 420 (Unknown Attribute), the
 response should contain a UNKNOWN-ATTRIBUTES attribute that gives
 additional information.

Rosenberg, et al. Expires August 26, 2008 [Page 19]

Internet-Draft STUN February 2008

 o If the error code is 500 through 599, the client MAY resend the
 request; clients that do so MUST limit the number of times they do
 this.

 Any other error code causes the client to consider the transaction
 failed.

8. FINGERPRINT Mechanism

 This section describes an optional mechanism for STUN that aids in
 distinguishing STUN messages from packets of other protocols when the
 two are multiplexed on the same transport address. This mechanism is
 optional, and a STUN usage must describe if and when it is used. The
 FINGERPRINT mechanism is not backwards compatible with RFC3489, and
 cannot be used in environments where such compatibility is required.

 In some usages, STUN messages are multiplexed on the same transport
 address as other protocols, such as RTP. In order to apply the
 processing described in Section 7, STUN messages must first be
 separated from the application packets. Section 6 describes three
 fixed fields in the STUN header that can be used for this purpose.
 However, in some cases, these three fixed fields may not be
 sufficient.

 When the FINGERPRINT extension is used, an agent includes the
 FINGERPRINT attribute in messages it sends to another agent.

Section 15.5 describes the placement and value of this attribute.
 When the agent receives what it believes is a STUN message, then, in
 addition to other basic checks, the agent also checks that the
 message contains a FINGERPRINT attribute and that the attribute
 contains the correct value. Section 7.3 describes when in the
 overall processing of a STUN message the FINGERPRINT check is
 performed. This additional check helps the agent detect messages of
 other protocols that might otherwise seem to be STUN messages.

9. DNS Discovery of a Server

 This section describes an optional procedure for STUN that allows a
 client to use DNS to determine the IP address and port of a server.
 A STUN usage must describe if and when this extension is used. To
 use this procedure, the client must know a server's domain name and a
 service name; the usage must also describe how the client obtains
 these. Hard-coding the domain-name of the server into software is
 NOT RECOMMENDED in case the domain name is lost or needs to change
 for legal or other reasons.

https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires August 26, 2008 [Page 20]

Internet-Draft STUN February 2008

 When a client wishes to locate a STUN server in the public Internet
 that accepts Binding Request/Response transactions, the SRV service
 name is "stun". When it wishes to locate a STUN server which accepts
 Binding Request/Response transactions over a TLS session, the SRV
 service name is "stuns". STUN usages MAY define additional DNS SRV
 service names.

 The domain name is resolved to a transport address using the SRV
 procedures specified in [RFC2782]. The DNS SRV service name is the
 service name provided as input to this procedure. The protocol in
 the SRV lookup is the transport protocol the client will run STUN
 over: "udp" for UDP and "tcp" for TCP. Note that only "tcp" is
 defined with "stuns" at this time.

 The procedures of RFC 2782 are followed to determine the server to
 contact. RFC 2782 spells out the details of how a set of SRV records
 are sorted and then tried. However, RFC2782 only states that the
 client should "try to connect to the (protocol, address, service)"
 without giving any details on what happens in the event of failure.
 When following these procedures, if the STUN transaction times out
 without receipt of a response, the client SHOULD retry the request to
 the next server in the ordered defined by RFC 2782. Such a retry is
 only possible for request/response transmissions, since indication
 transactions generate no response or timeout.

 The default port for STUN requests is 3478, for both TCP and UDP.
 Administrators of STUN servers SHOULD use this port in their SRV
 records for UDP and TCP. In all cases, the port in DNS MUST reflect
 the one the server is listening on. The default port for STUN over
 TLS is XXXX [[NOTE TO RFC EDITOR: Replace with IANA registered port
 number for stuns]]. Servers can run STUN over TLS on the same port
 as STUN over TCP if the server software supports determining whether
 the initial message is a TLS or STUN message.

 If no SRV records were found, the client performs an A or AAAA record
 lookup of the domain name. The result will be a list of IP
 addresses, each of which can be contacted at the default port using
 UDP or TCP, independent of the STUN usage. For usages that require
 TLS, lack of SRV records is equivalent to a failure of the
 transaction, since the request or indication MUST NOT be sent unless
 SRV records provided a transport address specifically for TLS.

10. Authentication and Message-Integrity Mechanisms

 This section defines two mechanisms for STUN that a client and server
 can use to provide authentication and message-integrity; these two
 mechanisms are known as the short-term credential mechanism and the

https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782

Rosenberg, et al. Expires August 26, 2008 [Page 21]

Internet-Draft STUN February 2008

 long-term credential mechanism. These two mechanisms are optional,
 and each usage must specify if and when these mechanisms are used.
 Consequently, both clients and servers will know which mechanism (if
 any) to follow based on knowledge of which usage applies. For
 example, a STUN server on the public Internet supporting ICE would
 have no authentication, whereas the STUN server functionality in an
 agent supporting connectivity checks would utilize short term
 credentials. An overview of these two mechanisms is given in

Section 3.

 Each mechanism specifies the additional processing required to use
 that mechanism, extending the processing specified in Section 7. The
 additional processing occurs in three different places: when forming
 a message; when receiving a message immediately after the basic
 checks have been performed; and when doing the detailed processing of
 error responses.

10.1. Short-Term Credential Mechanism

 The short-term credential mechanism assumes that, prior to the STUN
 transaction, the client and server have used some other protocol to
 exchange a credential in the form of a username and password. This
 credential is time-limited. The time-limit is defined by the usage.
 As an example, in the ICE usage [I-D.ietf-mmusic-ice], the two
 endpoints use out-of-band signaling to agree on a username and
 password, and this username and password is applicable for the
 duration of the media session.

 This credential is used to form a message integrity check in each
 request and in many responses. There is no challenge and response as
 in the long term mechanism; consequently, replay is prevented by
 virtue of the time-limited nature of the credential.

10.1.1. Forming a Request or Indication

 For a request or indication message, the agent MUST include the
 USERNAME and MESSAGE-INTEGRITY attributes in the message. The HMAC
 for the MESSAGE-INTEGRITY attribute is computed as described in

Section 15.4. Note that the password is never included in the
 request or indication.

10.1.2. Receiving a Request or Indication

 After the agent has done the basic processing of a message, the agent
 performs the checks listed below in order specified:

 o If the message does not contain both a MESSAGE-INTEGRITY and a
 USERNAME attribute:

Rosenberg, et al. Expires August 26, 2008 [Page 22]

Internet-Draft STUN February 2008

 * If the message is a request, the server MUST reject the request
 with an error response. This response MUST use an error code
 of 400 (Bad Request).

 * If the message is an indication, the agent MUST silently
 discard the indication.

 o If the USERNAME does not contain a username value currently valid
 within the server:

 * If the message is a request, the server MUST reject the request
 with an error response. This response MUST use an error code
 of 401 (Unauthorized).

 * If the message is an indication, the agent MUST silently
 discard the indication.

 o Using the password associated with the username, compute the value
 for the message-integrity as described in Section 15.4. If the
 resulting value does not match the contents of the MESSAGE-
 INTEGRITY attribute:

 * If the message is a request, the server MUST reject the request
 with an error response. This response MUST use an error code
 of 401 (Unauthorized).

 * If the message is an indication, the agent MUST silently
 discard the indication.

 If these checks pass, the agent continues to process the request or
 indication. Any response generated by a server MUST include the
 MESSAGE-INTEGRITY attribute, computed using the password utilized to
 authenticate the request. The response MUST NOT contain the USERNAME
 attribute.

 If any of the checks fail, a server MUST NOT include a MESSAGE-
 INTEGRITY or USERNAME attribute in the error response. This is
 because, in these failure cases, the server cannot determine the
 shared secret necessary to compute MESSAGE-INTEGRITY.

10.1.3. Receiving a Response

 The client looks for the MESSAGE-INTEGRITY attribute in the response.
 If present, the client computes the message integrity over the
 response as defined in Section 15.4, using the same password it
 utilized for the request. If the resulting value matches the
 contents of the MESSAGE-INTEGRITY attribute, the response is
 considered authenticated. If the value does not match, or if

Rosenberg, et al. Expires August 26, 2008 [Page 23]

Internet-Draft STUN February 2008

 MESSAGE-INTEGRITY was absent, the response MUST be discarded, as if
 it was never received. This means that retransmits, if applicable,
 will continue.

10.2. Long-term Credential Mechanism

 The long-term credential mechanism relies on a long term credential,
 in the form of a username and password, that are shared between
 client and server. The credential is considered long-term since it
 is assumed that it is provisioned for a user, and remains in effect
 until the user is no longer a subscriber of the system, or is
 changed. This is basically a traditional "log-in" username and
 password given to users.

 Because these usernames and passwords are expected to be valid for
 extended periods of time, replay prevention is provided in the form
 of a digest challenge. In this mechanism, the client initially sends
 a request, without offering any credentials or any integrity checks.
 The server rejects this request, providing the user a realm (used to
 guide the user or agent in selection of a username and password) and
 a nonce. The nonce provides the replay protection. It is a cookie,
 selected by the server, and encoded in such a way as to indicate a
 duration of validity or client identity from which it is valid. The
 client retries the request, this time including its username, the
 realm, and echoing the nonce provided by the server. The client also
 includes a message-integrity, which provides an HMAC over the entire
 request, including the nonce. The server validates the nonce, and
 checks the message-integrity. If they match, the request is
 authenticated. If the nonce is no longer valid, it is considered
 "stale", and the server rejects the request, providing a new nonce.

 In subsequent requests to the same server, the client reuses the
 nonce, username, realm and password it used previously. In this way,
 subsequent requests are not rejected until the nonce becomes invalid
 by the server, in which case the rejection provides a new nonce to
 the client.

 Note that the long-term credential mechanism cannot be used to
 protect indications, since indications cannot be challenged. Usages
 utilizing indications must either use a short-term credential, or
 omit authentication and message integrity for them.

 Since the long-term credential mechanism is susceptible to offline
 dictionary attacks, deployments SHOULD utilize strong passwords.

Rosenberg, et al. Expires August 26, 2008 [Page 24]

Internet-Draft STUN February 2008

10.2.1. Forming a Request

 There are two cases when forming a request. In the first case, this
 is the first request from the client to the server (as identified by
 its IP address and port). In the second case, the client is
 submitting a subsequent request once a previous request/response
 transaction has completed successfully. Forming a request as a
 consequence of a 401 or 438 error response is covered in

Section 10.2.3 and is not considered a "subsequent request" and thus
 does not utilize the rules described in Section 10.2.1.2.

10.2.1.1. First Request

 If the client has not completed a successful request/response
 transaction with the server (as identified by hostname, if the DNS
 procedures of Section 9 are used, else IP address if not), it SHOULD
 omit the USERNAME, MESSAGE-INTEGRITY, REALM, and NONCE attributes.
 In other words, the very first request is sent as if there were no
 authentication or message integrity applied. The exception to this
 rule are requests sent to another server as a consequence of the
 ALTERNATE-SERVER mechanism described in Section 11. Those requests
 do include the USERNAME, REALM and NONCE from the original request,
 along with a newly computed MESSAGE-INTEGRITY based on them.

10.2.1.2. Subsequent Requests

 Once a request/response transaction has completed successfully, the
 client will have been been presented a realm and nonce by the server,
 and selected a username and password with which it authenticated.
 The client SHOULD cache the username, password, realm, and nonce for
 subsequent communications with the server. When the client sends a
 subsequent request, it SHOULD include the USERNAME, REALM, and NONCE
 attributes with these cached values. It SHOULD include a MESSAGE-
 INTEGRITY attribute, computed as described in Section 15.4 using the
 cached password.

10.2.2. Receiving a Request

 After the server has done the basic processing of a request, it
 performs the checks listed below in the order specified:

 o If the message does not contain a MESSAGE-INTEGRITY attribute, the
 server MUST generate an error response with an error code of 401
 (Unauthorized). This response MUST include a REALM value. It is
 RECOMMENDED that the REALM value be the domain name of the
 provider of the STUN server. The response MUST include a NONCE,
 selected by the server. The response SHOULD NOT contain a
 USERNAME or MESSAGE-INTEGRITY attribute.

Rosenberg, et al. Expires August 26, 2008 [Page 25]

Internet-Draft STUN February 2008

 o If the message contains a MESSAGE-INTEGRITY attribute, but is
 missing the USERNAME, REALM or NONCE attributes, the server MUST
 generate an error response with an error code of 400 (Bad
 Request). This response SHOULD NOT include a USERNAME, NONCE,
 REALM or MESSAGE-INTEGRITY attribute.

 o If the NONCE is no longer valid, the server MUST generate an error
 response with an error code of 438 (Stale Nonce). This response
 MUST include a NONCE and REALM attribute and SHOULD NOT incude the
 USERNAME or MESSAGE-INTEGRITY attribute. Servers can invalidate
 nonces in order to provide additional security. See Section 4.3
 of [RFC2617] for guidelines.

 o If the username in the USERNAME attribute is not valid, the server
 MUST generate an error response with an error code of 401
 (Unauthorized). This response MUST include a REALM value. It is
 RECOMMENDED that the REALM value be the domain name of the
 provider of the STUN server. The response MUST include a NONCE,
 selected by the server. The response SHOULD NOT contain a
 USERNAME or MESSAGE-INTEGRITY attribute.

 o Using the password associated with the username in the USERNAME
 attribute, compute the value for the message-integrity as
 described in Section 15.4. If the resulting value does not match
 the contents of the MESSAGE-INTEGRITY attribute, the server MUST
 reject the request with an error response. This response MUST use
 an error code of 401 (Unauthorized). It MUST include a REALM and
 NONCE attribute and SHOULD NOT include the USERNAME or MESSAGE-
 INTEGRITY attribute.

 If these checks pass, the server continues to process the request.
 Any response generated by the server (excepting the cases described
 above) MUST include the MESSAGE-INTEGRITY attribute, computed using
 the username and password utilized to authenticate the request. The
 REALM, NONCE, and USERNAME attributes SHOULD NOT be included.

10.2.3. Receiving a Response

 If the response is an error response, with an error code of 401
 (Unauthorized), the client SHOULD retry the request with a new
 transaction. This request MUST contain a USERNAME, determined by the
 client as the appropriate username for the REALM from the error
 response. The request MUST contain the REALM, copied from the error
 response. The request MUST contain the NONCE, copied from the error
 response. The request MUST contain the MESSAGE-INTEGRITY attribute,
 computed using the password associated with the username in the
 USERNAME attribute. The client MUST NOT perform this retry if it is
 not changing the USERNAME or REALM or its associated password, from

https://datatracker.ietf.org/doc/html/rfc2617#section-4.3
https://datatracker.ietf.org/doc/html/rfc2617#section-4.3

Rosenberg, et al. Expires August 26, 2008 [Page 26]

Internet-Draft STUN February 2008

 the previous attempt.

 If the response is an error response with an error code of 438 (Stale
 Nonce), the client MUST retry the request, using the new NONCE
 supplied in the 438 (Stale Nonce) response. This retry MUST also
 include the USERNAME, REALM and MESSAGE-INTEGRITY.

 The client looks for the MESSAGE-INTEGRITY attribute in the response
 (either success or failure). If present, the client computes the
 message integrity over the response as defined in Section 15.4, using
 the same password it utilized for the request. If the resulting
 value matches the contents of the MESSAGE-INTEGRITY attribute, the
 response is considered authenticated. If the value does not match,
 or if MESSAGE-INTEGRITY was absent, the response MUST be discarded,
 as if it was never received. This means that retransmits, if
 applicable, will continue.

11. ALTERNATE-SERVER Mechanism

 This section describes a mechanism in STUN that allows a server to
 redirect a client to another server. This extension is optional, and
 a usage must define if and when this extension is used. To prevent
 denial-of-service attacks, this extension MUST only be used in
 situations where the client and server are using an authentication
 and message-integrity mechanism.

 A server using this extension redirects a client to another server by
 replying to a request message with an error response message with an
 error code of 300 (Try Alternate). The server MUST include a
 ALTERNATE-SERVER attribute in the error response. The error response
 message MUST be authenticated, which in practice means the request
 message must have passed the authentication checks.

 A client using this extension handles a 300 (Try Alternate) error
 code as follows. If the error response has passed the authentication
 checks, then the client looks for a ALTERNATE-SERVER attribute in the
 error response. If one is found, then the client considers the
 current transaction as failed, and re-attempts the request with the
 server specified in the attribute, using the same transport protocol
 used for the previous request. The client SHOULD reuse any
 authentication credentials from the old request in the new
 transaction. If the server has been redirected to a server on which
 it has already tried this request within the last five minutes, it
 MUST ignore the redirection and consider the transaction to have
 failed. This prevents infinite ping-ponging between servers in case
 of redirection loops.

Rosenberg, et al. Expires August 26, 2008 [Page 27]

Internet-Draft STUN February 2008

12. Backwards Compatibility with RFC 3489

 This section define procedures that allow a degree of backwards
 compatible with the original protocol defined in RFC 3489 [RFC3489].
 This mechanism is optional, meant to be utilized only in cases where
 a new client can connect to an old server, or vice-a-versa. A usage
 must define if and when this procedure is used.

Section 19 lists all the changes between this specification and RFC
3489 [RFC3489]. However, not all of these differences are important,

 because "classic STUN" was only used in a few specific ways. For the
 purposes of this extension, the important changes are the following.
 In RFC 3489:

 o UDP was the only supported transport;

 o The field that is now the Magic Cookie field was a part of the
 transaction id field, and transaction ids were 128 bits long;

 o The XOR-MAPPED-ADDRESS attribute did not exist, and the Binding
 method used the MAPPED-ADDRESS attribute instead;

 o There were three comprehension-required attributes, RESPONSE-
 ADDRESS, CHANGE-REQUEST, and CHANGED-ADDRESS that have been
 removed from this specification;

 * These attributes are now part of the NAT Behavior Discovery
 usage. [I-D.ietf-behave-nat-behavior-discovery]

12.1. Changes to Client Processing

 A client that wants to interoperate with a [RFC3489] server SHOULD
 send a request message that uses the Binding method, contains no
 attributes, and uses UDP as the transport protocol to the server. If
 successful, the success response received from the server will
 contain a MAPPED-ADDRESS attribute rather than an XOR-MAPPED-ADDRESS
 attribute; other than this change, the processing of the response is
 identical to the procedures described above.

12.2. Changes to Server Processing

 A STUN server can detect when a given Binding Request message was
 sent from an RFC 3489 [RFC3489] client by the absence of the correct
 value in the Magic Cookie field. When the server detects an RFC 3489
 client, it SHOULD copy the value seen in the Magic Cookie field in
 the Binding Request to the Magic Cookie field in the Binding Response
 message, and insert a MAPPED-ADDRESS attribute instead of an XOR-
 MAPPED-ADDRESS attribute.

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires August 26, 2008 [Page 28]

Internet-Draft STUN February 2008

 The client might, in rare situations, include either the RESPONSE-
 ADDRESS or CHANGE-REQUEST attributes. In these situations, the
 server will view these as unknown comprehension-required attributes
 and reply with an error response. Since the mechanisms utilizing
 those attributes are no longer supported, this behavior is
 acceptable.

 The RFC 3489 version of STUN lacks both the Magic Cookie and the
 FINGERPRINT attribute that allows for a very high probablility of
 correctly identifying STUN messages when multiplexed with other
 protocols. Therefore, STUN implementations that are backwards
 compatible with RFC 3489 SHOULD NOT be used in cases where STUN will
 be multiplexed with another protocol. However, that should not be an
 issues as such multiplexing was not available in RFC 3489.

13. Basic Server Behavior

 This section defines the behavior of a basic, standalone STUN server.
 A basic STUN server provides clients with server reflexive transport
 addresses by receiving and replying to STUN Binding Requests.

 The STUN server MUST support the Binding method. It SHOULD NOT
 utilize the short term or long term credential mechanism. This is
 because the work involved in authenticating the request is more than
 the work in simply processing it. It SHOULD NOT utilize the
 ALTERNATE-SERVER mechanism for the same reason. It MUST support UDP
 and TCP. It MAY support STUN over TCP/TLS, however TLS provides
 minimal security benefits in this basic mode of operation. It MAY
 utilize the FINGERPRINT mechanism but MUST NOT require it. Since the
 standalove server only runs STUN, FINGERPRINT provides no benefit.
 Requiring it would break compatibility with RFC 3489, and such
 compatibility is desirable in a standalone server. Standalone STUN
 servers SHOULD support backwards compatibility with [RFC3489]
 clients, as described in Section 12.

 It is RECOMMENDED that administrators of STUN servers provide DNS
 entries for those servers as described in Section 9.

 A basic STUN server is not a solution for NAT traversal by itself.
 However, it can be utilized as part of a solution through STUN
 usages. This is discussed further in Section 14.

14. STUN Usages

 STUN by itself is not a solution to the NAT traversal problem.
 Rather, STUN defines a tool that can be used inside a larger

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires August 26, 2008 [Page 29]

Internet-Draft STUN February 2008

 solution. The term "STUN Usage" is used for any solution that uses
 STUN as a component.

 At the time of writing, three STUN usages are defined: Interactive
 Connectivity Establishment (ICE) [I-D.ietf-mmusic-ice], Client-
 initiated connections for SIP [I-D.ietf-sip-outbound], and NAT
 Behavior Discovery [I-D.ietf-behave-nat-behavior-discovery]. Other
 STUN usages may be defined in the future.

 A STUN usage defines how STUN is actually utilized - when to send
 requests, what to do with the responses, and which optional
 procedures defined here (or in an extension to STUN) are to be used.
 A usage would also define:

 o Which STUN methods are used;

 o What authentication and message integrity mechanisms are used;

 o The considerations around manual vs. automatic key derivation for
 the integrity mechanism, as discussed in [RFC4107];

 o What mechanisms are used to distinguish STUN messages from other
 messages. When STUN is run over TCP, a framing mechanism may be
 required;

 o How a STUN client determines the IP address and port of the STUN
 server;

 o Whether backwards compatibility to RFC 3489 is required;

 o What optional attributes defined here (such as FINGERPRINT and
 ALTERNATE-SERVER) or in other extensions are required.

 In addition, any STUN usage must consider the security implications
 of using STUN in that usage. A number of attacks against STUN are
 known (see the Security Considerations section in this document) and
 any usage must consider how these attacks can be thwarted or
 mitigated.

 Finally, a usage must consider whether its usage of STUN is an
 example of the Unilateral Self-Address Fixing approach to NAT
 traversal, and if so, address the questions raised in RFC 3424.
 [RFC3424]

https://datatracker.ietf.org/doc/html/rfc4107
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424

Rosenberg, et al. Expires August 26, 2008 [Page 30]

Internet-Draft STUN February 2008

15. STUN Attributes

 After the STUN header are zero or more attributes. Each attribute
 MUST be TLV encoded, with a 16 bit type, 16 bit length, and value.
 Each STUN attribute MUST end on a 32 bit boundary. As mentioned
 above, all fields in an attribute are transmitted most significant
 bit first.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Value (variable)
 +-+

 Figure 4: Format of STUN Attributes

 The value in the Length field MUST contain the length of the Value
 part of the attribute, prior to padding, measured in bytes. Since
 STUN aligns attributes on 32 bit boundaries, attributes whose content
 is not a multiple of 4 bytes are padded with 1, 2 or 3 bytes of
 padding so that its value contains a multiple of 4 bytes. The
 padding bits are ignored, and may be any value.

 Any attribute type MAY appear more than once in a STUN message.
 Unless specified otherwise, the order of appearance is significant:
 only the first occurance needs to be processed by a receiver, and any
 duplicates MAY be ignored by a receiver.

 To allow future revisions of this specification to add new attributes
 if needed, the attribute space is divided into two ranges.
 Attributes with type values between 0x0000 and 0x7FFF are
 comprehension-required attributes, which means that the STUN agent
 cannot successfully process the message unless it understands the
 attribute. Attributes with type values between 0x8000 and 0xFFFF are
 comprehension-optional attributes, which means that those attributes
 can be ignored by the STUN agent if it does not understand them.

Rosenberg, et al. Expires August 26, 2008 [Page 31]

Internet-Draft STUN February 2008

 The STUN Attribute types defined by this specification are:

 Comprehension-required range (0x0000-0x7FFF):
 0x0000: (Reserved)
 0x0001: MAPPED-ADDRESS
 0x0006: USERNAME
 0x0007: (Reserved; was PASSWORD)
 0x0008: MESSAGE-INTEGRITY
 0x0009: ERROR-CODE
 0x000A: UNKNOWN-ATTRIBUTES
 0x0014: REALM
 0x0015: NONCE
 0x0020: XOR-MAPPED-ADDRESS

 Comprehension-optional range (0x8000-0xFFFF)
 0x8022: SERVER
 0x8023: ALTERNATE-SERVER
 0x8028: FINGERPRINT

 The rest of this section describes the format of the various
 attributes defined in this specification.

15.1. MAPPED-ADDRESS

 The MAPPED-ADDRESS attribute indicates a reflexive transport address
 of the client. It consists of an eight bit address family, and a
 sixteen bit port, followed by a fixed length value representing the
 IP address. If the address family is IPv4, the address MUST be 32
 bits. If the address family is IPv6, the address MUST be 128 bits.
 All fields must be in network byte order.

 The format of the MAPPED-ADDRESS attribute is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 0 0| Family | Port |
 +-+
 | |
 | Address (32 bits or 128 bits) |
 | |
 +-+

 Figure 6: Format of MAPPED-ADDRESS attribute

Rosenberg, et al. Expires August 26, 2008 [Page 32]

Internet-Draft STUN February 2008

 The address family can take on the following values:

 0x01:IPv4
 0x02:IPv6

 The first 8 bits of the MAPPED-ADDRESS MUST be set to 0 and MUST be
 ignored by receivers. These bits are present for aligning parameters
 on natural 32 bit boundaries.

 This attribute is used only by servers for achieving backwards
 compatibility with RFC 3489 [RFC3489] clients.

15.2. XOR-MAPPED-ADDRESS

 The XOR-MAPPED-ADDRESS attribute is identical to the MAPPED-ADDRESS
 attribute, except that the reflexive transport address is obfuscated
 through the XOR function.

 The format of the XOR-MAPPED-ADDRESS is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |x x x x x x x x| Family | X-Port |
 +-+
 | X-Address (Variable)
 +-+

 Figure 8: Format of XOR-MAPPED-ADDRESS Attribute

 The Family represents the IP address family, and is encoded
 identically to the Family in MAPPED-ADDRESS.

 X-Port is computed by taking the mapped port in host byte order,
 XOR'ing it with the most significant 16 bits of the magic cookie, and
 then the converting the result to network byte order. If the IP
 address family is IPv4, X-Address is computed by taking the mapped IP
 address in host byte order, XOR'ing it with the magic cookie, and
 converting the result to network byte order. If the IP address
 family is IPv6, X-Address is computed by taking the mapped IP address
 in host byte order, XOR'ing it with the concatenation of the magic
 cookie and the 96-bit transaction ID, and converting the result to
 network byte order.

 The rules for encoding and processing the first 8 bits of the
 attribute's value, the rules for handling multiple occurrences of the
 attribute, and the rules for processing addresses families are the
 same as for MAPPED-ADDRESS.

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires August 26, 2008 [Page 33]

Internet-Draft STUN February 2008

 NOTE: XOR-MAPPED-ADDRESS and MAPPED-ADDRESS differ only in their
 encoding of the transport address. The former encodes the transport
 address by exclusive-or'ing it with the magic cookie. The latter
 encodes it directly in binary. RFC 3489 originally specified only
 MAPPED-ADDRESS. However, deployment experience found that some NATs
 rewrite the 32-bit binary payloads containing the NAT's public IP
 address, such as STUN's MAPPED-ADDRESS attribute, in the well-meaning
 but misguided attempt at providing a generic ALG function. Such
 behavior interferes with the operation of STUN and also causes
 failure of STUN's message integrity checking.

15.3. USERNAME

 The USERNAME attribute is used for message integrity. It identifies
 the username and password combination used in the message integrity
 check.

 The value of USERNAME is a variable length value. It MUST contain a
 UTF-8 [RFC3629] encoded sequence of less than 513 bytes, and MUST
 have been processed using SASLPrep [RFC4013].

15.4. MESSAGE-INTEGRITY

 The MESSAGE-INTEGRITY attribute contains an HMAC-SHA1 [RFC2104] of
 the STUN message. The MESSAGE-INTEGRITY attribute can be present in
 any STUN message type. Since it uses the SHA1 hash, the HMAC will be
 20 bytes. The text used as input to HMAC is the STUN message,
 including the header, up to and including the attribute preceding the
 MESSAGE-INTEGRITY attribute. With the exception of the FINGERPRINT
 attribute, which appears after MESSAGE-INTEGRITY, agents MUST ignore
 all other attributes that follow MESSAGE-INTEGRITY.

 The key for the HMAC depends on whether long term or short term
 credentials are in use. For long term credentials, the key is 16
 bytes:

 key = MD5(username ":" realm ":" SASLPrep(password))

 That is, the 16 byte key is formed by taking the MD5 hash of the
 result of concatenating the following five fields: (1) The username,
 with any quotes and trailing nulls removed, (2) A single colon, (3)
 The realm, with any quotes and trailing nulls removed, (4) A single
 colon, and (5) the password, with any trailing nulls removed and
 after processing using SASLPrep. For example, if the username was
 'user', the realm was 'realm', and the password was 'pass', then the
 16-byte HMAC key would be the result of performing an MD5 hash on the
 string 'user:realm:pass', the resulting hash being
 0x8493fbc53ba582fb4c044c456bdc40eb.

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc2104

Rosenberg, et al. Expires August 26, 2008 [Page 34]

Internet-Draft STUN February 2008

 For short term credentials:

 key = SASLPrep(password)

 Where MD5 is defined in RFC 1321 [RFC1321] and SASLPrep() is defined
 in [RFC4013].

 The structure of the key when used with long term credentials
 facilitates deployment in systems that also utilize SIP. Typically,
 SIP systems utilizing SIP's digest authentication mechanism do not
 actually store the password in the database. Rather, they store a
 value called H(A1), which is equal to the key defined above.

 Based on the rules above, the hash includes the length field from the
 STUN message header. Prior to performing the hash, the MESSAGE-
 INTEGRITY attribute MUST be inserted into the message (with dummy
 content). The length MUST then be set to point to the length of the
 message up to, and including, the MESSAGE-INTEGRITY attribute itself,
 but excluding any attributes after it. Once the computation is
 performed, the value of the MESSAGE-INTEGRITY attribute can be filled
 in, and the value of the length in the STUN header can be set to its
 correct value - the length of the entire message. Similarly, when
 validating the MESSAGE-INTEGRITY, the length field should be adjusted
 to point to the end of the MESSAGE-INTEGRITY attribute prior to
 calculating the HMAC. Such adjustment is necessary when attributes,
 such as FINGERPRINT, appear after MESSAGE-INTEGRITY.

15.5. FINGERPRINT

 The FINGERPRINT attribute MAY be present in all STUN messages. The
 value of the attribute is computed as the CRC-32 of the STUN message
 up to (but excluding) the FINGERPRINT attribute itself, xor-d with
 the 32 bit value 0x5354554e (the XOR helps in cases where an
 application packet is also using CRC-32 in it). The 32 bit CRC is
 the one defined in ITU V.42 [ITU.V42.2002], which has a generator
 polynomial of x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1.
 When present, the FINGERPRINT attribute MUST be the last attribute in
 the message, and thus will appear after MESSAGE-INTEGRITY.

 The FINGERPRINT attribute can aid in distinguishing STUN packets from
 packets of other protocols. See Section 8.

 As with MESSAGE-INTEGRITY, the CRC used in the FINGERPRINT attribute
 covers the length field from the STUN message header. Therefore,
 this value must be correct, and include the CRC attribute as part of
 the message length, prior to computation of the CRC. When using the
 FINGERPRINT attribute in a message, the attribute is first placed
 into the message with a dummy value, then the CRC is computed, and

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc4013

Rosenberg, et al. Expires August 26, 2008 [Page 35]

Internet-Draft STUN February 2008

 then the value of the attribute is updated. If the MESSAGE-INTEGRITY
 attribute is also present, then it must be present with the correct
 message-integrity value before the CRC is computed, since the CRC is
 done over the value of the MESSAGE-INTEGRITY attribute as well.

15.6. ERROR-CODE

 The ERROR-CODE attribute is used in Error Response messages. It
 contains a numeric error code value in the range of 300 to 699 plus a
 textual reason phrase encoded in UTF-8 [RFC3629], and is consistent
 in its code assignments and semantics with SIP [RFC3261] and HTTP
 [RFC2616]. The reason phrase is meant for user consumption, and can
 be anything appropriate for the error code. Recommended reason
 phrases for the defined error codes are presented below. The reason
 phrase MUST be a UTF-8 [RFC3629] encoded sequence of less than 128
 characters (which can be as long as 763 bytes).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Reserved, should be 0 |Class| Number |
 +-+
 | Reason Phrase (variable) ..
 +-+

 Figure 11: ERROR-CODE Attribute

 To facilitate processing, the class of the error code (the hundreds
 digit) is encoded separately from the rest of the code, as shown in
 Figure 11.

 The Reserved bits SHOULD be 0, and are for alignment on 32-bit
 boundaries. Receivers MUST ignore these bits. The Class represents
 the hundreds digit of the error code. The value MUST be between 3
 and 6. The number represents the error code modulo 100, and its
 value MUST be between 0 and 99.

 The following error codes, along with their recommended reason
 phrases are defined:

 300 Try Alternate: The client should contact an alternate server for
 this request. This error response MUST only be sent if the
 request included a USERNAME attribute and a valid MESSAGE-
 INTEGRITY attribute; otherwise it MUST NOT be sent and error
 code 400 (Bad Request) is suggested. This error response MUST
 be protected with the MESSAGE-INTEGRITY attribute, and receivers
 MUST validate the MESSAGE-INTEGRITY of this response before

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3629

Rosenberg, et al. Expires August 26, 2008 [Page 36]

Internet-Draft STUN February 2008

 redirecting themselves to an alternate server.

 Note: failure to generate and validate message-integrity
 for a 300 response allows an on-path attacker to falsify a
 300 response thus causing subsequent STUN messages to be
 sent to a victim.

 400 Bad Request: The request was malformed. The client SHOULD NOT
 retry the request without modification from the previous
 attempt. The server may not be able to generate a valid
 MESSAGE-INTEGRITY for this error, so the client MUST NOT expect
 a valid MESSAGE-INTEGRITY attribute on this response.

 401 Unauthorized: The request did not contain the correct
 credentials to proceed. The client should retry the request
 with proper credentials.

 420 Unknown Attribute: The server received STUN packet containing a
 comprehension-required attribute which it did not understand.
 The server MUST put this unknown attribute in the UNKNOWN-
 ATTRIBUTE attribute of its error response.

 438 Stale Nonce: The NONCE used by the client was no longer valid.
 The client should retry, using the NONCE provided in the
 response.

 500 Server Error: The server has suffered a temporary error. The
 client should try again.

15.7. REALM

 The REALM attribute may be present in requests and responses. It
 contains text which meets the grammar for "realm-value" as described
 in RFC 3261 [RFC3261] but without the double quotes and their
 surrounding whitespace. That is, it is an unquoted realm-value (and
 is therefore a sequence of qdtext or quoted-pair). It MUST be a
 UTF-8 [RFC3629] encoded sequence of less than 128 characters (which
 can be as long as 763 bytes), and MUST have been processed using
 SASLPrep [RFC4013].

 Presence of the REALM attribute in a request indicates that long-term
 credentials are being used for authentication. Presence in certain
 error responses indicates that the server wishes the client to use a
 long-term credential for authentication.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc4013

Rosenberg, et al. Expires August 26, 2008 [Page 37]

Internet-Draft STUN February 2008

15.8. NONCE

 The NONCE attribute may be present in requests and responses. It
 contains a sequence of qdtext or quoted-pair, which are defined in

RFC 3261 [RFC3261]. Note that this means that the NONCE attribute
 will not contain actual quote characters. See RFC 2617 [RFC2617],
 Section 4.3, for guidance on selection of nonce values in a server.
 It MUST be less than 128 characters (which can be as long as 763
 bytes).

15.9. UNKNOWN-ATTRIBUTES

 The UNKNOWN-ATTRIBUTES attribute is present only in an error response
 when the response code in the ERROR-CODE attribute is 420.

 The attribute contains a list of 16 bit values, each of which
 represents an attribute type that was not understood by the server.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Attribute 1 Type | Attribute 2 Type |
 +-+
 | Attribute 3 Type | Attribute 4 Type ...
 +-+

 Figure 12: Format of UNKNOWN-ATTRIBUTES attribute

 Note: In [RFC3489], this field was padded to 32 by duplicating the
 last attribute. In this version of the specification, the normal
 padding rules for attributes are used instead.

15.10. SERVER

 The server attribute contains a textual description of the software
 being used by the server, including manufacturer and version number.
 The attribute has no impact on operation of the protocol, and serves
 only as a tool for diagnostic and debugging purposes. The value of
 SERVER is variable length. It MUST be a UTF-8 [RFC3629] encoded
 sequence of less than 128 characters (which can be as long as 763
 bytes).

15.11. ALTERNATE-SERVER

 The alternate server represents an alternate transport address
 identifying a different STUN server which the STUN client should try.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2617#section-4.3
https://datatracker.ietf.org/doc/html/rfc2617#section-4.3
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3629

Rosenberg, et al. Expires August 26, 2008 [Page 38]

Internet-Draft STUN February 2008

 It is encoded in the same way as MAPPED-ADDRESS, and thus refers to a
 single server by IP address. The IP address family MUST be identical
 to that of the source IP address of the request.

 This attribute MUST only appear in an error response that contains a
 MESSAGE-INTEGRITY attribute. This prevents it from being used in
 denial-of-service attacks.

16. Security Considerations

16.1. Attacks against the Protocol

16.1.1. Outside Attacks

 An attacker can try to modify STUN messages in transit, in order to
 cause a failure in STUN operation. These attacks are detected for
 both requests and responses through the message integrity mechanism,
 using either a short term or long term credential. Of course, once
 detected, the manipulated packets will be dropped, causing the STUN
 transaction to effectively fail. This attack is possible only by an
 on-path attacker.

 An attacker that can observe, but not modify STUN messages in-transit
 (for example, an attacker present on a shared access medium, such as
 Wi-Fi), can see a STUN request, and then immediately send a STUN
 response, typically an error response, in order to disrupt STUN
 processing. This attack is also prevented for messages that utilize
 MESSAGE-INTEGRITY. However, some error responses, those related to
 authentication in particular, cannot be protected by MESSAGE-
 INTEGRITY. When STUN itself is run over a secure transport protocol
 (e.g., TLS), these attacks are completely mitigated.

 Depending on the STUN usage, these attacks may be of minimal
 consequence and thus do not require message integrity to mitigate.
 For example, when STUN is used to a basic STUN server to discover a
 server reflexive candidate for usage with ICE, authentication and
 message integrity are not required since these attacks are detected
 during the connectivity check phase. The connectivity checks
 themselves, however, require protection for proper operation of ICE
 overall. As described in Section 14, STUN usages describe when
 authentication and message integrity are needed.

 Since STUN uses the HMAC of a shared secret for authentication and
 integrity protection, it is subject to offline dictionary attacks.
 When authentication is utilized, it SHOULD be with a strong password
 that is not readily subject to offline dictionary attacks.
 Protection of the channel itself, using TLS, mitigates these attacks.

Rosenberg, et al. Expires August 26, 2008 [Page 39]

Internet-Draft STUN February 2008

 However, STUN is most often run over UDP and in those cases, strong
 passwords are the only way to protect against these attacks.

16.1.2. Inside Attacks

 A rogue client may try to launch a DoS attack against a server by
 sending it a large number of STUN requests. Fortunately, STUN
 requests can be processed statelessly by a server, making such
 attacks hard to launch.

 A rogue client may use a STUN server as a reflector, sending it
 requests with a falsified source IP address and port. In such a
 case, the response would be delivered to that source IP and port.
 There is no amplification of the number of packets with this attack
 (the STUN server sends one packet for each packet sent by the
 client), though there is a small increase in the amount of data,
 since STUN responses are typically larger than requests. This attack
 is mitigated by ingress source address filtering.

16.2. Attacks Affecting the Usage

 This section lists attacks that might be launched against a usage of
 STUN. Each STUN usage must consider whether these attacks are
 applicable to it, and if so, discuss counter-measures.

 Most of the attacks in this section revolve around an attacker
 modifying the reflexive address learned by a STUN client through a
 Binding Request/Binding Response transaction. Since the usage of the
 reflexive address is a function of the usage, the applicability and
 remediation of these attacks is usage-specific. In common
 situations, modification of the reflexive address by an on-path
 attacker is easy to do. Consider, for example, the common situation
 where STUN is run directly over UDP. In this case, an on-path
 attacker can modify the source IP address of the Binding Request
 before it arrives at the STUN server. The STUN server will then
 return this IP address in the XOR-MAPPED-ADDRESS attribute to the
 client, and send the response back to that (falsified) IP address and
 port. If the attacker can also intercept this response, it can
 direct it back towards the client. Protecting against this attack by
 using a message-integrity check is impossible, since a message-
 integrity value cannot cover the source IP address, since the
 intervening NAT must be able to modify this value. Instead, one
 solution to preventing the attacks listed below is for the client to
 verify the reflexive address learned, as is done in ICE
 [I-D.ietf-mmusic-ice]. Other usages may use other means to prevent
 these attacks.

Rosenberg, et al. Expires August 26, 2008 [Page 40]

Internet-Draft STUN February 2008

16.2.1. Attack I: DDoS Against a Target

 In this attack, the attacker provides one or more clients with the
 same faked reflexive address that points to the intended target.
 This will trick the STUN clients into thinking that their reflexive
 addresses are equal to that of the target. If the clients hand out
 that reflexive address in order to receive traffic on it (for
 example, in SIP messages), the traffic will instead be sent to the
 target. This attack can provide substantial amplification,
 especially when used with clients that are using STUN to enable
 multimedia applications. However, it can only be launched against
 targets for which packets from the STUN server to the target pass
 through the attacker, limiting the cases in which it is possible

16.2.2. Attack II: Silencing a Client

 In this attack, the attacker provides a STUN client with a faked
 reflexive address. The reflexive address it provides is a transport
 address that routes to nowhere. As a result, the client won't
 receive any of the packets it expects to receive when it hands out
 the reflexive address. This exploitation is not very interesting for
 the attacker. It impacts a single client, which is frequently not
 the desired target. Moreover, any attacker that can mount the attack
 could also deny service to the client by other means, such as
 preventing the client from receiving any response from the STUN
 server, or even a DHCP server. As with the attack in Section 16.2.1,
 this attack is only possible when the attacker is on path for packets
 sent from the STUN server towards this unused IP address.

16.2.3. Attack III: Assuming the Identity of a Client

 This attack is similar to attack II. However, the faked reflexive
 address points to the attacker itself. This allows the attacker to
 receive traffic which was destined for the client.

16.2.4. Attack IV: Eavesdropping

 In this attack, the attacker forces the client to use a reflexive
 address that routes to itself. It then forwards any packets it
 receives to the client. This attack would allow the attacker to
 observe all packets sent to the client. However, in order to launch
 the attack, the attacker must have already been able to observe
 packets from the client to the STUN server. In most cases (such as
 when the attack is launched from an access network), this means that
 the attacker could already observe packets sent to the client. This
 attack is, as a result, only useful for observing traffic by
 attackers on the path from the client to the STUN server, but not
 generally on the path of packets being routed towards the client.

Rosenberg, et al. Expires August 26, 2008 [Page 41]

Internet-Draft STUN February 2008

16.3. Hash Agility Plan

 This specification uses HMAC-SHA-1 for computation of the message
 integrity. If, at a later time, HMAC-SHA-1 is found to be
 compromised, the following is the remedy that will be applied.

 We will define a STUN extension which introduces a new message
 integrity attribute, computed using a new hash. Clients would be
 required to include both the new and old message integrity attributes
 in their requests or indications. A new server will utilize the new
 message integrity attribute, and an old one, the old. After a
 transition period where mixed implementations are in deployment, the
 old message-integrity attribute will be deprecated by another
 specification, and clients will cease including it in requests.

17. IAB Considerations

 The IAB has studied the problem of "Unilateral Self Address Fixing"
 (UNSAF), which is the general process by which a client attempts to
 determine its address in another realm on the other side of a NAT
 through a collaborative protocol reflection mechanism (RFC3424
 [RFC3424]). STUN can be used to perform this function using a
 Binding Request/Response transaction if one agent is behind a NAT and
 the other is on the public side of the NAT.

 The IAB has mandated that protocols developed for this purpose
 document a specific set of considerations. Because some STUN usages
 provide UNSAF functions (such as ICE [I-D.ietf-mmusic-ice]), and
 others do not (such as SIP Outbound [I-D.ietf-sip-outbound]), answers
 to these considerations need to be addressed by the usages
 themselves.

18. IANA Considerations

 IANA is hereby requested to create three new registries: a STUN
 methods registry, a STUN Attributes registry, and a STUN Error Codes
 registry. IANA is also requested to change the name of the assigned
 IANA port for STUN from "nat-stun-port" to "stun".

18.1. STUN Methods Registry

 A STUN method is a hex number in the range 0x000 - 0x3FF. The
 encoding of STUN method into a STUN message is described in

Section 6.

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424

Rosenberg, et al. Expires August 26, 2008 [Page 42]

Internet-Draft STUN February 2008

 The initial STUN methods are:

 0x000: (Reserved)
 0x001: Binding
 0x002: (Reserved; was SharedSecret)

 STUN methods in the range 0x000 - 0x1FF are assigned by IETF
 Consensus [RFC2434]. STUN methods in the range 0x200 - 0x3FF are
 assigned on a First Come First Served basis [RFC2434]

18.2. STUN Attribute Registry

 A STUN Attribute type is a hex number in the range 0x0000 - 0xFFFF.
 STUN attribute types in the range 0x0000 - 0x7FFF are considered
 comprehension-required; STUN attribute types in the range 0x8000 -
 0xFFFF are considered comprehension-optional. A STUN agent handles
 unknown comprehension-required and comprehension-optional attributes
 differently.

 The initial STUN Attributes types are:

 Comprehension-required range (0x0000-0x7FFF):
 0x0000: (Reserved)
 0x0001: MAPPED-ADDRESS
 0x0002: (Reserved; was RESPONSE-ADDRESS)
 0x0006: USERNAME
 0x0007: (Reserved; was PASSWORD)
 0x0008: MESSAGE-INTEGRITY
 0x0009: ERROR-CODE
 0x000A: UNKNOWN-ATTRIBUTES
 0x0014: REALM
 0x0015: NONCE
 0x0020: XOR-MAPPED-ADDRESS

 Comprehension-optional range (0x8000-0xFFFF)
 0x8022: SERVER
 0x8023: ALTERNATE-SERVER
 0x8028: FINGERPRINT

 STUN Attribute types in the first half of the comprehension-required
 range (0x0000 - 0x3FFF) and in the first half of the comprehension-
 optional range (0x8000 - 0xBFFF) are assigned by IETF Consensus
 [RFC2434]. STUN Attribute types in the second half of the
 comprehension-required range (0x4000 - 0x7FFF) and in the second half
 of the comprehension-optional range (0xC000 - 0xFFFF) are assigned on
 a First Come First Served basis [RFC2434].

https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Rosenberg, et al. Expires August 26, 2008 [Page 43]

Internet-Draft STUN February 2008

18.3. STUN Error Code Registry

 A STUN Error code is a number in the range 0 - 699. STUN error codes
 are accompanied by a textual reason phrase in UTF-8 [RFC3629] which
 is intended only for human consumption and can be anything
 appropriate; this document proposes only suggested values.

 STUN error codes are consistent in codepoint assignments and
 semantics with SIP [RFC3261] and HTTP [RFC2616].

 The initial values in this registry are given in Section 15.6.

 New STUN error codes are assigned on an IETF Consensus basis
 [RFC2434]. The specification must carefully consider how clients
 that do not understand this error code will process it before
 granting the request. See the rules in Section 7.3.4.

18.4. STUN UDP and TCP Port Numbers

 IANA has previously assigned port 3478 for STUN. This port appears
 in the IANA registry under the moniker "nat-stun-port". In order to
 align the DNS SRV procedures with the registered protocol service,
 IANA is requested to change the name of protocol assigned to port
 3478 from "nat-stun-port" to "stun", and the textual name from
 "Simple Traversal of UDP Through NAT (STUN)" to "Session Traversal
 Utilities for NAT", so that the IANA port registry would read:

 stun 3478/tcp Session Traversal Utilities for NAT (STUN) port
 stun 3478/udp Session Traversal Utilities for NAT (STUN) port

 In addition, IANA is requested to assign port numbers for the "stuns"
 service, defined over TCP and UDP. The UDP port is not currently
 defined however is reserved for future use.

19. Changes Since RFC 3489

 This specification obsoletes RFC3489 [RFC3489]. This specification
 differs from RFC3489 in the following ways:

 o Removed the notion that STUN is a complete NAT traversal solution.
 STUN is now a tool that can be used to produce a NAT traversal
 solution. As a consequence, changed the name of the protocol to
 Session Traversal Utilities for NAT.

 o Introduced the concept of STUN usages, and described what a usage
 of STUN must document.

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires August 26, 2008 [Page 44]

Internet-Draft STUN February 2008

 o Removed the usage of STUN for NAT type detection and binding
 lifetime discovery. These techniques have proven overly brittle
 due to wider variations in the types of NAT devices than described
 in this document. Removed the RESPONSE-ADDRESS, CHANGED-ADDRESS,
 CHANGE-REQUEST, SOURCE-ADDRESS, and REFLECTED-FROM attributes.

 o Added a fixed 32-bit magic cookie and reduced length of
 transaction ID by 32 bits. The magic cookie begins at the same
 offset as the original transaction ID.

 o Added the XOR-MAPPED-ADDRESS attribute, which is included in
 Binding Responses if the magic cookie is present in the request.
 Otherwise the RFC3489 behavior is retained (that is, Binding
 Response includes MAPPED-ADDRESS). See discussion in XOR-MAPPED-
 ADDRESS regarding this change.

 o Introduced formal structure into the Message Type header field,
 with an explicit pair of bits for indication of request, response,
 error response or indication. Consequently, the message type
 field is split into the class (one of the previous four) and
 method.

 o Explicitly point out that the most significant two bits of STUN
 are 0b00, allowing easy differentiation with RTP packets when used
 with ICE.

 o Added the FINGERPRINT attribute to provide a method of definitely
 detecting the difference between STUN and another protocol when
 the two protocols are multiplexed together.

 o Added support for IPv6. Made it clear that an IPv4 client could
 get a v6 mapped address, and vice-a-versa.

 o Added long-term credential-based authentication.

 o Added the SERVER, REALM, NONCE, and ALTERNATE-SERVER attributes.

 o Removed the SharedSecret method, and thus the PASSWORD attribute.
 This method was almost never implemented and is not needed with
 current usages.

 o Removed recommendation to continue listening for STUN Responses
 for 10 seconds in an attempt to recognize an attack.

 o Changed transaction timers to be more TCP friendly.

 o Removed the STUN example that centered around the separation of
 the control and media planes. Instead, provided more information

https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires August 26, 2008 [Page 45]

Internet-Draft STUN February 2008

 on using STUN with protocols.

 o Defined a generic padding mechanism that changes the
 interpretation of the length attribute. This would, in theory,
 break backwards compatibility. However, the mechanism in RFC 3489
 never worked for the few attributes that weren't aligned naturally
 on 32 bit boundaries.

 o REALM, SERVER, reason phrases and NONCE limited to 127 characters.
 USERNAME to 513 bytes.

 o Changed the DNS SRV procedures for TCP and TLS. UDP remains the
 same as before.

20. Contributors

 Christian Huitema and Joel Weinberger were original co-authors of RFC
3489.

21. Acknowledgements

 The authors would like to thank Cedric Aoun, Pete Cordell, Cullen
 Jennings, Bob Penfield, Xavier Marjou, Magnus Westerlund, Miguel
 Garcia, Bruce Lowekamp and Chris Sullivan for their comments, and
 Baruch Sterman and Alan Hawrylyshen for initial implementations.
 Thanks for Leslie Daigle, Allison Mankin, Eric Rescorla, and Henning
 Schulzrinne for IESG and IAB input on this work.

22. References

22.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2818

Rosenberg, et al. Expires August 26, 2008 [Page 46]

Internet-Draft STUN February 2008

 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC2988] Paxson, V. and M. Allman, "Computing TCP's Retransmission
 Timer", RFC 2988, November 2000.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [ITU.V42.2002]
 International Telecommunications Union, "Error-correcting
 Procedures for DCEs Using Asynchronous-to-Synchronous
 Conversion", ITU-T Recommendation V.42, March 2002.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for User Names
 and Passwords", RFC 4013, February 2005.

22.2. Informational References

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC4107] Bellovin, S. and R. Housley, "Guidelines for Cryptographic
 Key Management", BCP 107, RFC 4107, June 2005.

 [I-D.ietf-mmusic-ice]
 Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/bcp107
https://datatracker.ietf.org/doc/html/rfc4107

Rosenberg, et al. Expires August 26, 2008 [Page 47]

Internet-Draft STUN February 2008

 Traversal for Offer/Answer Protocols",
draft-ietf-mmusic-ice-19 (work in progress), October 2007.

 [RFC3489] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
 "STUN - Simple Traversal of User Datagram Protocol (UDP)
 Through Network Address Translators (NATs)", RFC 3489,
 March 2003.

 [I-D.ietf-behave-turn]
 Rosenberg, J., Mahy, R., and P. Matthews, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)",

draft-ietf-behave-turn-06 (work in progress),
 January 2008.

 [I-D.ietf-sip-outbound]
 Jennings, C. and R. Mahy, "Managing Client Initiated
 Connections in the Session Initiation Protocol (SIP)",

draft-ietf-sip-outbound-11 (work in progress),
 November 2007.

 [I-D.ietf-behave-nat-behavior-discovery]
 MacDonald, D. and B. Lowekamp, "NAT Behavior Discovery
 Using STUN", draft-ietf-behave-nat-behavior-discovery-02
 (work in progress), November 2007.

 [I-D.ietf-mmusic-ice-tcp]
 Rosenberg, J., "TCP Candidates with Interactive
 Connectivity Establishment (ICE)",

draft-ietf-mmusic-ice-tcp-05 (work in progress),
 November 2007.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

 [RFC3424] Daigle, L. and IAB, "IAB Considerations for UNilateral
 Self-Address Fixing (UNSAF) Across Network Address
 Translation", RFC 3424, November 2002.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [KARN87] Karn, P. and C. Partridge, "Improving Round-Trip Time
 Estimates in Reliable Transport Protocols", SIGCOMM 1987,
 August 1987.

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-19
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/draft-ietf-behave-turn-06
https://datatracker.ietf.org/doc/html/draft-ietf-sip-outbound-11
https://datatracker.ietf.org/doc/html/draft-ietf-behave-nat-behavior-discovery-02
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-tcp-05
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434

Rosenberg, et al. Expires August 26, 2008 [Page 48]

Internet-Draft STUN February 2008

Appendix A. C Snippet to Determine STUN Message Types

 Given an 16-bit STUN message type value in host byte order in
 msg_type parameter, below are C macros to determine the STUN message
 types:

 #define IS_REQUEST(msg_type) (((msg_type) & 0x0110) == 0x0000)
 #define IS_INDICATION(msg_type) (((msg_type) & 0x0110) == 0x0010)
 #define IS_SUCCESS_RESP(msg_type) (((msg_type) & 0x0110) == 0x0100)
 #define IS_ERR_RESP(msg_type) (((msg_type) & 0x0110) == 0x0110)

Authors' Addresses

 Jonathan Rosenberg
 Cisco
 Edison, NJ
 US

 Email: jdrosen@cisco.com
 URI: http://www.jdrosen.net

 Rohan Mahy
 Plantronics
 345 Encinal Street
 Santa Cruz, CA 95060
 US

 Email: rohan@ekabal.com

 Philip Matthews
 Avaya
 1135 Innovation Drive
 Ottawa, Ontario K2K 3G7
 Canada

 Phone: +1 613 592 4343 x224
 Fax:
 Email: philip_matthews@magma.ca
 URI:

http://www.jdrosen.net

Rosenberg, et al. Expires August 26, 2008 [Page 49]

Internet-Draft STUN February 2008

 Dan Wing
 Cisco
 771 Alder Drive
 San Jose, CA 95035
 US

 Email: dwing@cisco.com

Rosenberg, et al. Expires August 26, 2008 [Page 50]

Internet-Draft STUN February 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Rosenberg, et al. Expires August 26, 2008 [Page 51]

