
Behave J. Rosenberg
Internet-Draft Cisco Systems
Expires: August 31, 2006 R. Mahy
 Plantronics
 C. Huitema
 Microsoft
 February 27, 2006

Obtaining Relay Addresses from Simple Traversal of UDP Through NAT
(STUN)

draft-ietf-behave-turn-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 31, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This specification defines a usage of the Simple Traversal of UDP
 Through NAT (STUN) Protocol for asking the STUN server to relay
 packets towards a client. This usage is useful for elements behind
 NATs whose mapping behavior is address and port dependent. The

Rosenberg, et al. Expires August 31, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TURN February 2006

 extension purposefully restricts the ways in which the relayed
 address can be used. In particular, it prevents users from running
 well general purpose servers from ports obtained from the STUN
 server.

Table of Contents

1. Introduction . 4
2. Terminology . 4
3. Definitions . 5
4. Overview of Operation 5
5. Applicability Statement 8
6. Client Discovery of Server 9
7. Server Determination of Usage 10
8. New Requests and Indications 10
8.1 Allocate Request . 11
8.1.1 Server Behavior 11
8.1.2 Client Behavior 15

8.2 Connect Request . 17
8.2.1 Server Behavior 17
8.2.2 Client Behavior 18

8.3 Set Active Destination Request 18
8.3.1 Server Behavior 18
8.3.2 Client Behavior 21

8.4 Send Indication . 24
8.4.1 Server Behavior 24
8.4.2 Client Behavior 25

8.5 Data Indication . 26
8.5.1 Server Behavior 26
8.5.2 Client Behavior 26

9. New Attributes . 27
9.1 LIFETIME . 27
9.2 BANDWIDTH . 27
9.3 DESTINATION-ADDRESS 27
9.4 REMOTE-ADDRESS . 28
9.5 DATA . 28
9.6 RELAY-ADDRESS . 28
9.7 REQUESTED-PORT . 28
9.8 REQUESTED-TRANSPORT 29
9.9 REQUESTED-IP . 29
9.10 TIMER-VAL . 30

10. New Error Response Codes 30
11. Client Procedures . 31
11.1 Receiving and Sending Unencapsulated Data 31

12. Server Procedures . 31
12.1 Receiving Data on Allocated Transport Addresses 31
12.1.1 TCP Processing 31
12.1.2 UDP Processing 32

Rosenberg, et al. Expires August 31, 2006 [Page 2]

Internet-Draft TURN February 2006

12.2 Receiving Data on Internal Local Transport Addresses . . 33
12.3 Lifetime Expiration 34

13. Security Considerations 34
14. IANA Considerations . 36
15. IAB Considerations . 36
15.1 Problem Definition 36
15.2 Exit Strategy . 36
15.3 Brittleness Introduced by TURN 37
15.4 Requirements for a Long Term Solution 38
15.5 Issues with Existing NAPT Boxes 38

16. Example . 38
17. Acknowledgements . 44
18. References . 44
18.1 Normative References 44
18.2 Informative References 44

 Authors' Addresses . 45
 Intellectual Property and Copyright Statements 47

Rosenberg, et al. Expires August 31, 2006 [Page 3]

Internet-Draft TURN February 2006

1. Introduction

 The Simple Traversal of UDP Through NAT (STUN) [1] provides a suite
 of tools for facilitating the traversal of NAT. Specifically, it
 defines the Binding Request, which is used by a client to determine
 its reflexive transport address towards the STUN server. The
 reflexive transport address can be used by the client for receiving
 packets from peers, but only when the client is behind "good" NATs.
 In particular, if a client is behind a NAT whose mapping behavior
 [15] is address or address and port dependent (sometimes called "bad"
 NATs), the reflexive transport address will not be usable for
 corresponding with a peer.

 The only way to obtain a transport address that can be used for
 corresponding with a peer through such a NAT is to make use of a
 relay. The relay sits on the public side of the NAT, and allocates
 transport addresses to clients reaching it from behind the private
 side of the NAT. These allocated addresses are from interfaces on
 the relay. When the relay receives a packet on one of these
 allocated addresses, the relay forwards it towards the client.

 This specification defines a usage of STUN, called the relay usage,
 that allows a client to request an address on the STUN server itself,
 so that the STUN server acts as a relay. To accomplish that, this
 usage defines two new requests - the Allocate request and the Set
 Active Destination request. It also defines two indications - Data
 and Send. The Allocate request is the principal component of this
 usage, and it is used to provide the client with a transport address
 that is relayed through the STUN server. A transport address which
 relays through an intermediary is called a relayed transport address.

 Though a relayed address is highly likely to work when corresponding
 with a peer, it comes at high cost to the provider of the STUN
 server. As a consequence, relayed transport addresses should only be
 used as a last resort. Protocols using relayed transport addresses
 should make use of mechanisms to dynamically determine whether such
 an address is actually needed. One such mechanism, defined for
 multimedia session establishment protocols based on the offer/answer
 protocol [7] is Interactive Connectivity Establishment (ICE) [14].

 The mechanism defined here was previously a standalone protocol
 called Traversal Using Relay NAT (TURN), and is now defined as a
 usage of STUN.

2. Terminology

 In this document, the key words MUST, MUST NOT, REQUIRED, SHALL,
 SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL are to

Rosenberg, et al. Expires August 31, 2006 [Page 4]

Internet-Draft TURN February 2006

 be interpreted as described in RFC 2119 [2] and indicate requirement
 levels for compliant TURN implementations.

3. Definitions

 Relayed Transport Address: A transport address that terminates on a
 server, and is forwarded towards the client. The STUN Allocate
 Request can be used to obtain a relayed transport address, for
 example.

4. Overview of Operation

 The typical configuration is shown in Figure 1. A client is
 connected to private network 1. This network connects to private
 network 2 through NAT 1. Private network 2 connects to the public
 Internet through NAT 2. On the public Internet is a STUN server that
 implements the relay usage.

 /-----\
 // STUN \\
 | Server |
 \\ //
 \-----/

 +--------------+ Public Internet
 | NAT 2 |.......................
 +--------------+

 +--------------+ Private NET 2
 | NAT 1 |.......................
 +--------------+

 /-----\
 // STUN \\
 | Client |
 \\ // Private NET 1
 \-----/

 Figure 1

 The STUN relay usage defines several new messages that add the
 ability of the STUN server to act as a relay for packets. The client
 sends an Allocate request to the server. This request is
 authenticated by the server. The client can include requests for

https://datatracker.ietf.org/doc/html/rfc2119

Rosenberg, et al. Expires August 31, 2006 [Page 5]

Internet-Draft TURN February 2006

 specific ports, transport protocols and IP addresses to be allocated
 by the STUN server. The STUN server honors these if it can, and then
 generates a response to the Allocate request. This response informs
 the client of the address and port allocated to it, called the
 allocated transport address. This address and port resides on the
 STUN server itself.

 The allocation will remain active as long as the client refreshes it
 with subsequent Allocate requests. A basic negotiation mechanism is
 defined which allows the client to request a specific lifetime, and
 for the server to lower it and indicate the actual lifetime.

 Once the client has obtained the allocated address from the STUN
 server, it can use it to receive packets. However, when a packet
 arrives at the allocated address, the STUN server does not forward
 the packet. Instead, it will only forward a packet received from
 some corresponent X if the client had previously sent a packet to X
 through the relay. In that way, the relay is much like a NAT itself.

 To send a packet through the relay towards some correspondent X, the
 client issues a Send Indication to the STUN server. This indication
 includes the destination address and port where the packet should be
 sent to, and the data to send. The relay takes the data, and sends
 it to X. It also adds a permission towards X, so that X can now send
 packets to the allocated address, and the STUN server will relay
 those towards the client. The clients are relayed towards the client
 by encapsulating them in a Data Indication. This is a STUN
 Indication which contains the data that was received by the STUN
 server, along with the identity of the correspondent.

 Since the primary usage of the STUN relay usage is in support of
 multimedia communications, efficiency is a key design goal of this
 STUN extension. The mechanism described so far will allow a client
 behind the NAT to communicate with a correspondent. However, all
 packets sent to and from the client will be encapsulated as STUN
 Indications; a Send indication for data sent from the client to the
 STUN server, and a Data indication for packets from the STUN server
 to the client. This encapsulation adds 44 bytes to each packet.
 With voice contents typically around 30 bytes (30 milliseconds of
 G.729), this is a significant amount of overhead.

 To optimize it, the relay usage provides a cut-through technique.
 When the client has decided it would like to optimize the
 transmission of packets with a particular correspondent, it issues a
 Set Active Destination request to the server, and provides the IP
 address and port of the correspondent. After a brief time during
 which the client and server can determine they are synchronized on
 the usage of the mechanism, the server enables an optimized path.

Rosenberg, et al. Expires August 31, 2006 [Page 6]

Internet-Draft TURN February 2006

 Packets received from this correspondent are relayed to the client
 without encapsulation in a STUN Data indication, and the client can
 send unencapsulated packets to the server, which will be forwarded
 towards the correspondent. This mechanism requires the STUN server
 and client to disambiguate STUN from other packets when received on
 the same IP address and port. That is provided by the magic cookie
 field in the STUN message. This cookie reduces the likelihood of a
 data packet from being confused with a STUN packet to 2.32x10^-10,
 which is deemed sufficiently unlikely.

 To do all of this, the STUN server will maintain a binding between an
 internal 5-tuple and 1 or more external 5-tuples, as shown in
 Figure 2. The internal 5-tuple represents the "connection" between
 the STUN server and the STUN client. It is the actual connection in
 the case of TCP, and in the case of UDP, it is the combination of the
 IP address and port from which the STUN client sent its Allocate
 Request, with the IP address and port to which that Allocate Request
 was sent. The external local transport address is the IP address and
 port allocated to the STUN client (the allocated transport address).
 The external 5-tuple is the combination of the external local
 transport address and the IP address and port of an external client
 that the STUN client is communicating with through the STUN server.
 Initially, there aren't any external 5-tuples, since the STUN client
 hasn't communicated with any other hosts yet. As packets are
 received on or sent from the allocated transport address, external
 5-tuples are created.

Rosenberg, et al. Expires August 31, 2006 [Page 7]

Internet-Draft TURN February 2006

 +---------+
 | |
 | External|
 / | Client |
 // | |
 / | |
 // +---------+
 /
 //
 +-+ /
 | | /
 | | //
 +---------+ | | +---------+ / +---------+
 | | |N| | | // | | | | | |
 | STUN | | | | |/ | External|
 | Client |----|A|----------| STUN |------------------| Client |
 | | | |^ ^| Server |^ ^| |
 | | |T|| || || || |
 +---------+ | || |+---------+| |+---------+
 ^ | || | | |
 | | || | | |
 | +-+| | | |
 | | | | |
 |
 Internal Internal External External
 Client Remote Local Local Remote
 Performing Transport Transport Transport Transport
 Allocations Address Address Address Address

 | | | |
 +-----+----+ +--------+-------+
 | |
 | |

 Internal External
 5-Tuple 5-tuple

 Figure 2

5. Applicability Statement

 STUN requires all usages to define the applicability of the usage
 [1]. This section contains that information for the relay usage.

Rosenberg, et al. Expires August 31, 2006 [Page 8]

Internet-Draft TURN February 2006

 The relayed transport address obtained from the Allocate request has
 specific properties which limit its applicability. The transport
 address will only be useful for applications that require a client to
 place a transport address into a protocol message, with the
 expectation that the client will be able to receive packets from a
 small number of hosts (typically one), and only after sending packets
 towards those hosts. Because of this limitation, relayed transport
 addresses obtained from an Allocate request are only useful when
 combined with rendezvous protocols of some sort, which allow the
 client to discover the addresses of the hosts it will be
 corresponding with. Examples of such protocols include the Session
 Initiation Protocol (SIP) [6].

 This limitation is purposeful. Because a client must send a packet
 to a peer before it can receive packets from that peer, relayed
 transport addresses obtained from the Allocate request can not be
 used to run general purpose servers, such as a web or email server.
 This means that the relay usage can be safely permitted to pass
 through NATs and firewalls without fear of compromising the purpose
 of having them there in the first place. Indeed, a relayed transport
 address obtained from TURN has many of the properties of a transport
 address obtained from a NAT whose filtering policies are address
 dependent, but whose mapping properties are endpoint independent
 [15], and thus "good" NATs. Indeed, to some degree, the relay turns
 a bad NAT into a good NAT by, quite ironically, adding another NAT
 function - the relay itself.

6. Client Discovery of Server

 STUN requires all usages to define the mechanism by which a client
 discovers the server [1]. This section contains that information for
 the relay usage.

 The relay usage differs from the other usages defined in [1] in that
 it demands substantial resources from the STUN server. In addition,
 it seems likely that administrators might want to block connections
 from clients to the STUN server for relaying separated from
 connections for the purposes of binding discovery. As a consequence,
 the relay usage is defined to run on a separate port from other
 usages. The client discovers the address and port of the STUN server
 for the relay usage using the same DNS procedures defined in [1], but
 using an SRV service name of "stun-relay" instead of just "stun".

 [[TODO: Still need to sort out discovery for TLS vs. non-TLS, usage
 of NAPTR, and so on.]]

Rosenberg, et al. Expires August 31, 2006 [Page 9]

Internet-Draft TURN February 2006

7. Server Determination of Usage

 STUN requires all usages to define the mechanism by which the server
 determines the usage [1]. This section contains that information for
 the relay usage.

 The relay usage is defined by a specific set of requests and
 indications. As a consequence, the server knows that this usage in
 being used because those request and indications were used.

8. New Requests and Indications

 This usage defines two new requests (along with their success and
 error responses) and two indications. It also defines processing
 rules for the STUN server and client on receipt of non-STUN messages.
 See Section 11 and Section 12

 The new messages are:

 0x0003 : Allocate Request
 0x0103 : Allocate Response
 0x0113 : Allocate Error Response
 0x0004 : Send Indication
 0x0115 : Data Indication
 0x0006 : Set Active Destination Request
 0x0106 : Set Active Destination Response
 0x0116 : Set Active Destination Error Response
 0x0007 : Connect Request
 0x0107 : Connect Response
 0x0117 : Connect Error Response

 The server will receive the Allocate Request, Send Indiaction and Set
 Active Destination Request on the transport address it has advertised
 in DNS or that has been provided to clients through configuration.
 However, the server will also receive non-STUN packets, meant for
 relaying, on this port. STUN packets are disambiguated from data
 packets through the MAGIC-COOKIE in the STUN header. Similarly, the
 client will receive Allocate Responses, Allocate Error Responses,
 Data Indications, Set Active Destination Responses, and Set Active
 Destination Error Responses on the ephemeral port it uses to connect
 to the STUN server. It will also receive non-STUN packets, relayed
 to it by the STUN server, on this port. Like the server, it
 disambiguates STUN and non-STUN packets through the presence of the
 magic cookie.

 [[OPEN ISSUE: The usage of a magic cookie in the STUN header provides
 a nice, generic way to disambiguate stun from application packets for

Rosenberg, et al. Expires August 31, 2006 [Page 10]

Internet-Draft TURN February 2006

 the turn usage, as well as sip-outbound, ice and other applications.
 But, it introduces a problem as a consequence of this generalization.
 When TURN is used with ICE, the agents will send p2p stun
 connectivity checks through the turn relay. These being valid stun
 packets, will also have the same magic cookie, and be processed by
 the turn server, rather than the ice agent! The proposed remedy for
 this is to use the DESTINATION-ADDRESS attribute in Allocate
 requests, indicating the server to which the request is targeted. If
 the turn server picks up a packet because of a magic cookie, but the
 destination-address is not it or not there, it would forward the
 packet as a regular datagram.]]

8.1 Allocate Request

8.1.1 Server Behavior

 The server first processes the request according to the general
 request processing rules in [1]. This includes performing
 authentication and checking for mandatory unknown attributes. Due to
 the fact that the STUN server is allocating resources for processing
 the request, Allocate requests MUST be authenticated, and
 furthermore, MUST be authenticated using either a shared secret known
 between the client and server, or a short term password derived from
 it.

 Note that Allocate requests, like all other STUN requests, can be
 sent to the STUN server over UDP, TCP, or TCP/TLS.

 The behavior of the server when receiving an Allocate Request depends
 on whether the request is an initial one, or a subsequent one. An
 initial request is one whose source and destination transport address
 matches the internal remote and local transport addresses of an
 existing internal 5-tuple. A subsequent request is one whose source
 and destination transport address do not match the internal remote
 and local transport address of an existing internal 5-tuple.

8.1.1.1 Initial Requests

 The server attempts to allocate transport addresses. It first looks
 for the BANDWIDTH attribute for the request. If present, the server
 determines whether or not it has sufficient capacity to handle a
 binding that will generate the requested bandwidth.

 If it does, the server attempts to allocate a transport address for
 the client. The Allocate request can contain several additional
 attributes that allow the client to request specific characteristics
 of the transport address. First, the server checks for the
 REQUESTED-TRANSPORT attribute. This indicates the transport protocol

Rosenberg, et al. Expires August 31, 2006 [Page 11]

Internet-Draft TURN February 2006

 requested by the client. This specification defines values for UDP
 and TCP. The server MUST allocate a port using the requested
 transport protocol. If the REQUESTED-TRANSPORT attribute contains a
 value of the transport protocol unknown to the server, or known to
 the server but not supported by the server, the server MUST reject
 the request and include a 442 (Unsupported Transport Protocol) in the
 response, or else redirect the request. [[OPEN ISSUE: Should we
 include a list of supported ones? Is this really an issue? If its
 just ever TCP and UDP its not needed. Can always add it later, as
 the hooks are here.]]. If the request did not contain a REQUESTED-
 TRANSPORT attribute, the server MUST use the same transport protocol
 as the request arrived on.

 As a consequence of the REQUESTED-TRANSPORT attribute, it is possible
 for a client to connect to the server over UDP and request a TCP
 transport address, and for it to connect to the server over TCP (and
 TLS, which uses TCP) and request a UDP transport address. In such a
 case, the server will relay data between them.

 Next, the server checks for the REQUESTED-IP attribute. If present,
 it indicates a specific interface from which the client would like
 its transport address allocated. If this interface is not a valid
 one for allocations on the server, the server MUST reject the request
 and include a 443 (Invalid IP Address) error code in the response, or
 else redirect the request to a server that is known to support this
 IP address. If the IP address is one that is valid for allocations
 (presumably, the server is configured to know the set of IP addresses
 from which it performs allocations), the server MUST provide an
 allocation from that IP address. If the attribute was not present,
 the selection of an IP address is at the discretion of the server.

 Finally, the server checks for the REQUESTED-PORT attribute. If
 present, it indicates a specific port property desired by the client.
 If the property is for a Specific Port, the server MUST attempt to
 allocate that specific port for the client. If the port is not
 available, the server MUST reject the request with a 444 (Invalid
 Port) response or redirect to an alternate server. If the property
 is for an even port, the server MUST attempt to allocate an even port
 for the client. If an even port cannot be obtained, the server MUST
 reject the request with a 444 (Invalid Port) response or redirect to
 an alternate server. If the property is for an odd port, the server
 MUST attempt to allocate an odd port for the client. If an odd port
 cannot be obtained, the server MUST reject the request with a 444
 (Invalid Port) response or redirect to an alternate server. Finally,
 the Even port with hold of the next higher port is similar to Even
 port. It is a request for an even port, and MUST be rejected by the
 server if an even port cannot be provided, or redirected to an
 alternate server. However, it is also a hint from the client that

Rosenberg, et al. Expires August 31, 2006 [Page 12]

Internet-Draft TURN February 2006

 the client will request the next higher port with a separate Allocate
 request. As such, it is a request for the server to allocate an even
 port whose one higher port is also available, and furthermore, a
 request for the server to not allocate that one higher port to any
 other request except for one that asks for that port explicitly. The
 server can honor this request for adjacency at its discretion. The
 only constraint is that the allocated port has to be even.

 If any of the requested or desired constraints cannot be met, whether
 it be bandwidth, transport protocol, IP address or port, instead of
 rejecting the request, the server can alternately redirect the client
 to a different server that may be able to fulfill the request. This
 is accomplished using the 300 error response and ALTERNATE-SERVER
 attribute.

 Furthermore, if the clients source port was in the range 1024-65535,
 it is RECOMMENDED that the server allocate a port in that range. If
 the clients source port was in the range of 1-1024, port selection is
 at the discrtion of the administrator. It is RECOMMENDED that a port
 in the range of 1024-65535 be allocated. This is one of several ways
 to prohibit relayed transport addresses from being used to attempt to
 run standard services. These guidelines are meant to be consistent
 with [15], since the relay is effectively a NAT.

 Once the port is allocated, the server associates it with the
 internal 5-tuple and fills in that 5-tuple. The internal remote
 transport address of the internal 5-tuple is set to the source
 transport address of the Allocate Request. The internal local
 transport address of the internal 5-tuple is set to the destination
 transport address of the Allocate Request. For TCP, this amounts to
 associating the TCP connection from the TURN client with the
 allocated transport address.

 If the Allocate request was authenticated using a shared secret
 between the client and server, this credential MUST be associated
 with the allocation. If the request was authenticated using a short
 term password derived from a shared secret, that shared secret MUST
 be associated with the allocation. This is used in subsequent
 Allocate requests to ensure that only the same client can refresh or
 modify the characteristics of the allocation it was given.

 The allocation created by the Allocate request is also associated
 with a transport address, called the active destination. This
 transport address is used for forwarding data through the TURN
 server, and is described in more detail later. It is initially set
 to null when the allocation is created. In addition, the allocation
 created by the server is associated with a set of permissions. Each
 permission is a specific IP address identifying an external client.

Rosenberg, et al. Expires August 31, 2006 [Page 13]

Internet-Draft TURN February 2006

 Initially, this list is null. Send Indications, Connect requests and
 Set Active Destination requests add values to this list.

 If the LIFETIME attribute was present in the request, and the value
 is larger than the maximum duration the server is willing to use for
 the lifetime of the allocation, the server MAY lower it to that
 maximum. However, the server MUST NOT increase the duration
 requested in the LIFETIME attribute. If there was no LIFETIME
 attribute, the server may choose a default duration at its
 discretion. In either case, the resulting duration is added to the
 current time, and a timer, called the allocation expiration timer, is
 set to fire at or after that time. Section 12.3 discusses behavior
 when the timer fires. Note that the LIFETIME attribute in the
 request can be zero. This typically happens for subsequent
 Allocations, and provides a mechanism to delete the allocation. It
 will force the immediate firing of the allocation expiration timer.

 Once the port has been obtained from the operating system and the
 activity timer started for the port binding, the server generates an
 Allocate Response using the general procedures defined in [1]. The
 transport address allocated to the client MUST be included in the
 RELAY-ADDRESS attribute in the response. In addition, this response
 MUST contain the MAPPED-ADDRESS attribute. This allows the client to
 determine its reflexive transport address in addition to a relayed
 transport address, from the same Allocate request.

 The server MUST add a LIFETIME attribute to the Allocate Response.
 This attribute contains the duration, in seconds, of the allocation
 expiration timer associated with this allocation.

 The server MUST add a BANDWIDTH attribute to the Allocate Response.
 This MUST be equal to the attribute from the request, if one was
 present. Otherwise, it indicates a per-binding cap that the server
 is placing on the bandwidth usage on each binding. Such caps are
 needed to prevent against denial-of-service attacks (See Section 13.

 The server MUST add, as the final attribute of the request, a
 MESSAGE-INTEGRITY attribute. The key used in the HMAC MUST be the
 same as that used to validate the request.

 If the allocated port was for TCP, the server MUST be prepared to
 receive a TCP connection request on that port.

8.1.1.2 Subsequent Requests

 A subsequent Allocate request is one received whose source and
 destination IP address and ports match the internal 5-tuple of an
 existing allocation. The request is processed used the general

Rosenberg, et al. Expires August 31, 2006 [Page 14]

Internet-Draft TURN February 2006

 server procedures in [1] and is processed identically to
Section 8.1.1.1, with a few important exceptions.

 First, the request MUST be authenticated using the same shared secret
 as the one associated with the allocation, or be authenticated using
 a short term password derived from that shared secret. If the
 request was authenticated but not with such a matching credential,
 the server MUST generate an Allocate Error Response with a 441
 response code.

 Secondly, if the allocated transport address given out previously to
 the client still matches the constraints in the request (in terms of
 request ports, IP addresses and transport protocols), the same
 allocation granted previously MUST be returned. However, if one of
 the constraints is not met any longer, because the client changed
 some aspect of the request, the server MUST free the previous
 allocation and allocate a new request to the client.

 Finally, a subsequent Allocate request will set a new allocation
 expiration timer for the allocation, effectively canceling the
 previous timer that was running.

8.1.2 Client Behavior

 Client behavior for Allocate requests depends on whether the request
 is an initial one, for the purposes of obtaining a new relayed
 transport address, or a subsequent one, used for refreshing an
 existing allocation.

8.1.2.1 Initial Requests

 When a client wishes to obtain a transport address, it sends an
 Allocate Request to the server. This request is constructed and sent
 using the general procedures defined in [1]. The server will
 challenge the request for credentials. The client MAY either provide
 its credentials to the server directly, else obtain a short-term set
 of credentials using the Shared Secret request, and then use those as
 the credentials in the Allocate request.

 The client SHOULD include a BANDWIDTH attribute, which indicates the
 maximum bandwidth that will be used with this binding. If the
 maximum is unknown, the attribute is not included in the request.

 The client MAY request a particular lifetime for the allocation by
 including it in the LIFETIME attribute in the request.

 The client MAY include a REQUESTED-PORT, REQUESTED-TRANSPORT, or
 REQUESTED-IP attribute in the request to obtain specific types of

Rosenberg, et al. Expires August 31, 2006 [Page 15]

Internet-Draft TURN February 2006

 transport addresses. Whether these are needed depends on the
 application using the relay usage. As an example, the Real Time
 Transport Protocol (RTP) [5] requires that RTP and RTCP ports be even
 and odd respectively, and contiguous. The REQUESTED-PORT attribute
 allows the client to ask the relay for those properties.

 Processing of the response follows the general procedures of [1]. A
 successful response will include both a RELAY-ADDRESS and MAPPED-
 ADDRESS attribute, providing both a relayed transport address and a
 reflexive transport address, respectively, to the client. The server
 will expire the allocation after LIFETIME seconds have passed if not
 refreshed by another Allocate request. The server will allow the
 user to send and receive no more than the amount of data indicated in
 the BANDWIDTH attribute.

 If the response is an error response and contains a 442, 443 or 444
 error code, the client knows that its requested properties could not
 be met. The client MAY retry with different properties, with the
 same properties (in a hope that something has changed on the server),
 or give up, depending on the needs of the application. However, if
 the client retries, it SHOULD wait 500ms, and if the request fails
 again, wait 1 second, then 2 seconds, and so on, exponentially
 backing off.

8.1.2.2 Subsequent Requests

 Before 3/4 of the lifetime of the allocation has passed (the lifetime
 of the allocation is conveyed in the LIFETIME attribute of the
 Allocate Response), the client SHOULD refresh the allocation with
 another Allocate Request if it wishes to keep the allocation.

 To perform a refresh, the client generates an Allocate Request as
 described in Section 8.1.2.1. If the initial request was
 authenticated with a shared secret P that the client holds with the
 server, or using a short term password derived from P through a
 Shared Secret request, the client MUST use shared secret P, or a
 short-term password derived from it, in the subsequent request.

 In a successful response, the RELAY-ADDRESS contains the same
 transport address as previously obtained, indicating that the binding
 has been refreshed. The LIFETIME attribute indicates the amount of
 additional time the binding will live without being refreshed. Note
 that an error response do not imply that the binding has been
 expired, just that the refresh has failed.

 If the client wishes to explicitly remove the allocation because it
 no longer needs it, it generates a subsequent Allocate request, but
 sets the LIFETIME attribute to zero. This will cause the server to

Rosenberg, et al. Expires August 31, 2006 [Page 16]

Internet-Draft TURN February 2006

 remove the allocation.

8.2 Connect Request

 The Connect Request is used by a client when it has obtained an
 allocated transport address that is TCP. The Connect request asks
 the server to open a TCP connection to a specified destination
 address, included in the request.

8.2.1 Server Behavior

 Once the server has identified a request as a Connect request, the
 server verifies that it has arrived with a source and destination
 transport address that matches the internal remote and local
 transport address of an internal 5-tuple associated with an existing
 allocation. If there is no matching allocation, the server MUST
 generate a 437 (No Binding) Send Error Response.

 The request MUST be authenticated using the same shared secret as the
 one associated with the allocation, or be authenticated using a short
 term password derived from that shared secret. If the request was
 authenticated but not with such a matching credential, the server
 MUST generate an error response with a 441 response code.

 If the allocation is not for TCP, the server MUST reject the request
 with a 445 (Operation for TCP Only) response.

 If the request does not contain a DESTINATION-ADDRESS attribute, the
 server sends a Connect response, but otherwise does nothing.

 If the request contains a DESTINATION-ADDRESS attribute, the IP
 address contained within it is added to the permissions for this
 allocation, if it was not already present. This happens regardless
 of whether the subsequent TCP connection attempt succeeds or not.

 The server then checks to see if it has any TCP connections in
 existence from the allocated transport address to the IP address and
 port in DESTINATION-ADDRESS. If it does, the server responds to the
 request with a Connect response, indicating to the client that a
 connection exists already.

 Next, the server attempts to open a TCP connection from the allocated
 transport address to the IP address and port in the DESTINATION-
 ADDRESS attribute. If the connection succeeds, the server generates
 a Connect Response. If the connection attempt fails or times out,
 the server generates a Connect Error Response and includes an error
 response of 446 (Connection Failure). If the connection attempt is
 still pending prior to the the timeout of the STUN transaction, the

Rosenberg, et al. Expires August 31, 2006 [Page 17]

Internet-Draft TURN February 2006

 server MUST send a 447 (Connection Timeout) error response. However,
 the server continues to wait for the connection to get set up. If it
 succeeds, the client holds on to the connection. The client can
 retry the request at a later time, and if the connection has been
 succesfully setup, it will result in a Success Response as described
 above.

8.2.2 Client Behavior

 If a client wishes to send data towards a peer on a TCP allocated
 transport address, the client must first tell the server to open a
 TCP connection towards the destination. To do that, the client sends
 a Connect request to the server. The client MUST NOT send this
 request for non-TCP allocated transport addresses. The request
 SHOULD contain a DESTINATION-ADDRESS attribute indicating the desired
 target for the connection attempt.

 If the Connect request generates a successful response, it means that
 a connection was opened, or was already opened, towards DESTINATION-
 ADDRESS. If it generates a Connect Error response with a response
 code of 446, it means that the servers attempt at the connection has
 failed. If it generates a Connect Error response with a response
 code of 447, it means that the server is still trying to connect, but
 the attempt could not be completed before the STUN transaction needed
 to end. Whether the client wishes to retry depends on the
 application using the request. If the client wishes to determine the
 disposition of the attempt, it MAY send a Connect request with the
 same DESTINATION-ADDRESS at a later time.

 [[OPEN ISSUE: yes, this is a hack. STUN transactions were designed
 for immediate responses, and so the handshake is two-way, like SIP
 non-INVITE. However, I am reluctant to include yet another new
 transaction to SIP. The alternative to the above design is to have
 the server send a request to the client when the connection
 completes.]]

 If the Connect request generates a 437, it means that the client's
 allocation no longer exists, possibly due to server or network
 failures. The client MAY obtain a new allocation if the application
 so desires.

8.3 Set Active Destination Request

8.3.1 Server Behavior

 The Set Active Destination Request is used by a client to set an
 external 5-tuple that will be used as the forwarding destination of
 all data that isn't to be processed by the STUN server itself. In

Rosenberg, et al. Expires August 31, 2006 [Page 18]

Internet-Draft TURN February 2006

 addition, all data received from that external client will be
 forwarded to the STUN client without encapsulation in a Data
 Indication.

 Once the server has identified a request as a Set Active Destination
 request, the server verifies that it has arrived with a source and
 destination transport address that matches the internal remote and
 local transport address of an internal 5-tuple associated with an
 existing allocation. If there is no matching allocation, the server
 MUST generate a 437 (No Binding) Send Error Response.

 The request MUST be authenticated using the same shared secret as the
 one associated with the allocation, or be authenticated using a short
 term password derived from that shared secret. If the request was
 authenticated but not with such a matching credential, the server
 MUST generate an error response with a 441 response code.

 If the Set Active Destination request contains a DESTINATION-ADDRESS
 attribute, the IP address contained within it is added to the
 permissions for this allocation, if it was not already present.

 Unfortunately, there is a race condition associated with the active
 destination concept. Consider the case where the active destination
 is set, and the server is relaying packets towards the client. The
 client knows the IP address and port where the packets came from -
 the current value of the active destination. The client issues a Set
 Active Destination Request to change the active destination, and
 receives a response. A moment later, a data packet is received, not
 encapsulated in a STUN Data Indication. What is the source if this
 packet? Is it the active destination that existed prior to the Set
 Active Destination request, or the one after? If the transport
 between the client and the STUN server is not reliable, there is no
 way to know.

 To deal with this problem, a small state machine is used to force a
 "cooldown" period during which the server will not relay packets
 towards the client without encapsulating them. This cooldown period
 gives enough time for the client to be certain that any old data
 packets have left the network. Once the cooldown period ends, the
 server can begin relaying packets without encapsulation. There is an
 instance of this state machine for each allocation.

Rosenberg, et al. Expires August 31, 2006 [Page 19]

Internet-Draft TURN February 2006

 +-----+
 | | Req Recvd, DA absent
 | |
 | |
 | |
 | V
 +-----------+
 | | timer fires
 | | -----------
 | None | active=null
 | Set |<--------------------------------+
 | | |
 | | |
 +-----------+ |
 | | Req Recvd
 | | ---------
 | Req Recvd, DA present | 439
 | ---------------------- | +----+
 | active = DA | | |
 | | | |
 | | | |
 V Req Recvd, | | V
 +-----------+ DA!=active,absent +-----------+
 | | ----------------- | |
 | | Set timer | |
 | Set |------------------------------>| Trans- |
 | | | itioning |
 | |<------------------------------| |
 | | timer fires | |
 +-----------+ ----------- +-----------+
 | ^ active=DA
 | |
 | |
 | |
 +-----+
 Req Recvd, DA=active

 Figure 4

 When the allocation is originally created, the active destination is
 null, and the server sets the state to "None Set". In this state,
 the server will relay all received packets in encapsulated form
 towards the client. If the server receives a Set Active Destination
 request, but the request contained no DESTINATION-ADDRESS attribute,
 the state machine stays in the same state. The request is responded
 to with a Set Active Destination Response. If, however, the Set
 Active Destination request contained a DESTINATION-ADDRESS, the

Rosenberg, et al. Expires August 31, 2006 [Page 20]

Internet-Draft TURN February 2006

 server sets the active destination to the transport address from the
 DESTINATION-ADDRESS attribute, and enters the "Set" state. The
 request is responded to with a Set Active Destination Response. In
 this state, the server will relay packets from that transport address
 towards the client in unencapsulated form.

 If the server receives another Set Active Destination request while
 in this state, and the DESTINATION-ADDRESS is present, but has a
 value equal to the current active destination, the request causes no
 change. The request is responded to with a Set Active Destination
 Response. If, however, the request contained a DESTINATION-ADDRESS
 which did not match the existing active destination, or omitted the
 active destination, the server enters the "transitioning" state. The
 request is responded to with a Set Active Destination Response. In
 this state, the server will forward all packets to the client in
 encapsulated form. In addition, when this state is entered, the
 client sets a timer to fire in Ta seconds. If the connection between
 the client and server is unreliable, this timer SHOULD be
 configurable. It is RECOMMENDED that it be set to three seconds. If
 the connection between the client and server is reliable, the timer
 SHOULD be set to 0 seconds, causing it to fire immediately. This
 makes the transitioning state transient for reliable transports. The
 value of the timer used by the server, regardless of the transport
 protocol, MUST be included in a TIMER-VAL attribute in the Set Active
 Destination response.

 If, while in the "transitioning" state, the server receives a Set
 Active Destination Request, it generates a Set Active Destination
 Error Response that includes a 439 (Transitioning) response code.
 Once the timer fires, the server transitions to the "Set" state if
 the Set Active Destination request that caused the server to enter
 "transitioning" had contained the DESTINATION-ADDRESS. In this case,
 the active destination is set to this transport address. If the Set
 Active Destination request had not contained a DESTINATION-ADDRESS
 attribute, the server enters the "Not Set" state and sets the active
 destination to null.

8.3.2 Client Behavior

 The Set Active Destination address allows the client to create an
 optimized relay function between it and the server. When the server
 receives packets from a particular preferred external client, the
 server will forward those packets towards the client without
 encapsulating them in a Data Indication. Similarly, the client can
 send non-STUN packets to the server without encapsulation, and these
 are forwarded to the external client. Sending and receiving data in
 unencapsulated form is critical for efficiency purposes. One of the
 primary use cases for the STUN relay usage is in support of Voice

Rosenberg, et al. Expires August 31, 2006 [Page 21]

Internet-Draft TURN February 2006

 over IP (VoIP), which uses very small UDP packets to begin with. The
 extra overhead of an additional layer of encapsulation is considered
 unacceptable.

 The Set Active Destination request is used by the client to provide
 the identity of this preferred external client. The request also has
 the side effect of adding a permission for the target of the
 DESTINATION-ADDRESS.

 The Set Active Destination address MAY contain a DESTINATION-ADDRESS
 attribute. This attribute, when present, provides the address of the
 preferred external client to the server. When absent, it clears the
 value of the preferred external client.

 In order for the client to know where incoming non-STUN packets were
 sent from, and to be sure where non-STUN packets sent to the server
 will go to, it is necessary to coordinate the value of the active
 destination between the client and the server. As discussed above,
 there is a race condition involved in this coordination which
 requires a state machine to execute on both the client and the
 server.

Rosenberg, et al. Expires August 31, 2006 [Page 22]

Internet-Draft TURN February 2006

 +-----+
 | | OK Recvd, DA absent
 | |
 | |
 | |
 | V
 +-----------+
 439 Recvd| | timer fires
 +------| | -----------
 | | None | active=null
 | | Set |<--------------------------------+
 +----->| | |
 | | |
 +-----------+ |
 | |
 | |
 | OK Recvd, DA present |
 | ---------------------- |
 | active = DA |
 | |
 | |
 V OK Recvd, |
 +-----------+ DA!=active,absent +-----------+
 | | ----------------- | |
 | | Set timer | |
 | Set |------------------------------>| Trans- |
 | | | itioning |
 | |<------------------------------| |
 | | timer fires | |
 +-----------+ ----------- +-----------+
 | ^ active=DA
 | |
 | |
 | |
 +-----+
 439 Recvd,
 OK Recvd, DA=active

 Figure 5

 The state machine is shown in Figure 5. The client starts in the
 "None Set" state. When the client is in either the "None Set" or
 "Set" state, it can send Set Active Destination requests. The
 transitions in the state machines are governed by responses to those
 requests. Only success and 439 responses cause changes in state. A
 437 response implies that the allocation has been removed, and thus
 the state machine destroyed. A client MUST NOT send a new Set Active

Rosenberg, et al. Expires August 31, 2006 [Page 23]

Internet-Draft TURN February 2006

 Destination request prior to the receipt of a response to the
 previous. The state machine will further limit the transmission of
 subsequent Set Active Destination requests.

 If, while in the "None Set" state, the client sent a Set Active
 Destination request without a DESTINATION-ADDRESS, and got a
 successful response, there is no change in state. If a successful
 response was received, but there was a DESTINATION-ADDRESS in the
 request, the state machine transitions to the "Set" state, and the
 client sets the active destination to the value of the DESTINATION-
 ADDRESS attribute that was in the request.

 If, while in the "Set" state, the client sends a Set Active
 Destination request and received a 439 response, it means that there
 was a temporal misalignment in the states between client and server.
 The client thought that the active destination was updated on the
 server, but the server was still in its transitioning state. When
 this error is received, the client remains in the "Set" state. The
 client SHOULD retry its Set Active Destination request, but no sooner
 than 500ms after receipt of the 439 response. In addition, if, while
 in the "Set" state, the client sends a Set Active Destination request
 whose DESTINATION-ADDRESS attribute equals the current active
 destination, and that request generates a success response, the
 client remains in the "Set" state.

 However, if, while in the "Set" state, the client sends a Set Active
 Destination request whose DESTINATION-ADDRESS was either absent or
 not equal to the current active destination, and receives a success
 response, the client enters the "Transitioning" state. While in this
 state, the client MUST NOT send a new Set Active Destination request.
 The value of the active destination remains unchanged. In addition,
 the client sets a timer. This timer MUST have a value equal to the
 value of the TIMER-VAL attribute from the Set Active Destination
 response. This is necessary for coordinating the state machines
 between client and server.

 Once the timer fires, if the DESTINATION-ADDRESS was not absent from
 the Set Active Destination request which caused the client to start
 the timer, the client moves back to the "Set" state, and then updates
 the value of the active destination to the value of DESTINATION-
 ADDRESS. If DESTINATION-ADDRESS was absent, the client sets the
 active destination to null and enders the "None Set" state.

8.4 Send Indication

8.4.1 Server Behavior

 A Send Indication is sent by a client after it has completed its

Rosenberg, et al. Expires August 31, 2006 [Page 24]

Internet-Draft TURN February 2006

 Allocate transaction, in order to create permissions in the server
 and send data to an external client.

 Once the server has identified a message as a Send Indication, the
 server verifies that it has arrived with a source and destination
 transport address that matches the internal remote and local
 transport address of an internal 5-tuple associated with an existing
 allocation. If there is no matching allocation, the indication is
 discarded. If there was no DESTINATION-ADDRESS, the indication is
 discarded. If there was no DATA attribute, the indication is
 discarded.

 [[OPEN ISSUE: should message integrity checks be done for send? THey
 cannot be challenged!]]

 The server takes the contents of the DATA attribute present in the
 indication. If the allocation was a UDP allocation, the server
 creates a UDP packet whose payload equals that content. The server
 sets the source IP address of the packet equal to the allocated
 transport address. The destination transport address is set to the
 contents of the DESTINATION-ADDRESS attribute. The server then sends
 the UDP packet. Note that any retransmissions of this packet which
 might be needed are not handled by the server. It is the clients
 responsibility to generate another Send indication if needed. If the
 TURN client hasn't previously sent to this destination IP address and
 port, an external 5-tuple is instantiated in the TURN server. Its
 local and remote transport addresses, respectively, are set to the
 source and destination transport addresses of the UDP packet.

 The server then adds the IP address of the DESTINATION-ADDRESS
 attribute to the permission list for this allocation.

 In the case of a TCP allocation, the server checks if it has an
 existing TCP connection open from the allocated transport address to
 the address in the DESTINATION-ADDRESS attribute. If so, the server
 extracts the content of the DATA attribute and sends it on the
 matching TCP connection. If the server doesn't have an existing TCP
 connection to the destination, it discards the data and does nothing.
 The client must first open a TCP connection with the Connect request
 before it can send data.

8.4.2 Client Behavior

 Before receiving any UDP or TCP data, a client has to send first.
 Prior to the establishment of an active destination, or while the
 client is in the transitioning state, transmission of data towards a
 peer through the relay is done using the Send Indication. Indeed, if
 the client is in the transitioning state, and it wishes to send data

Rosenberg, et al. Expires August 31, 2006 [Page 25]

Internet-Draft TURN February 2006

 through the relay, it MUST use a Send indication.

 For TCP allocated transport addresses, the client MUST first open a
 connection towards an external client with a Connect request prior to
 using the Send request. Data sent with a Send request prior to the
 opening of a TCP connection is discarded silently by the server.

 The Send Indication MUST contain a DESTINATION-ADDRESS attribute,
 which contains the IP address and port that the data is being sent
 to. The DATA attribute MAY be present, and contains the data that is
 to be sent towards DESTINATION-ADDRESS. If absent, the server will
 send an empty UDP packet in the case of UDP. In the case of TCP, the
 server will do nothing.

 Since Send is an Indication, it generates no response. The client
 must relay on application layer mechanisms to determine if the data
 was received by the peer.

8.5 Data Indication

8.5.1 Server Behavior

 A server MUST send data packets towards the client using a Data
 Indication under the conditions described in Section 12.1. Data
 Indications MUST contain a DATA attribute containing the data to
 send, and MUST contain a REMOTE-ADDRESS attribute indicating where
 the data came from.

8.5.2 Client Behavior

 Once a client has obtained an allocation and created permissions for
 a particular external client, the server can begin to relay packets
 from that external client towards the client. If the external client
 is not the active destination, this data is relayed towards the
 client in encapsulated form using the Data Indication.

 The Data Indication contains two attributes - DATA and REMOTE-
 ADDRESS. The REMOTE-ADDRESS attribute indicates the source transport
 address that the request came from, and it will equal the external
 remote transport address of the external client. When processing
 this data, a client MUST treat the data as if it came from this
 address, rather than the stun server itself. The DATA attribute
 contains the data from the UDP packet or TCP segment that was
 received. Note that the TURN server will not retransmit this
 indication over UDP.

Rosenberg, et al. Expires August 31, 2006 [Page 26]

Internet-Draft TURN February 2006

9. New Attributes

 The STUN relay usage defines the following new attributes:

 0x000d: LIFETIME
 0x0010: BANDWIDTH
 0x0011: DESTINATION-ADDRESS
 0x0012: REMOTE-ADDRESS
 0x0013: DATA
 0x0016: RELAY-ADDRESS
 0x0018: REQUESTED-PORT
 0x0019: REQUESTED-TRANSPORT
 0x0020: REQUESTED-IP
 0x0021: TIMER-VAL

9.1 LIFETIME

 The lifetime attribute represents the duration for which the server
 will maintain an allocation in the absence of data traffic either
 from or to the client. It is a 32 bit value representing the number
 of seconds remaining until expiration.

 +-+
 | Lifetime |
 +-+

9.2 BANDWIDTH

 The bandwidth attribute represents the peak bandwidth, measured in
 kbits per second, that the client expects to use on the binding. The
 value represents the sum in the receive and send directions.
 [[Editors note: Need to define leaky bucket parameters for this.]]

 +-+
 | Bandwidth |
 +-+

9.3 DESTINATION-ADDRESS

 The DESTINATION-ADDRESS is present in Send Indications and Set Active
 Destination Requests. It specifies the address and port where the
 data is to be sent. It is encoded in the same way as MAPPED-ADDRESS.

Rosenberg, et al. Expires August 31, 2006 [Page 27]

Internet-Draft TURN February 2006

 [[OPEN ISSUE: Should some of thes be xor-encoded? I don't see a need
 really...]]

9.4 REMOTE-ADDRESS

 The REMOTE-ADDRESS is present in Data Indications. It specifies the
 address and port from which a packet was received. It is encoded in
 the same way as MAPPED-ADDRESS.

9.5 DATA

 The DATA attribute is present in Send Indications and Data
 Indications. It contains raw payload data that is to be sent (in the
 case of a Send Request) or was received (in the case of a Data
 Indication).

9.6 RELAY-ADDRESS

 The RELAY-ADDRESS is present in Allocate responses. It specifies the
 address and port that the server allocated to the client. It is
 encoded in the same way as MAPPED-ADDRESS.

9.7 REQUESTED-PORT

 This attribute allows the client to request certain properties for
 the port that is allocated by the server. The attribute can be used
 with any transport protocol that has the notion of a 16 bit port
 space (including TCP and UDP). The attribute is 32 bits long. Its
 format is:

 x
 +-+
 | Property | Port Filter |
 +-+

 The property is an unsigned integer from 0 to 65535 which identifies
 the specific property that is desired. The meaning of the port
 filter depends on the port property, and is not used for certain port
 properties.

 This specification defines the following port properties:

Rosenberg, et al. Expires August 31, 2006 [Page 28]

Internet-Draft TURN February 2006

 0x0000: Even Port
 0x0001: Odd Port
 0x0002: Even Port, hold next higher port
 0x0003: Specific Port

 Even Port is a request to the server to allocate a port with even
 parity. The port filter is not used with this property. Odd Port is
 a request to the server to allocate a port with odd parity. The port
 filter is not used with this property. Even port, with a hold on the
 next higher port, is a request to the server to allocate an even
 port. Furthermore, the client indicates that it will want the next
 higher port as well. As such, the client requests that the server,
 if it can, not allocate the next higher port to anyone unless that
 port is explicitly requested, which the client will itself do. The
 port filter is not used with this property. Finally, the Specific
 Port property is a request for a specific port. The port that is
 requested is contained in the Port filter.

 Extensions to the relay usage can define additional port properties.
 [[TODO: Add IANA registry]]

9.8 REQUESTED-TRANSPORT

 This attribute is used by the client to request a specific transport
 protocol for the allocated transport address. It is a 32 bit
 unsigned integer. Its values are:

 0x0000 0000: UDP
 0x0000 0001: TCP

 If an Allocate request is sent over TCP and requests a UDP
 allocation, or an Allocate request is sent over UDP and requests a
 TCP allocation, the server will relay data between the two
 transports.

 Extensions to the relay usage can define additional transport
 protocols. [[TODO: Add IANA registry]]

9.9 REQUESTED-IP

 The REQUESTED-IP attribute is used by the client to request that a
 specific IP address be allocated to it. This attribute is needed
 since it is anticipated that STUN relays will be multi-homed so as to
 be able to allocate more than 64k transport addresses. As a
 consequence, a client needing a second transport address on the same
 interface as a previous one can make that request.

Rosenberg, et al. Expires August 31, 2006 [Page 29]

Internet-Draft TURN February 2006

 The format of this attribute is identical to MAPPED-ADDRESS.
 However, the port component of the attribute is ignored by the
 server. If a client wishes to request a specific IP address and
 port, it uses both the REQUESTED-IP and REQUESTED-PORT attributes.

9.10 TIMER-VAL

 The TIMER-VAL attribute is used only in conjunction with the Set
 Active Destination response. It conveys from the server, to the
 client, the value of the timer used in the server state machine.
 Coordinated values are needed for proper operation of the mechanism.

 The attribute is a 32 bit unsigned integer representing the number if
 milliseconds used by the server for its timer.

10. New Error Response Codes

 The STUN relay usage defines the following new Error response codes:

 437 (No Binding): A request was received by the server that
 requires an allocation to be in place. However, there is none yet
 in place.

 439 (Transitioning): A Set Active Destination request was received
 by the server. However, a previous request was sent within the
 last few seconds, and the server is still transitioning to that
 active destination. Please repeat the request later.

 441 (Wrong Username): A TURN request was received for an allocated
 binding, but it did not use the same username and password that
 were used in the allocation. The client must supply the proper
 credentials, and if it cannot, it should teardown its binding,
 allocate a new one time password, and try again.

 442 (Unsupported Transport Protocol): The Allocate request asked
 for a transport protocol to be allocated that is not supported by
 the server.

 443 (Invalid IP Address): The Allocate request asked for a
 transport address to be allocated from a specific IP address that
 is not valid on the server.

 444 (Invalid Port): The Allocate request asked for a port to be
 allocated that is not available on the server.

 445 (Operation for TCP Only): The client tried to send a request
 to perform a TCP-only operation on an allocation, and allocation
 is UDP.

Rosenberg, et al. Expires August 31, 2006 [Page 30]

Internet-Draft TURN February 2006

 446 (Connection Failure): The attempt by the server to open the
 connection failed.

 447 (Connection Timeout): The attempt by the server to open the
 connection could not be completed, and is still in progress.

11. Client Procedures

 If a client no longer needs a binding, it SHOULD tear it down. For
 TCP, this is done by closing the connection. For UDP, this is done
 by performing a refresh, as described in Section 8.1.2.2, but with a
 LIFETIME attribute indicating a time of 0.

11.1 Receiving and Sending Unencapsulated Data

 Once the active destination has been set, a client will receive both
 STUN and non-STUN data on the socket on which the Allocate Request
 was sent. If the client receives non-STUN data (disambiguated
 through the magic cookie), it MUST be processed as if it had a source
 IP address and port equal to the value of the active destination.

 In addition, once the active destination has been set, if the client
 is in the "Set" state, it MAY send data to the active destination by
 sending data on that same socket. Unencapsulated data MUST NOT be
 sent while in the "Not Set" or "Transitioning" states. However, it
 is RECOMMENDED that the client not send unencapsulated data for
 approximately 500 milliseconds after the client enters the "Set"
 state. This eliminates any synchronization problems resulting from
 network delays. Of course, even if the active destination is set,
 the client can send data to that destination at any time by using the
 Send Indication.

12. Server Procedures

 Besides the processing of the request and indications described
 above, this specification defines rules for processing of data
 packets received by the STUN server. There are two cases - receipt
 of any packets on an allocated address, and receipt of non-STUN data
 on its internal local transport address.

12.1 Receiving Data on Allocated Transport Addresses

12.1.1 TCP Processing

 If a server receives a TCP connection request on an allocated TCP
 transport address, it checks the permissions associated with that
 allocation. If the source IP address of the TCP SYN packet match one

Rosenberg, et al. Expires August 31, 2006 [Page 31]

Internet-Draft TURN February 2006

 of the permissions, the TCP connection is accepted. Otherwise, it is
 rejected. No information is passed to the client about the
 acceptance of the connection; rather, data passed to the client with
 a source transport address it has not seen before serves this
 purpose.

 If a server receives data on a TCP connection that terminates on the
 allocated TCP transport address, the server checks the value of the
 active destination. If it equals the source IP address and port of
 the data packet (in other words, if the active destination identifies
 the other side of the TCP connection), the server checks the state
 machine of the allocation. If the state is "Set", the data is taken
 from the TCP connection and sent towards the client in unencapsulated
 form. Otherwise, the data is sent towards the client in a Data
 Indication, also known as encapsulated form. In this form, the
 server MUST add a REMOTE-ADDRESS which corresponds to the external
 remote transport address of the TCP connection, and MUST add a DATA
 attribute containing the data received on the TCP connection.

 Sending of the data towards the client, whether in encapsulated or
 unencapsulated form, depends on the linkage with the client. If the
 linkage with the client is over UDP, the data is placed in a UDP
 datagram and sent over the linkage. Note that the server will not
 retransmit this data to ensure reliability. If the linkage with the
 client is over TCP, the data is placed into the TCP connection
 corresponding to the linkage. If the TCP connection generates an
 error (because, for example, the incoming TCP packet rate exceeds the
 throughput of the TCP connection to the client), the data is
 discarded silently by the server.

 Note that, because data is forwarded blindly across TCP bindings, TLS
 will successfully operate over a TURN allocated TCP port if the
 linkage to the client is also TCP.

12.1.2 UDP Processing

 If a server receives a UDP packet on an allocated UDP transport
 address, it checks the permissions associated with that allocation.
 If the source IP address of the UDP packet matches one of the
 permissions, the UDP packet is accepted. Otherwise, it is discarded.

 Assuming the packet is accepted, it must be forwarded to the client.
 It will be forwarded in either encapsulated or unencapsulated form.
 To determine which, the server checks the value of the active
 destination. If it equals the source IP address and port of the UDP
 packet, the server checks the state machine of the allocation. If
 the state is "Set", the data is taken from the UDP payload and sent
 towards the client in unencapsulated form. Otherwise, the data is

Rosenberg, et al. Expires August 31, 2006 [Page 32]

Internet-Draft TURN February 2006

 sent towards the client in a Data Indication, also known as
 encapsulated form. In this form, the server MUST add a REMOTE-
 ADDRESS which corresponds to the external remote transport address of
 the UDP packet, and MUST add a DATA attribute containing the data
 payload of the UDP packet.

 Sending of the data towards the client, whether in encapsulated or
 unencapsulated form, depends on the linkage with the client. If the
 linkage with the client is over UDP, the data is placed in a UDP
 datagram and sent over the linkage. Note that the server will not
 retransmit this data to ensure reliability. If the linkage with the
 client is over TCP, the data is placed into the TCP connection
 corresponding to the linkage. If the TCP connection generates an
 error (because, for example, the incoming UDP packet rate exceeds the
 throughput of the TCP connection), the data is discarded silently by
 the server.

12.2 Receiving Data on Internal Local Transport Addresses

 If a server receives a UDP packet from the client on its internal
 local transport address, and it is coming from an internal remote
 transport address associated with an existing allocation, it
 represents UDP data that the client wishes to forward. If the active
 destination is not set, the server MUST discard the packet. If the
 active destination is set, and the allocated transport protocol is
 TCP, the server selects the TCP connection from the allocated
 transport address to the active destination. The data is then sent
 over that connection. If the transmission fails due to a TCP error,
 the data is discarded silently by the server. If the active
 destination is set, and the allocated transport protocol is UDP, the
 server places the data from the client in a UDP payload, and sets the
 destination address and port to the active destination. The UDP
 packet is then sent with a source IP address and port equal to the
 allocated transport address. Note that the server will not
 retransmit the UDP datagram.

 If a server receives data on a TCP connection to a client, the server
 retrieves the allocation bound to that connection. If the active
 destination for the allocation is not set, the server MUST discard
 the data. If the active destination is set, and the allocated
 transport protocol is TCP, the server selects the TCP connection from
 the allocated transport address to the active destination. The data
 is then sent over that connection. If the transmission fails due to
 a TCP error, the data is discarded silently by the server. If the
 active destination is set, and the allocated transport protocol is
 UDP, the server places the data from the client in a UDP payload, and
 sets the destination address and port to the active destination. The
 UDP packet is then sent with a source IP address and port equal to

Rosenberg, et al. Expires August 31, 2006 [Page 33]

Internet-Draft TURN February 2006

 the allocated transport address. Note that the server will not
 retransmit the UDP datagram.

 If a TCP connection from a client is closed, the associated
 allocation is destroyed. This involves terminating any TCP
 connections from the allocated transport address to external clients
 (applicable only when the allocated transport address was TCP), and
 then freeing the the allocated transport address (and all associated
 state maintained by the server) for use by other clients.

 Note that the state of the allocation, whether it is "Set", "Not
 Set", or "Transitioning", has no bearing on the rules for forwarding
 of packets received from clients. Only the value of the active
 destination is relevant.

12.3 Lifetime Expiration

 When the allocation expiration timer for a binding fires, the server
 MUST destroy the allocation. This involves terminating any TCP
 connections from the allocated transport address to external clients
 (applicable only when the allocated transport address was TCP), and
 then freeing the the allocated transport address (and all associated
 state maintained by the server) for use by other clients.

 [[OPEN ISSUE: This is a change from the previous version, which
 allowed data traffic to keep allocations alive. This change was made
 based on implementation considerations, as it allows an easier
 separation of packet processing and signaling. Is this OK?]]

13. Security Considerations

 TODO: Need to spend more time on this.

 STUN servers implementing this relay usage allocate bandwidth and
 port resources to clients, in constrast to the usages defined in [1].
 Therefore, a STUN server providing the relay usage requires
 authentication and authorization of STUN requests. This
 authentication is provided by mechanisms defined in the STUN
 specification itself. In particular, digest authentication and the
 usage of short-term passwords, obtained through a digest exchange
 over TLS, are available. The usage of short-tem passwords ensures
 that the Allocate Requests, which often do not run over TLS, are not
 susceptible to offline dictionary attacks that can be used to guess
 the long lived shared secret between the client and the server.

 Because STUN servers implementing the relay usage allocate resources,
 they can be susceptible to denial-of-service attacks. All Allocate
 Requests are authenticated, so that an unknown attacker cannot launch

Rosenberg, et al. Expires August 31, 2006 [Page 34]

Internet-Draft TURN February 2006

 an attack. An authenticated attacker can generate multiple Allocate
 Requests, however. To prevent a single malicious user from
 allocating all of the resources on the server, it is RECOMMENDED that
 a server implement a modest per user cap on the amount of bandwidth
 that can be allocated. Such a mechanism does not prevent a large
 number of malicious users from each requesting a small number of
 allocations. Attacks as these are possible using botnets, and are
 difficult to detect and prevent. Implementors of the STUN relay
 usage should keep up with best practices around detection of
 anomalous botnet attacks.

 A client will use the transport address learned from the RELAY-
 ADDRESS attribute of the Allocate Response to tell other users how to
 reach them. Therefore, a client needs to be certain that this
 address is valid, and will actually route to them. Such validation
 occurs through the message integrity checks provided in the Allocate
 response. They can guarantee the authenticity and integrity of the
 allocated addresss. Note that the STUN relay usage is not
 susceptible to the attacks described in Section 12.2.3, 12.2.4,
 12.2.5 or 12.2.6 of RFC 3489 [[TODO: Update references once 3489bis
 is more stable]]. These attacks are based on the fact that a STUN
 server mirrors the source IP address, which cannot be authenticated.
 STUN does not use the source address of the Allocate Request in
 providing the RELAY-ADDRESS, and therefore, those attacks do not
 apply.

 The relay usage cannot be used by clients for subverting firewall
 policies. The relay usage has fairly limited applicability,
 requiring a user to send a packet to a peer before being able to
 receive a packet from that peer. This applies to both TCP and UDP.
 Thus, it does not provide a general technique for externalizing TCP
 and UDP sockets. Rather, it has similar security properties to the
 placement of an address-restricted NAT in the network, allowing
 messaging in from a peer only if the internal client has sent a
 packet out towards the IP address of that peer. This limitation
 means that the relay usage cannot be used to run web servers, email
 servers, SIP servers, or other network servers that service a large
 number of clients. Rather, it facilitates rendezvous of NATted
 clients that use some other protocol, such as SIP, to communicate IP
 addresses and ports for communications.

 Confidentiality of the transport addresses learned through Allocate
 requests does not appear to be that important, and therefore, this
 capability is not provided.

 Relay servers are useful even for users not behind a NAT. They can
 provide a way for truly anonymous communications. A user can cause a
 call to have its media routed through a STUN server, so that the

https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires August 31, 2006 [Page 35]

Internet-Draft TURN February 2006

 user's IP addresses are never revealed.

 TCP transport addresses allocated by Allocate requests will properly
 work with TLS and SSL. However, any relay addresses learned through
 an Allcoate will not operate properly with IPSec Authentication
 Header (AH) [11] in transport mode. IPSec ESP [12] and any tunnel-
 mode ESP or AH should still operate.

14. IANA Considerations

 TODO.

15. IAB Considerations

 The IAB has studied the problem of ``Unilateral Self Address
 Fixing'', which is the general process by which a client attempts to
 determine its address in another realm on the other side of a NAT
 through a collaborative protocol reflection mechanism RFC 3424 [13].
 TURN is an example of a protocol that performs this type of function.
 The IAB has mandated that any protocols developed for this purpose
 document a specific set of considerations. This section meets those
 requirements.

15.1 Problem Definition

 From RFC 3424 [13], any UNSAF proposal must provide:

 Precise definition of a specific, limited-scope problem that is to
 be solved with the UNSAF proposal. A short term fix should not be
 generalized to solve other problems; this is why "short term
 fixes usually aren't".

 The specific problem being solved by TURN is for a client, which may
 be located behind a NAT of any type, to obtain an IP address and port
 on the public Internet, useful for applications that require a client
 to place a transport address into a protocol message, with the
 expectation that the client will be able to receive packets from a
 single host that will send to this address. Both UDP and TCP are
 addressed. It is also possible to send packets so that the recipient
 sees a source address equal to the allocated address. TURN, by
 design, does not allow a client to run a server (such as a web or
 SMTP server) using a TURN address. TURN is useful even when NAT is
 not present, to provide anonymity services.

15.2 Exit Strategy

 From [13], any UNSAF proposal must provide:

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424

Rosenberg, et al. Expires August 31, 2006 [Page 36]

Internet-Draft TURN February 2006

 Description of an exit strategy/transition plan. The better short
 term fixes are the ones that will naturally see less and less use
 as the appropriate technology is deployed.

 It is expected that TURN will be useful indefinitely, to provide
 anonymity services. When used to facilitate NAT traversal, TURN does
 not iself provide an exit strategy. That is provided by the
 Interactive Connectivity Establishment (ICE) [14] mechanism. ICE
 allows two cooperating clients to interactively determine the best
 addresses to use when communicating. ICE uses TURN-allocated
 addresses as a last resort, only when no other means of connectivity
 exists. As a result, as NATs phase out, and as IPv6 is deployed, ICE
 will increasingly use other addresses (host local addresses).
 Therefore, clients will allocate TURN addresses, but not use them,
 and therefore, de-allocate them. Servers will see a decrease in
 usage. Once a provider sees that its TURN servers are not being used
 at all (that is, no media flows through them), they can simply remove
 them. ICE will operate without TURN-allocated addresses.

15.3 Brittleness Introduced by TURN

 From [13], any UNSAF proposal must provide:

 Discussion of specific issues that may render systems more
 "brittle". For example, approaches that involve using data at
 multiple network layers create more dependencies, increase
 debugging challenges, and make it harder to transition.

 TURN introduces brittleness in a few ways. First, it adds another
 server element to any system, which adds another point of failure.
 TURN requires clients to demultiplex TURN packets and data based on
 hunting for a MAGIC-COOKIE in the TURN messages. It is possible
 (with extremely small probabilities) that this cookie could appear
 within a data stream, resulting in mis-classification. That might
 introduce errors into the data stream (they would appear as lost
 packets), and also result in loss of a binding. TURN relies on any
 NAT bindings existing for the duration of the bindings held by the
 TURN server. Neither the client nor the TURN server have a way of
 reliably determining this lifetime (STUN can provide a means, but it
 is heuristic in nature and not reliable). Therefore, if there is no
 activity on an address learned from TURN for some period, the address
 might become useless spontaneously.

 TURN will result in potentially significant increases in packet
 latencies, and also increases in packet loss probabilities. That is
 because it introduces an intermediary on the path of a packet from
 point A to B, whose location is determined by application-layer
 processing, not underlying routing topologies. Therefore, a packet

Rosenberg, et al. Expires August 31, 2006 [Page 37]

Internet-Draft TURN February 2006

 sent from one user on a LAN to another on the same LAN may do a trip
 around the world before arriving. When combined with ICE, some of
 the most problematic cases are avoided (such as this example) by
 avoiding the usage of TURN addresses. However, when used, this
 problem will exist.

 Note that TURN does not suffer from many of the points of brittleness
 introduced by STUN. TURN will work with all existing NAT types known
 at the time of writing, and for the forseeable future. TURN does not
 introduce any topological constraints. TURN does not rely on any
 heuristics for NAT type classification.

15.4 Requirements for a Long Term Solution

 From [13]}, any UNSAF proposal must provide:

 Identify requirements for longer term, sound technical solutions
 -- contribute to the process of finding the right longer term
 solution.

 Our experience with TURN continues to validate our belief in the
 requirements outlined in Section 14.4 of STUN.

15.5 Issues with Existing NAPT Boxes

 From [13], any UNSAF proposal must provide:

 Discussion of the impact of the noted practical issues with
 existing, deployed NA[P]Ts and experience reports.

 A number of NAT boxes are now being deployed into the market which
 try and provide "generic" ALG functionality. These generic ALGs hunt
 for IP addresses, either in text or binary form within a packet, and
 rewrite them if they match a binding. This will interfere with
 proper operation of any UNSAF mechanism, including TURN. However, if
 a NAT tries to modify a MAPPED-ADDRESS in a TURN Allocate Response,
 this will be detected by the client as an attack.

16. Example

 In this example, a client is behind a NAT. The client has a private
 address of 10.0.1.1. The STUN server is on the public side of the
 NAT, and is listening for STUN relay requests on 192.0.2.3:8776. The
 public side of the NAT has an IP address of 192.0.2.1. The client is
 attempting to send a SIP INVITE to a peer, and wishes to allocate an
 IP address and port for inclusion in the SDP of the INVITE.
 Normally, TURN would be used in conjunction with ICE when applied to
 SIP. For simplicities sake, TURN is showed without ICE.

Rosenberg, et al. Expires August 31, 2006 [Page 38]

Internet-Draft TURN February 2006

 The client communicates with a SIP user agent on the public network.
 This user agent uses a 192.0.2.17:12734 for receipt of its RTP
 packets.

 Client NAT STUN Srvr Called Pary
 | | | |
 |(1) Allocate | | |
 |S=10.0.1.1:4334 | | |
 |D=192.0.2.3:8776 | | |
 |------------------>| | |
 | | | |
 | | | |
 | | | |
 | |(2) Allocate | |
 | |S=192.0.2.1:63346 | |
 | |D=192.0.2.3:8776 | |
 | |------------------>| |
 | | | |
 | | | |
 | | | |
 | |(3) Error | |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 | | | |
 | | | |
 | | | |
 |(4) Error | | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 | | | |
 | | | |
 |(5) Allocate | | |
 |S=10.0.1.1:4334 | | |
 |D=192.0.2.3:8776 | | |
 |------------------>| | |
 | | | |
 | | | |
 | | | |
 | |(6) Allocate | |
 | |S=192.0.2.1:63346 | |
 | |D=192.0.2.3:8776 | |
 | |------------------>| |
 | | | |
 | |(7) Response | |

Rosenberg, et al. Expires August 31, 2006 [Page 39]

Internet-Draft TURN February 2006

 | |RA=192.0.2.3:32766 | |
 | |MA=192.0.2.1:63346 | |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 | | | |
 |(8) Response | | |
 |RA=192.0.2.3:32766 | | |
 |MA=192.0.2.1:63346 | | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 | | | |
 | | | |
 | | | |
 |(9) INVITE | | |
 |SDP=192.0.2.3:32766| | |
 |-->|
 | | | |
 | | | |
 | | | |
 | | | |
 |(10) 200 OK | | |
 |SDP=192.0.2.17:12734 | |
 |<--|
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 |(11) ACK | | |
 |-->|
 | | | |
 |(12) Send | | |
 |DATA=RTP | | |
 |DA=192.0.2.17:12734| | |
 |S=10.0.1.1:4334 | | |
 |D=192.0.2.3:8776 | | |
 |------------------>| | |
 | | | |
 | |(13) Send | |
 | |DATA=RTP | |
 | |DA=192.0.2.17:12734| |
 | |S=192.0.2.1:63346 | |
 | |D=192.0.2.3:8776 | |
 | |------------------>| |
 | | | |

Rosenberg, et al. Expires August 31, 2006 [Page 40]

Internet-Draft TURN February 2006

 | | | |
 | | | |
 | | |(14) RTP |
 | | |S=192.0.2.3:32766 |
 | | |D=192.0.2.17:12734 |
 | | |------------------>|
 | | | |
 | | | |
 | | | |
 | | |Permission |
 | | |Created |
 | | |192.0.2.17 |
 | | | |
 | | | |
 | | | |
 | | | |
 | | |(15) RTP |
 | | |S=192.0.2.17:12734 |
 | | |D=192.0.2.3:32766 |
 | | |<------------------|
 | | | |
 | |(16) DataInd | |
 | |DATA=RTP | |
 | |RA=192.0.2.17:12734| |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 | | | |
 |(17) DataInd | | |
 |DATA=RTP | | |
 |RA=192.0.2.17:12734| | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 | | | |
 |(18) SetAct | | |
 |DA=192.0.2.17:12734| | |
 |S=10.0.1.1:4334 | | |
 |D=192.0.2.3:8776 | | |
 |------------------>| | |
 | | | |
 | | | |
 | |(19) SetAct | |
 | |DA=192.0.2.17:12734| |
 | |S=192.0.2.1:63346 | |
 | |D=192.0.2.3:8776 | |
 | |------------------>| |

Rosenberg, et al. Expires August 31, 2006 [Page 41]

Internet-Draft TURN February 2006

 | | | |
 | | | |
 | | | |
 | |(20) Response | |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 | | | |
 | | | |
 | | | |
 |(21) Response | | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |after
3s
 | | | |
 | | | |
 | | | |
 | | | |
 | | |(22) RTP |
 | | |S=192.0.2.17:12734 |
 | | |D=192.0.2.3:32766 |
 | | |<------------------|
 | | | |
 | | | |
 | | | |
 | |(23) RTP | |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 | | | |
 | | | |
 | | | |
 |(24) RTP | | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |

 | | | |

Rosenberg, et al. Expires August 31, 2006 [Page 42]

Internet-Draft TURN February 2006

 | | | |

 Figure 12

 The call flow is shown in Figure 12. The client allocates a port
 from the local operating system on its private interface, obtaining
 4334. It then attempts to secure a port for RTP traffic. RTCP
 processing is not shown. The client sends an Allocate request (1)
 with a source address (denoted by S) of 10.0.1.1:4334 and a
 destination (denoted by D) of 192.0.2.3:8776. This passes through
 the NAT (2), which creates a mapping from the 192.0.2.1:63346 to the
 source IP address and port of the request, 10.0.1.1:4334. This
 request is received at the STUN server, which challenges it (3),
 requesting credentials. This response is passed to the client (4).
 The client retries the request, this time with credentials (5). This
 arrives at the server (6). The request is now authenticated. The
 server provides a UDP allocation, 192.0.2.3:32766, and places it into
 the RELAY-ADDRESS (denoted by RA) in the response (7). It also
 reflects the source IP address and port of the request into the
 MAPPED-ADDRESS (denoted by MA) in the response. This passes through
 the NAT to the client (8). The client now proceeds to perform a
 basic SIP call setup. In message 9, it includes the relay address
 into the SDP of its INVITE. The called party responds with a 200 OK,
 and includes its IP address - 192.0.2.17:12734. The exchange
 completes with an ACK (11).

 Next, user A sends an RTP packet. Since the active destination has
 not been set, the client decides to use the Send indication. It does
 so, including the RTP packet as the contents of the DATA attribute.
 The DESTINATION-ADDRESS attribute (denoted by DA) is set to
 192.0.2.17:12734, learned from the 200 OK. This is sent through the
 NAT (message 12) and arrives at the STUN server (message 13). The
 server extracts the data contents, and sends the packet towards
 DESTINATION-ADDRESS (message 14). Note how the source address and
 port in this packet is 192.0.2.3:32766, the allocated transport
 address given to the client. The act of sending the packet with Send
 causes the STUN server to install a permission for 192.0.2.17.

 Indeed, the called party now sends an RTP packet toward the client
 (message 15). This arrives at the STUN server. Since a permission
 has been set for the IP address in the source of this packet, it is
 accepted. As no active destination is set, the STUN server
 encapsulates the contents of the packet in a Data Indication (message
 16), and sends it towards the client. The REMOTE-ADDRESS attribute
 (denoted by RA) indicates the source of the packet - 192.0.2.17:
 12734. This is forwarded through the NAT to the client (message 17).

Rosenberg, et al. Expires August 31, 2006 [Page 43]

Internet-Draft TURN February 2006

 The client decides to optimize the path for packets to and from
 192.0.2.17:12734. So, it issues a Set Active Destination request
 (message 18) with a DESTINATION-ADDRESS of 192.0.2.17:12734. This
 passes through the NAT and arrives at the STUN server (message 19).
 This generates a successful response (message 20) which is passed to
 the client (message 21). At this point, the server and client are in
 the transitioning state. A little over 3 seconds later (by default),
 the state machines transition back to "Set". Until this point,
 packets from the called party would have been relayed back to the
 client in Data Indications. Now, the next RTP packet shows up at the
 STUN server (message 22). Since the source IP address and port match
 the active destination, the RTP packet is relayed towards the client
 without encapsulation (message 23 and 24).

17. Acknowledgements

 The authors would like to thank Marc Petit-Huguenin for his comments
 and suggestions.

18. References

18.1 Normative References

 [1] Rosenberg, J., "Simple Traversal of UDP Through Network Address
 Translators (NAT) (STUN)", draft-ietf-behave-rfc3489bis-02 (work
 in progress), July 2005.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [4] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP Authentication:
 Basic and Digest Access Authentication", RFC 2617, June 1999.

18.2 Informative References

 [5] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications",

RFC 3550, July 2003.

 [6] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

https://datatracker.ietf.org/doc/html/draft-ietf-behave-rfc3489bis-02
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg, et al. Expires August 31, 2006 [Page 44]

Internet-Draft TURN February 2006

 [7] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
 Session Description Protocol (SDP)", RFC 3264, June 2002.

 [8] Handley, M. and V. Jacobson, "SDP: Session Description
 Protocol", RFC 2327, April 1998.

 [9] Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time Streaming
 Protocol (RTSP)", RFC 2326, April 1998.

 [10] Senie, D., "Network Address Translator (NAT)-Friendly
 Application Design Guidelines", RFC 3235, January 2002.

 [11] Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402,
 November 1998.

 [12] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload
 (ESP)", RFC 2406, November 1998.

 [13] Daigle, L. and IAB, "IAB Considerations for UNilateral Self-
 Address Fixing (UNSAF) Across Network Address Translation",

RFC 3424, November 2002.

 [14] Rosenberg, J., "Interactive Connectivity Establishment (ICE): A
 Methodology for Network Address Translator (NAT) Traversal for
 Offer/Answer Protocols", draft-ietf-mmusic-ice-06 (work in
 progress), October 2005.

 [15] Audet, F. and C. Jennings, "NAT Behavioral Requirements for
 Unicast UDP", draft-ietf-behave-nat-udp-04 (work in progress),
 September 2005.

Authors' Addresses

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 Email: jdrosen@cisco.com
 URI: http://www.jdrosen.net

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc2326
https://datatracker.ietf.org/doc/html/rfc3235
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-06
https://datatracker.ietf.org/doc/html/draft-ietf-behave-nat-udp-04
http://www.jdrosen.net

Rosenberg, et al. Expires August 31, 2006 [Page 45]

Internet-Draft TURN February 2006

 Rohan Mahy
 Plantronics

 Email: rohan@ekabal.com

 Christian Huitema
 Microsoft
 One Microsoft Way
 Redmond, WA 98052-6399
 US

 Email: huitema@microsoft.com

Rosenberg, et al. Expires August 31, 2006 [Page 46]

Internet-Draft TURN February 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Rosenberg, et al. Expires August 31, 2006 [Page 47]

