
Behave J. Rosenberg
Internet-Draft Cisco Systems
Expires: August 5, 2006 R. Mahy
 Plantronics
 C. Huitema
 Microsoft
 February 2006

Obtaining Relay Addresses from Simple Traversal of UDP Through NAT
(STUN)

draft-ietf-behave-turn-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 5, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This specification defines a usage of the Simple Traversal of UDP
 Through NAT (STUN) Protocol for asking the STUN server to relay
 packets towards a client. This usage is useful for elements behind
 NATs whose mapping behavior is address and port dependent. The

Rosenberg, et al. Expires August 5, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TURN February 2006

 extension purposefully restricts the ways in which the relayed
 address can be used. In particular, it prevents users from running
 general purpose servers from ports obtained from the STUN server.

Table of Contents

1. Introduction . 4
2. Terminology . 4
3. Definitions . 5
4. Overview of Operation 5
4.1 Normal Allocations . 5
4.2 Doors . 6
4.3 Transports . 7
4.4 Tuple Terminology . 8

5. Applicability Statement 9
6. Client Discovery of Server 10
7. Server Determination of Usage 11
8. New Framing Mechanism for Stream-Oriented Transports 11
9. New Requests and Indications 11
9.1 Allocate Request . 12
9.1.1 Server Behavior 12
9.1.2 Client Behavior 17

9.2 Set Active Destination Request 19
9.2.1 Server Behavior 19
9.2.2 Client Behavior 22

9.3 Open Binding Request 25
9.3.1 Server Behavior 26
9.3.2 Client Behavior 26

9.4 Close Binding Request 26
9.4.1 Server Behavior 26
9.4.2 Client Behavior 27

9.5 Connection Status Indication 27
9.6 Send Indication . 27
9.6.1 Server Behavior 27
9.6.2 Client Behavior 28

9.7 Data Indication . 29
9.7.1 Server Behavior 29
9.7.2 Client Behavior 29

10. New Attributes . 29
10.1 LIFETIME . 30
10.2 BANDWIDTH . 30
10.3 REMOTE-ADDRESS . 30
10.4 DATA . 30
10.5 RELAY-ADDRESS . 31
10.6 REQUESTED-PORT-PROPS 31
10.7 REQUESTED-TRANSPORT 32
10.8 REQUESTED-IP . 32
10.9 TIMER-VAL . 32

Rosenberg, et al. Expires August 5, 2006 [Page 2]

Internet-Draft TURN February 2006

11. New Error Response Codes 33
12. Client Procedures . 34
12.1 Receiving and Sending Unencapsulated Data 34
12.2 Datagram Protocols 34
12.3 Stream Transport Protocols 34

13. Server Procedures . 34
13.1 Receiving Data on Allocated Transport Addresses 35
13.1.1 TCP Processing 35
13.1.2 UDP Processing 35

13.2 Receiving Data on Internal Local Transport Addresses . . 36
13.3 Lifetime Expiration 37

14. Security Considerations 37
15. IANA Considerations . 39
16. IAB Considerations . 39
16.1 Problem Definition 39
16.2 Exit Strategy . 40
16.3 Brittleness Introduced by TURN 40
16.4 Requirements for a Long Term Solution 41
16.5 Issues with Existing NAPT Boxes 41

17. Example . 42
18. Acknowledgements . 46
19. References . 46
19.1 Normative References 46
19.2 Informative References 47

 Authors' Addresses . 48
 Intellectual Property and Copyright Statements 49

Rosenberg, et al. Expires August 5, 2006 [Page 3]

Internet-Draft TURN February 2006

1. Introduction

 The Simple Traversal of UDP Through NAT (STUN) [1] provides a suite
 of tools for facilitating the traversal of NAT. Specifically, it
 defines the Binding Request, which is used by a client to determine
 its reflexive transport address towards the STUN server. The
 reflexive transport address can be used by the client for receiving
 packets from peers, but only when the client is behind "good" NATs.
 In particular, if a client is behind a NAT whose mapping behavior
 [15] is address or address and port dependent (sometimes called "bad"
 NATs), the reflexive transport address will not be usable for
 communicating with a peer.

 The only way to obtain a transport address that can be used for
 corresponding with a peer through such a NAT is to make use of a
 relay. The relay sits on the public side of the NAT, and allocates
 transport addresses to clients reaching it from behind the private
 side of the NAT. These allocated addresses are from interfaces on
 the relay. When the relay receives a packet on one of these
 allocated addresses, the relay forwards it towards the client.

 This specification defines a usage of STUN, called the relay usage,
 that allows a client to request an address on the STUN server itself,
 so that the STUN server acts as a relay. To accomplish that, this
 usage defines a handful of new STUN requests and indications. The
 Allocate request is the most fundamental component of this usage. It
 is used to provide the client with a transport address that is
 relayed through the STUN server. A transport address which relays
 through an intermediary is called a relayed transport address.

 Though a relayed address is highly likely to work when corresponding
 with a peer, it comes at high cost to the provider of the relay
 service. As a consequence, relayed transport addresses should only
 be used as a last resort. Protocols using relayed transport
 addresses should make use of mechanisms to dynamically determine
 whether such an address is actually needed. One such mechanism,
 defined for multimedia session establishment protocols based on the
 offer/answer protocol [7] is Interactive Connectivity Establishment
 (ICE) [14].

 The mechanism defined here was previously a standalone protocol
 called Traversal Using Relay NAT (TURN), and is now defined as a
 usage of STUN.

2. Terminology

 In this document, the key words MUST, MUST NOT, REQUIRED, SHALL,
 SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL are to

Rosenberg, et al. Expires August 5, 2006 [Page 4]

Internet-Draft TURN February 2006

 be interpreted as described in RFC 2119 [2] and indicate requirement
 levels for compliant TURN implementations.

3. Definitions

 Relayed Transport Address: A transport address that terminates on a
 server, and is forwarded towards the client. The STUN Allocate
 Request can be used to obtain a relayed transport address, for
 example.

 STUN relay client: A STUN client that implements this specification.
 It obtains a relayed transport address that it provides to a small
 number of peers (usually one).

 STUN relay server: A STUN server that implements this specification.
 It relays data between a STUN relay client and its peer.

 5-tuple: A combination of the source IP address and port, destination
 IP address and port, and transport protocol (UDP, TCP, or TLS over
 TCP). It uniquely identifies a TCP connection, TLS channel, or
 bi-directional flow of UDP datagrams.

4. Overview of Operation

 In a typical configuration, a STUN relay client is connected to a
 private network and through one or more NATs to the public Internet.
 On the public Internet is a STUN relay server. The STUN Relay usage
 defines several new messages and a new framing mechanism that add the
 ability for a STUN server to act as a packet relay. The text in this
 section explains the typical usage of this relay extension.

4.1 Normal Allocations

 The client sends an Allocate request to the server, which the server
 authenticates. The server generates an Allocate response with the
 allocated address port and and target transport.

 A successful Allocate Request just reserves an address on the STUN
 relay server. Except for allocations with "doors" (described later
 in this section), data does not flow through an allocated port until
 the STUN relay client asks the STUN relay server to open a binding,
 either by sending data to the far end with a Send Indication, or by
 explicitly issuing an OpenBinding Request. This insures that a
 client can't use a STUN relay server to run a traditional server and
 partially protects the client from DoS attacks.

 Once a binding is open, the client can then receive data flowing back

https://datatracker.ietf.org/doc/html/rfc2119

Rosenberg, et al. Expires August 5, 2006 [Page 5]

Internet-Draft TURN February 2006

 from its peer. Initially this data is wrapped in a STUN Data
 Indication. Since multiple bindings can be open simultaneously, the
 Data Indication contains the Remote Address attribute so the STUN
 relay client knows which peer sent the data. The client can send
 data to any of its peers with the Send Indication.

 Once the client wants to primarily receive from one peer, it can send
 a SetDestination request. All subsequent data received from the
 active peer is forwarded directly to the client and vice versa,
 except that it is wrapped or framed according to the protocol used
 between the STUN relay client and STUN relay server.

 When the STUN relay client to server protocol is a datagram protocol
 (UDP), any datagram received from the active peer that has the STUN
 magic cookie is wrapped in a Data Indication. Likewise any datagram
 sent by the client that has the STUN magic cookie and is intended for
 the active peer is wrapped in a Send Indication. This wrapping
 prevents the STUN relay server from inappropriately interpreting end-
 to-end data.

 Over stream-based transports (TCP and TLS over TLS), once there is an
 active destination set, the STUN relay client and server need to use
 some additional framing so that end-to-end data is distinguishable
 from STUN control messages. This additional framing just has a type
 and a length field. The value of the type field was chosen so it is
 always distinguishable from an unframed STUN request or response.

 The SetDestination Request does not close other bindings. Data to
 and from other peers is still wrapped in Send and Data indications
 respectively. If the client does not want to receive data from a
 peer, it can also explicitly squelch data from a specific peer by
 sending a CloseBinding request. A CloseBinding request leaves the
 port allocated, so it can be reused. A CloseBinding request which
 deletes the active destination, also unsets the active destination.

 Allocations can also request specific attributes such as the desired
 Lifetime of the allocation, and the maximum Bandwidth. Clients can
 also request specific port assignment behavior. For example, a
 specific port number, odd or even port numbers, pairs of sequential
 port numbers. Allocations can also request the "door" property.

4.2 Doors

 Sometimes the client does not have a valid address for its peer to
 provide to a STUN relay server to open a binding. This is often the
 case when the client and the peer want to establish a TCP connection,
 but both are behind a NAT or firewall and they cannot perform TCP
 simultaneous open. (This is also the case for example if the peer is

Rosenberg, et al. Expires August 5, 2006 [Page 6]

Internet-Draft TURN February 2006

 behind an address or address and port dependent NAT.) To address
 this shortcoming, the client can ask the STUN relay server to
 Allocate an address with the "door" property, which accepts data only
 from the first node to send the allocated address a UDP datagram or a
 TCP SYN (depending on the allocated transport). Once a node has sent
 to the allocated address, the STUN relay server opens the appropriate
 binding, and the door "closes". Data can flow over the established
 bindings, but subsequent new datagrams or connections do not cause
 the server to create any more new bindings. Clients are not allowed
 to request both a specific port number and the door property for a
 single allocation, so that clients cannot run a traditional server
 using a STUN relay.

 Like any other open binding, data from the peer (including an initial
 datagram which forms a new binding) is wrapped in a Data Indication
 until the client sends a SetDestination request.

4.3 Transports

 STUN relay clients can communicate with a STUN relay server using
 UDP, TCP, or TLS over TCP. A STUN relay can even relay traffic
 between two different transports with certain restrictions. A STUN
 relay can never relay from an unreliable transport (client to server)
 to a reliable transport to the peer. Note that a STUN relay server
 never has a TLS relationship with a client's peer, since the STUN
 relay server does not interpret data above the TCP layer. When
 relaying data sent from a stream-based protocol to a UDP peer, the
 STUN relay server emits datagrams which the same length as the length
 field in the STUN TCP framing or the length field in Send Indication.
 Likewise, when a UDP datagram is relayed from a peer over a stream-
 based transport, the length of the datagram is the length of the TCP
 framing or Data Indication.

 +----------------------+--------------------+
 | client to STUN relay | STUN relay to peer |
 +----------------------+--------------------+
 | UDP | UDP |
 | TCP | TCP |
 | TCP | UDP |
 | TLS | TCP |
 | TLS | UDP |
 +----------------------+--------------------+

 For STUN relay clients, using TLS over TCP provides two benefits.
 When using TLS, the client can be assured that the address of the
 client's peers are not visible to an attacker except by traffic
 analysis downstream of the STUN relay server. Second, the client may
 be able communicate with STUN relay servers using TLS that it would

Rosenberg, et al. Expires August 5, 2006 [Page 7]

Internet-Draft TURN February 2006

 not be able to communicate with using TCP or UDP due to the
 configuration of a firewall between the STUN relay client and its
 server. TLS between the client and STUN relay server in this case
 just facilitates traversal.

 When the STUN relay to peer leg is TCP, the STUN relay client needs
 to be aware of the status of these TCP connections. The STUN relay
 extension defines application states for a TCP connection as follows:
 LISTEN, ESTABLISHED, CLOSED. Consequently, the STUN relay server
 sends a ConnectionState Indication for a binding whenever the relay
 connection status changes for one of the client's bindings except
 when the status changes due to a STUN relay client request (ex: an
 explicit binding close or deallocation).

4.4 Tuple Terminology

 To relay data to and from the correct location, the STUN relay server
 maintains a binding between an internal address (called a 5-tuple)
 and one or more external 5-tuples, as shown in Figure 1. The
 internal 5-tuple identifies the path between the STUN relay client
 and the STUN relay server. It consists of the protocol (UDP, TCP, or
 TLS over TCP), the internal local IP address and port number and the
 source IP address and port number of the STUN client, as seen by the
 relay server. For example, for UDP, the internal 5-tuple is the
 combination of the IP address and port from which the STUN client
 sent its Allocate Request, with the IP address and port to which that
 Allocate Request was sent.

 The external local transport address is the IP address and port
 allocated to the STUN relay client (the allocated transport address).
 The external 5-tuple is the combination of the external local
 transport address and the IP address and port of an external client
 that the STUN client is communicating with through the STUN server.
 Initially, there aren't any external 5-tuples, since the STUN client
 hasn't communicated with any other hosts yet. As packets are
 received on or sent from the allocated transport address, external
 5-tuples are created.

 While the terminology used in this document refers to 5-tuples,
 the STUN relay server can store whatever identifier it likes that
 yields identical results. Specifically, many implementations may
 use a file-descriptor in place of a 5-tuple to represent a TCP
 connection.

Rosenberg, et al. Expires August 5, 2006 [Page 8]

Internet-Draft TURN February 2006

 +---------+
 | |
 | External|
 / | Client |
 // | |
 / | |
 // +---------+
 /
 //
 +-+ /
 | | /
 | | //
 +---------+ | | +---------+ / +---------+
 | | |N| | | // | | | | | |
 | STUN | | | | |/ | External|
 | Client |----|A|----------| STUN |------------------| Client |
 | | | |^ ^| Server |^ ^| |
 | | |T|| || || || |
 +---------+ | || |+---------+| |+---------+
 ^ | || | | |
 | | || | | |
 | +-+| | | |
 | | | | |
 |
 Internal Internal External External
 Client Remote Local Local Remote
 Performing Transport Transport Transport Transport
 Allocations Address Address Address Address

 | | | |
 +-----+----+ +--------+-------+
 | |
 | |

 Internal External
 5-Tuple 5-tuple

 Figure 1

5. Applicability Statement

 STUN requires all usages to define the applicability of the usage
 [1]. This section contains that information for the relay usage.

 The relayed transport address obtained from the Allocate request has
 specific properties which limit its applicability. The transport
 address will only be useful for applications that require a client to

Rosenberg, et al. Expires August 5, 2006 [Page 9]

Internet-Draft TURN February 2006

 place a transport address into a protocol message, with the
 expectation that the client will be able to receive packets from a
 small number of hosts (typically one). Data from the peer is only
 relayed to the client after the client sends packets towards the
 peer, or for the first peer to send to an open door. Furthermore, a
 client can only request an allocation of a door once, since
 requesting a specific port number and a door simultaneously is
 invalid. Because of these limitations, relayed transport addresses
 obtained from an Allocate request are only useful when combined with
 rendezvous protocols of some sort, which allow the client to discover
 the addresses of the hosts it will be corresponding with. Examples
 of such protocols include the Session Initiation Protocol (SIP) [6].

 This limitation is purposeful. Relayed transport addresses obtained
 from the Allocate request can not be used to run general purpose
 servers, such as a web or email server. This means that the relay
 usage can be safely permitted to pass through NATs and firewalls
 without fear of compromising the purpose of having them there in the
 first place. Indeed, a relayed transport address obtained from TURN
 has many of the properties of a transport address obtained from a NAT
 whose filtering policies are address dependent, but whose mapping
 properties are endpoint independent [15], and thus "good" NATs.
 Indeed, to some degree, the relay turns a bad NAT into a good NAT by,
 quite ironically, adding another NAT function - the relay itself.

6. Client Discovery of Server

 STUN requires all usages to define the mechanism by which a client
 discovers the server [1]. This section contains that information for
 the relay usage.

 The relay usage differs from the other usages defined in [1] in that
 it demands substantial resources from the STUN server. In addition,
 it seems likely that administrators might want to block connections
 from clients to the STUN server for relaying separated from
 connections for the purposes of binding discovery. As a consequence,
 the relay usage is defined to run on a separate port from other
 usages. The client discovers the address and port of the STUN server
 for the relay usage using the same DNS procedures defined in [1], but
 using an SRV service name of "stun-relay" instead of just "stun".

 For example, to find STUN relay servers in the example.com domain,
 the STUN relay client performs a lookup for '_stun-
 relay._udp.example.com', '_stun-relay._tcp.example.com', and '_stun-
 relay-tls._tcp.example.com' if the STUN client wants to communicate
 with the STUN relay server using UDP, TCP, or TLS over TCP,
 respectively. The client assumes that all permissable transport
 protocols are supported from the STUN relay server to the peer for

Rosenberg, et al. Expires August 5, 2006 [Page 10]

Internet-Draft TURN February 2006

 the client to server protocol selected.

7. Server Determination of Usage

 STUN requires all usages to define the mechanism by which the server
 determines the usage [1]. This section contains that information for
 the relay usage.

 The relay usage is defined by a specific set of requests and
 indications. As a consequence, the server knows that this usage in
 being used because those request and indications were used.

8. New Framing Mechanism for Stream-Oriented Transports

 Over stream-based transports, the STUN relay client and server need
 to use some additional framing so that end-to-end data is
 distinguishable from STUN control messages, and so that the relay
 server can perform conversion from streams to datagrams and vice
 versa. This additional framing has a one octet type, one reserved
 octet, and a 2 octet length field. The first octet of this framing
 is 0x02 to indicate STUN messages or 0x03 to indicate end-to-end data
 to or from the active destination. Note that the first octet is
 always distinguishable from an unframed STUN request or response
 (which is always 0x00 or 0x01). The second octet is reserved and
 MUST be set to zero. The length field counts the number of octets
 immediately after the length field itself.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Reserved = 0 | Length |
 +-+

 This framing is only used after an active destination is set. Use of
 this framing mechanism is discussed in Section 12 and Section 13.

9. New Requests and Indications

 This usage defines four new requests (along with their success and
 error responses) and three indications. It also defines processing
 rules for the STUN server and client on receipt of non-STUN messages.
 See Section 12 and Section 13

 The new messages are:

Rosenberg, et al. Expires August 5, 2006 [Page 11]

Internet-Draft TURN February 2006

 0x0003 : Allocate Request
 0x0103 : Allocate Response
 0x0113 : Allocate Error Response
 0x0004 : Send Indication
 0x0115 : Data Indication
 0x0006 : Set Active Destination Request
 0x0106 : Set Active Destination Response
 0x0116 : Set Active Destination Error Response
 0x0117 : Connect Status Indication
 0x0008 : Open Binding Request
 0x0108 : Open Binding Response
 0x0118 : Open Binding Error Response
 0x0009 : Close Binding Request
 0x0109 : Close Binding Response
 0x0119 : Close Binding Error Response

 In addition to STUN Requests and Responses, STUN relay clients and
 servers send and receive non-STUN packets on the same ports used for
 STUN messages. How these entities distinguish STUN and non-STUN
 traffic is discussed in Section 12 and Section 13.

9.1 Allocate Request

9.1.1 Server Behavior

 The server first processes the request according to the general
 request processing rules in [1]. This includes performing
 authentication and checking for mandatory unknown attributes. Due to
 the fact that the STUN server is allocating resources for processing
 the request, Allocate requests MUST be authenticated, and
 furthermore, MUST be authenticated using either a shared secret known
 between the client and server, or a short term password derived from
 it.

 Note that Allocate requests, like all other STUN requests, can be
 sent to the STUN server over UDP, TCP, or TCP/TLS.

 The behavior of the server when receiving an Allocate Request depends
 on whether the request is an initial one, or a subsequent one. An
 initial request is one whose source and destination transport address
 do not match the internal remote and local transport addresses of an
 existing internal 5-tuple. A subsequent request is one whose source
 and destination transport address matches the internal remote and
 local transport address of an existing internal 5-tuple.

9.1.1.1 Initial Requests

 [[TODO: First add short summary of what are we trying to do here]]

Rosenberg, et al. Expires August 5, 2006 [Page 12]

Internet-Draft TURN February 2006

 The server attempts to allocate transport addresses. It first looks
 for the BANDWIDTH attribute for the request. If present, the server
 determines whether or not it has sufficient capacity to handle a
 binding that will generate the requested bandwidth.

 If it does, the server attempts to allocate a transport address for
 the client. The Allocate request can contain several additional
 attributes that allow the client to request specific characteristics
 of the transport address. First, the server checks for the
 REQUESTED-TRANSPORT attribute. This indicates the transport protocol
 requested by the client. This specification defines values for UDP
 and TCP. The server MUST allocate a port using the requested
 transport protocol. If the REQUESTED-TRANSPORT attribute contains a
 value of the transport protocol unknown to the server, or known to
 the server but not supported by the server in the context of this
 request, the server MUST reject the request and include a 442
 (Unsupported Transport Protocol) in the response, or else redirect
 the request. [[OPEN ISSUE: Should we include a list of supported
 ones? Is this really an issue? If its just ever TCP and UDP its not
 needed. Can always add it later, as the hooks are here. Proposal:
 Do not incldue a list of supported transports.]]. If the request did
 not contain a REQUESTED-TRANSPORT attribute, the server MUST use the
 same transport protocol as the request arrived on.

 As a consequence of the REQUESTED-TRANSPORT attribute, it is possible
 for a client to connect to the server over TCP or TLS over TCP and
 request a UDP transport address. In this case, the server will relay
 data between the transports.

 Next, the server checks for the REQUESTED-IP attribute. If present,
 it indicates a specific interface from which the client would like
 its transport address allocated. If this interface is not a valid
 one for allocations on the server, the server MUST reject the request
 and include a 443 (Invalid IP Address) error code in the response, or
 else redirect the request to a server that is known to support this
 IP address. If the IP address is one that is valid for allocations
 (presumably, the server is configured to know the set of IP addresses
 from which it performs allocations), the server MUST provide an
 allocation from that IP address. If the attribute is not present,
 the selection of an IP address is at the discretion of the server.

 Finally, the server checks for the REQUESTED-PORT-PROPS attribute.
 If present, it indicates specific port properties desired by the
 client. This attribute is split into two portions: one portion for
 port behavior and the other for requested port alignment (whether the
 allocated port is odd, even, reserved as a pair, or at the discretion
 of the server).

Rosenberg, et al. Expires August 5, 2006 [Page 13]

Internet-Draft TURN February 2006

 If the port behavior requested is for a Specific Port, the server
 MUST attempt to allocate that specific port for the client. If the
 port is allocated to a different internal 5-tuple associated with the
 same STUN long-term credentials, the client is requesting a move.
 The server SHOULD replace the old internal 5-tuple with the new one
 over which this Allocate request arrived. The server MUST reject the
 move request if any of the attributes other than LIFETIME have
 changed (BANDWIDTH, REQUESTED_TRANSPORT, etc.).

 If the specific port is not available (in use or reserved), the
 server MUST reject the request with a 444 (Invalid Port) response or
 redirect to an alternate server. For example, the STUN server could
 reject a request for a Specific Port because the port is temporarily
 reserved as part of an adjacent pair of ports, or because the
 requested port is a well-known port (1-1023).

 If the port behavior requested is for a Door, the server opens the
 allocated port for receiving so that the first incoming datagram (for
 UDP allocations) or connection request (for TCP allocations) creates
 a new binding and then "closes" so that datagrams or connection
 request from other addresses are silently dropped. Requests for a
 port with door behavior can still include port alignment requests
 which MUST still be honored. Requests for a port with the door
 property MUST NOT be allocated from the well-known port range
 (1-1023).

 If the client requests even port alignment, the server MUST attempt
 to allocate an even port for the client. If an even port cannot be
 obtained, the server MUST reject the request with a 444 (Invalid
 Port) response or redirect to an alternate server. If the client
 request odd port alignment, the server MUST attempt to allocate an
 odd port for the client. If an odd port cannot be obtained, the
 server MUST reject the request with a 444 (Invalid Port) response or
 redirect to an alternate server. Finally, the Even port with hold of
 the next higher port is similar to Even port. It is a request for an
 even port, and MUST be rejected by the server if an even port cannot
 be provided, or redirected to an alternate server. However, it is
 also a hint from the client that the client will request the next
 higher port with a separate Allocate request. As such, it is a
 request for the server to allocate an even port whose next higher
 port is also available, and furthermore, a request for the server to
 not allocate that one higher port to any other request except for one
 that asks for that port explicitly. The server can honor this
 request for adjacency at its discretion. The only constraint is that
 the allocated port has to be even.

Rosenberg, et al. Expires August 5, 2006 [Page 14]

Internet-Draft TURN February 2006

 Port alignment requests exist for compatibility with
 implementations of RTP which pre-date RFC 3550. These
 implementations use the port numbering conventions in (now
 obsolete) RFC 1889.

 If any of the requested or desired constraints cannot be met, whether
 it be bandwidth, transport protocol, IP address or port, instead of
 rejecting the request, the server can alternately redirect the client
 to a different server that may be able to fulfill the request. This
 is accomplished using the 300 error response and ALTERNATE-SERVER
 attribute.

 The server SHOULD only allocate ports in the range 1024-65535. This
 is one of several ways to prohibit relayed transport addresses from
 being used to attempt to run standard services. These guidelines are
 meant to be consistent with [15], since the relay is effectively a
 NAT.

 Once the port is allocated, the server associates it with the
 internal 5-tuple and fills in that 5-tuple. The internal remote
 transport address of the internal 5-tuple is set to the source
 transport address of the Allocate Request. The internal local
 transport address of the internal 5-tuple is set to the destination
 transport address of the Allocate Request. For TCP, this amounts to
 associating the TCP connection from the TURN client with the
 allocated transport address.

 If the Allocate request was authenticated using a shared secret
 between the client and server, this credential MUST be associated
 with the allocation. If the request was authenticated using a short
 term password derived from a shared secret, that shared secret MUST
 be associated with the allocation. This is used in subsequent
 Allocate requests to ensure that only the same client can refresh or
 modify the characteristics of the allocation it was given.

 The allocation created by the Allocate request is also associated
 with a transport address, called the active destination. This
 transport address is used for forwarding data through the TURN
 server, and is described in more detail later. It is initially set
 to null when the allocation is created. In addition, the allocation
 created by the server is associated with a set of permissions. Each
 permission is a specific IP address identifying an external client.
 Initially, this list is null. Send Indications, Connect requests and
 Set Active Destination requests add values to this list.

 If the LIFETIME attribute was present in the request, and the value
 is larger than the maximum duration the server is willing to use for
 the lifetime of the allocation, the server MAY lower it to that

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc1889

Rosenberg, et al. Expires August 5, 2006 [Page 15]

Internet-Draft TURN February 2006

 maximum. However, the server MUST NOT increase the duration
 requested in the LIFETIME attribute. If there was no LIFETIME
 attribute, the server may choose a default duration at its
 discretion. In either case, the resulting duration is added to the
 current time, and a timer, called the allocation expiration timer, is
 set to fire at or after that time. Section 13.3 discusses behavior
 when the timer fires. Note that the LIFETIME attribute in the
 request can be zero. This typically happens for subsequent
 Allocations, and provides a mechanism to delete the allocation. It
 will force the immediate deleting of the allocation.

 Once the port has been obtained from the operating system and the
 activity timer started for the port binding, the server generates an
 Allocate Response using the general procedures defined in [1]. The
 transport address allocated to the client MUST be included in the
 RELAY-ADDRESS attribute in the response. In addition, this response
 MUST contain the XOR-MAPPED-ADDRESS attribute. This allows the
 client to determine its reflexive transport address in addition to a
 relayed transport address, from the same Allocate request.

 The server MUST add a LIFETIME attribute to the Allocate Response.
 This attribute contains the duration, in seconds, of the allocation
 expiration timer associated with this allocation.

 The server MUST add a BANDWIDTH attribute to the Allocate Response.
 This MUST be equal to the attribute from the request, if one was
 present. Otherwise, it indicates a per-binding cap that the server
 is placing on the bandwidth usage on each binding. Such caps are
 needed to prevent against denial-of-service attacks (See Section 14.

 The server MUST add, as the final attribute of the request, a
 MESSAGE-INTEGRITY attribute. The key used in the HMAC MUST be the
 same as that used to validate the request.

 If the allocated port was for TCP, the server MUST be prepared to
 receive a TCP connection request on that port.

9.1.1.2 Subsequent Requests

 A subsequent Allocate request is one received whose source and
 destination IP address and ports match the internal 5-tuple of an
 existing allocation. The request is processed using the general
 server procedures in [1] and is processed identically to

Section 9.1.1.1, with a few important exceptions.

 First, the request MUST be authenticated using the same shared secret
 as the one associated with the allocation, or be authenticated using
 a short term password derived from that shared secret. If the

Rosenberg, et al. Expires August 5, 2006 [Page 16]

Internet-Draft TURN February 2006

 request was authenticated but not with such a matching credential,
 the server MUST generate an Allocate Error Response with a 441
 response code.

 Secondly, if the allocated transport address given out previously to
 the client still matches the constraints in the request (in terms of
 request ports, IP addresses and transport protocols), the same
 allocation granted previously MUST be returned. However, if one of
 the constraints is not met any longer, because the client changed
 some aspect of the request, the server MUST free the previous
 allocation and allocate a new request to the client. Note that a
 subsequent Allocate request cannot request an allocation with door
 properties if the allocation is associated with any external
 5-tuples.

 Finally, a subsequent Allocate request will set a new allocation
 expiration timer for the allocation, effectively canceling the
 previous lifetime expiration timer.

9.1.2 Client Behavior

 Client behavior for Allocate requests depends on whether the request
 is an initial one, for the purposes of obtaining a new relayed
 transport address, or a subsequent one, used for refreshing an
 existing allocation.

9.1.2.1 Initial Requests

 When a client wishes to obtain a transport address, it sends an
 Allocate Request to the server. This request is constructed and sent
 using the general procedures defined in [1]. The server will
 challenge the request for credentials. The client MAY either provide
 its credentials to the server directly, or it MAY obtain a short-term
 set of credentials using the Shared Secret request and then use those
 as the credentials in the Allocate request.

 The client SHOULD include a BANDWIDTH attribute, which indicates the
 maximum bandwidth that will be used with this binding. If the
 maximum is unknown, the attribute is not included in the request.

 The client MAY request a particular lifetime for the allocation by
 including it in the LIFETIME attribute in the request.

 The client MAY include a REQUESTED-PORT-PROPS, REQUESTED-TRANSPORT,
 or REQUESTED-IP attribute in the request to obtain specific types of
 transport addresses. Whether these are needed depends on the
 application using the relay usage. As an example, the Real Time
 Transport Protocol (RTP) [5] requires that RTP and RTCP ports be an

Rosenberg, et al. Expires August 5, 2006 [Page 17]

Internet-Draft TURN February 2006

 adajacent pair, even and odd respectively, for compatibility with a
 previous version of that specification. The REQUESTED-PORT attribute
 allows the client to ask the relay for those properties. The client
 MUST NOT request TCP transport in an Allocate request sent to the
 STUN relay server over UDP.

 The client MAY ask for a port with the door property. Since the door
 only creates a binding for the first datagram or connection request
 it receives, a client needs to use this feature judiciously. For
 example, a client is most likely to use this feature if wants to
 establish a TCP connection to its peer, where both the client and the
 peer are behind a NAT or firewall that only allows outgoing TCP
 connections. While the client may be able to communicate with its
 peer using TCP simultaneous open, simultaneous open requires rather
 sophisticated behavior on the client, the peer, and both NATs or
 firewalls to work.

 Processing of the response follows the general procedures of [1]. A
 successful response will include both a RELAY-ADDRESS and an XOR-
 MAPPED-ADDRESS attribute, providing both a relayed transport address
 and a reflexive transport address, respectively, to the client. The
 server will expire the allocation after LIFETIME seconds have passed
 if not refreshed by another Allocate request. The server will allow
 the user to send and receive no more than the amount of data
 indicated in the BANDWIDTH attribute.

 If the response is an error response and contains a 442, 443 or 444
 error code, the client knows that its requested properties could not
 be met. The client MAY retry with different properties, with the
 same properties (in a hope that something has changed on the server),
 or give up, depending on the needs of the application. However, if
 the client retries, it SHOULD wait 500ms, and if the request fails
 again, wait 1 second, then 2 seconds, and so on, exponentially
 backing off.

9.1.2.2 Subsequent Requests

 Before 3/4 of the lifetime of the allocation has passed (the lifetime
 of the allocation is conveyed in the LIFETIME attribute of the
 Allocate Response), the client SHOULD refresh the allocation with
 another Allocate Request if it wishes to keep the allocation.

 To perform a refresh, the client generates an Allocate Request as
 described in Section 9.1.2.1. If the initial request was
 authenticated with a shared secret P that the client holds with the
 server, or using a short term password derived from P through a
 Shared Secret request, the client MUST use shared secret P, or a
 short-term password derived from it, in the subsequent request.

Rosenberg, et al. Expires August 5, 2006 [Page 18]

Internet-Draft TURN February 2006

 In a successful response, the RELAY-ADDRESS contains the same
 transport address as previously obtained, indicating that the binding
 has been refreshed. The LIFETIME attribute indicates the amount of
 additional time the binding will live without being refreshed. Note
 that an error response does not imply that the binding has been
 expired, just that the refresh has failed.

 If a client no longer needs a binding, it SHOULD tear it down. If
 the client wishes to explicitly remove the allocation because it no
 longer needs it, it generates a subsequent Allocate request, but sets
 the LIFETIME attribute to zero. This will cause the server to remove
 the allocation. For TCP, the client can also remove the binding by
 closing connection with the STUN relay server.

9.2 Set Active Destination Request

9.2.1 Server Behavior

 The Set Active Destination Request is used by a client to set an
 existing external binding that will be used as the forwarding
 destination of all data that is not encapsulated in STUN Send
 Indications. In addition, all data received from that external
 client will be forwarded to the STUN client without encapsulation in
 a Data Indication.

 Once the server has identified a request as a Set Active Destination
 request, the server verifies that it has arrived with a source and
 destination transport address that matches the internal remote and
 local transport address of an internal 5-tuple associated with an
 existing allocation. If there is no matching allocation, the server
 MUST generate a 437 (No Binding) Send Error Response.

 The request MUST be authenticated using the same shared secret as the
 one associated with the allocation, or be authenticated using a short
 term password derived from that shared secret. If the request was
 authenticated but not with such a matching credential, the server
 MUST generate an error response with a 441 response code.

 [[OPEN ISSUE: Can we eliminate the whole race condition, by requiring
 the client to close the binding and wait 5 seconds (with no server
 verification of this requirement) before issuing a new Set Active
 Destination request? Proposed text follows:]] If an active
 destination is already set, the Set Active Destination request is
 rejected with a 439 Active Destination Already Set error response.

 If the Set Active Destination request contains a REMOTE-ADDRESS
 attribute, the IP address contained within it is added to the
 permissions for this allocation, if it was not already present.

Rosenberg, et al. Expires August 5, 2006 [Page 19]

Internet-Draft TURN February 2006

 [[OPEN ISSUE: When do you ever want to set active for a destination
 you have never sent to?]]

 Unfortunately, there is a race condition associated with the active
 destination concept. Consider the case where the active destination
 is set, and the server is relaying packets towards the client. The
 client knows the IP address and port where the packets came from -
 the current value of the active destination. The client issues a Set
 Active Destination Request to change the active destination, and
 receives a response. A moment later, a data packet is received, not
 encapsulated in a STUN Data Indication. What is the source if this
 packet? Is it the active destination that existed prior to the Set
 Active Destination request, or the one after? If the transport
 between the client and the STUN server is not reliable, there is no
 way to know.

 To deal with this problem, a small state machine is used to force a
 "cooldown" period during which the server will not relay packets
 towards the client without encapsulating them. This cooldown period
 gives enough time for the client to be certain that any old data
 packets have left the network. Once the cooldown period ends, the
 server can begin relaying packets without encapsulation. There is an
 instance of this state machine for each allocation.

Rosenberg, et al. Expires August 5, 2006 [Page 20]

Internet-Draft TURN February 2006

 +-----+
 | | Req Recvd, DA absent
 | |
 | |
 | |
 | V
 +-----------+
 | | timer fires
 | | -----------
 | None | active=null
 | Set |<--------------------------------+
 | | |
 | | |
 +-----------+ |
 | | Req Recvd
 | | ---------
 | Req Recvd, DA present | 439
 | ---------------------- | +----+
 | active = DA | | |
 | | | |
 | | | |
 V Req Recvd, | | V
 +-----------+ DA!=active,absent +-----------+
 | | ----------------- | |
 | | Set timer | |
 | Set |------------------------------>| Trans- |
 | | | itioning |
 | |<------------------------------| |
 | | timer fires | |
 +-----------+ ----------- +-----------+
 | ^ active=DA
 | |
 | |
 | |
 +-----+
 Req Recvd, DA=active

 Figure 4

 When the allocation is originally created, the active destination is
 null, and the server sets the state to "None Set". In this state,
 the server will relay all received packets in encapsulated form
 towards the client. If the server receives a Set Active Destination
 request, but the request contained no REMOTE-ADDRESS attribute, the
 state machine stays in the same state. The request is responded to
 with a Set Active Destination Response. If, however, the Set Active
 Destination request contained a REMOTE-ADDRESS, the server sets the

Rosenberg, et al. Expires August 5, 2006 [Page 21]

Internet-Draft TURN February 2006

 active destination to the transport address from the REMOTE-ADDRESS
 attribute, and enters the "Set" state. The request is responded to
 with a Set Active Destination Response. In this state, the server
 will relay packets from that transport address towards the client in
 unencapsulated form.

 If the server receives another Set Active Destination request while
 in this state, and the REMOTE-ADDRESS is present, but has a value
 equal to the current active destination, the request causes no
 change. The request is responded to with a Set Active Destination
 Response. If, however, the request contained a REMOTE-ADDRESS which
 did not match the existing active destination, or omitted the active
 destination, the server enters the "transitioning" state. The
 request is responded to with a Set Active Destination Response. In
 this state, the server will forward all packets to the client in
 encapsulated form. In addition, when this state is entered, the
 client sets a timer to fire in Ta seconds. If the connection between
 the client and server is unreliable, this timer SHOULD be
 configurable. It is RECOMMENDED that it be set to three seconds. If
 the connection between the client and server is reliable, the timer
 SHOULD be set to 0 seconds, causing it to fire immediately. This
 makes the transitioning state transient for reliable transports. The
 value of the timer used by the server, regardless of the transport
 protocol, MUST be included in a TIMER-VAL attribute in the Set Active
 Destination response.

 If, while in the "transitioning" state, the server receives a Set
 Active Destination Request, it generates a Set Active Destination
 Error Response that includes a 439 (Transitioning) response code.
 Once the timer fires, the server transitions to the "Set" state if
 the Set Active Destination request that caused the server to enter
 "transitioning" had contained the REMOTE-ADDRESS. In this case, the
 active destination is set to this transport address. If the Set
 Active Destination request had not contained a REMOTE-ADDRESS
 attribute, the server enters the "Not Set" state and sets the active
 destination to null.

9.2.2 Client Behavior

 The Set Active Destination address allows the client to create an
 optimized relay function between it and the server. When the server
 receives packets from a particular preferred external client, the
 server will forward those packets towards the client without
 encapsulating them in a Data Indication. Similarly, the client can
 send non-STUN packets to the server without encapsulation, and these
 are forwarded to the external client. Sending and receiving data in
 unencapsulated form is critical for efficiency purposes. One of the
 primary use cases for the STUN relay usage is in support of Voice

Rosenberg, et al. Expires August 5, 2006 [Page 22]

Internet-Draft TURN February 2006

 over IP (VoIP), which uses very small UDP packets to begin with. The
 extra overhead of an additional layer of encapsulation is considered
 unacceptable.

 The Set Active Destination request is used by the client to provide
 the identity of this preferred external client. The request also has
 the side effect of adding a permission for the target of the REMOTE-
 ADDRESS. [[OPEN ISSUE: is this necessary?]]

 The Set Active Destination address MAY contain a REMOTE-ADDRESS
 attribute. This attribute, when present, provides the address of the
 preferred external client to the server. When absent, it clears the
 value of the preferred external client.

 [[OPEN ISSUE: Proposed wording to eliminate the Set Active
 Destination transitioning state machine follows.]] The client MUST
 NOT send a Set Active Destination request with a REMOTE-ADDRESS
 attribute over an unreliable link (ex: UDP) if an active destination
 is already set for that allocation. If the client wishes to set a
 new active destination, it MUST wait until 5 seconds after a
 successful response is received to a Set Destination Request removing
 the active destination. Failure to wait could cause the client to
 receive and attribute late data forwarded by the STUN relay server to
 the wrong peer.

 In order for the client to know where incoming non-STUN packets were
 sent from, and to be sure where non-STUN packets sent to the server
 will go to, it is necessary to coordinate the value of the active
 destination between the client and the server. As discussed above,
 there is a race condition involved in this coordination which
 requires a state machine to execute on both the client and the
 server.

Rosenberg, et al. Expires August 5, 2006 [Page 23]

Internet-Draft TURN February 2006

 +-----+
 | | OK Recvd, DA absent
 | |
 | |
 | |
 | V
 +-----------+
 439 Recvd| | timer fires
 +------| | -----------
 | | None | active=null
 | | Set |<--------------------------------+
 +----->| | |
 | | |
 +-----------+ |
 | |
 | |
 | OK Recvd, DA present |
 | ---------------------- |
 | active = DA |
 | |
 | |
 V OK Recvd, |
 +-----------+ DA!=active,absent +-----------+
 | | ----------------- | |
 | | Set timer | |
 | Set |------------------------------>| Trans- |
 | | | itioning |
 | |<------------------------------| |
 | | timer fires | |
 +-----------+ ----------- +-----------+
 | ^ active=DA
 | |
 | |
 | |
 +-----+
 439 Recvd,
 OK Recvd, DA=active

 Figure 5

 The state machine is shown in Figure 5. The client starts in the
 "None Set" state. When the client is in either the "None Set" or
 "Set" state, it can send Set Active Destination requests. The
 transitions in the state machines are governed by responses to those
 requests. Only success and 439 responses cause changes in state. A
 437 response implies that the allocation has been removed, and thus
 the state machine destroyed. A client MUST NOT send a new Set Active

Rosenberg, et al. Expires August 5, 2006 [Page 24]

Internet-Draft TURN February 2006

 Destination request prior to the receipt of a response to the
 previous. The state machine will further limit the transmission of
 subsequent Set Active Destination requests.

 If, while in the "None Set" state, the client sent a Set Active
 Destination request without a REMOTE-ADDRESS, and got a successful
 response, there is no change in state. If a successful response was
 received, but there was a REMOTE-ADDRESS in the request, the state
 machine transitions to the "Set" state, and the client sets the
 active destination to the value of the REMOTE-ADDRESS attribute that
 was in the request.

 If, while in the "Set" state, the client sends a Set Active
 Destination request and received a 439 response, it means that there
 was a temporal misalignment in the states between client and server.
 The client thought that the active destination was updated on the
 server, but the server was still in its transitioning state. When
 this error is received, the client remains in the "Set" state. The
 client SHOULD retry its Set Active Destination request, but no sooner
 than 500ms after receipt of the 439 response. In addition, if, while
 in the "Set" state, the client sends a Set Active Destination request
 whose REMOTE-ADDRESS attribute equals the current active destination,
 and that request generates a success response, the client remains in
 the "Set" state.

 However, if, while in the "Set" state, the client sends a Set Active
 Destination request whose REMOTE-ADDRESS was either absent or not
 equal to the current active destination, and receives a success
 response, the client enters the "Transitioning" state. While in this
 state, the client MUST NOT send a new Set Active Destination request.
 The value of the active destination remains unchanged. In addition,
 the client sets a timer. This timer MUST have a value equal to the
 value of the TIMER-VAL attribute from the Set Active Destination
 response. This is necessary for coordinating the state machines
 between client and server.

 Once the timer fires, if the REMOTE-ADDRESS was not absent from the
 Set Active Destination request which caused the client to start the
 timer, the client moves back to the "Set" state, and then updates the
 value of the active destination to the value of REMOTE-ADDRESS. If
 REMOTE-ADDRESS was absent, the client sets the active destination to
 null and enders the "None Set" state.

9.3 Open Binding Request

 The Open Binding Request is used to create a binding between an
 internal 5-tuple and an external 5-tuple, without actually sending
 any data to the peer. It is included for completeness, but could be

Rosenberg, et al. Expires August 5, 2006 [Page 25]

Internet-Draft TURN February 2006

 used to open bindings for multiple TCP peers that are capable of TCP
 simultaneous open. [[OPEN ISSUE: do we want to include an explicit
 Open Binding request or not?]]

9.3.1 Server Behavior

 When the server receives an Open Binding request, it verifies that
 the requester authenticated and used the same credentials as used in
 the corresponding Allocate request. The server looks for a binding
 with an external 5-tuple that matches the value of the REMOTE-ADDRESS
 attribute. As long as the binding does not already exist, the server
 creates the binding as if it received a Send Indication to the peer.
 If the binding already exists, the server rejects the request with a
 444 (Invalid Port) error.

9.3.2 Client Behavior

 The client MAY send an Open Binding request to the STUN relay server
 to open a binding without sending data with an explicit Send
 Indication. To do so, it places the IP address and port number of
 the target peer in a REMOTE-ADDRESS attribute and sends the request.

9.4 Close Binding Request

 The Close Binding Request is designed to squelch possibly undesirable
 traffic relayed to the client. For example, the client may receive
 multiple streams of early media or may be the victim of a limited DoS
 attack, or the wrong peer may have accidentally sent a packet to a
 door allocated by the client. [[OPEN ISSUE: do we want to include an
 explicit Close Binding request or not?]]

9.4.1 Server Behavior

 When the server receives a Close Binding request, it verifies that
 the requester authenticated and used the same credentials as used in
 the corresponding Allocate request. The server looks for a binding
 with an external 5-tuple that matches the value of the REMOTE-ADDRESS
 attribute. If the binding exists, the server immediately removes the
 binding. If the external transport is TCP, the server closes the TCP
 connection. If the active destination was set to the deleted
 binding, the client to server link reverts to the state where no
 active destination is set. A Close Binding request does NOT
 deallocate the port assigned using the Allocate request.

 If the binding does not exist, the server rejects the request with a
 444 (Invalid Port) error.

Rosenberg, et al. Expires August 5, 2006 [Page 26]

Internet-Draft TURN February 2006

9.4.2 Client Behavior

 If the client wants to explicitly remove a binding to a peer, without
 performing a deallocation, it MAY send a Close Binding Request. To
 do so, it places the IP address and port number of the binding it
 wants to remove in a REMOTE-ADDRESS attribute and sends the request.

9.5 Connection Status Indication

 TODO: Expand this text.

 When the STUN relay to peer leg is TCP, the STUN relay client needs
 to be aware of the status of these TCP connections. The STUN relay
 extension defines application states for a TCP connection as follows:
 LISTEN, ESTABLISHED, CLOSED. Consequently, the STUN relay server
 sends a ConnectionState Indication for a binding whenever the relay
 connection status changes for one of the client's bindings except
 when the status changes due to a STUN relay client request (ex: an
 explicit binding close or deallocation).

 A STUN relay can only relay to a peer over TCP if the client
 communicates with the server over TCP or TLS over TCP. Because of
 this, the server can be assured that Connection Status Indications
 are received reliably.

9.6 Send Indication

9.6.1 Server Behavior

 A Send Indication is sent by a client after it has completed its
 Allocate transaction, in order to create permissions in the server
 and send data to an external client.

 Once the server has identified a message as a Send Indication, the
 server verifies that it has arrived with a source and destination
 transport address that matches the internal remote and local
 transport address of an internal 5-tuple associated with an existing
 allocation. If there is no matching allocation, the indication is
 discarded. If there was no REMOTE-ADDRESS, the indication is
 discarded. If there was no DATA attribute, the indication is
 discarded.

 Note that Send Indications are not authenticated and do not
 contain a MESSAGE-INTEGRITY attribute. Just like non-relayed data
 sent over UDP or TCP, the authenticity and integrity of this data
 can only be assured using security mechanisms at higher layers.

Rosenberg, et al. Expires August 5, 2006 [Page 27]

Internet-Draft TURN February 2006

 The server takes the contents of the DATA attribute present in the
 indication. If the allocation was a UDP allocation, the server
 creates a UDP packet whose payload equals that content. The server
 sets the source IP address of the packet equal to the allocated
 transport address. The destination transport address is set to the
 contents of the REMOTE-ADDRESS attribute. The server then sends the
 UDP packet. Note that any retransmissions of this packet which might
 be needed are not handled by the server. It is the clients
 responsibility to generate another Send indication if needed. If the
 STUN relay client hasn't previously sent to this destination IP
 address and port, an external 5-tuple is instantiated in the server.
 Its local and remote transport addresses, respectively, are set to
 the source and destination transport addresses of the UDP packet.

 The server then adds the IP address of the REMOTE-ADDRESS attribute
 to the permission list for this allocation.

 In the case of a TCP allocation, the server checks if it has an
 existing TCP connection open from the allocated transport address to
 the address in the REMOTE-ADDRESS attribute. If so, the server
 extracts the content of the DATA attribute and sends it on the
 matching TCP connection. If the server doesn't have an existing TCP
 connection to the destination, it adds the REMOTE-ADDRESS to the
 permission list and discards the data. The peer must first open a
 TCP connection to the STUN relay server before it can receive data
 sent by the client.

9.6.2 Client Behavior

 Before receiving any UDP or TCP data, a client has to send first.
 Prior to the establishment of an active destination, or while the
 client is in the transitioning state, transmission of data towards a
 peer through the relay is done using the Send Indication. Indeed, if
 the client is in the transitioning state, and it wishes to send data
 through the relay, it MUST use a Send indication.

 For TCP allocated transport addresses, the client needs to wait for
 the peer to open a connection to the STUN relay server before it can
 send data. Data sent with a Send request prior to the opening of a
 TCP connection is discarded silently by the server.

 The Send Indication MUST contain a REMOTE-ADDRESS attribute, which
 contains the IP address and port that the data is being sent to. The
 DATA attribute MAY be present, and contains the data that is to be
 sent towards REMOTE-ADDRESS. If absent, the server will send an
 empty UDP packet in the case of UDP. In the case of TCP, the server
 will do nothing.

Rosenberg, et al. Expires August 5, 2006 [Page 28]

Internet-Draft TURN February 2006

 Since Send is an Indication, it generates no response. The client
 must rely on application layer mechanisms to determine if the data
 was received by the peer.

9.7 Data Indication

 Note that Data Indications are not authenticated and do not
 contain a MESSAGE-INTEGRITY attribute. Just like non-relayed data
 sent over UDP or TCP, the authenticity and integrity of this data
 can only be assured using security mechanisms at higher layers.

9.7.1 Server Behavior

 A server MUST send data packets towards the client using a Data
 Indication under the conditions described in Section 13.1. Data
 Indications MUST contain a DATA attribute containing the data to
 send, and MUST contain a REMOTE-ADDRESS attribute indicating where
 the data came from.

9.7.2 Client Behavior

 Once a client has obtained an allocation and created permissions for
 a particular external client, the server can begin to relay packets
 from that external client towards the client. If the external client
 is not the active destination, this data is relayed towards the
 client in encapsulated form using the Data Indication.

 The Data Indication contains two attributes - DATA and REMOTE-
 ADDRESS. The REMOTE-ADDRESS attribute indicates the source transport
 address that the request came from, and it will equal the external
 remote transport address of the external client. When processing
 this data, a client MUST treat the data as if it came from this
 address, rather than the stun server itself. The DATA attribute
 contains the data from the UDP packet or TCP segment that was
 received. Note that the TURN server will not retransmit this
 indication over UDP.

10. New Attributes

 The STUN relay usage defines the following new attributes:

Rosenberg, et al. Expires August 5, 2006 [Page 29]

Internet-Draft TURN February 2006

 0x000D: LIFETIME
 0x0010: BANDWIDTH
 0x0012: REMOTE-ADDRESS
 0x0013: DATA
 0x0016: RELAY-ADDRESS
 0x0018: REQUESTED-PORT
 0x0019: REQUESTED-TRANSPORT
 0x0022: REQUESTED-IP
 0x0021: TIMER-VAL

10.1 LIFETIME

 The lifetime attribute represents the duration for which the server
 will maintain an allocation in the absence of data traffic either
 from or to the client. It is a 32 bit value representing the number
 of seconds remaining until expiration.

 +-+
 | Lifetime |
 +-+

10.2 BANDWIDTH

 The bandwidth attribute represents the peak bandwidth, measured in
 kbits per second, that the client expects to use on the binding. The
 value represents the sum in the receive and send directions.
 [[Editors note: Need to define leaky bucket parameters for this.]]

 +-+
 | Bandwidth |
 +-+

10.3 REMOTE-ADDRESS

 The REMOTE-ADDRESS specifies the address and port of the peer as seen
 from the STUN relay server. It is encoded in the same way as MAPPED-
 ADDRESS.

10.4 DATA

 The DATA attribute is present in Send Indications and Data
 Indications. It contains raw payload data that is to be sent (in the
 case of a Send Request) or was received (in the case of a Data

Rosenberg, et al. Expires August 5, 2006 [Page 30]

Internet-Draft TURN February 2006

 Indication).

10.5 RELAY-ADDRESS

 The RELAY-ADDRESS is present in Allocate responses. It specifies the
 address and port that the server allocated to the client. It is
 encoded in the same way as MAPPED-ADDRESS.

10.6 REQUESTED-PORT-PROPS

 This attribute allows the client to request certain properties for
 the port that is allocated by the server. The attribute can be used
 with any transport protocol that has the notion of a 16 bit port
 space (including TCP and UDP). The attribute is 32 bits long. Its
 format is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Reserved = 0 | B | A |
 +-+

 The lower two bits (labeled A in the diagram) are for requested port
 alignment.

 00 no specific port alignment
 01 odd port number
 10 even port number
 11 even port number; reserve next higher port

 The next higher two bits (labeled B in the diagram) are for requested
 port allocation behavior.

 00 no special behavior requested
 01 specific port requested
 10 door requested
 11 reserved - invalid

 All other bits in this attribute are reserved and MUST be set to
 zero.

 Even Port is a request to the server to allocate a port with even
 parity. The port filter is not used with this property. Odd Port is
 a request to the server to allocate a port with odd parity. The port
 filter is not used with this property. Even port, with a hold on the
 next higher port, is a request to the server to allocate an even

Rosenberg, et al. Expires August 5, 2006 [Page 31]

Internet-Draft TURN February 2006

 port. Furthermore, the client indicates that it will want the next
 higher port as well. As such, the client requests that the server,
 if it can, not allocate the next higher port to anyone unless that
 port is explicitly requested, which the client will itself do. The
 port filter is not used with this property. Finally, the Specific
 Port property is a request for a specific port. The port that is
 requested is contained in the Port filter.

 Extensions to the relay usage can define additional port properties.
 [[TODO: Add IANA registry]]

10.7 REQUESTED-TRANSPORT

 This attribute is used by the client to request a specific transport
 protocol for the allocated transport address. It is a 32 bit
 unsigned integer. Its values are:

 0x0000 0000: UDP
 0x0000 0001: TCP

 If an Allocate request is sent over TCP and requests a UDP
 allocation, or an Allocate request is sent over TLS over TCP and
 requests a UDP or TCP allocation, the server will relay data between
 the two transports.

 Extensions to the relay usage can define additional transport
 protocols. [[TODO: Add IANA registry]]

10.8 REQUESTED-IP

 The REQUESTED-IP attribute is used by the client to request that a
 specific IP address be allocated to it. This attribute is needed
 since it is anticipated that STUN relays will be multi-homed so as to
 be able to allocate more than 64k transport addresses. As a
 consequence, a client needing a second transport address on the same
 interface as a previous one can make that request.

 The format of this attribute is identical to MAPPED-ADDRESS.
 However, the port component of the attribute is ignored by the
 server. If a client wishes to request a specific IP address and
 port, it uses both the REQUESTED-IP and REQUESTED-PORT attributes.

10.9 TIMER-VAL

 The TIMER-VAL attribute is used only in conjunction with the Set
 Active Destination response. It conveys from the server, to the
 client, the value of the timer used in the server state machine.

Rosenberg, et al. Expires August 5, 2006 [Page 32]

Internet-Draft TURN February 2006

 Coordinated values are needed for proper operation of the mechanism.

 The attribute is a 32 bit unsigned integer representing the number if
 milliseconds used by the server for its timer.

11. New Error Response Codes

 The STUN relay usage defines the following new Error response codes:

 437 (No Binding): A request was received by the server that
 requires an allocation to be in place. However, there is none yet
 in place.

 439 (Transitioning): A Set Active Destination request was received
 by the server. However, a previous request was sent within the
 last few seconds, and the server is still transitioning to that
 active destination. Please repeat the request later.

 441 (Wrong Username): A TURN request was received for an allocated
 binding, but it did not use the same username and password that
 were used in the allocation. The client must supply the proper
 credentials, and if it cannot, it should teardown its binding,
 allocate a new one time password, and try again.

 442 (Unsupported Transport Protocol): The Allocate request asked
 for a transport protocol to be allocated that is not supported by
 the server.

 443 (Invalid IP Address): The Allocate request asked for a
 transport address to be allocated from a specific IP address that
 is not valid on the server.

 444 (Invalid Port): The Allocate request asked for a port to be
 allocated that is not available on the server.

 445 (Operation for TCP Only): The client tried to send a request
 to perform a TCP-only operation on an allocation, and allocation
 is UDP.

 446 (Connection Failure): The attempt by the server to open the
 connection failed.

 447 (Connection Timeout): The attempt by the server to open the
 connection could not be completed, and is still in progress.

Rosenberg, et al. Expires August 5, 2006 [Page 33]

Internet-Draft TURN February 2006

12. Client Procedures

12.1 Receiving and Sending Unencapsulated Data

 Once the active destination has been set, a client will receive both
 STUN and non-STUN data on the socket on which the Allocate Request
 was sent. The encapsulation behavior depends on the protocol used
 between the STUN client and the STUN relay server.

12.2 Datagram Protocols

 If the allocation was over UDP, datagrams which contain the STUN
 magic cookie are treated as STUN requests. All other data is non-
 STUN data, which MUST be processed as if it had a source IP address
 and port equal to the value of the active destination.

 If the client wants to send data to the peer which contains the magic
 cookie in the same location as a STUN request, it MUST send that data
 encapsulated in a Send Indication, even if the active destination is
 set.

 In addition, once the active destination has been set, if the client
 is in the "Set" state, it MAY send data to the active destination by
 sending data on that same socket. Unencapsulated data MUST NOT be
 sent while in the "Not Set" or "Transitioning" states. However, it
 is RECOMMENDED that the client not send unencapsulated data for
 approximately 500 milliseconds after the client enters the "Set"
 state. This eliminates any synchronization problems resulting from
 network delays. Of course, even if the active destination is set,
 the client can send data to that destination at any time by using the
 Send Indication.

12.3 Stream Transport Protocols

 If the allocation was over TCP or TLS over TCP, once the active
 destination is set, the client will receive data framed as described
 in Section 8. The client MUST treat data encapsulated as data with
 this framing as if it originated from the active destination.

 The client SHOULD send data encapsulated using this framing scheme or
 it MAY place the data inside Send Indications.

13. Server Procedures

 Besides the processing of the request and indications described
 above, this specification defines rules for processing of data
 packets received by the STUN server. There are two cases - receipt
 of any packets on an allocated address, and receipt of non-STUN data

Rosenberg, et al. Expires August 5, 2006 [Page 34]

Internet-Draft TURN February 2006

 on its internal local transport address.

13.1 Receiving Data on Allocated Transport Addresses

13.1.1 TCP Processing

 If a server receives a TCP connection request on an allocated TCP
 transport address, it checks the permissions associated with that
 allocation. If the source IP address of the TCP SYN packet match one
 of the permissions, the TCP connection is accepted. Otherwise, it is
 rejected. No information is passed to the client about the
 acceptance of the connection; rather, data passed to the client with
 a source transport address it has not seen before serves this
 purpose. [[TODO fix]]

 If a server receives data on a TCP connection that terminates on the
 allocated TCP transport address, the server checks the value of the
 active destination. If it equals the source IP address and port of
 the data packet (in other words, if the active destination identifies
 the other side of the TCP connection), the server checks the state
 machine of the allocation. If the state is "Set", the data is taken
 from the TCP connection and sent towards the client in unencapsulated
 form. Otherwise, the data is sent towards the client in a Data
 Indication, also known as encapsulated form. In this form, the
 server MUST add a REMOTE-ADDRESS which corresponds to the external
 remote transport address of the TCP connection, and MUST add a DATA
 attribute containing the data received on the TCP connection.

 Sending of the data towards the client, whether in encapsulated or
 unencapsulated form, depends on the linkage with the client. If the
 linkage with the client is over UDP, the data is placed in a UDP
 datagram and sent over the linkage. Note that the server will not
 retransmit this data to ensure reliability. If the linkage with the
 client is over TCP, the data is placed into the TCP connection
 corresponding to the linkage. If the TCP connection generates an
 error (because, for example, the incoming TCP packet rate exceeds the
 throughput of the TCP connection to the client), the data is
 discarded silently by the server.

 Note that, because data is forwarded blindly across TCP bindings, TLS
 will successfully operate over a TURN allocated TCP port if the
 linkage to the client is also TCP.

13.1.2 UDP Processing

 If a server receives a UDP packet on an allocated UDP transport
 address, it checks the permissions associated with that allocation.
 If the source IP address of the UDP packet matches one of the

Rosenberg, et al. Expires August 5, 2006 [Page 35]

Internet-Draft TURN February 2006

 permissions, the UDP packet is accepted. Otherwise, it is discarded.

 Assuming the packet is accepted, it must be forwarded to the client.
 It will be forwarded in either encapsulated or unencapsulated form.
 To determine which, the server checks the value of the active
 destination. If it equals the source IP address and port of the UDP
 packet, the server checks the state machine of the allocation. If
 the state is "Set", the data is taken from the UDP payload and sent
 towards the client in unencapsulated form. Otherwise, the data is
 sent towards the client in a Data Indication, also known as
 encapsulated form. In this form, the server MUST add a REMOTE-
 ADDRESS which corresponds to the external remote transport address of
 the UDP packet, and MUST add a DATA attribute containing the data
 payload of the UDP packet.

 Sending of the data towards the client, whether in encapsulated or
 unencapsulated form, depends on the linkage with the client. If the
 linkage with the client is over UDP, the data is placed in a UDP
 datagram and sent over the linkage. Note that the server will not
 retransmit this data to ensure reliability. If the linkage with the
 client is over TCP, the data is placed into the TCP connection
 corresponding to the linkage. If the TCP connection generates an
 error (because, for example, the incoming UDP packet rate exceeds the
 throughput of the TCP connection), the data is discarded silently by
 the server.

13.2 Receiving Data on Internal Local Transport Addresses

 If a server receives a UDP packet from the client on its internal
 local transport address, and it is coming from an internal remote
 transport address associated with an existing allocation, it
 represents UDP data that the client wishes to forward. If the active
 destination is not set, the server MUST discard the packet. If the
 active destination is set, and the allocated transport protocol is
 TCP, the server selects the TCP connection from the allocated
 transport address to the active destination. The data is then sent
 over that connection. If the transmission fails due to a TCP error,
 the data is discarded silently by the server. If the active
 destination is set, and the allocated transport protocol is UDP, the
 server places the data from the client in a UDP payload, and sets the
 destination address and port to the active destination. The UDP
 packet is then sent with a source IP address and port equal to the
 allocated transport address. Note that the server will not
 retransmit the UDP datagram.

 If a server receives data on a TCP connection to a client, the server
 retrieves the allocation bound to that connection. If the active
 destination for the allocation is not set, the server MUST discard

Rosenberg, et al. Expires August 5, 2006 [Page 36]

Internet-Draft TURN February 2006

 the data. If the active destination is set, and the allocated
 transport protocol is TCP, the server selects the TCP connection from
 the allocated transport address to the active destination. The data
 is then sent over that connection. If the transmission fails due to
 a TCP error, the data is discarded silently by the server. If the
 active destination is set, and the allocated transport protocol is
 UDP, the server places the data from the client in a UDP payload, and
 sets the destination address and port to the active destination. The
 UDP packet is then sent with a source IP address and port equal to
 the allocated transport address. Note that the server will not
 retransmit the UDP datagram.

 If a TCP connection from a client is closed, the associated
 allocation is destroyed. This involves terminating any TCP
 connections from the allocated transport address to external clients
 (applicable only when the allocated transport address was TCP), and
 then freeing the the allocated transport address (and all associated
 state maintained by the server) for use by other clients.

 Note that the state of the allocation, whether it is "Set", "Not
 Set", or "Transitioning", has no bearing on the rules for forwarding
 of packets received from clients. Only the value of the active
 destination is relevant.

13.3 Lifetime Expiration

 When the allocation expiration timer for a binding fires, the server
 MUST destroy the allocation. This involves terminating any TCP
 connections from the allocated transport address to external clients
 (applicable only when the allocated transport address was TCP), and
 then freeing the allocated transport address (and all associated
 state maintained by the server) for use by other clients.

 [[OPEN ISSUE: This is a change from the previous version, which
 allowed data traffic to keep allocations alive. This change was made
 based on implementation considerations, as it allows an easier
 separation of packet processing and signaling. Is this OK?]]

14. Security Considerations

 TODO: Need to spend more time on this.

 STUN servers implementing this relay usage allocate bandwidth and
 port resources to clients, in constrast to the usages defined in [1].
 Therefore, a STUN server providing the relay usage requires
 authentication and authorization of STUN requests. This
 authentication is provided by mechanisms defined in the STUN
 specification itself. In particular, digest authentication and the

Rosenberg, et al. Expires August 5, 2006 [Page 37]

Internet-Draft TURN February 2006

 usage of short-term passwords, obtained through a digest exchange
 over TLS, are available. The usage of short-tem passwords ensures
 that the Allocate Requests, which often do not run over TLS, are not
 susceptible to offline dictionary attacks that can be used to guess
 the long lived shared secret between the client and the server.

 Because STUN servers implementing the relay usage allocate resources,
 they can be susceptible to denial-of-service attacks. All Allocate
 Requests are authenticated, so that an unknown attacker cannot launch
 an attack. An authenticated attacker can generate multiple Allocate
 Requests, however. To prevent a single malicious user from
 allocating all of the resources on the server, it is RECOMMENDED that
 a server implement a modest per user cap on the amount of bandwidth
 that can be allocated. Such a mechanism does not prevent a large
 number of malicious users from each requesting a small number of
 allocations. Attacks as these are possible using botnets, and are
 difficult to detect and prevent. Implementors of the STUN relay
 usage should keep up with best practices around detection of
 anomalous botnet attacks.

 A client will use the transport address learned from the RELAY-
 ADDRESS attribute of the Allocate Response to tell other users how to
 reach them. Therefore, a client needs to be certain that this
 address is valid, and will actually route to them. Such validation
 occurs through the message integrity checks provided in the Allocate
 response. They can guarantee the authenticity and integrity of the
 allocated addresss. Note that the STUN relay usage is not
 susceptible to the attacks described in Section 12.2.3, 12.2.4,
 12.2.5 or 12.2.6 of RFC 3489 [[TODO: Update references once 3489bis
 is more stable]]. These attacks are based on the fact that a STUN
 server mirrors the source IP address, which cannot be authenticated.
 STUN does not use the source address of the Allocate Request in
 providing the RELAY-ADDRESS, and therefore, those attacks do not
 apply.

 The relay usage cannot be used by clients for subverting firewall
 policies. The relay usage has fairly limited applicability,
 requiring a user to send a packet to a peer before being able to
 receive a packet from that peer. This applies to both TCP and UDP.
 Thus, it does not provide a general technique for externalizing TCP
 and UDP sockets. Rather, it has similar security properties to the
 placement of an address-restricted NAT in the network, allowing
 messaging in from a peer only if the internal client has sent a
 packet out towards the IP address of that peer. This limitation
 means that the relay usage cannot be used to run web servers, email
 servers, SIP servers, or other network servers that service a large
 number of clients. Rather, it facilitates rendezvous of NATted
 clients that use some other protocol, such as SIP, to communicate IP

https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires August 5, 2006 [Page 38]

Internet-Draft TURN February 2006

 addresses and ports for communications.

 Confidentiality of the transport addresses learned through Allocate
 requests does not appear to be that important, and therefore, this
 capability is not provided.

 Relay servers are useful even for users not behind a NAT. They can
 provide a way for truly anonymous communications. A user can cause a
 call to have its media routed through a STUN server, so that the
 user's IP addresses are never revealed.

 TCP transport addresses allocated by Allocate requests will properly
 work with TLS and SSL. However, any relay addresses learned through
 an Allcoate will not operate properly with IPSec Authentication
 Header (AH) [11] in transport mode. IPSec ESP [12] and any tunnel-
 mode ESP or AH should still operate.

15. IANA Considerations

 TODO.

16. IAB Considerations

 The IAB has studied the problem of ``Unilateral Self Address
 Fixing'', which is the general process by which a client attempts to
 determine its address in another realm on the other side of a NAT
 through a collaborative protocol reflection mechanism RFC 3424 [13].
 TURN is an example of a protocol that performs this type of function.
 The IAB has mandated that any protocols developed for this purpose
 document a specific set of considerations. This section meets those
 requirements.

16.1 Problem Definition

 >From RFC 3424 [13], any UNSAF proposal must provide:

 Precise definition of a specific, limited-scope problem that is to
 be solved with the UNSAF proposal. A short term fix should not be
 generalized to solve other problems; this is why "short term
 fixes usually aren't".

 The specific problem being solved by TURN is for a client, which may
 be located behind a NAT of any type, to obtain an IP address and port
 on the public Internet, useful for applications that require a client
 to place a transport address into a protocol message, with the
 expectation that the client will be able to receive packets from a
 single host that will send to this address. Both UDP and TCP are
 addressed. It is also possible to send packets so that the recipient

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424

Rosenberg, et al. Expires August 5, 2006 [Page 39]

Internet-Draft TURN February 2006

 sees a source address equal to the allocated address. TURN, by
 design, does not allow a client to run a server (such as a web or
 SMTP server) using a TURN address. TURN is useful even when NAT is
 not present, to provide anonymity services.

16.2 Exit Strategy

 From [13], any UNSAF proposal must provide:

 Description of an exit strategy/transition plan. The better short
 term fixes are the ones that will naturally see less and less use
 as the appropriate technology is deployed.

 It is expected that TURN will be useful indefinitely, to provide
 anonymity services. When used to facilitate NAT traversal, TURN does
 not iself provide an exit strategy. That is provided by the
 Interactive Connectivity Establishment (ICE) [14] mechanism. ICE
 allows two cooperating clients to interactively determine the best
 addresses to use when communicating. ICE uses TURN-allocated
 addresses as a last resort, only when no other means of connectivity
 exists. As a result, as NATs phase out, and as IPv6 is deployed, ICE
 will increasingly use other addresses (host local addresses).
 Therefore, clients will allocate TURN addresses, but not use them,
 and therefore, de-allocate them. Servers will see a decrease in
 usage. Once a provider sees that its TURN servers are not being used
 at all (that is, no media flows through them), they can simply remove
 them. ICE will operate without TURN-allocated addresses.

16.3 Brittleness Introduced by TURN

 From [13], any UNSAF proposal must provide:

 Discussion of specific issues that may render systems more
 "brittle". For example, approaches that involve using data at
 multiple network layers create more dependencies, increase
 debugging challenges, and make it harder to transition.

 TURN introduces brittleness in a few ways. First, it adds another
 server element to any system, which adds another point of failure.
 TURN requires clients to demultiplex TURN packets and data based on
 hunting for a MAGIC-COOKIE in the TURN messages. It is possible
 (with extremely small probabilities) that this cookie could appear
 within a data stream, resulting in mis-classification. That might
 introduce errors into the data stream (they would appear as lost
 packets), and also result in loss of a binding. TURN relies on any
 NAT bindings existing for the duration of the bindings held by the
 TURN server. Neither the client nor the TURN server have a way of
 reliably determining this lifetime (STUN can provide a means, but it

Rosenberg, et al. Expires August 5, 2006 [Page 40]

Internet-Draft TURN February 2006

 is heuristic in nature and not reliable). Therefore, if there is no
 activity on an address learned from TURN for some period, the address
 might become useless spontaneously.

 TURN will result in potentially significant increases in packet
 latencies, and also increases in packet loss probabilities. That is
 because it introduces an intermediary on the path of a packet from
 point A to B, whose location is determined by application-layer
 processing, not underlying routing topologies. Therefore, a packet
 sent from one user on a LAN to another on the same LAN may do a trip
 around the world before arriving. When combined with ICE, some of
 the most problematic cases are avoided (such as this example) by
 avoiding the usage of TURN addresses. However, when used, this
 problem will exist.

 Note that TURN does not suffer from many of the points of brittleness
 introduced by STUN. TURN will work with all existing NAT types known
 at the time of writing, and for the forseeable future. TURN does not
 introduce any topological constraints. TURN does not rely on any
 heuristics for NAT type classification.

16.4 Requirements for a Long Term Solution

 >From [13]}, any UNSAF proposal must provide:

 Identify requirements for longer term, sound technical solutions
 -- contribute to the process of finding the right longer term
 solution.

 Our experience with TURN continues to validate our belief in the
 requirements outlined in Section 14.4 of STUN.

16.5 Issues with Existing NAPT Boxes

 >From [13], any UNSAF proposal must provide:

 Discussion of the impact of the noted practical issues with
 existing, deployed NA[P]Ts and experience reports.

 A number of NAT boxes are now being deployed into the market which
 try and provide "generic" ALG functionality. These generic ALGs hunt
 for IP addresses, either in text or binary form within a packet, and
 rewrite them if they match a binding. This usage avoids that problem
 by using the XOR-MAPPED-ADDRESS attribute instead of the MAPPED-
 ADDRESS

Rosenberg, et al. Expires August 5, 2006 [Page 41]

Internet-Draft TURN February 2006

17. Example

 In this example, a client is behind a NAT. The client has a private
 address of 10.0.1.1. The STUN server is on the public side of the
 NAT, and is listening for STUN relay requests on 192.0.2.3:8776. The
 public side of the NAT has an IP address of 192.0.2.1. The client is
 attempting to send a SIP INVITE to a peer, and wishes to allocate an
 IP address and port for inclusion in the SDP of the INVITE.
 Normally, TURN would be used in conjunction with ICE when applied to
 SIP. For simplicities sake, TURN is showed without ICE.

 The client communicates with a SIP user agent on the public network.
 This user agent uses a 192.0.2.17:12734 for receipt of its RTP
 packets.

 Client NAT STUN Server Peer
 | | | |
 |(1) Allocate | | |
 |S=10.0.1.1:4334 | | |
 |D=192.0.2.3:8776 | | |
 |------------------>| | |
 | | | |
 | |(2) Allocate | |
 | |S=192.0.2.1:63346 | |
 | |D=192.0.2.3:8776 | |
 | |------------------>| |
 | | | |
 | |(3) Error | |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 | | | |
 |(4) Error | | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 |(5) Allocate | | |
 |S=10.0.1.1:4334 | | |
 |D=192.0.2.3:8776 | | |
 |------------------>| | |
 | | | |
 | |(6) Allocate | |
 | |S=192.0.2.1:63346 | |
 | |D=192.0.2.3:8776 | |
 | |------------------>| |
 | | | |

Rosenberg, et al. Expires August 5, 2006 [Page 42]

Internet-Draft TURN February 2006

 | |(7) Response | |
 | |RA=192.0.2.3:32766 | |
 | |MA=192.0.2.1:63346 | |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 |(8) Response | | |
 |RA=192.0.2.3:32766 | | |
 |MA=192.0.2.1:63346 | | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 | | | |
 |(9) INVITE | | |
 |SDP=192.0.2.3:32766| | |
 |-->|
 | | | |
 | | | |
 |(10) 200 OK | | |
 |SDP=192.0.2.17:12734 | |
 |<--|
 | | | |
 | | | |
 | | | |
 |(11) ACK | | |
 |-->|
 | | | |
 |(12) Send | | |
 |DATA=RTP | | |
 |DA=192.0.2.17:12734| | |
 |S=10.0.1.1:4334 | | |
 |D=192.0.2.3:8776 | | |
 |------------------>| | |
 | | | |
 | |(13) Send | |
 | |DATA=RTP | |
 | |DA=192.0.2.17:12734| |
 | |S=192.0.2.1:63346 | |
 | |D=192.0.2.3:8776 | |
 | |------------------>| |
 | | | |
 | | |(14) RTP |
 | | |S=192.0.2.3:32766 |
 | | |D=192.0.2.17:12734 |
 | | |------------------>|
 | | | |
 | | |Permission |

Rosenberg, et al. Expires August 5, 2006 [Page 43]

Internet-Draft TURN February 2006

 | | |Created |
 | | |192.0.2.17 |
 | | | |
 | | |(15) RTP |
 | | |S=192.0.2.17:12734 |
 | | |D=192.0.2.3:32766 |
 | | |<------------------|
 | | | |
 | |(16) DataInd | |
 | |DATA=RTP | |
 | |RA=192.0.2.17:12734| |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 |(17) DataInd | | |
 |DATA=RTP | | |
 |RA=192.0.2.17:12734| | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 |(18) SetAct | | |
 |DA=192.0.2.17:12734| | |
 |S=10.0.1.1:4334 | | |
 |D=192.0.2.3:8776 | | |
 |------------------>| | |
 | | | |
 | |(19) SetAct | |
 | |DA=192.0.2.17:12734| |
 | |S=192.0.2.1:63346 | |
 | |D=192.0.2.3:8776 | |
 | |------------------>| |
 | | | |
 | |(20) Response | |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 | | | |
 |(21) Response | | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 | | | |
 | | | after 3s|
 | | | |
 | | | |
 | | |(22) RTP |

Rosenberg, et al. Expires August 5, 2006 [Page 44]

Internet-Draft TURN February 2006

 | | |S=192.0.2.17:12734 |
 | | |D=192.0.2.3:32766 |
 | | |<------------------|
 | | | |
 | |(23) RTP | |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 | | | |
 |(24) RTP | | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 | | | |

 Figure 13

 The call flow is shown in Figure 13. The client allocates a port
 from the local operating system on its private interface, obtaining
 4334. It then attempts to secure a port for RTP traffic. RTCP
 processing is not shown. The client sends an Allocate request (1)
 with a source address (denoted by S) of 10.0.1.1:4334 and a
 destination (denoted by D) of 192.0.2.3:8776. This passes through
 the NAT (2), which creates a mapping from the 192.0.2.1:63346 to the
 source IP address and port of the request, 10.0.1.1:4334. This
 request is received at the STUN server, which challenges it (3),
 requesting credentials. This response is passed to the client (4).
 The client retries the request, this time with credentials (5). This
 arrives at the server (6). The request is now authenticated. The
 server provides a UDP allocation, 192.0.2.3:32766, and places it into
 the RELAY-ADDRESS (denoted by RA) in the response (7). It also
 reflects the source IP address and port of the request into the
 MAPPED-ADDRESS (denoted by MA) in the response. This passes through
 the NAT to the client (8). The client now proceeds to perform a
 basic SIP call setup. In message 9, it includes the relay address
 into the SDP of its INVITE. The called party responds with a 200 OK,
 and includes its IP address - 192.0.2.17:12734. The exchange
 completes with an ACK (11).

 Next, user A sends an RTP packet. Since the active destination has
 not been set, the client decides to use the Send indication. It does
 so, including the RTP packet as the contents of the DATA attribute.
 The REMOTE-ADDRESS attribute (denoted by DA) is set to 192.0.2.17:
 12734, learned from the 200 OK. This is sent through the NAT
 (message 12) and arrives at the STUN server (message 13). The server
 extracts the data contents, and sends the packet towards REMOTE-
 ADDRESS (message 14). Note how the source address and port in this

Rosenberg, et al. Expires August 5, 2006 [Page 45]

Internet-Draft TURN February 2006

 packet is 192.0.2.3:32766, the allocated transport address given to
 the client. The act of sending the packet with Send causes the STUN
 server to install a permission for 192.0.2.17.

 Indeed, the called party now sends an RTP packet toward the client
 (message 15). This arrives at the STUN server. Since a permission
 has been set for the IP address in the source of this packet, it is
 accepted. As no active destination is set, the STUN server
 encapsulates the contents of the packet in a Data Indication (message
 16), and sends it towards the client. The REMOTE-ADDRESS attribute
 (denoted by RA) indicates the source of the packet - 192.0.2.17:
 12734. This is forwarded through the NAT to the client (message 17).

 The client decides to optimize the path for packets to and from
 192.0.2.17:12734. So, it issues a Set Active Destination request
 (message 18) with a REMOTE-ADDRESS of 192.0.2.17:12734. This passes
 through the NAT and arrives at the STUN server (message 19). This
 generates a successful response (message 20) which is passed to the
 client (message 21). At this point, the server and client are in the
 transitioning state. A little over 3 seconds later (by default), the
 state machines transition back to "Set". Until this point, packets
 from the called party would have been relayed back to the client in
 Data Indications. Now, the next RTP packet shows up at the STUN
 server (message 22). Since the source IP address and port match the
 active destination, the RTP packet is relayed towards the client
 without encapsulation (message 23 and 24).

18. Acknowledgements

 The authors would like to thank Marc Petit-Huguenin for his comments
 and suggestions.

19. References

19.1 Normative References

 [1] Rosenberg, J., "Simple Traversal of UDP Through Network Address
 Translators (NAT) (STUN)", draft-ietf-behave-rfc3489bis-03 (work
 in progress), March 2006.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [4] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,

https://datatracker.ietf.org/doc/html/draft-ietf-behave-rfc3489bis-03
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2782

Rosenberg, et al. Expires August 5, 2006 [Page 46]

Internet-Draft TURN February 2006

 Leach, P., Luotonen, A., and L. Stewart, "HTTP Authentication:
 Basic and Digest Access Authentication", RFC 2617, June 1999.

19.2 Informative References

 [5] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications", STD 64,

RFC 3550, July 2003.

 [6] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [7] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
 Session Description Protocol (SDP)", RFC 3264, June 2002.

 [8] Handley, M. and V. Jacobson, "SDP: Session Description
 Protocol", RFC 2327, April 1998.

 [9] Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time Streaming
 Protocol (RTSP)", RFC 2326, April 1998.

 [10] Senie, D., "Network Address Translator (NAT)-Friendly
 Application Design Guidelines", RFC 3235, January 2002.

 [11] Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402,
 November 1998.

 [12] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload
 (ESP)", RFC 2406, November 1998.

 [13] Daigle, L. and IAB, "IAB Considerations for UNilateral Self-
 Address Fixing (UNSAF) Across Network Address Translation",

RFC 3424, November 2002.

 [14] Rosenberg, J., "Interactive Connectivity Establishment (ICE): A
 Methodology for Network Address Translator (NAT) Traversal for
 Offer/Answer Protocols", draft-ietf-mmusic-ice-08 (work in
 progress), March 2006.

 [15] Audet, F. and C. Jennings, "NAT Behavioral Requirements for
 Unicast UDP", draft-ietf-behave-nat-udp-07 (work in progress),
 June 2006.

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc2326
https://datatracker.ietf.org/doc/html/rfc3235
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-08
https://datatracker.ietf.org/doc/html/draft-ietf-behave-nat-udp-07

Rosenberg, et al. Expires August 5, 2006 [Page 47]

Internet-Draft TURN February 2006

Authors' Addresses

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 Email: jdrosen@cisco.com
 URI: http://www.jdrosen.net

 Rohan Mahy
 Plantronics

 Email: rohan@ekabal.com

 Christian Huitema
 Microsoft
 One Microsoft Way
 Redmond, WA 98052-6399
 US

 Email: huitema@microsoft.com

http://www.jdrosen.net

Rosenberg, et al. Expires August 5, 2006 [Page 48]

Internet-Draft TURN February 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Rosenberg, et al. Expires August 5, 2006 [Page 49]

