Behave J. Rosenberg

Internet-Draft Cisco Systems
Expires: August 5, 2006 R. Mahy
Plantronics

C. Huitema

Microsoft

February 2006

Obtaining Relay Addresses from Simple Traversal of UDP Through NAT
(STUN)
draft-ietf-behave-turn-01

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware

have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on August 5, 2006.
Copyright Notice
Copyright (C) The Internet Society (2006).
Abstract
This specification defines a usage of the Simple Traversal of UDP
Through NAT (STUN) Protocol for asking the STUN server to relay

packets towards a client. This usage is useful for elements behind
NATs whose mapping behavior is address and port dependent. The

Rosenberg, et al. Expires August 5, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TURN

February 20

extension purposefully restricts the ways in which the relayed
address can be used. In particular,
general purpose servers from ports obtained from the STUN server.

Table of Contents

[N =

[© [0 [N o o1

10.
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
160.9

I
T
D
0

NN
[EEY

N
N

N
w

N
N

A
C
S

N

©
[N

o ‘
I\J@@

mwnop@@oo@@

©
o

9.

ntroduction
erminology
efinitions .
verview of Operation
Normal Allocations

Doors

Transports

Tuple Terminology
pplicability Statement
lient Discovery of Server
erver Determination of Usage

ew Requests and Indications
Allocate Request
9.1.1 Server Behavior
9.1.2 Client Behavior

Set Active Destination Request
9.2.1 Server Behavior
9.2.2 Client Behavior

Open Binding Request
9.3.1 Server Behavior

9.3.2 Client Behavior

Close Binding Request

9.4.1 Server Behavior

9.4.2 Client Behavior
Connection Status Indlcatlon
Send Indication

9.6.1 Server Behavior

9.6.2 Client Behavior

Data Indication

.7.1 Server Behavior

7.2 Client Behavior

N

ew Attributes
LIFETIME
BANDWIDTH
REMOTE - ADDRESS
DATA .
RELAY - ADDRESS
REQUESTED-PORT -PROPS
REQUESTED-TRANSPORT
REQUESTED-IP
TIMER-VAL

it prevents users from running

New Framing Mechanism for Stream- Orlented Transports

06

RISKEREEEEERBEBEBEERRRRREEEEERERRRERRER
NINIVRPEFIRPR DD GBIVl ININNNODODOD O OUIVIl@INININEIRIR OO0 |N o 0o o | |

Rosenberg, et al. Expires August 5, 2006 [Page 2]

Internet-Draft TURN February 2006

11. New Error Response Codes
12. Client Procedures . .
12.1 Receiving and Sending Unencapsulated Data
12.2 Datagram Protocols
12.3 Stream Transport Protocols
13. Server Procedures .
13.1 Receiving Data on Allocated Transport Addresses
13.1.1 TCP Processing
13.1.2 UDP Processing
13.2 Receiving Data on Internal Local Transport Addresses
13.3 Lifetime Expiration
Security Considerations
IANA Considerations
IAB Considerations
16.1 Problem Definition
16.2 Exit Strategy
16.3 Brittleness Introduced by TURN
16.4 Requirements for a Long Term Solution
16.5 Issues with Existing NAPT Boxes
Example
Acknowledgements
References ..
19.1 Normative References
19.2 Informative References
Authors' Addresses
Intellectual Property and Copyrlght Statements

5 5 I

33
BEIEBBERERBERRBERERRBRERRRE
O 0NN PRFIRFIOBOIEIO[OI[OIININOGI|Oo oI IB_W

Rosenberg, et al. Expires August 5, 2006 [Page 3]

Internet-Draft TURN February 2006

1.

N

Introduction

The Simple Traversal of UDP Through NAT (STUN) [1] provides a suite
of tools for facilitating the traversal of NAT. Specifically, it
defines the Binding Request, which is used by a client to determine
its reflexive transport address towards the STUN server. The
reflexive transport address can be used by the client for receiving
packets from peers, but only when the client is behind "good" NATs.
In particular, if a client is behind a NAT whose mapping behavior
[15] is address or address and port dependent (sometimes called '"bad"
NATs), the reflexive transport address will not be usable for
communicating with a peer.

The only way to obtain a transport address that can be used for
corresponding with a peer through such a NAT is to make use of a
relay. The relay sits on the public side of the NAT, and allocates
transport addresses to clients reaching it from behind the private
side of the NAT. These allocated addresses are from interfaces on
the relay. When the relay receives a packet on one of these
allocated addresses, the relay forwards it towards the client.

This specification defines a usage of STUN, called the relay usage,
that allows a client to request an address on the STUN server itself,
so that the STUN server acts as a relay. To accomplish that, this
usage defines a handful of new STUN requests and indications. The
Allocate request is the most fundamental component of this usage. It
is used to provide the client with a transport address that is
relayed through the STUN server. A transport address which relays
through an intermediary is called a relayed transport address.

Though a relayed address is highly likely to work when corresponding
with a peer, it comes at high cost to the provider of the relay
service. As a consequence, relayed transport addresses should only
be used as a last resort. Protocols using relayed transport
addresses should make use of mechanisms to dynamically determine
whether such an address is actually needed. One such mechanism,
defined for multimedia session establishment protocols based on the
offer/answer protocol [7] is Interactive Connectivity Establishment
(ICE) [14].

The mechanism defined here was previously a standalone protocol
called Traversal Using Relay NAT (TURN), and is now defined as a
usage of STUN.

Terminology

In this document, the key words MUST, MUST NOT, REQUIRED, SHALL,
SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL are to

Rosenberg, et al. Expires August 5, 2006 [Page 4]

Internet-Draft TURN February 2006

[*S)

[

be interpreted as described in RFC 2119 [2] and indicate requirement
levels for compliant TURN implementations.

Definitions

Relayed Transport Address: A transport address that terminates on a
server, and is forwarded towards the client. The STUN Allocate
Request can be used to obtain a relayed transport address, for
example.

STUN relay client: A STUN client that implements this specification.
It obtains a relayed transport address that it provides to a small
number of peers (usually one).

STUN relay server: A STUN server that implements this specification.
It relays data between a STUN relay client and its peer.

5-tuple: A combination of the source IP address and port, destination
IP address and port, and transport protocol (UDP, TCP, or TLS over
TCP). It uniquely identifies a TCP connection, TLS channel, or
bi-directional flow of UDP datagrams.

Overview of Operation

In a typical configuration, a STUN relay client is connected to a
private network and through one or more NATs to the public Internet.
On the public Internet is a STUN relay server. The STUN Relay usage
defines several new messages and a new framing mechanism that add the
ability for a STUN server to act as a packet relay. The text in this
section explains the typical usage of this relay extension.

4.1 Normal Allocations

The client sends an Allocate request to the server, which the server
authenticates. The server generates an Allocate response with the
allocated address port and and target transport.

A successful Allocate Request just reserves an address on the STUN
relay server. Except for allocations with "doors" (described later
in this section), data does not flow through an allocated port until
the STUN relay client asks the STUN relay server to open a binding,
either by sending data to the far end with a Send Indication, or by
explicitly issuing an OpenBinding Request. This insures that a
client can't use a STUN relay server to run a traditional server and
partially protects the client from DoS attacks.

Once a binding is open, the client can then receive data flowing back

https://datatracker.ietf.org/doc/html/rfc2119

Rosenberg, et al. Expires August 5, 2006 [Page 5]

Internet-Draft TURN February 2006

from its peer. Initially this data is wrapped in a STUN Data
Indication. Since multiple bindings can be open simultaneously, the
Data Indication contains the Remote Address attribute so the STUN
relay client knows which peer sent the data. The client can send
data to any of its peers with the Send Indication.

Once the client wants to primarily receive from one peer, it can send
a SetDestination request. All subsequent data received from the
active peer is forwarded directly to the client and vice versa,
except that it is wrapped or framed according to the protocol used
between the STUN relay client and STUN relay server.

When the STUN relay client to server protocol is a datagram protocol
(UDP), any datagram received from the active peer that has the STUN
magic cookie is wrapped in a Data Indication. Likewise any datagram
sent by the client that has the STUN magic cookie and is intended for
the active peer is wrapped in a Send Indication. This wrapping
prevents the STUN relay server from inappropriately interpreting end-
to-end data.

Over stream-based transports (TCP and TLS over TLS), once there is an
active destination set, the STUN relay client and server need to use
some additional framing so that end-to-end data is distinguishable
from STUN control messages. This additional framing just has a type
and a length field. The value of the type field was chosen so it is
always distinguishable from an unframed STUN request or response.

The SetDestination Request does not close other bindings. Data to
and from other peers is still wrapped in Send and Data indications
respectively. If the client does not want to receive data from a

peer, it can also explicitly squelch data from a specific peer by

sending a CloseBinding request. A CloseBinding request leaves the
port allocated, so it can be reused. A CloseBinding request which
deletes the active destination, also unsets the active destination.

Allocations can also request specific attributes such as the desired
Lifetime of the allocation, and the maximum Bandwidth. Clients can
also request specific port assignment behavior. For example, a
specific port number, odd or even port numbers, pairs of sequential
port numbers. Allocations can also request the "door" property.

4.2 Doors

Sometimes the client does not have a valid address for its peer to
provide to a STUN relay server to open a binding. This is often the
case when the client and the peer want to establish a TCP connection,
but both are behind a NAT or firewall and they cannot perform TCP
simultaneous open. (This is also the case for example if the peer is

Rosenberg, et al. Expires August 5, 2006 [Page 6]

Internet-Draft TURN February 2006

behind an address or address and port dependent NAT.) To address
this shortcoming, the client can ask the STUN relay server to
Allocate an address with the "door" property, which accepts data only
from the first node to send the allocated address a UDP datagram or a
TCP SYN (depending on the allocated transport). Once a node has sent
to the allocated address, the STUN relay server opens the appropriate
binding, and the door "closes". Data can flow over the established
bindings, but subsequent new datagrams or connections do not cause
the server to create any more new bindings. Clients are not allowed
to request both a specific port number and the door property for a
single allocation, so that clients cannot run a traditional server
using a STUN relay.

Like any other open binding, data from the peer (including an initial
datagram which forms a new binding) is wrapped in a Data Indication
until the client sends a SetDestination request.

4.3 Transports

STUN relay clients can communicate with a STUN relay server using
UDP, TCP, or TLS over TCP. A STUN relay can even relay traffic
between two different transports with certain restrictions. A STUN
relay can never relay from an unreliable transport (client to server)
to a reliable transport to the peer. Note that a STUN relay server
never has a TLS relationship with a client's peer, since the STUN
relay server does not interpret data above the TCP layer. When
relaying data sent from a stream-based protocol to a UDP peer, the
STUN relay server emits datagrams which the same length as the length
field in the STUN TCP framing or the length field in Send Indication.
Likewise, when a UDP datagram is relayed from a peer over a stream-
based transport, the length of the datagram is the length of the TCP
framing or Data Indication.

Fom e e e e ma oo o e e e e oo +
| client to STUN relay | STUN relay to peer |
e e e e oo e e e +
ubP	uDP
TCP	TCP
TCP	uDP
TLS	TCP
TLS	uDP
Fom e e e ma oo o e e e e oo - +

For STUN relay clients, using TLS over TCP provides two benefits.
When using TLS, the client can be assured that the address of the
client's peers are not visible to an attacker except by traffic
analysis downstream of the STUN relay server. Second, the client may
be able communicate with STUN relay servers using TLS that it would

Rosenberg, et al. Expires August 5, 2006 [Page 7]

Internet-Draft TURN February 2006

not be able to communicate with using TCP or UDP due to the
configuration of a firewall between the STUN relay client and its
server. TLS between the client and STUN relay server in this case
just facilitates traversal.

When the STUN relay to peer leg is TCP, the STUN relay client needs
to be aware of the status of these TCP connections. The STUN relay
extension defines application states for a TCP connection as follows:
LISTEN, ESTABLISHED, CLOSED. Consequently, the STUN relay server
sends a ConnectionState Indication for a binding whenever the relay
connection status changes for one of the client's bindings except
when the status changes due to a STUN relay client request (ex: an
explicit binding close or deallocation).

4.4 Tuple Terminology

To relay data to and from the correct location, the STUN relay server
maintains a binding between an internal address (called a 5-tuple)
and one or more external 5-tuples, as shown in Figure 1. The
internal 5-tuple identifies the path between the STUN relay client
and the STUN relay server. It consists of the protocol (UDP, TCP, or
TLS over TCP), the internal local IP address and port number and the
source IP address and port number of the STUN client, as seen by the
relay server. For example, for UDP, the internal 5-tuple is the
combination of the IP address and port from which the STUN client
sent its Allocate Request, with the IP address and port to which that
Allocate Request was sent.

The external local transport address is the IP address and port
allocated to the STUN relay client (the allocated transport address).
The external 5-tuple is the combination of the external local
transport address and the IP address and port of an external client
that the STUN client is communicating with through the STUN server.
Initially, there aren't any external 5-tuples, since the STUN client
hasn't communicated with any other hosts yet. As packets are
received on or sent from the allocated transport address, external
5-tuples are created.

While the terminology used in this document refers to 5-tuples,
the STUN relay server can store whatever identifier it likes that
yields identical results. Specifically, many implementations may
use a file-descriptor in place of a 5-tuple to represent a TCP
connection.

Rosenberg, et al. Expires August 5, 2006 [Page 8]

Internet-Draft TURN February 2006

[S +
I I
| External]|
/ | Client |
7 I
/ I I
// Fom e m oo - +
/
//
+-+ /
|1 /
| | //
Foemmiaaan + |] S RO + / S RSy +
I I IN| I | 7/ I I
| STUN | | | | |/ | External|
| Client |----]A]---------- | STUN |-------mmmmmmmm oo | Client |
I I I Nl Server [A A I
I I I T] [| [| | | I
[Y —— + [|] [+--------- +| [+--------- +
A |11 I I I
I |11 I I I
I +-+| I I I
I I I I I
I
Internal Internal External External
Client Remote Local Local Remote
Performing Transport Transport Transport Transport
Allocations Address Address Address Address
I I I I
B pep——— +----+ Fomm o - - R +
I I
I I
Internal External
5-Tuple 5-tuple
Figure 1

5. Applicability Statement

STUN requires all usages to define the applicability of the usage
[1]. This section contains that information for the relay usage.

The relayed transport address obtained from the Allocate request has
specific properties which limit its applicability. The transport
address will only be useful for applications that require a client to

Rosenberg, et al. Expires August 5, 2006 [Page 9]

Internet-Draft TURN February 2006

o

place a transport address into a protocol message, with the
expectation that the client will be able to receive packets from a
small number of hosts (typically one). Data from the peer is only
relayed to the client after the client sends packets towards the
peer, or for the first peer to send to an open door. Furthermore, a
client can only request an allocation of a door once, since
requesting a specific port number and a door simultaneously is
invalid. Because of these limitations, relayed transport addresses
obtained from an Allocate request are only useful when combined with
rendezvous protocols of some sort, which allow the client to discover
the addresses of the hosts it will be corresponding with. Examples
of such protocols include the Session Initiation Protocol (SIP) [6].

This limitation is purposeful. Relayed transport addresses obtained
from the Allocate request can not be used to run general purpose
servers, such as a web or email server. This means that the relay
usage can be safely permitted to pass through NATs and firewalls
without fear of compromising the purpose of having them there in the
first place. 1Indeed, a relayed transport address obtained from TURN
has many of the properties of a transport address obtained from a NAT
whose filtering policies are address dependent, but whose mapping
properties are endpoint independent [15], and thus "good" NATs.
Indeed, to some degree, the relay turns a bad NAT into a good NAT by,
quite ironically, adding another NAT function - the relay itself.

Client Discovery of Server

STUN requires all usages to define the mechanism by which a client
discovers the server [1]. This section contains that information for
the relay usage.

The relay usage differs from the other usages defined in [1] in that
it demands substantial resources from the STUN server. 1In addition,
it seems likely that administrators might want to block connections
from clients to the STUN server for relaying separated from
connections for the purposes of binding discovery. As a consequence,
the relay usage is defined to run on a separate port from other
usages. The client discovers the address and port of the STUN server
for the relay usage using the same DNS procedures defined in [1], but
using an SRV service name of "stun-relay" instead of just "stun".

For example, to find STUN relay servers in the example.com domain,
the STUN relay client performs a lookup for '_stun-
relay._udp.example.com', '_stun-relay._tcp.example.com', and '_stun-
relay-tls._tcp.example.com' if the STUN client wants to communicate
with the STUN relay server using UDP, TCP, or TLS over TCP,
respectively. The client assumes that all permissable transport
protocols are supported from the STUN relay server to the peer for

Rosenberg, et al. Expires August 5, 2006 [Page 10]

Internet-Draft TURN February 2006

I~

=]

[©

the client to server protocol selected.
Server Determination of Usage

STUN requires all usages to define the mechanism by which the server
determines the usage [1]. This section contains that information for
the relay usage.

The relay usage is defined by a specific set of requests and
indications. As a consequence, the server knows that this usage in
being used because those request and indications were used.

New Framing Mechanism for Stream-Oriented Transports

Over stream-based transports, the STUN relay client and server need
to use some additional framing so that end-to-end data is
distinguishable from STUN control messages, and so that the relay
server can perform conversion from streams to datagrams and vice
versa. This additional framing has a one octet type, one reserved
octet, and a 2 octet length field. The first octet of this framing
is Ox02 to indicate STUN messages or 0x03 to indicate end-to-end data
to or from the active destination. Note that the first octet is
always distinguishable from an unframed STUN request or response
(which is always 0x00 or 0x01). The second octet is reserved and
MUST be set to zero. The length field counts the number of octets
immediately after the length field itself.

0 1 2 3
©1234567890123456789012345678901
ottt -t-tot-t-t-t-t-t-t-d-F-t-t-F-t-t-t-F-t-t-t-F-F-t-F-F-+-+-+
| Type | Reserved = 0 | Length |
+ot-t-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

This framing is only used after an active destination is set. Use of
this framing mechanism is discussed in Section 12 and Section 13.

New Requests and Indications

This usage defines four new requests (along with their success and
error responses) and three indications. It also defines processing
rules for the STUN server and client on receipt of non-STUN messages.
See Section 12 and Section 13

The new messages are:

Rosenberg, et al. Expires August 5, 2006 [Page 11]

Internet-Draft TURN February 2006

0x0003 : Allocate Request

0x0103 : Allocate Response

0x0113 : Allocate Error Response

0x0004 : Send Indication

0x0115 : Data Indication

OXx0006 : Set Active Destination Request
0Xx0106 : Set Active Destination Response
0x0116 : Set Active Destination Error Response
0x0117 : Connect Status Indication
Ox0008 : Open Binding Request

0x0108 : Open Binding Response

0x0118 : Open Binding Error Response
0Xx0009 : Close Binding Request

0x0109 : Close Binding Response

0x0119 : Close Binding Error Response

In addition to STUN Requests and Responses, STUN relay clients and
servers send and receive non-STUN packets on the same ports used for
STUN messages. How these entities distinguish STUN and non-STUN
traffic is discussed in Section 12 and Section 13.

9.1 Allocate Request
9.1.1 Server Behavior

The server first processes the request according to the general
request processing rules in [1]. This includes performing
authentication and checking for mandatory unknown attributes. Due to
the fact that the STUN server is allocating resources for processing
the request, Allocate requests MUST be authenticated, and
furthermore, MUST be authenticated using either a shared secret known
between the client and server, or a short term password derived from
it.

Note that Allocate requests, like all other STUN requests, can be
sent to the STUN server over UDP, TCP, or TCP/TLS.

The behavior of the server when receiving an Allocate Request depends
on whether the request is an initial one, or a subsequent one. An
initial request is one whose source and destination transport address
do not match the internal remote and local transport addresses of an
existing internal 5-tuple. A subsequent request is one whose source
and destination transport address matches the internal remote and
local transport address of an existing internal 5-tuple.

9.1.1.1 Initial Requests

[[TODO: First add short summary of what are we trying to do here]]

Rosenberg, et al. Expires August 5, 2006 [Page 12]

Internet-Draft TURN February 2006

The server attempts to allocate transport addresses. It first looks
for the BANDWIDTH attribute for the request. If present, the server
determines whether or not it has sufficient capacity to handle a
binding that will generate the requested bandwidth.

If it does, the server attempts to allocate a transport address for
the client. The Allocate request can contain several additional
attributes that allow the client to request specific characteristics
of the transport address. First, the server checks for the
REQUESTED-TRANSPORT attribute. This indicates the transport protocol
requested by the client. This specification defines values for UDP
and TCP. The server MUST allocate a port using the requested
transport protocol. If the REQUESTED-TRANSPORT attribute contains a
value of the transport protocol unknown to the server, or known to
the server but not supported by the server in the context of this
request, the server MUST reject the request and include a 442
(Unsupported Transport Protocol) in the response, or else redirect
the request. [[OPEN ISSUE: Should we include a list of supported
ones? Is this really an issue? If its just ever TCP and UDP its not
needed. Can always add it later, as the hooks are here. Proposal:
Do not incldue a list of supported transports.]]. If the request did
not contain a REQUESTED-TRANSPORT attribute, the server MUST use the
same transport protocol as the request arrived on.

As a consequence of the REQUESTED-TRANSPORT attribute, it is possible
for a client to connect to the server over TCP or TLS over TCP and
request a UDP transport address. In this case, the server will relay
data between the transports.

Next, the server checks for the REQUESTED-IP attribute. If present,
it indicates a specific interface from which the client would like
its transport address allocated. If this interface is not a valid
one for allocations on the server, the server MUST reject the request
and include a 443 (Invalid IP Address) error code in the response, or
else redirect the request to a server that is known to support this
IP address. If the IP address is one that is valid for allocations
(presumably, the server is configured to know the set of IP addresses
from which it performs allocations), the server MUST provide an
allocation from that IP address. If the attribute is not present,
the selection of an IP address is at the discretion of the server.

Finally, the server checks for the REQUESTED-PORT-PROPS attribute.

If present, it indicates specific port properties desired by the
client. This attribute is split into two portions: one portion for
port behavior and the other for requested port alignment (whether the
allocated port is odd, even, reserved as a pair, or at the discretion
of the server).

Rosenberg, et al. Expires August 5, 2006 [Page 13]

Internet-Draft TURN February 2006

If the port behavior requested is for a Specific Port, the server
MUST attempt to allocate that specific port for the client. If the
port is allocated to a different internal 5-tuple associated with the
same STUN long-term credentials, the client is requesting a move.

The server SHOULD replace the old internal 5-tuple with the new one
over which this Allocate request arrived. The server MUST reject the
move request if any of the attributes other than LIFETIME have
changed (BANDWIDTH, REQUESTED_TRANSPORT, etc.).

If the specific port is not available (in use or reserved), the
server MUST reject the request with a 444 (Invalid Port) response or
redirect to an alternate server. For example, the STUN server could
reject a request for a Specific Port because the port is temporarily
reserved as part of an adjacent pair of ports, or because the
requested port is a well-known port (1-1023).

If the port behavior requested is for a Door, the server opens the
allocated port for receiving so that the first incoming datagram (for
UDP allocations) or connection request (for TCP allocations) creates
a new binding and then "closes" so that datagrams or connection
request from other addresses are silently dropped. Requests for a
port with door behavior can still include port alignment requests
which MUST still be honored. Requests for a port with the door
property MUST NOT be allocated from the well-known port range
(1-1023).

If the client requests even port alignment, the server MUST attempt
to allocate an even port for the client. If an even port cannot be
obtained, the server MUST reject the request with a 444 (Invalid
Port) response or redirect to an alternate server. If the client
request odd port alignment, the server MUST attempt to allocate an
odd port for the client. If an odd port cannot be obtained, the
server MUST reject the request with a 444 (Invalid Port) response or
redirect to an alternate server. Finally, the Even port with hold of
the next higher port is similar to Even port. It is a request for an
even port, and MUST be rejected by the server if an even port cannot
be provided, or redirected to an alternate server. However, it is
also a hint from the client that the client will request the next
higher port with a separate Allocate request. As such, it is a
request for the server to allocate an even port whose next higher
port is also available, and furthermore, a request for the server to
not allocate that one higher port to any other request except for one
that asks for that port explicitly. The server can honor this
request for adjacency at its discretion. The only constraint is that
the allocated port has to be even.

Rosenberg, et al. Expires August 5, 2006 [Page 14]

Internet-Draft TURN February 2006

Port alignment requests exist for compatibility with
implementations of RTP which pre-date RFC 3550. These
implementations use the port numbering conventions in (now
obsolete) RFEC 1889.

If any of the requested or desired constraints cannot be met, whether
it be bandwidth, transport protocol, IP address or port, instead of
rejecting the request, the server can alternately redirect the client
to a different server that may be able to fulfill the request. This
is accomplished using the 300 error response and ALTERNATE-SERVER
attribute.

The server SHOULD only allocate ports in the range 1024-65535. This
is one of several ways to prohibit relayed transport addresses from
being used to attempt to run standard services. These guidelines are
meant to be consistent with [15], since the relay is effectively a
NAT.

Once the port is allocated, the server associates it with the
internal 5-tuple and fills in that 5-tuple. The internal remote
transport address of the internal 5-tuple is set to the source
transport address of the Allocate Request. The internal local
transport address of the internal 5-tuple is set to the destination
transport address of the Allocate Request. For TCP, this amounts to
associating the TCP connection from the TURN client with the
allocated transport address.

If the Allocate request was authenticated using a shared secret
between the client and server, this credential MUST be associated
with the allocation. If the request was authenticated using a short
term password derived from a shared secret, that shared secret MUST
be associated with the allocation. This is used in subsequent
Allocate requests to ensure that only the same client can refresh or
modify the characteristics of the allocation it was given.

The allocation created by the Allocate request is also associated
with a transport address, called the active destination. This
transport address is used for forwarding data through the TURN
server, and is described in more detail later. It is initially set
to null when the allocation is created. 1In addition, the allocation
created by the server is associated with a set of permissions. Each
permission is a specific IP address identifying an external client.
Initially, this list is null. Send Indications, Connect requests and
Set Active Destination requests add values to this list.

If the LIFETIME attribute was present in the request, and the value
is larger than the maximum duration the server is willing to use for
the lifetime of the allocation, the server MAY lower it to that

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc1889

Rosenberg, et al. Expires August 5, 2006 [Page 15]

Internet-Draft TURN February 2006

maximum. However, the server MUST NOT increase the duration
requested in the LIFETIME attribute. If there was no LIFETIME
attribute, the server may choose a default duration at its
discretion. In either case, the resulting duration is added to the
current time, and a timer, called the allocation expiration timer, is
set to fire at or after that time. Section 13.3 discusses behavior
when the timer fires. Note that the LIFETIME attribute in the
request can be zero. This typically happens for subsequent
Allocations, and provides a mechanism to delete the allocation. It
will force the immediate deleting of the allocation.

Once the port has been obtained from the operating system and the
activity timer started for the port binding, the server generates an
Allocate Response using the general procedures defined in [1]. The
transport address allocated to the client MUST be included in the
RELAY-ADDRESS attribute in the response. 1In addition, this response
MUST contain the XOR-MAPPED-ADDRESS attribute. This allows the
client to determine its reflexive transport address in addition to a
relayed transport address, from the same Allocate request.

The server MUST add a LIFETIME attribute to the Allocate Response.
This attribute contains the duration, in seconds, of the allocation
expiration timer associated with this allocation.

The server MUST add a BANDWIDTH attribute to the Allocate Response.
This MUST be equal to the attribute from the request, if one was
present. Otherwise, it indicates a per-binding cap that the server
is placing on the bandwidth usage on each binding. Such caps are
needed to prevent against denial-of-service attacks (See Section 14.

The server MUST add, as the final attribute of the request, a
MESSAGE-INTEGRITY attribute. The key used in the HMAC MUST be the
same as that used to validate the request.

If the allocated port was for TCP, the server MUST be prepared to
receive a TCP connection request on that port.

9.1.1.2 Subsequent Requests

A subsequent Allocate request is one received whose source and
destination IP address and ports match the internal 5-tuple of an
existing allocation. The request is processed using the general
server procedures in [1] and is processed identically to

Section 9.1.1.1, with a few important exceptions.

First, the request MUST be authenticated using the same shared secret
as the one associated with the allocation, or be authenticated using
a short term password derived from that shared secret. If the

Rosenberg, et al. Expires August 5, 2006 [Page 16]

Internet-Draft TURN February 2006

request was authenticated but not with such a matching credential,
the server MUST generate an Allocate Error Response with a 441
response code.

Secondly, if the allocated transport address given out previously to
the client still matches the constraints in the request (in terms of
request ports, IP addresses and transport protocols), the same
allocation granted previously MUST be returned. However, if one of
the constraints is not met any longer, because the client changed
some aspect of the request, the server MUST free the previous
allocation and allocate a new request to the client. Note that a
subsequent Allocate request cannot request an allocation with door
properties if the allocation is associated with any external
5-tuples.

Finally, a subsequent Allocate request will set a new allocation
expiration timer for the allocation, effectively canceling the
previous lifetime expiration timer.

9.1.2 Client Behavior

Client behavior for Allocate requests depends on whether the request
is an initial one, for the purposes of obtaining a new relayed
transport address, or a subsequent one, used for refreshing an
existing allocation.

9.1.2.1 Initial Requests

When a client wishes to obtain a transport address, it sends an
Allocate Request to the server. This request is constructed and sent
using the general procedures defined in [1]. The server will
challenge the request for credentials. The client MAY either provide
its credentials to the server directly, or it MAY obtain a short-term
set of credentials using the Shared Secret request and then use those
as the credentials in the Allocate request.

The client SHOULD include a BANDWIDTH attribute, which indicates the
maximum bandwidth that will be used with this binding. If the
maximum is unknown, the attribute is not included in the request.

The client MAY request a particular lifetime for the allocation by
including it in the LIFETIME attribute in the request.

The client MAY include a REQUESTED-PORT-PROPS, REQUESTED-TRANSPORT,
or REQUESTED-IP attribute in the request to obtain specific types of
transport addresses. Whether these are needed depends on the
application using the relay usage. As an example, the Real Time
Transport Protocol (RTP) [5] requires that RTP and RTCP ports be an

Rosenberg, et al. Expires August 5, 2006 [Page 17]

Internet-Draft TURN February 2006

adajacent pair, even and odd respectively, for compatibility with a
previous version of that specification. The REQUESTED-PORT attribute
allows the client to ask the relay for those properties. The client
MUST NOT request TCP transport in an Allocate request sent to the
STUN relay server over UDP.

The client MAY ask for a port with the door property. Since the door
only creates a binding for the first datagram or connection request
it receives, a client needs to use this feature judiciously. For
example, a client is most likely to use this feature if wants to
establish a TCP connection to its peer, where both the client and the
peer are behind a NAT or firewall that only allows outgoing TCP
connections. While the client may be able to communicate with its
peer using TCP simultaneous open, simultaneous open requires rather
sophisticated behavior on the client, the peer, and both NATs or
firewalls to work.

Processing of the response follows the general procedures of [1]. A
successful response will include both a RELAY-ADDRESS and an XOR-
MAPPED-ADDRESS attribute, providing both a relayed transport address
and a reflexive transport address, respectively, to the client. The
server will expire the allocation after LIFETIME seconds have passed
if not refreshed by another Allocate request. The server will allow
the user to send and receive no more than the amount of data
indicated in the BANDWIDTH attribute.

If the response is an error response and contains a 442, 443 or 444
error code, the client knows that its requested properties could not
be met. The client MAY retry with different properties, with the
same properties (in a hope that something has changed on the server),
or give up, depending on the needs of the application. However, if
the client retries, it SHOULD wait 500ms, and if the request fails
again, wait 1 second, then 2 seconds, and so on, exponentially
backing off.

9.1.2.2 Subsequent Requests

Before 3/4 of the lifetime of the allocation has passed (the lifetime
of the allocation is conveyed in the LIFETIME attribute of the
Allocate Response), the client SHOULD refresh the allocation with
another Allocate Request if it wishes to keep the allocation.

To perform a refresh, the client generates an Allocate Request as
described in Section 9.1.2.1. If the initial request was
authenticated with a shared secret P that the client holds with the
server, or using a short term password derived from P through a
Shared Secret request, the client MUST use shared secret P, or a
short-term password derived from it, in the subsequent request.

Rosenberg, et al. Expires August 5, 2006 [Page 18]

Internet-Draft TURN February 2006

In a successful response, the RELAY-ADDRESS contains the same
transport address as previously obtained, indicating that the binding
has been refreshed. The LIFETIME attribute indicates the amount of
additional time the binding will live without being refreshed. Note
that an error response does not imply that the binding has been
expired, just that the refresh has failed.

If a client no longer needs a binding, it SHOULD tear it down. If
the client wishes to explicitly remove the allocation because it no
longer needs it, it generates a subsequent Allocate request, but sets
the LIFETIME attribute to zero. This will cause the server to remove
the allocation. For TCP, the client can also remove the binding by
closing connection with the STUN relay server.

9.2 Set Active Destination Request
9.2.1 Server Behavior

The Set Active Destination Request is used by a client to set an
existing external binding that will be used as the forwarding
destination of all data that is not encapsulated in STUN Send
Indications. In addition, all data received from that external
client will be forwarded to the STUN client without encapsulation in
a Data Indication.

Once the server has identified a request as a Set Active Destination
request, the server verifies that it has arrived with a source and
destination transport address that matches the internal remote and
local transport address of an internal 5-tuple associated with an
existing allocation. If there is no matching allocation, the server
MUST generate a 437 (No Binding) Send Error Response.

The request MUST be authenticated using the same shared secret as the
one associated with the allocation, or be authenticated using a short
term password derived from that shared secret. If the request was
authenticated but not with such a matching credential, the server
MUST generate an error response with a 441 response code.

[[OPEN ISSUE: Can we eliminate the whole race condition, by requiring
the client to close the binding and wait 5 seconds (with no server
verification of this requirement) before issuing a new Set Active
Destination request? Proposed text follows:]] If an active
destination is already set, the Set Active Destination request is
rejected with a 439 Active Destination Already Set error response.

If the Set Active Destination request contains a REMOTE-ADDRESS
attribute, the IP address contained within it is added to the
permissions for this allocation, if it was not already present.

Rosenberg, et al. Expires August 5, 2006 [Page 19]

Internet-Draft TURN February 2006

[[OPEN ISSUE: When do you ever want to set active for a destination
you have never sent to?]]

Unfortunately, there is a race condition associated with the active
destination concept. Consider the case where the active destination
is set, and the server is relaying packets towards the client. The
client knows the IP address and port where the packets came from -
the current value of the active destination. The client issues a Set
Active Destination Request to change the active destination, and
receives a response. A moment later, a data packet is received, not
encapsulated in a STUN Data Indication. What is the source if this
packet? 1Is it the active destination that existed prior to the Set
Active Destination request, or the one after? If the transport
between the client and the STUN server is not reliable, there is no
way to know.

To deal with this problem, a small state machine is used to force a
"cooldown" period during which the server will not relay packets
towards the client without encapsulating them. This cooldown period
gives enough time for the client to be certain that any old data
packets have left the network. Once the cooldown period ends, the
server can begin relaying packets without encapsulation. There is an
instance of this state machine for each allocation.

Rosenberg, et al. Expires August 5, 2006 [Page 20]

Internet-Draft TURN February 2006

Req Recvd, DA absent

o m e e e - +
| | timer fires
| e
| None | active=null
| Set [<-mmmmm e +
I I I
I I I
R + |
| | Req Recvd
| IEEEEEEEES
| Req Recvd, DA present | 439
I | +----+
| active = DA |] |
I | I
I | I
\% Req Recvd, |] Vv
T + DAl!=active, absent Foom - +
	Set timer	
Set [--mmmmm >	Trans-	
		itioning
	<o	
	timer fires	[
Fom e e e + aeeeeaaa - Fomm e e o - +		
A active=DA		
I		
I I
I I
+o---- +

Req Recvd, DA=active

Figure 4

When the allocation is originally created, the active destination is
null, and the server sets the state to "None Set". 1In this state,
the server will relay all received packets in encapsulated form
towards the client. If the server receives a Set Active Destination
request, but the request contained no REMOTE-ADDRESS attribute, the
state machine stays in the same state. The request is responded to
with a Set Active Destination Response. If, however, the Set Active
Destination request contained a REMOTE-ADDRESS, the server sets the

Rosenberg, et al. Expires August 5, 2006 [Page 21]

Internet-Draft TURN February 2006

active destination to the transport address from the REMOTE-ADDRESS
attribute, and enters the "Set" state. The request is responded to
with a Set Active Destination Response. 1In this state, the server
will relay packets from that transport address towards the client in
unencapsulated form.

If the server receives another Set Active Destination request while
in this state, and the REMOTE-ADDRESS is present, but has a value
equal to the current active destination, the request causes no
change. The request is responded to with a Set Active Destination
Response. If, however, the request contained a REMOTE-ADDRESS which
did not match the existing active destination, or omitted the active
destination, the server enters the "transitioning" state. The
request is responded to with a Set Active Destination Response. In
this state, the server will forward all packets to the client in
encapsulated form. 1In addition, when this state is entered, the
client sets a timer to fire in Ta seconds. If the connection between
the client and server is unreliable, this timer SHOULD be
configurable. It is RECOMMENDED that it be set to three seconds. If
the connection between the client and server is reliable, the timer
SHOULD be set to 0 seconds, causing it to fire immediately. This
makes the transitioning state transient for reliable transports. The
value of the timer used by the server, regardless of the transport
protocol, MUST be included in a TIMER-VAL attribute in the Set Active
Destination response.

If, while in the "transitioning" state, the server receives a Set
Active Destination Request, it generates a Set Active Destination
Error Response that includes a 439 (Transitioning) response code.
Once the timer fires, the server transitions to the "Set" state if
the Set Active Destination request that caused the server to enter
"transitioning" had contained the REMOTE-ADDRESS. In this case, the
active destination is set to this transport address. If the Set
Active Destination request had not contained a REMOTE-ADDRESS
attribute, the server enters the "Not Set" state and sets the active
destination to null.

9.2.2 Client Behavior

The Set Active Destination address allows the client to create an
optimized relay function between it and the server. When the server
receives packets from a particular preferred external client, the
server will forward those packets towards the client without
encapsulating them in a Data Indication. Similarly, the client can
send non-STUN packets to the server without encapsulation, and these
are forwarded to the external client. Sending and receiving data in
unencapsulated form is critical for efficiency purposes. One of the
primary use cases for the STUN relay usage is in support of Voice

Rosenberg, et al. Expires August 5, 2006 [Page 22]

Internet-Draft TURN February 2006

over IP (VoIP), which uses very small UDP packets to begin with. The
extra overhead of an additional layer of encapsulation is considered
unacceptable.

The Set Active Destination request is used by the client to provide
the identity of this preferred external client. The request also has
the side effect of adding a permission for the target of the REMOTE-
ADDRESS. [[OPEN ISSUE: is this necessary?]]

The Set Active Destination address MAY contain a REMOTE-ADDRESS
attribute. This attribute, when present, provides the address of the
preferred external client to the server. When absent, it clears the
value of the preferred external client.

[[OPEN ISSUE: Proposed wording to eliminate the Set Active
Destination transitioning state machine follows.]] The client MUST
NOT send a Set Active Destination request with a REMOTE-ADDRESS
attribute over an unreliable link (ex: UDP) if an active destination
is already set for that allocation. If the client wishes to set a
new active destination, it MUST wait until 5 seconds after a
successful response is received to a Set Destination Request removing
the active destination. Failure to wait could cause the client to
receive and attribute late data forwarded by the STUN relay server to
the wrong peer.

In order for the client to know where incoming non-STUN packets were
sent from, and to be sure where non-STUN packets sent to the server
will go to, it is necessary to coordinate the value of the active
destination between the client and the server. As discussed above,
there is a race condition involved in this coordination which
requires a state machine to execute on both the client and the
server.

Rosenberg, et al. Expires August 5, 2006 [Page 23]

Internet-Draft TURN February 2006

+o---- +
| | OK Recvd, DA absent
I I
I I
I I
| \%
F +
439 Recvd | | timer fires
ARRREEE | e
| | None | active=null
| | Set [<-mmmmm e +
oo o> |
I I
R +

I
I
I
\Y OK Recvd,

T + DA!=active, absent Foom - +
	e	
	Set timer	
Set [--mmmmm >	Trans-	
		itioning
	<o	
	timer fires	[
Fom e e e + aeeeeaaa - Fomm e e o - +

| A active=DA

I I

I I

I I

+o---- +

439 Recvd,

OK Recvd, DA=active

Figure 5

The state machine is shown in Figure 5. The client starts in the
"None Set" state. When the client is in either the "None Set" or
"Set" state, it can send Set Active Destination requests. The
transitions in the state machines are governed by responses to those
requests. Only success and 439 responses cause changes in state. A
437 response implies that the allocation has been removed, and thus
the state machine destroyed. A client MUST NOT send a new Set Active

Rosenberg, et al. Expires August 5, 2006 [Page 24]

Internet-Draft TURN February 2006

Destination request prior to the receipt of a response to the
previous. The state machine will further limit the transmission of
subsequent Set Active Destination requests.

If, while in the "None Set" state, the client sent a Set Active
Destination request without a REMOTE-ADDRESS, and got a successful
response, there is no change in state. If a successful response was
received, but there was a REMOTE-ADDRESS in the request, the state
machine transitions to the "Set" state, and the client sets the
active destination to the value of the REMOTE-ADDRESS attribute that
was in the request.

If, while in the "Set" state, the client sends a Set Active
Destination request and received a 439 response, it means that there
was a temporal misalignment in the states between client and server.
The client thought that the active destination was updated on the
server, but the server was still in its transitioning state. When
this error is received, the client remains in the "Set" state. The
client SHOULD retry its Set Active Destination request, but no sooner
than 500ms after receipt of the 439 response. In addition, if, while
in the "Set" state, the client sends a Set Active Destination request
whose REMOTE-ADDRESS attribute equals the current active destination,
and that request generates a success response, the client remains in
the "Set" state.

However, if, while in the "Set" state, the client sends a Set Active
Destination request whose REMOTE-ADDRESS was either absent or not
equal to the current active destination, and receives a success
response, the client enters the "Transitioning" state. While in this
state, the client MUST NOT send a new Set Active Destination request.
The value of the active destination remains unchanged. In addition,
the client sets a timer. This timer MUST have a value equal to the
value of the TIMER-VAL attribute from the Set Active Destination
response. This is necessary for coordinating the state machines
between client and server.

Once the timer fires, if the REMOTE-ADDRESS was not absent from the
Set Active Destination request which caused the client to start the
timer, the client moves back to the "Set" state, and then updates the
value of the active destination to the value of REMOTE-ADDRESS. If
REMOTE-ADDRESS was absent, the client sets the active destination to
null and enders the "None Set" state.

9.3 Open Binding Request
The Open Binding Request is used to create a binding between an

internal 5-tuple and an external 5-tuple, without actually sending
any data to the peer. It is included for completeness, but could be

Rosenberg, et al. Expires August 5, 2006 [Page 25]

Internet-Draft TURN February 2006

used to open bindings for multiple TCP peers that are capable of TCP
simultaneous open. [[OPEN ISSUE: do we want to include an explicit
Open Binding request or not?]]

9.3.1 Server Behavior

When the server receives an Open Binding request, it verifies that
the requester authenticated and used the same credentials as used in
the corresponding Allocate request. The server looks for a binding
with an external 5-tuple that matches the value of the REMOTE-ADDRESS
attribute. As long as the binding does not already exist, the server
creates the binding as if it received a Send Indication to the peer.
If the binding already exists, the server rejects the request with a
444 (Invalid Port) error.

9.3.2 Client Behavior

The client MAY send an Open Binding request to the STUN relay server
to open a binding without sending data with an explicit Send
Indication. To do so, it places the IP address and port number of
the target peer in a REMOTE-ADDRESS attribute and sends the request.

9.4 Close Binding Request

The Close Binding Request is designed to squelch possibly undesirable
traffic relayed to the client. For example, the client may receive
multiple streams of early media or may be the victim of a limited DoS
attack, or the wrong peer may have accidentally sent a packet to a
door allocated by the client. [[OPEN ISSUE: do we want to include an
explicit Close Binding request or not?]]

9.4.1 Server Behavior

When the server receives a Close Binding request, it verifies that
the requester authenticated and used the same credentials as used in
the corresponding Allocate request. The server looks for a binding
with an external 5-tuple that matches the value of the REMOTE-ADDRESS
attribute. 1If the binding exists, the server immediately removes the
binding. If the external transport is TCP, the server closes the TCP
connection. If the active destination was set to the deleted
binding, the client to server link reverts to the state where no
active destination is set. A Close Binding request does NOT
deallocate the port assigned using the Allocate request.

If the binding does not exist, the server rejects the request with a
444 (Invalid Port) error.

Rosenberg, et al. Expires August 5, 2006 [Page 26]

Internet-Draft TURN February 2006

9.4.2 Client Behavior

If the client wants to explicitly remove a binding to a peer, without
performing a deallocation, it MAY send a Close Binding Request. To
do so, it places the IP address and port number of the binding it
wants to remove in a REMOTE-ADDRESS attribute and sends the request.

9.5 Connection Status Indication
TODO: Expand this text.

When the STUN relay to peer leg is TCP, the STUN relay client needs
to be aware of the status of these TCP connections. The STUN relay
extension defines application states for a TCP connection as follows:
LISTEN, ESTABLISHED, CLOSED. Consequently, the STUN relay server
sends a ConnectionState Indication for a binding whenever the relay
connection status changes for one of the client's bindings except
when the status changes due to a STUN relay client request (ex: an
explicit binding close or deallocation).

A STUN relay can only relay to a peer over TCP if the client
communicates with the server over TCP or TLS over TCP. Because of
this, the server can be assured that Connection Status Indications
are received reliably.

9.6 Send Indication
9.6.1 Server Behavior

A Send Indication is sent by a client after it has completed its
Allocate transaction, in order to create permissions in the server
and send data to an external client.

Once the server has identified a message as a Send Indication, the
server verifies t