
Behave J. Rosenberg
Internet-Draft Cisco Systems
Intended status: Standards Track R. Mahy
Expires: January 9, 2008 Plantronics
 C. Huitema
 Microsoft
 July 8, 2007

Traversal Using Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN)
draft-ietf-behave-turn-04.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 9, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This specification defines an extension of the Session Traversal
 Utilities for NAT (STUN) Protocol for asking the STUN server to relay
 packets towards a client. This extension, called Traversal Using
 Relays around NAT (TURN), is useful for elements behind NATs whose

Rosenberg, et al. Expires January 9, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TURN July 2007

 mapping behavior is address and port dependent. The extension
 purposefully restricts the ways in which the relayed address can be
 used. In particular, it prevents users from running general purpose
 servers from ports obtained from the STUN server.

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. Definitions . 5
4. Overview of Operation . 5
4.1. Transports . 7
4.2. Tuple Terminology . 8
4.3. Keepalives . 9

5. New Framing Mechanism for Stream-Oriented Transports 10
6. New STUN Requests and Indications 10
6.1. Allocate Request . 11
6.1.1. Client Behavior 11
6.1.2. Server Behavior 13

6.2. Procedures for all other Requests and Indications 17
6.3. Set Active Destination Request 18
6.3.1. Client Behavior 18
6.3.2. Server Behavior 19

6.4. Connect Request . 19
6.4.1. Server Behavior 20

6.5. Connection Status Indication 20
6.6. Send Indication . 20
6.6.1. Client Behavior 21
6.6.2. Server Behavior 21

6.7. Data Indication . 22
6.7.1. Client Behavior 22
6.7.2. Server Behavior 22

7. New Attributes . 22
7.1. LIFETIME . 23
7.2. BANDWIDTH . 23
7.3. REMOTE-ADDRESS . 23
7.4. DATA . 23
7.5. RELAY-ADDRESS . 24
7.6. REQUESTED-PORT-PROPS 24
7.7. REQUESTED-TRANSPORT 25
7.8. REQUESTED-IP . 25
7.9. CONNECT_STAT . 25

8. New Error Response Codes 26
9. Client Procedures . 26
9.1. Receiving and Sending Unencapsulated Data 26
9.1.1. Datagram Protocols 27
9.1.2. Stream Transport Protocols 27

Rosenberg, et al. Expires January 9, 2008 [Page 2]

Internet-Draft TURN July 2007

10. Server Procedures . 27
10.1. Receiving Data on Allocated Transport Addresses 27
10.1.1. TCP Processing . 27
10.1.2. UDP Processing . 28

10.2. Receiving Data on Internal Local Transport Addresses . . . 29
10.3. Lifetime Expiration 29

11. Client Discovery of TURN Servers 30
12. Security Considerations 30
13. IANA Considerations . 32
13.1. New STUN Requests, Responses, and Indications 32
13.2. New STUN Attributes 33
13.3. New STUN response codes 33

14. IAB Considerations . 33
15. Example . 33
16. Acknowledgements . 38
17. References . 38
17.1. Normative References 38
17.2. Informative References 38

 Authors' Addresses . 39
 Intellectual Property and Copyright Statements 40

Rosenberg, et al. Expires January 9, 2008 [Page 3]

Internet-Draft TURN July 2007

1. Introduction

 Session Traversal Utilities for NAT (STUN) [1] provides a suite of
 tools for facilitating the traversal of NAT. Specifically, it
 defines the Binding Request, which is used by a client to determine
 its reflexive transport address towards the STUN server. The
 reflexive transport address can be used by the client for receiving
 packets from peers, but only when the client is behind "good" NATs.
 In particular, if a client is behind a NAT whose mapping behavior [9]
 is address or address and port dependent (sometimes called "bad"
 NATs), the reflexive transport address will not be usable for
 communicating with a peer.

 The only way to obtain a transport address that can be used for
 corresponding with a peer through such a NAT is to make use of a
 relay. The relay sits on the public side of the NAT, and allocates
 transport addresses to clients reaching it from behind the private
 side of the NAT. These allocated addresses are from interfaces on
 the relay. When the relay receives a packet on one of these
 allocated addresses, the relay forwards it toward the client.

 This specification defines an extension of STUN, called TURN, that
 allows a client to request an address on the STUN server itself, so
 that the STUN server acts as a relay. To accomplish that, this
 extension defines a handful of new STUN requests and indications.
 The Allocate request is the most fundamental component of this set of
 extensions. It is used to provide the client with a transport
 address that is relayed through the STUN server. A transport address
 which relays through an intermediary is called a relayed transport
 address.

 Though a relayed address is highly likely to work when corresponding
 with a peer, it comes at high cost to the provider of the relay
 service. As a consequence, relayed transport addresses should only
 be used as a last resort. Protocols using relayed transport
 addresses should make use of mechanisms to dynamically determine
 whether such an address is actually needed. One such mechanism,
 defined for multimedia session establishment protocols, based on the
 offer/answer protocol in RFC 3264 [4], is Interactive Connectivity
 Establishment (ICE) [8].

 The mechanism defined here was previously a standalone protocol
 called Traversal Using Relay NAT (TURN), and is now defined as an
 extension of STUN. A STUN server that supports these extensions can
 be called a 'STUN relay' or more simply a 'TURN server'.

https://datatracker.ietf.org/doc/html/rfc3264

Rosenberg, et al. Expires January 9, 2008 [Page 4]

Internet-Draft TURN July 2007

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [2].

3. Definitions

 Relayed Transport Address: A transport address that terminates on a
 server, and is forwarded towards the client. The STUN Allocate
 Request can be used to obtain a relayed transport address, for
 example.

 TURN client: A STUN client that implements this specification. It
 obtains a relayed transport address that it provides to a small
 number of peers (usually one).

 TURN server: A STUN server that implements this specification. It
 relays data between a TURN client and its peer.

 5-tuple: A combination of the source IP address and port,
 destination IP address and port, and transport protocol (UDP, TCP,
 or TLS over TCP). It uniquely identifies a TCP connection, TLS
 channel, or bi-directional flow of UDP datagrams.

 Permission: A record of an IP address and transport of a peer that
 is permitted to send traffic to the TURN client. The TURN server
 will only forward traffic to its client from peers that match an
 existing permission.

4. Overview of Operation

 In a typical configuration, a TURN client is connected to a private
 network and through one or more NATs to the public Internet. On the
 public Internet is a TURN server. This specification defines several
 new messages and a new framing mechanism that add the ability for a
 STUN server to act as a packet relay. The text in this section
 explains the typical usage of this relay extension.

 First the client sends an Allocate request to the server, which the
 server authenticates. The server generates an Allocate response with
 the allocated address, port, and target transport. All other STUN
 messages defined by this specification happen in the context of an
 allocation.

 A successful Allocate Request just reserves an address on the TURN

https://datatracker.ietf.org/doc/html/rfc2119

Rosenberg, et al. Expires January 9, 2008 [Page 5]

Internet-Draft TURN July 2007

 server. Data does not flow through an allocated port until the TURN
 client asks the TURN server to open a permission. It can do this by
 sending data to the far end with a Send Indication for UDP
 allocations, by sending a ConnectRequest for TCP allocations, or by
 setting the default destination for either transport. While the
 client can request more than one permission per allocation, it needs
 to request each permission explicitly and one at a time. This
 insures that a client can't use a TURN server to run a traditional
 server, and partially protects the client from DoS attacks.

 Once a permission is open, the client can then receive data flowing
 back from its peer. Initially this data is wrapped in a STUN Data
 Indication. Since multiple permissions can be open simultaneously,
 the Data Indication contains the Remote Address attribute so the TURN
 client knows which peer sent the data. The client can send data to
 any of its peers with the Send Indication.

 Once the client wants to primarily receive from one peer, it can send
 a SetActiveDestination request. All subsequent data received from
 the active peer is forwarded directly to the client and vice versa,
 except that it is wrapped or framed according to the protocol used
 between the TURN client and TURN server. The client can send
 subsequent SetActiveDestination requests to change or remove the
 active destination.

 When the TURN client to server communication is over a datagram
 protocol (UDP), any datagram received from the active peer that has
 the STUN magic cookie is wrapped in a Data Indication. Likewise any
 datagram sent by the client that has the STUN magic cookie and is
 intended for the active peer is wrapped in a Send Indication. This
 wrapping prevents the STUN relay server from inappropriately
 interpreting end-to-end data.

 Over stream-based transports (TCP and TLS over TCP), the TURN client
 and server always use some additional framing (defined in Section 5)
 so that end-to-end data is distinguishable from STUN control
 messages. This additional framing just has a type and a length
 field. The value of the type field was chosen so it is always
 distinguishable from an unframed STUN request or response.

 The SetActiveDestination Request does not close other bindings. Data
 to and from other peers is still wrapped in Send and Data indications
 respectively.

 Allocations can also request specific attributes such as the desired
 Lifetime of the allocation, and the maximum Bandwidth. Clients can
 also request specific port assignment behavior, for example, a
 specific port number, odd or even port numbers, or pairs of

Rosenberg, et al. Expires January 9, 2008 [Page 6]

Internet-Draft TURN July 2007

 sequential port numbers.

4.1. Transports

 TURN clients can communicate with a TURN server using UDP, TCP, or
 TLS over TCP. A TURN can even relay traffic between two different
 transports with certain restrictions. A TURN can never relay from an
 unreliable transport (client to server) to a reliable transport to
 the peer. Note that a TURN server never has a TLS relationship with
 a client's peer, since the TURN server does not interpret data above
 the TCP layer. When relaying data sent from a stream-based protocol
 to a UDP peer, the TURN server emits datagrams which are the same
 length as the length field in the STUN TCP framing or the length
 field in a Send Indication. Likewise, when a UDP datagram is relayed
 from a peer over a stream-based transport, the length of the datagram
 is the length of the TCP framing or Data Indication.

 +----------------+--------------+
 | client to TURN | TURN to peer |
 +----------------+--------------+
 | UDP | UDP |
 | TCP | TCP |
 | TCP | UDP |
 | TLS | TCP |
 | TLS | UDP |
 +----------------+--------------+

 For TURN clients, using TLS over TCP provides two benefits. When
 using TLS, the client can be assured that the address of the client's
 peers are not visible to an attacker except by traffic analysis
 downstream of the TURN server. Second, the client may be able to
 communicate with TURN servers using TLS that it would not be able to
 communicate with using TCP or UDP due to the configuration of a
 firewall between the TURN client and its server. TLS between the
 client and TURN server in this case just facilitates traversal.

 For TCP connections, the Connection Request allows the client to ask
 the server to open a connection to the peer. This also adds a
 permission to accept an incoming TCP connection from the remote
 address of the peer. When the server and the peer try to open a TCP
 connection at the same time, this is called TCP simultaneous open.

 When the TURN-to-peer leg is TCP, the TURN client needs to be aware
 of the status of these TCP connections. The TURN extension defines
 application states for a TCP connection as follows: LISTEN,
 ESTABLISHED, and CLOSED. Consequently, the TURN server sends a
 ConnectionState Indication for a binding whenever the relay
 connection status changes for one of the client's bindings, except

Rosenberg, et al. Expires January 9, 2008 [Page 7]

Internet-Draft TURN July 2007

 when the status changes due to a TURN client request (ex: an explicit
 binding deallocation).

4.2. Tuple Terminology

 To relay data to and from the correct location, the TURN server
 maintains an association between an internal address (called a
 5-tuple) and one or more external 5-tuples, as shown in Figure 1.
 The internal 5-tuple identifies the path between the TURN client and
 the TURN server. It consists of the protocol (UDP, TCP, or TLS over
 TCP), the internal local IP address and port number and the source IP
 address and port number of the STUN client, as seen by the relay
 server. For example, for UDP, the internal 5-tuple is the
 combination of the IP address and port from which the STUN client
 sent its Allocate Request, with the IP address and port from which
 the corresponding Allocate Response was sent.

 The external local transport address is the IP address and port
 allocated to the TURN client (the allocated transport address). The
 external 5-tuple is the combination of the external local transport
 address and the IP address and port of an external client that the
 STUN client is communicating with through the STUN server.
 Initially, there aren't any external 5-tuples, since the STUN client
 hasn't communicated with any other hosts yet. As packets are
 received on or sent from the allocated transport address, external
 5-tuples are created.

 While the terminology used in this document refers to 5-tuples,
 the TURN server can store whatever identifier it likes that yields
 identical results. Specifically, many implementations may use a
 file-descriptor in place of a 5-tuple to represent a TCP
 connection.

Rosenberg, et al. Expires January 9, 2008 [Page 8]

Internet-Draft TURN July 2007

 +---------+
 | |
 | External|
 / | Client |
 // | |
 / | |
 // +---------+
 /
 //
 +-+ /
 | | /
 | | //
 +---------+ | | +---------+ / +---------+
 | | |N| | | // | | | | | |
 | STUN | | | | |/ | External|
 | Client |----|A|----------| STUN |------------------| Client |
 | | | |^ ^| Server |^ ^| |
 | | |T|| || || || |
 +---------+ | || |+---------+| |+---------+
 ^ | || | | |
 | | || | | |
 | +-+| | | |
 | | | | |
 |
 Internal Internal External External
 Client Remote Local Local Remote
 Performing Transport Transport Transport Transport
 Allocations Address Address Address Address

 | | | |
 +-----+----+ +--------+-------+
 | |
 | |

 Internal External
 5-Tuple 5-tuple

 Figure 1

4.3. Keepalives

 Since the main purpose of STUN and the relay extension are to
 traverse NATs, it is natural to consider which elements are
 responsible for generating sufficient periodic traffic to insure that
 NAT bindings stay alive. Relay clients need to send data frequently
 enough to keep both NAT bindings and the TURN server internal
 permissions fresh. Like NAT bindings, the TURN server bindings are
 refreshed by ordinary data traffic relayed to and from the peer.

Rosenberg, et al. Expires January 9, 2008 [Page 9]

Internet-Draft TURN July 2007

 Unlike permissions, allocations on the TURN server have an explicit
 expiration time and need to be refreshed explicitly by the client.
 When an allocation expires, all permissions associated with that
 allocation are automatically deleted.

5. New Framing Mechanism for Stream-Oriented Transports

 Over stream-based transports, the TURN client and server need to use
 additional framing so that end-to-end data is distinguishable from
 STUN control messages, and so that the TURN server can perform
 conversion from streams to datagrams and vice versa. This additional
 framing has a one octet type, one reserved octet, and a 2 octet
 length field. The first octet of this framing is 0x02 to indicate
 STUN messages or 0x03 to indicate end-to-end data to or from the
 active destination. Note that the first octet is always
 distinguishable from an unframed STUN request or response (which is
 always 0x00 or 0x01). The second octet is reserved and MUST be set
 to zero. The length field counts the number of octets immediately
 after the length field itself.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Reserved = 0 | Length |
 +-+

 Use of this framing mechanism is discussed in Section 9 and
Section 10.

6. New STUN Requests and Indications

 This document defines three new requests (along with their success
 and error responses) and three indications. It also defines
 processing rules for the STUN server and client on receipt of non-
 STUN messages. See Section 9 and Section 10

 The new messages are:

Rosenberg, et al. Expires January 9, 2008 [Page 10]

Internet-Draft TURN July 2007

 Request/Response Transactions
 0x003 : Allocate
 0x004 : Set Active Destination
 0x005 : Connect

 Indications
 0x006 : Send
 0x007 : Data
 0x008 : Connect Status

 In addition to STUN Messages (Requests, Responses, and Indications),
 TURN clients and servers send and receive non-STUN packets on the
 same ports used for STUN messages. How these entities distinguish
 STUN and non-STUN traffic is discussed in Section 9 and Section 10.

6.1. Allocate Request

6.1.1. Client Behavior

 Client behavior for Allocate requests depends on whether the request
 is an initial one, for the purposes of obtaining a new relayed
 transport address, or a subsequent one, used for refreshing an
 existing allocation.

6.1.1.1. Initial Requests

 When a client wishes to obtain a transport address, it sends an
 Allocate Request to the server. This request is constructed and sent
 using the general procedures defined in [1]. The server will
 challenge the request for credentials. The client MAY either provide
 its credentials to the server directly, or it MAY obtain a short-term
 set of credentials using the Shared Secret request and then use those
 as the credentials in the Allocate request.

 The client SHOULD include a BANDWIDTH attribute, which indicates the
 maximum bandwidth that will be used with this binding. If the
 maximum is unknown, the attribute is not included in the request.

 The client MAY request a particular lifetime for the allocation by
 including it in the LIFETIME attribute in the request. The default
 lifetime is 10 minutes.

 The client MAY include a REQUESTED-PORT-PROPS, REQUESTED-TRANSPORT,
 or REQUESTED-IP attribute in the request to obtain specific types of
 transport addresses. Whether these are needed depends on the
 application using the TURN server. As an example, the Real Time
 Transport Protocol (RTP) [3] requires that RTP and RTCP ports be an
 adajacent pair, even and odd respectively, for compatibility with a

Rosenberg, et al. Expires January 9, 2008 [Page 11]

Internet-Draft TURN July 2007

 previous version of that specification. The REQUESTED-PORT-PROPS
 attribute allows the client to ask the relay for those properties.
 The client MUST NOT request the TCP transport in an Allocate request
 sent to the TURN server over UDP.

 Processing of the response follows the general procedures of [1]. A
 successful response will include both a RELAY-ADDRESS and an XOR-
 MAPPED-ADDRESS attribute, providing both a relayed transport address
 and a reflexive transport address, respectively, to the client. The
 server will expire the allocation after LIFETIME seconds have passed
 if not refreshed by another Allocate request. The server will allow
 the user to send and receive at least the amount of data indicated in
 the BANDWIDTH attribute per allocation. (At its discretion the
 server can optionally discard data above this threshold.)

 If the response is an error response and contains a 442, 443 or 444
 error code, the client knows that its requested properties could not
 be met. The client MAY retry with different properties, with the
 same properties (in a hope that something has changed on the server),
 or give up, depending on the needs of the application. However, if
 the client retries, it SHOULD wait 500ms, and if the request fails
 again, wait 1 second, then 2 seconds, and so on, exponentially
 backing off.

6.1.1.2. Subsequent Requests

 Before 3/4 of the lifetime of the allocation has passed (the lifetime
 of the allocation is conveyed in the LIFETIME attribute of the
 Allocate Response), the client SHOULD refresh the allocation with
 another Allocate Request if it wishes to keep the allocation.

 To perform a refresh, the client generates an Allocate Request as
 described in Section 6.1.1.1. If the initial request was
 authenticated with a shared secret P that the client holds with the
 server, or using a short term password derived from P through a
 Shared Secret request, the client MUST use shared secret P, or a
 short-term password derived from it, in the subsequent request.

 In a successful response, the RELAY-ADDRESS contains the same
 transport address as previously obtained, indicating that the binding
 has been refreshed. The LIFETIME attribute indicates the amount of
 additional time the binding will live without being refreshed. Note
 that an error response does not imply that the binding has been
 expired, just that the refresh has failed.

 If a client no longer needs an allocation, it SHOULD perform an
 explict deallocation. If the client wishes to explicitly remove the
 allocation because it no longer needs it, it generates a subsequent

Rosenberg, et al. Expires January 9, 2008 [Page 12]

Internet-Draft TURN July 2007

 Allocate request, but sets the LIFETIME attribute to zero. This will
 cause the server to remove the allocation, and all associated
 bindings. For connection-oriented transports such as TCP, the client
 can also remove the allocation (and all associated bindings) by
 closing the relevant connection with the TURN server.

6.1.2. Server Behavior

 The server first processes the request according to the general
 request processing rules in [1]. This includes performing
 authentication, and checking for mandatory unknown attributes. Due
 to the fact that the STUN server is allocating resources for
 processing the request, Allocate requests MUST be authenticated, and
 furthermore, MUST be authenticated using either a shared secret known
 between the client and server, or a short term password derived from
 it.

 Note that Allocate requests, like most other STUN requests, can be
 sent to the TURN server over UDP, TCP, or TCP/TLS.

 The behavior of the server when receiving an Allocate Request depends
 on whether the request is an initial one, or a subsequent one. An
 initial request is one whose source and destination transport address
 do not match the internal remote and local transport addresses of an
 existing internal 5-tuple. A subsequent request is one whose source
 and destination transport address matches the internal remote and
 local transport address of an existing internal 5-tuple.

6.1.2.1. Initial Requests

 The server attempts to allocate transport addresses. It first looks
 for the BANDWIDTH attribute for the request. If present, the server
 determines whether or not it has sufficient capacity to handle a
 binding that will generate the requested bandwidth.

 If it does, the server attempts to allocate a transport address for
 the client. The Allocate request can contain several additional
 attributes that allow the client to request specific characteristics
 of the transport address. First, the server checks for the
 REQUESTED-TRANSPORT attribute. This indicates the transport protocol
 requested by the client. This specification defines values for UDP
 and TCP.

 As a consequence of the REQUESTED-TRANSPORT attribute, it is
 possible for a client to connect to the server over TCP or TLS
 over TCP and request a UDP transport address. In this case, the
 server will relay data between the transports.

Rosenberg, et al. Expires January 9, 2008 [Page 13]

Internet-Draft TURN July 2007

 If the requested transport is supported, the server allocates a port
 using the requested transport protocol. If the REQUESTED-TRANSPORT
 attribute contains a value of the transport protocol unknown to the
 server, or known to the server but not supported by the server in the
 context of this request, the server MUST reject the request and
 include a 442 (Unsupported Transport Protocol) in the response, or
 redirect the request. If the request did not contain a REQUESTED-
 TRANSPORT attribute, the server MUST use the same transport protocol
 as the request arrived on.

 Next, the server checks for the REQUESTED-IP attribute. If present,
 it indicates a specific interface from which the client would like
 its transport address allocated. If this interface is not a valid
 one for allocations on the server, the server MUST reject the request
 and include a 443 (Invalid IP Address) error code in the response, or
 else redirect the request to a server that is known to support this
 IP address. If the IP address is one that is valid for allocations
 (presumably, the server is configured to know the set of IP addresses
 from which it performs allocations), the server MUST provide an
 allocation from that IP address. If the attribute is not present,
 the selection of an IP address is at the discretion of the server.

 Finally, the server checks for the REQUESTED-PORT-PROPS attribute.
 If present, it indicates specific port properties desired by the
 client. This attribute is split into two portions: one portion for
 port behavior and the other for requested port alignment (whether the
 allocated port is odd, even, reserved as a pair, or at the discretion
 of the server).

 If the port behavior requested is for a Specific Port, the server
 MUST attempt to allocate that specific port for the client. If the
 port is allocated to a different internal 5-tuple associated with the
 same STUN long-term credentials, the client is requesting a move.
 The server SHOULD replace the old internal 5-tuple with the new tuple
 over which this Allocate request arrived. The server MUST reject the
 move request if any of the attributes other than LIFETIME have
 changed (BANDWIDTH, REQUESTED-TRANSPORT, etc.).

 If the specific port is not available (in use or reserved), the
 server MUST reject the request with a 444 (Invalid Port) response or
 redirect to an alternate server. For example, the STUN server could
 reject a request for a Specific Port because the port is temporarily
 reserved as part of an adjacent pair of ports, or because the
 requested port is a well-known port (1-1023).

 If the client requests "even" port alignment, the server MUST attempt
 to allocate an even port for the client. If an even port cannot be
 obtained, the server MUST reject the request with a 444 (Invalid

Rosenberg, et al. Expires January 9, 2008 [Page 14]

Internet-Draft TURN July 2007

 Port) response or redirect to an alternate server. If the client
 requests odd port alignment, the server MUST attempt to allocate an
 odd port for the client. If an odd port cannot be obtained, the
 server MUST reject the request with a 444 (Invalid Port) response or
 redirect to an alternate server. Finally, the "Even port with hold
 of the next higher port" alignment is similar to requesting an even
 port. It is a request for an even port, and MUST be rejected by the
 server if an even port cannot be provided, or redirected to an
 alternate server. However, it is also a hint from the client that
 the client will request the next higher port with a separate Allocate
 request. As such, it is a request for the server to allocate an even
 port whose next higher port is also available, and furthermore, a
 request for the server to not allocate that one higher port to any
 other request except for one that asks for that port explicitly. The
 server can honor this request for adjacency at its discretion. The
 only constraint is that the allocated port has to be even.

 Port alignment requests exist for compatibility with
 implementations of RTP which pre-date RFC 3550. These
 implementations use the port numbering conventions in (now
 obsolete) RFC 1889.

 If any of the requested or desired constraints cannot be met, whether
 it be bandwidth, transport protocol, IP address or port, instead of
 rejecting the request, the server can alternately redirect the client
 to a different server that may be able to fulfill the request. This
 is accomplished using the 300 error response and ALTERNATE-SERVER
 attribute. If the server does not redirect and cannot service the
 request because the server has reached capacity, it sends a 507
 (Insufficient Capacity) response. The server can also reject the
 request with a 486 (Allocation Quota Reached) if the user or client
 is not authorized to request additional allocations.

 The server SHOULD only allocate ports in the range 1024-65535. This
 is one of several ways to prohibit relayed transport addresses from
 being used to attempt to run standard services. These guidelines are
 meant to be consistent with [9], since the relay is effectively a
 NAT.

 Once the port is allocated, the server associates it with the
 internal 5-tuple and fills in that 5-tuple. The internal remote
 transport address of the internal 5-tuple is set to the source
 transport address of the Allocate Request. The internal local
 transport address of the internal 5-tuple is set to the destination
 transport address of the Allocate Request. For TCP, this amounts to
 associating the TCP connection from the TURN client with the
 allocated transport address.

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc1889

Rosenberg, et al. Expires January 9, 2008 [Page 15]

Internet-Draft TURN July 2007

 If the Allocate request was authenticated using a shared secret
 between the client and server, this credential MUST be associated
 with the allocation. If the request was authenticated using a short
 term password derived from a shared secret, that shared secret MUST
 be associated with the allocation. This is used in all subsequent
 requests and indications to ensure that only the same client can use
 or modify the allocation it was given.

 The allocation created by the Allocate request is also associated
 with a transport address, called the active destination. This
 transport address is used for forwarding data through the TURN
 server, and is described in more detail later. It is initially set
 to null when the allocation is created. In addition, the allocation
 created by the server is associated with a set of permissions. Each
 permission is a specific IP address identifying an external client.
 Initially, this list is null.

 If the LIFETIME attribute was present in the request, and the value
 is larger than the maximum duration the server is willing to use for
 the lifetime of the allocation, the server MAY lower it to that
 maximum. However, the server MUST NOT increase the duration
 requested in the LIFETIME attribute. If there was no LIFETIME
 attribute, the server may choose a default duration at its
 discretion. In either case, the resulting duration is added to the
 current time, and a timer, called the allocation expiration timer, is
 set to fire at or after that time. Section 10.3 discusses behavior
 when the timer fires. Note that the LIFETIME attribute in the
 request can be zero. This typically happens for subsequent
 Allocations, and provides a mechanism to delete the allocation. It
 will force the immediate deletion of the allocation.

 Once the port has been obtained and the activity timer started for
 the port binding, the server generates an Allocate Response using the
 general procedures defined in [1]. The transport address allocated
 to the client MUST be included in the RELAY-ADDRESS attribute in the
 response. In addition, this response MUST contain the XOR-MAPPED-
 ADDRESS attribute. This allows the client to determine its reflexive
 transport address in addition to a relayed transport address, from
 the same Allocate request.

 The server MUST add a LIFETIME attribute to the Allocate Response.
 This attribute contains the duration, in seconds, of the allocation
 expiration timer associated with this allocation.

 The server MUST add a BANDWIDTH attribute to the Allocate Response.
 This MUST be equal to the attribute from the request, if one was
 present. Otherwise, it indicates a per-binding cap that the server
 is placing on the bandwidth usage on each binding. Such caps are

Rosenberg, et al. Expires January 9, 2008 [Page 16]

Internet-Draft TURN July 2007

 needed to prevent against denial-of-service attacks (See Section 12).

 The server MUST add, as the final attribute of the request, a
 MESSAGE-INTEGRITY attribute. The key used in the HMAC MUST be the
 same as that used to validate the request.

6.1.2.2. Subsequent Requests

 A subsequent Allocate request is one received whose source and
 destination IP address and ports match the internal 5-tuple of an
 existing allocation. The request is processed using the general
 server procedures in [1] and is processed identically to

Section 6.1.2.1, with a few important exceptions.

 First, the request MUST be authenticated using the same shared secret
 as the one associated with the allocation, or be authenticated using
 a short term password derived from that shared secret. If the
 request was authenticated but not with such a matching credential,
 the server MUST generate an Allocate Error Response with an
 appropriate error response code.

 Secondly, if the allocated transport address given out previously to
 the client still matches the constraints in the request (in terms of
 request ports, IP addresses and transport protocols), the same
 allocation granted previously MUST be returned. However, if one of
 the constraints is not met any longer, because the client changed
 some aspect of the request, the server MUST free the previous
 allocation and allocate a new request to the client.

 Finally, a subsequent Allocate request will set a new allocation
 expiration timer for the allocation, effectively canceling the
 previous lifetime expiration timer.

6.2. Procedures for all other Requests and Indications

 Other than initial Allocate Requests, all requests and indications
 defined in this document need to be sent in the context of a valid
 allocation. The source and destination IP address and ports for
 these STUN messages MUST match the internal 5-tuple of an existing
 allocation. These processed using the general server procedures in
 [1] with a few important additions. For requests, if there is no
 matching allocation, the server MUST generate a 437 (No Binding) Send
 Error Response. For indications, if there is no matching allocation,
 the indication is silently discarded.

 All requests and indications MUST be authenticated using the same
 shared secret as the one associated with the allocation, or be
 authenticated using a short term password derived from that shared

Rosenberg, et al. Expires January 9, 2008 [Page 17]

Internet-Draft TURN July 2007

 secret. If the request was authenticated but not with such a
 matching credential, the server MUST generate an Allocate Error
 Response with an appropriate error response code, such as a 431
 (Integrity Failure) or 436 (Unknown User).

6.3. Set Active Destination Request

6.3.1. Client Behavior

 The Set Active Destination request allows the client to create an
 optimized relay function between the client and the server. When the
 server receives packets from a particular preferred external peer,
 the server will forward those packets towards the client without
 encapsulating them in a Data Indication. Similarly, the client can
 send non-STUN packets to the server without encapsulation in a Send
 Indication, and these packets are forwarded to the external peer.
 Sending and receiving data in unencapsulated form is critical for
 efficiency purposes. One of the primary use cases for the STUN relay
 extensions is in support of Voice over IP (VoIP), which uses very
 small UDP packets to begin with. The extra overhead of an additional
 layer of encapsulation is considered unacceptable.

 The Set Active Destination request is used by the client to provide
 the identity of this preferred external peer. The Set Active
 Destination address MAY contain a REMOTE-ADDRESS attribute. This
 attribute, when present, provides the address of the preferred
 external peer to the server. When absent, it clears the value of the
 preferred external peer. As a convenience, if the client sets the
 REMOTE-ADDRESS attribute to a peer without a permission, the server
 will add the corresponding permission.

 The client MUST NOT send a Set Active Destination request with a
 REMOTE-ADDRESS attribute over an unreliable link (ex: UDP) if an
 active destination is already set for that allocation. If the client
 wishes to set a new active destination, it MUST wait until a
 successful response is received to a Set Destination Request removing
 the active destination. The client SHOULD then continue to wait for
 an additional period of up to 5 seconds until it is extremely
 unlikely that any data from the previous active destination might
 still arrive. Failure to wait could cause the client to receive and
 attribute late data forwarded by the TURN server to the wrong peer.
 The client MAY wait a shorter period of time if the application has
 built-in addressing (such as the RTP [3] Sender Source) that makes it
 unlikely the client would incorrectly attribute late data. [OPEN
 ISSUE: is this OK with the WG?]

Rosenberg, et al. Expires January 9, 2008 [Page 18]

Internet-Draft TURN July 2007

 Consider the case where the active destination is set, and the
 server is relaying packets towards the client. The client knows
 the IP address and port where the packets came from - the current
 value of the active destination. The client issues a Set Active
 Destination Request to change the active destination, and receives
 a response. A moment later, a data packet is received, not
 encapsulated in a STUN Data Indication. What is the source if
 this packet? Is it the active destination that existed prior to
 the Set Active Destination request, or the one after? If the
 transport between the client and the STUN server is not reliable,
 there is no way to know.

6.3.2. Server Behavior

 The Set Active Destination Request is used by a client to set the
 forwarding destination of all data that is not encapsulated in STUN
 Send Indications. In addition, when a matching permission is
 present, all data received from that external peer will be forwarded
 to the STUN client without being encapsulated in a Data Indication.

 If the Set Active Destination request does not contain a REMOTE-
 ADDRESS attribute, the value of the active destination is cleared.
 If the Set Active Destination request contains a REMOTE-ADDRESS
 attribute, and the active destination is not set, the active
 destination is set to that IP address and port. If an active
 destination is already set, and the request was received over a
 reliable transport, the active destination is changed to the new
 value. If the active destination is already set and the request was
 received over UDP, the Set Active Destination request is rejected
 with a 439 Active Destination Already Set error response. This
 prevents the race condition described in the previous section.

 If the server sets the active destination and there is no permission
 associated with the REMOTE-ADDRESS, the server adds the corresponding
 permission. Note that if the permission associated with the active
 destination becomes invalid, the server does not reset the active
 destination. The client is expected to do this explicitly.

6.4. Connect Request

 The Connect Request is used by a client when it has obtained an
 allocated transport address that is TCP. The client can use the
 Connect Request to ask the server to open a TCP connection to a
 specified destination address included in the request.

Rosenberg, et al. Expires January 9, 2008 [Page 19]

Internet-Draft TURN July 2007

6.4.1. Server Behavior

 If the allocation is for a UDP port, the server MUST reject the
 request with a 445 (Operation for TCP Only) response. If the request
 does not contain a REMOTE-ADDRESS attribute, the server sends a 400
 (Bad Request) Connect error response,.

 If the request contains a REMOTE-ADDRESS attribute, the IP address
 contained within it is added to the permissions for this allocation,
 if it was not already present. This happens regardless of whether
 the subsequent TCP connection attempt succeeds or not.

 If a connection already exists for this address and port, the server
 returns a 446 (Connection Already Exists) Connect error response.
 Otherwise the server tries to establish the corresponding TCP
 connection and returns a Connect Success Response. This just
 indicates that the server added the permission and is attempting to
 establish a TCP connection. The server does not wait for the
 connection attempt to succeed or fail. The status of the connection
 attempt is returned via the Connect Status Indication.

 Note that the server needs to use the same source connection
 address for all connections/permissions associated with an
 allocation. For servers written using Berkeley sockets, the
 SO_REUSEADDR flag is typically used to use the same local address
 with multiple sockets.

6.5. Connection Status Indication

 When the TURN to peer leg is TCP, the TURN client needs to be aware
 of the status of these TCP connections. The TURN extension defines
 application states for a TCP connection as follows: LISTEN,
 ESTABLISHED, CLOSED. Consequently, the TURN server sends a
 Connection State Indication for a TCP permission whenever the relay
 connection status changes for one of the client's permissions except
 when the status changes due to a TURN client request (ex: an explicit
 binding close or deallocation).

 A TURN can only relay to a peer over TCP if the client
 communicates with the server over TCP or TLS over TCP. Because of
 this, the server can be assured that Connection Status Indications
 are received reliably.

6.6. Send Indication

Rosenberg, et al. Expires January 9, 2008 [Page 20]

Internet-Draft TURN July 2007

6.6.1. Client Behavior

 The Send Indication is used to ask the relay to forward data to a
 peer. It is typically used to send to a peer other than the active
 destination. For TCP allocated transport addresses, the client needs
 to wait for the peer to open a connection to the TURN server before
 it can send data. Data sent with a Send request prior to the opening
 of a TCP connection is discarded silently by the server.

 The Send Indication MUST contain a REMOTE-ADDRESS attribute, which
 contains the IP address and port that the data is being sent to. The
 DATA attribute MAY be present, and contains the data that is to be
 sent towards REMOTE-ADDRESS. If absent, the server will send an
 empty UDP packet in the case of UDP. In the case of TCP, the server
 will do nothing.

 Since Send is an Indication, it generates no response. The client
 must rely on application layer mechanisms to determine if the data
 was received by the peer.

 Note that Send Indications are not authenticated and do not
 contain a MESSAGE-INTEGRITY attribute. Just like non-relayed data
 sent over UDP or TCP, the authenticity and integrity of this data
 can only be assured using security mechanisms at higher layers.

6.6.2. Server Behavior

 A Send Indication is sent by a client after it has completed its
 Allocate transaction, in order to create permissions in the server
 and send data to an external client.

 If a Send Indication contains no REMOTE-ADDRESS, the indication is
 discarded. If there is no DATA attribute, and the corresponding
 allocation is for TCP, the indication is discarded.

 If the allocation is a UDP allocation, the server creates a UDP
 packet whose payload equals that content. The server sets the source
 IP address of the packet equal to the allocated transport address.
 The destination transport address is set to the contents of the
 REMOTE-ADDRESS attribute. If a permission does not exist for this
 destination the server creates one for this allocation. The server
 then sends the UDP packet. Note that any retransmissions of this
 packet which might be needed are not handled by the server. It is
 the responsibility of the client to generate another Send indication
 if needed.

 If the allocation is a TCP allocation, the server checks if it has an
 existing TCP connection open from the allocated transport address to

Rosenberg, et al. Expires January 9, 2008 [Page 21]

Internet-Draft TURN July 2007

 the address in the REMOTE-ADDRESS attribute. If so, the server
 extracts the content of the DATA attribute and sends it over the
 matching TCP connection. If the server doesn't have an existing TCP
 connection to the destination, it adds the REMOTE-ADDRESS to the
 permission list and discards the data.

6.7. Data Indication

6.7.1. Client Behavior

 Once a client has obtained an allocation and created permissions for
 a particular external client, the server can begin to relay packets
 from that external client towards the client. If the external client
 is not the active destination, this data is relayed towards the
 client in encapsulated form using the Data Indication.

 The Data Indication contains two attributes - DATA and REMOTE-
 ADDRESS. The REMOTE-ADDRESS attribute indicates the source transport
 address that the request came from, and it will equal the external
 remote transport address of the external peer. When processing this
 data, a client MUST treat the data as if it came from this address,
 rather than the stun server itself. The DATA attribute contains the
 data from the UDP packet or TCP segment that was received. Note that
 the TURN server will not retransmit this indication over UDP.

 Note that Data Indications are not authenticated and do not
 contain a MESSAGE-INTEGRITY attribute. Just like non-relayed data
 sent over UDP or TCP, the authenticity and integrity of this data
 can only be assured using security mechanisms at higher layers.

6.7.2. Server Behavior

 A server MUST send data packets towards the client using a Data
 Indication under the conditions described in Section 10.1. Data
 Indications MUST contain a DATA attribute containing the data to
 send, and MUST contain a REMOTE-ADDRESS attribute indicating where
 the data came from.

7. New Attributes

 This STUN extension defines the following new attributes:

Rosenberg, et al. Expires January 9, 2008 [Page 22]

Internet-Draft TURN July 2007

 0x000D: LIFETIME
 0x0010: BANDWIDTH
 0x0012: REMOTE-ADDRESS
 0x0013: DATA
 0x0016: RELAY-ADDRESS
 0x0018: REQUESTED-PORT-PROPS
 0x0019: REQUESTED-TRANSPORT
 0x0022: REQUESTED-IP
 0x0021: TIMER-VAL
 0x0023: CONNECT_STAT

7.1. LIFETIME

 The lifetime attribute represents the duration for which the server
 will maintain an allocation in the absence of data traffic either
 from or to the client. It is a 32 bit value representing the number
 of seconds remaining until expiration.

 +-+
 | Lifetime |
 +-+

7.2. BANDWIDTH

 The bandwidth attribute represents the peak bandwidth, measured in
 kbits per second, that the client expects to use on the binding in
 each direction.

 +-+
 | Bandwidth |
 +-+

7.3. REMOTE-ADDRESS

 The REMOTE-ADDRESS specifies the address and port of the peer as seen
 from the TURN server. It is encoded in the same way as MAPPED-
 ADDRESS.

7.4. DATA

 The DATA attribute is present in Send Indications and Data
 Indications. It contains raw payload data that is to be sent (in the
 case of a Send Request) or was received (in the case of a Data
 Indication). It is padded with zeros if its length is not divisible
 evenly by 4 octets

Rosenberg, et al. Expires January 9, 2008 [Page 23]

Internet-Draft TURN July 2007

7.5. RELAY-ADDRESS

 The RELAY-ADDRESS is present in Allocate responses. It specifies the
 address and port that the server allocated to the client. It is
 encoded in the same way as MAPPED-ADDRESS.

7.6. REQUESTED-PORT-PROPS

 This attribute allows the client to request certain properties for
 the port that is allocated by the server. The attribute can be used
 with any transport protocol that has the notion of a 16 bit port
 space (including TCP and UDP). The attribute is 32 bits long. Its
 format is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Reserved = 0 | A | Specific Port Number |
 +-+

 The two bits labeled A in the diagram above are for requested port
 alignment and have the following meaning:

 00 no specific port alignment
 01 odd port number
 10 even port number
 11 even port number; reserve next higher port

 If the Specific Port Number field is zero, this means that no
 specific port is requested. If a specific port number is requested
 the value will be in the two low order octets. All other bits in
 this attribute are reserved and MUST be set to zero.

 Even Port is a request to the server to allocate a port with even
 parity. The port filter is not used with this property. Odd Port is
 a request to the server to allocate a port with odd parity. The port
 filter is not used with this property. Even port, with a hold on the
 next higher port, is a request to the server to allocate an even
 port. Furthermore, the client indicates that it will want the next
 higher port as well. As such, the client requests that the server,
 if it can, not allocate the next higher port to anyone unless that
 port is explicitly requested, which the client will itself do. The
 port filter is not used with this property. Finally, the Specific
 Port property is a request for a specific port. The port that is
 requested is contained in the Port filter.

Rosenberg, et al. Expires January 9, 2008 [Page 24]

Internet-Draft TURN July 2007

7.7. REQUESTED-TRANSPORT

 This attribute is used by the client to request a specific transport
 protocol for the allocated transport address. It is a 32 bit
 unsigned integer. Its values are:

 0x0000 0000: UDP
 0x0000 0001: TCP

 If an Allocate request is sent over TCP and requests a UDP
 allocation, or an Allocate request is sent over TLS over TCP and
 requests a UDP or TCP allocation, the server will relay data between
 the two transports.

 Extensions to TURN can define additional transport protocols in an
 IETF-consensus RFC.

7.8. REQUESTED-IP

 The REQUESTED-IP attribute is used by the client to request that a
 specific IP address be allocated to it. This attribute is needed
 since it is anticipated that TURN servers will be multi-homed so as
 to be able to allocate more than 64k transport addresses. As a
 consequence, a client needing a second transport address on the same
 interface as a previous one can make that request.

 The format of this attribute is identical to MAPPED-ADDRESS.
 However, the port component of the attribute is ignored by the
 server. If a client wishes to request a specific IP address and
 port, it uses both the REQUESTED-IP and REQUESTED-PORT-PROPS
 attributes.

7.9. CONNECT_STAT

 This attribute is used by the server to convey the status of server-
 to-peer connections. It is a 32 bit unsigned integer. Its values
 are:

 0x0000 0000: LISTEN
 0x0000 0001: ESTABLISHED
 0x0000 0002: CLOSED

Rosenberg, et al. Expires January 9, 2008 [Page 25]

Internet-Draft TURN July 2007

8. New Error Response Codes

 This document defines the following new Error response codes:

 437 (No Binding): A request was received by the server that
 requires an allocation to be in place. However, there is none yet
 in place.

 439 (Active Destination Already Set): A Set Active Destination
 request was received by the server over UDP. However, the active
 destination is already set to another value. The client should
 reset the active destination, wait for the hold-down period, and
 set the active destination to the new value.

 442 (Unsupported Transport Protocol): The Allocate request asked
 for a transport protocol to be allocated that is not supported by
 the server.

 443 (Invalid IP Address): The Allocate request asked for a
 transport address to be allocated from a specific IP address that
 is not valid on the server.

 444 (Invalid Port): The Allocate request asked for a port to be
 allocated that is not available on the server.

 445 (Operation for TCP Only): The client tried to send a request
 to perform a TCP-only operation on an allocation, and allocation
 is UDP.

 446 (Connection Already Exists): The client tried to open a
 connection to a peer, but a connection to that peer already
 exists.

 486 (Allocation Quota Reached): The user or client is not
 authorized to request additional allocations.

 507 (Insufficient Capacity): The server cannot allocate a new port
 for this client as it has exhausted its relay capacity.

9. Client Procedures

9.1. Receiving and Sending Unencapsulated Data

 Once the active destination has been set, a client will receive both
 STUN and non-STUN data on the socket on which the Allocate Request
 was sent. The encapsulation behavior depends on the transport
 protocol used between the STUN client and the TURN server.

Rosenberg, et al. Expires January 9, 2008 [Page 26]

Internet-Draft TURN July 2007

9.1.1. Datagram Protocols

 If the allocation was over UDP, datagrams which contain the STUN
 magic cookie are treated as STUN requests. All other data is non-
 STUN data, which MUST be processed as if it had a source IP address
 and port equal to the value of the active destination.

 If the client wants to send data to the peer which contains the magic
 cookie in the same location as a STUN request, it MUST send that data
 encapsulated in a Send Indication, even if the active destination is
 set.

 In addition, once the active destination has been set, the client can
 send data to the active destination by sending the data
 unencapsulated on that same socket. Unencapsulated data MUST NOT be
 sent if no active destination is set. Of course, even if the active
 destination is set, the client can send data to that destination at
 any time by using the Send Indication.

9.1.2. Stream Transport Protocols

 If the allocation was over TCP or TLS over TCP, the client will
 receive data framed as described in Section 5. The client MUST treat
 data encapsulated as data with this framing as if it originated from
 the active destination.

 For the any of the methods defined in this document, the client
 always sends data encapsulated using this framing scheme. It SHOULD
 frame data to the active destination as data or it MAY place the data
 inside a Send Indications and frame this as STUN traffic.

10. Server Procedures

 Besides the processing of the request and indications described
 above, this specification defines rules for processing of data
 packets received by the STUN server. There are two cases - receipt
 of any packets on an allocated address, and receipt of non-STUN data
 on its internal local transport address.

10.1. Receiving Data on Allocated Transport Addresses

10.1.1. TCP Processing

 If a server receives a TCP connection request on an allocated TCP
 transport address, it checks the permissions associated with that
 allocation. If the source IP address of the TCP SYN packet matches
 one of the permissions (the source port does not need to match), the

Rosenberg, et al. Expires January 9, 2008 [Page 27]

Internet-Draft TURN July 2007

 TCP connection is accepted. Otherwise, it is rejected. When a TCP
 connection is accepted, the server sends the corresponding client a
 Connect Status Indication with the CONNECT_STAT attribute set to
 ESTABLISHED. No information is passed to the client if the server
 rejects the connection because there is no corresponding permission.

 If a server receives data on a TCP connection that terminates on the
 allocated TCP transport address, the server checks the value of the
 active destination. If it equals the source IP address and port of
 the data packet (in other words, if the active destination identifies
 the other side of the TCP connection), the data is taken from the TCP
 connection and sent towards the client in unencapsulated form.
 Otherwise, the data is sent towards the client in a Data Indication,
 also known as encapsulated form. In this form, the server MUST add a
 REMOTE-ADDRESS which corresponds to the external remote transport
 address of the TCP connection, and MUST add a DATA attribute
 containing the data received on the TCP connection.

 Note that, because data is forwarded blindly across TCP bindings,
 TLS will successfully operate over a TURN allocated TCP port if
 the linkage to the client is also TCP.

10.1.2. UDP Processing

 If a server receives a UDP packet on an allocated UDP transport
 address, it checks the permissions associated with that allocation.
 If the source IP address of the UDP packet matches one of the
 permissions (the source port does not need to match), the UDP packet
 is accepted. Otherwise, it is discarded. If the packet is accepted,
 it is forwarded to the client. It will be forwarded in either
 encapsulated or unencapsulated form.

 If the client to server communication is via UDP, the server looks
 for the existence of the STUN magic cookie in the data received from
 the peer. If the data contains the magic cookie, the server
 encapsulates the data in a Data Indication, sets the REMOTE_ADDRESS
 attribute, and forwards the indication to the client. If the magic
 cookie is not present, the server checks if the peer is the active
 destination. If so the data is forwarded unencapsulated, directly to
 the client. Otherwise the server encapsulates the data in a Data
 Indication, sets the REMOTE_ADDRESS and forwards to the client.

 If the client to server communication is via TCP or TLS, the server
 checks if the peer is the active destination. If so, the data from
 the peer is framed as Data and sent to the client over the client to
 server connection. Otherwise, the server encapsulates the data in a
 Data Indication, sets the REMOTE_ADDRESS attribute, frames the
 indication as STUN traffic, and sends the indication over the

Rosenberg, et al. Expires January 9, 2008 [Page 28]

Internet-Draft TURN July 2007

 connection to the client. If the TCP connection generates an error
 (because, for example, the incoming UDP packet rate exceeds the
 throughput of the TCP connection), the data is discarded silently by
 the server.

10.2. Receiving Data on Internal Local Transport Addresses

 If a server receives non-STUN UDP data from the client on its
 internal local transport address, and it is coming from an internal
 remote transport address associated with an existing allocation, it
 represents UDP data that the client wishes to forward. If there is
 no allocation associated with the source IP address and port number,
 or if there is an associated allocation but the active destination is
 not set, the server MUST discard the packet. If the active
 destination is set, the server places the data from the client in a
 UDP payload, and sets the destination address and port to the active
 destination. The UDP packet is then sent with a source IP address
 and port equal to the allocated transport address. Note that the
 server will not retransmit the UDP datagram.

 If a server receives framed data on a TCP connection from a client,
 the server retrieves the allocation bound to that connection. If the
 active destination for the allocation is not set, the server MUST
 discard the data and close the connection. If the active destination
 is set, and the allocated transport protocol is TCP, the server
 forwards the data over the connection to the active destination. The
 data is then sent over that connection. If the connection is not
 established or if the transmission fails due to a TCP error, the data
 is discarded silently by the server. If the active destination is
 set, and the allocated transport protocol is UDP, the server places
 the data from the client in a UDP payload, and sets the destination
 address and port to the active destination. The UDP packet is then
 sent with a source IP address and port equal to the allocated
 transport address. Note that the server will not retransmit the UDP
 datagram.

 If a TCP connection from a client is closed, the associated
 allocation is destroyed. This involves terminating any TCP
 connections from the allocated transport address to external peer
 (applicable only when the allocated transport address was TCP), and
 then freeing the allocated transport address (and all associated
 state maintained by the server) for use by other clients.

10.3. Lifetime Expiration

 When the allocation expiration timer for a binding fires, the server
 MUST destroy the allocation. This involves terminating any TCP
 connections from the allocated transport address to external peers

Rosenberg, et al. Expires January 9, 2008 [Page 29]

Internet-Draft TURN July 2007

 (applicable only when the allocated transport address was TCP), and
 then freeing the allocated transport address (and all associated
 state maintained by the server) for use by other clients. A
 suggested value for the allocation expiration timer is 10 minutes.

 The server is also expected to run a permission inactivity timer for
 each permission associated with an Allocation. If no traffic from
 the client is received, the permission inactivity timer will
 eventually expire and the server MUST delete the permission. A
 suggested value for the permission inactivity timer for UDP
 allocations is 60 seconds.

11. Client Discovery of TURN Servers

 The STUN relay extensions differ from the binding requests defined in
 [1] in that they demands substantial resources from the STUN server.
 In addition, it seems likely that administrators might want to block
 connections from clients to the STUN server for relaying separately
 from connections for the purposes of binding discovery. As a
 consequence, TURN is expected to typically run on a separate port
 from basic STUN. The client discovers the address and port of the
 TURN server using the same DNS procedures defined in [1], but using
 an SRV service name of "stun-relay" instead of just "stun".

 For example, to find TURN servers in the example.com domain, the TURN
 client performs a lookup for '_stun-relay._udp.example.com', '_stun-
 relay._tcp.example.com', and '_stun-relay._tls.example.com' if the
 STUN client wants to communicate with the TURN server using UDP, TCP,
 or TLS over TCP, respectively. The client assumes that all
 permissable transport protocols are supported from the TURN server to
 the peer for the client to server protocol selected.

 The STUN server is designed so the relay usage can run on a
 separate source port from non-relay usages. Since the client
 looks up the port number for the relay usage separately, servers
 can be configured to rely on this property. The STUN server MAY
 accept both relay and non-relay usages on the same port number, in
 which case it uses framing hints and choice of STUN messages to
 detect the STUN usage in use by a specific client.

12. Security Considerations

 STUN servers implementing the TURN extensions allocate bandwidth and
 port resources to clients, in contrast to the Binding method defined
 in [1]. Therefore, a STUN server providing the relay usage requires
 authentication and authorization of STUN requests. This

Rosenberg, et al. Expires January 9, 2008 [Page 30]

Internet-Draft TURN July 2007

 authentication is provided by mechanisms defined in the STUN
 specification itself. In particular, digest authentication and the
 usage of short-term passwords, obtained through a digest exchange
 over TLS, are available. The usage of short-term passwords ensures
 that the Allocate Requests, which often do not run over TLS, are not
 susceptible to offline dictionary attacks that can be used to guess
 the long lived shared secret between the client and the server.

 Because TURN servers allocate resources, they can be susceptible to
 denial-of-service attacks. All Allocate Requests are authenticated,
 so that an unknown attacker cannot launch an attack. An
 authenticated attacker can generate multiple Allocate Requests,
 however. To prevent a single malicious user from allocating all of
 the resources on the server, it is RECOMMENDED that a server
 implement a modest per user cap on the amount of bandwidth that can
 be allocated. Such a mechanism does not prevent a large number of
 malicious users from each requesting a small number of allocations.
 Attacks as these are possible using botnets, and are difficult to
 detect and prevent. Implementors of TURN should keep up with best
 practices around detection of anomalous botnet attacks.

 A client will use the transport address learned from the RELAY-
 ADDRESS attribute of the Allocate Response to tell other users how to
 reach them. Therefore, a client needs to be certain that this
 address is valid, and will actually route to them. Such validation
 occurs through the message integrity checks provided in the Allocate
 response. They can guarantee the authenticity and integrity of the
 allocated addresses. Note that TURN is not susceptible to the
 attacks described in Section 12.2.3, 12.2.4, 12.2.5 or 12.2.6 of RFC

3489 [[TODO: Update references once 3489bis is more stable]]. These
 attacks are based on the fact that a STUN server mirrors the source
 IP address, which cannot be authenticated. STUN does not use the
 source address of the Allocate Request in providing the RELAY-
 ADDRESS, and therefore, those attacks do not apply.

 TURN cannot be used by clients for subverting firewall policies.
 TURN has fairly limited applicability, requiring a user to send a
 packet to a peer before being able to receive a packet from that
 peer. This applies to both TCP and UDP. Thus, it does not provide a
 general technique for externalizing TCP and UDP sockets. Rather, it
 has similar security properties to the placement of an address-
 restricted NAT in the network, allowing messaging in from a peer only
 if the internal client has sent a packet out towards the IP address
 of that peer. This limitation means that TURN cannot be used to run
 web servers, email servers, SIP servers, or other network servers
 that service a large number of clients. Rather, it facilitates
 rendezvous of NATted clients that use some other protocol, such as
 SIP, to communicate IP addresses and ports for communications.

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489

Rosenberg, et al. Expires January 9, 2008 [Page 31]

Internet-Draft TURN July 2007

 Confidentiality of the transport addresses learned through Allocate
 requests does not appear to be that important, and therefore, this
 capability is not provided.

 Relay servers are useful even for users not behind a NAT. They can
 provide a way for truly anonymous communications. A user can cause a
 call to have its media routed through a STUN server, so that the
 user's IP addresses are never revealed.

 TCP transport addresses allocated by Allocate requests will properly
 work with TLS and SSL. However, any relay addresses learned through
 an Allcoate will not operate properly with IPSec Authentication
 Header (AH) [5] in transport mode. IPSec ESP [6] and any tunnel-mode
 ESP or AH should still operate.

13. IANA Considerations

 This specification defines several new STUN messages, STUN
 attributes, and STUN response codes. This section directs IANA to
 add these new protocol elements to the IANA registry of STUN protocol
 elements.

13.1. New STUN Requests, Responses, and Indications

 Request/Response Transactions
 0x003 : Allocate
 0x004 : Set Active Destination
 0x005 : Connect

 Indications
 0x006 : Send
 0x007 : Data
 0x008 : Connect Status

Rosenberg, et al. Expires January 9, 2008 [Page 32]

Internet-Draft TURN July 2007

13.2. New STUN Attributes

 0x000D: LIFETIME
 0x0010: BANDWIDTH
 0x0012: REMOTE-ADDRESS
 0x0013: DATA
 0x0016: RELAY-ADDRESS
 0x0018: REQUESTED-PORT-PROPS
 0x0019: REQUESTED-TRANSPORT
 0x0022: REQUESTED-IP
 0x0021: TIMER-VAL
 0x0023: CONNECT_STAT

13.3. New STUN response codes

 437 No Binding
 439 Active Destination Already Set
 442 Unsupported Transport Protocol
 443 Invalid IP Address
 444 Invalid Port
 445 Operation for TCP Only
 446 Connection Already Exists
 486 Allocation Quota Reached
 507 Insufficient Capacity

14. IAB Considerations

 The IAB has studied the problem of "Unilateral Self Address Fixing",
 which is the general process by which a client attempts to determine
 its address in another realm on the other side of a NAT through a
 collaborative protocol reflection mechanism RFC 3424 [7]. The TURN
 extension is an example of a protocol that performs this type of
 function. The IAB has mandated that any protocols developed for this
 purpose document a specific set of considerations.

 TURN is an extension of the STUN protocol. As such, the specific
 usages of STUN that use the TURN extensions need to specifically
 address these considerations. Currently the only STUN usage that
 uses TURN is ICE [8].

15. Example

 In this example, a client is behind a NAT. The client has a private
 address of 10.0.1.1. The STUN server is on the public side of the
 NAT, and is listening for TURN requests on 192.0.2.3:8776. The

https://datatracker.ietf.org/doc/html/rfc3424

Rosenberg, et al. Expires January 9, 2008 [Page 33]

Internet-Draft TURN July 2007

 public side of the NAT has an IP address of 192.0.2.1. The client is
 attempting to send a SIP INVITE to a peer, and wishes to allocate an
 IP address and port for inclusion in the SDP of the INVITE.
 Normally, TURNs would be used in conjunction with ICE when applied to
 SIP. For simplicities sake, TURN is showed without ICE.

 The client communicates with a SIP user agent on the public network.
 This user agent uses a 192.0.2.17:12734 for receipt of its RTP
 packets.

 Client NAT STUN Server Peer
 | | | |
 |(1) Allocate | | |
 |S=10.0.1.1:4334 | | |
 |D=192.0.2.3:8776 | | |
 |------------------>| | |
 | | | |
 | |(2) Allocate | |
 | |S=192.0.2.1:63346 | |
 | |D=192.0.2.3:8776 | |
 | |------------------>| |
 | | | |
 | |(3) Error | |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 | | | |
 |(4) Error | | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 |(5) Allocate | | |
 |S=10.0.1.1:4334 | | |
 |D=192.0.2.3:8776 | | |
 |------------------>| | |
 | | | |
 | |(6) Allocate | |
 | |S=192.0.2.1:63346 | |
 | |D=192.0.2.3:8776 | |
 | |------------------>| |
 | | | |
 | |(7) Response | |
 | |RA=192.0.2.3:32766 | |
 | |MA=192.0.2.1:63346 | |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |

Rosenberg, et al. Expires January 9, 2008 [Page 34]

Internet-Draft TURN July 2007

 | |<------------------| |
 |(8) Response | | |
 |RA=192.0.2.3:32766 | | |
 |MA=192.0.2.1:63346 | | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 | | | |
 |(9) INVITE | | |
 |SDP=192.0.2.3:32766| | |
 |-->|
 | | | |
 | | | |
 |(10) 200 OK | | |
 |SDP=192.0.2.17:12734 | |
 |<--|
 | | | |
 | | | |
 | | | |
 |(11) ACK | | |
 |-->|
 | | | |
 |(12) Send | | |
 |DATA=RTP | | |
 |DA=192.0.2.17:12734| | |
 |S=10.0.1.1:4334 | | |
 |D=192.0.2.3:8776 | | |
 |------------------>| | |
 | | | |
 | |(13) Send | |
 | |DATA=RTP | |
 | |DA=192.0.2.17:12734| |
 | |S=192.0.2.1:63346 | |
 | |D=192.0.2.3:8776 | |
 | |------------------>| |
 | | | |
 | | |(14) RTP |
 | | |S=192.0.2.3:32766 |
 | | |D=192.0.2.17:12734 |
 | | |------------------>|
 | | | |
 | | |Permission |
 | | |Created |
 | | |192.0.2.17 |
 | | | |
 | | |(15) RTP |
 | | |S=192.0.2.17:12734 |

Rosenberg, et al. Expires January 9, 2008 [Page 35]

Internet-Draft TURN July 2007

 | | |D=192.0.2.3:32766 |
 | | |<------------------|
 | | | |
 | |(16) DataInd | |
 | |DATA=RTP | |
 | |RA=192.0.2.17:12734| |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 |(17) DataInd | | |
 |DATA=RTP | | |
 |RA=192.0.2.17:12734| | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 |(18) SetAct | | |
 |DA=192.0.2.17:12734| | |
 |S=10.0.1.1:4334 | | |
 |D=192.0.2.3:8776 | | |
 |------------------>| | |
 | | | |
 | |(19) SetAct | |
 | |DA=192.0.2.17:12734| |
 | |S=192.0.2.1:63346 | |
 | |D=192.0.2.3:8776 | |
 | |------------------>| |
 | | | |
 | |(20) Response | |
 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 | | | |
 |(21) Response | | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 | | | |
 | | | after 3s|
 | | | |
 | | | |
 | | |(22) RTP |
 | | |S=192.0.2.17:12734 |
 | | |D=192.0.2.3:32766 |
 | | |<------------------|
 | | | |
 | |(23) RTP | |

Rosenberg, et al. Expires January 9, 2008 [Page 36]

Internet-Draft TURN July 2007

 | |S=192.0.2.3:8776 | |
 | |D=192.0.2.1:63346 | |
 | |<------------------| |
 | | | |
 |(24) RTP | | |
 |S=192.0.2.3:8776 | | |
 |D=10.0.1.1:4334 | | |
 |<------------------| | |
 | | | |
 | | | |

 Figure 14

 The call flow is shown in Figure 14. The client allocates a port
 from the local operating system on its private interface, obtaining
 4334. It then attempts to secure a port for RTP traffic. RTCP
 processing is not shown. The client sends an Allocate request (1)
 with a source address (denoted by S) of 10.0.1.1:4334 and a
 destination (denoted by D) of 192.0.2.3:8776. This passes through
 the NAT (2), which creates a mapping from the 192.0.2.1:63346 to the
 source IP address and port of the request, 10.0.1.1:4334. This
 request is received at the STUN server, which challenges it (3),
 requesting credentials. This response is passed to the client (4).
 The client retries the request, this time with credentials (5). This
 arrives at the server (6). The request is now authenticated. The
 server provides a UDP allocation, 192.0.2.3:32766, and places it into
 the RELAY-ADDRESS (denoted by RA) in the response (7). It also
 reflects the source IP address and port of the request into the
 MAPPED-ADDRESS (denoted by MA) in the response. This passes through
 the NAT to the client (8). The client now proceeds to perform a
 basic SIP call setup. In message 9, it includes the relay address
 into the SDP of its INVITE. The called party responds with a 200 OK,
 and includes its IP address - 192.0.2.17:12734. The exchange
 completes with an ACK (11).

 Next, user A sends an RTP packet. Since the active destination has
 not been set, the client decides to use the Send indication. It does
 so, including the RTP packet as the contents of the DATA attribute.
 The REMOTE-ADDRESS attribute (denoted by DA) is set to 192.0.2.17:
 12734, learned from the 200 OK. This is sent through the NAT
 (message 12) and arrives at the STUN server (message 13). The server
 extracts the data contents, and sends the packet towards REMOTE-
 ADDRESS (message 14). Note how the source address and port in this
 packet is 192.0.2.3:32766, the allocated transport address given to
 the client. The act of sending the packet with Send causes the STUN
 server to install a permission for 192.0.2.17.

 Indeed, the called party now sends an RTP packet toward the client

Rosenberg, et al. Expires January 9, 2008 [Page 37]

Internet-Draft TURN July 2007

 (message 15). This arrives at the STUN server. Since a permission
 has been set for the IP address in the source of this packet, it is
 accepted. As no active destination is set, the STUN server
 encapsulates the contents of the packet in a Data Indication (message
 16), and sends it towards the client. The REMOTE-ADDRESS attribute
 (denoted by RA) indicates the source of the packet - 192.0.2.17:
 12734. This is forwarded through the NAT to the client (message 17).

 The client decides to optimize the path for packets to and from
 192.0.2.17:12734. So, it issues a Set Active Destination request
 (message 18) with a REMOTE-ADDRESS of 192.0.2.17:12734. This passes
 through the NAT and arrives at the STUN server (message 19). This
 generates a successful response (message 20) which is passed to the
 client (message 21). At this point, the server and client are in the
 transitioning state. A little over 3 seconds later (by default), the
 state machines transition back to "Set". Until this point, packets
 from the called party would have been relayed back to the client in
 Data Indications. Now, the next RTP packet shows up at the STUN
 server (message 22). Since the source IP address and port match the
 active destination, the RTP packet is relayed towards the client
 without encapsulation (message 23 and 24).

16. Acknowledgements

 The authors would like to thank Marc Petit-Huguenin for his comments
 and suggestions.

17. References

17.1. Normative References

 [1] Rosenberg, J., "Session Traversal Utilities for (NAT) (STUN)",
draft-ietf-behave-rfc3489bis-06 (work in progress), March 2007.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

17.2. Informative References

 [3] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications", STD 64,

RFC 3550, July 2003.

 [4] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
 Session Description Protocol (SDP)", RFC 3264, June 2002.

https://datatracker.ietf.org/doc/html/draft-ietf-behave-rfc3489bis-06
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3264

Rosenberg, et al. Expires January 9, 2008 [Page 38]

Internet-Draft TURN July 2007

 [5] Kent, S., "IP Authentication Header", RFC 4302, December 2005.

 [6] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303,
 December 2005.

 [7] Daigle, L. and IAB, "IAB Considerations for UNilateral Self-
 Address Fixing (UNSAF) Across Network Address Translation",

RFC 3424, November 2002.

 [8] Rosenberg, J., "Interactive Connectivity Establishment (ICE): A
 Protocol for Network Address Translator (NAT) Traversal for
 Offer/Answer Protocols", draft-ietf-mmusic-ice-16 (work in
 progress), June 2007.

 [9] Audet, F. and C. Jennings, "NAT Behavioral Requirements for
 Unicast UDP", draft-ietf-behave-nat-udp-08 (work in progress),
 October 2006.

Authors' Addresses

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 Email: jdrosen@cisco.com
 URI: http://www.jdrosen.net

 Rohan Mahy
 Plantronics

 Email: rohan@ekabal.com

 Christian Huitema
 Microsoft
 One Microsoft Way
 Redmond, WA 98052-6399
 US

 Email: huitema@microsoft.com

https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-16
https://datatracker.ietf.org/doc/html/draft-ietf-behave-nat-udp-08
http://www.jdrosen.net

Rosenberg, et al. Expires January 9, 2008 [Page 39]

Internet-Draft TURN July 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Rosenberg, et al. Expires January 9, 2008 [Page 40]

