Behave J. Rosenberg TOC

Internet-Draft Cisco
Intended status: Standards
Track R. Mahy
Expires: May 20, 2008 Plantronics
P. Matthews
Avaya
D. Wing
Cisco

November 17,
2007

Traversal Using Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN)
draft-ietf-behave-turn-05

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on May 20, 2008.

Abstract

This specification defines an extension of the Session Traversal
Utilities for NAT (STUN) Protocol for asking the STUN server to relay
packets towards a client. This extension, called Traversal Using Relays
around NAT (TURN), is useful for hosts behind address dependent NATs.
The extension purposefully restricts the ways in which the relayed
address can be used. In particular, it prevents users from running
general purpose servers on ports obtained from the TURN server.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Table of Contents

[>

[~ [e

|

=
SEE)

(IR T A G
o [0 |~ |w

Introduction

Terminology

Overview of Operation

3.1. Transports

3.2. About Tuples

3.3. Keepalives

TURN Framing Mechanism

General Behavior

Managing Allocations

6.1. Client Behavior
6.1.1. Initial Allocate Requests

6.1.2. Refresh Requests

6.2. Server Behavior

6.2.1. Initial Allocate Requests

6.2.2. Refresh Requests
Sending and Receiving Data
7.1. Client Behavior

7.1.1. Sending

7.1.2. Receiving

7.2. Server Behavior

7.2.1. Receiving Data from the Client

7.2.2. Receiving Data from Peers

7.2.3. Allocation Activity Timer and Permission Timeout
New Attributes
8.1. CHANNEL-NUMBER
8.2. LIFETIME
8.3. BANDWIDTH
PEER-ADDRESS
DATA
RELAY -ADDRESS
8.7. REQUESTED-PORT-PROPS
8.8. REQUESTED-TRANSPORT
8.9. REQUESTED-IP
New Error Response Codes
Client Discovery of TURN Servers
Security Considerations
IANA Considerations
12.1. New STUN Methods
12.2. New STUN Attributes
12.3. New STUN Response Codes
IAB Considerations
Example
Changes since version -04
Acknowledgements

8.4.
8.5.
8.6.
8.7.

17. References
17.1. Normative References
17.2. Informative References

8§ Authors' Addresses
8§ Intellectual Property and Copyright Statements
1. Introduction TOC

Session Traversal Utilities for NAT (STUN) [I-D.ietf-behave-rfc3489bis]

(Rosenberqg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal

Utilities for (NAT) (STUN),” July 2008.) provides a suite of tools for
facilitating the traversal of NAT. Specifically, it defines the Binding
method, which is used by a client to determine its reflexive transport
address towards the STUN server. The reflexive transport address can be
used by the client for receiving packets from peers, but only when the
client is behind "good" NATs. In particular, if a client is behind a
NAT whose mapping behavior [RFC4787] (Audet, F. and C. Jennings,
“Network Address Translation (NAT) Behavioral Requirements for Unicast
UDP,” January 2007.) is address or address and port dependent
(sometimes called "bad" NATs), the reflexive transport address will not
be usable for communicating with a peer.

The only way to obtain a UDP transport address that can be used for
corresponding with a peer through such a NAT is to make use of a relay.
The relay sits on the public side of the NAT, and allocates transport
addresses to clients reaching it from behind the private side of the
NAT. These allocated transport addresses are from IP addresses
belonging to the relay. When the relay receives a packet on one of
these allocated addresses, the relay forwards it toward the client.
This specification defines an extension to STUN, called TURN, that
allows a client to request an address on the TURN server, so that the
TURN server acts as a relay. This extension defines a handful of new
STUN methods. The Allocate method is the most fundamental component of
this set of extensions. It is used to provide the client with a
transport address that is relayed through the TURN server. A transport
address which relays through an intermediary is called a relayed
transport address.

Though a relayed transport address is highly likely to work when
corresponding with a peer, it comes at high cost to the provider of the
relay service. As a consequence, relayed transport addresses should
only be used as a last resort. Protocols using relayed transport
addresses should make use of mechanisms to dynamically determine
whether such an address is actually needed. One such mechanism, defined
for multimedia session establishment protocols based on the offer/
answer protocol in REC 3264 (Rosenberg, J. and H. Schulzrinne, “An
offer/Answer Model with Session Description Protocol (SDP),”

June 2002.) [RFC3264], is Interactive Connectivity Establishment (ICE)
[I-D.ietf-mmusic-ice] (Rosenberg, J., “Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols,” October 2007.).

Though originally invented for Voice over IP applications, TURN is
designed to be a general-purpose relay mechanism for NAT traversal.

2. Terminology TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

Relayed Transport Address: A transport address that terminates on a
server, and is forwarded towards the client. The TURN Allocate
request can be used to obtain a relayed transport address, for
example.

TURN client: A STUN client that implements this specification. It
obtains a relayed transport address that it provides to a small
number of peers (usually one).

TURN server: A STUN server that implements this specification. It
relays data between a TURN client and its peer(s).

Peer: A node with which the TURN client wishes to communicate. The
TURN server relays traffic between the TURN client and its
peer(s).

Allocation: The IP address and port granted to a client through an
Allocate request, along with related state, such as permissions
and expiration timers.

5-tuple: A combination of the source IP address and port,
destination IP address and port, and transport protocol (UDP, or
TCP). It uniquely identifies a TCP connection or bi-directional
flow of UDP datagrams.

Permission: A record of an IP address and transport of a peer that
is permitted to send traffic to the TURN client. The TURN server
will only forward traffic to its client from remote peers that
match an existing permission.

3. Overview of Operation TOC

In a typical configuration, a TURN client is connected to a private
network and through one or more NATs to the public Internet. On the
public Internet is a TURN server. Elsewhere in the Internet are one or
more peers that the TURN client wishes to communicate with. This
specification defines a framing mechanism and several new STUN methods.
Together, these add the ability for a STUN server to act as a packet
relay.

The framing mechanism serves two purposes. First, it contains a length
field that allow TURN nodes to find the boundaries between chunks of
application data when the communication with the TURN server is over a
stream-based transport such as TCP. Second, it carries a channel
number. Channel zero is used for TURN control messages, while the other
channel numbers are used for application data traveling to or from
various peers. The channel number allows the client to know which peer
sent data to it, and to specify which peer is to be the recipient of
data. Application data flowing on any non-zero channel is
unencapsulated, meaning that the application data starts immediately
after the framing header. The framing header is just four bytes. This
allows TURN to operate with minimal overhead, which is important for
the real-time protocols it is designed to support. Application data can
also flow in encapsulated format, meaning that it is carried in certain
TURN messages on channel 0. Channel numbers are independent in each
direction: for example, channel 5 might indicate one peer in the client
to server direction, but a different peer in the server to client
direction.

When the client wants to obtain a relayed transport address, the client
first sends an Allocate request to the server, which the server
authenticates. The server generates an Allocate response with the
allocated address, port, and target transport. All other STUN messages
defined by this specification happen in the context of an allocation.

A successful Allocate transaction just reserves a transport address on
the TURN server. Data does not flow through an allocated transport
address until the TURN client asks the TURN server to open a
permission, which is done with a Send Indication. While the client can
request more than one permission per allocation, it needs to request
each permission explicitly and one at a time. This insures that a
client can't use a TURN server to run a traditional server, and
partially protects the client from DoS attacks.

Once a permission is open, the client can then receive data flowing
back from its peer. Initially this data is encapsulated in a Data
Indication. Since multiple permissions can be open simultaneously, the
Data Indication contains the PEER-ADDRESS attribute so the TURN client
knows which peer sent the data, and a CHANNEL-NUMBER attribute so the
client knows how the server will refer to traffic from this peer when
sent unencapsulated. Likewise when the client initially sends to a new
peer, it uses a Send Indication with the peer address in the PEER-

ADDRESS attribute, along with a channel number so the server knows how
the client will refer to unencapsulated data to this peer.

TURN TURN peer
client server

| --- Allocate Req -->|

|<-- Allocate Resp ---|

|
|
I | |
|--- Send (chan 2) -->| data |
|
|
|

| I::::::::::::>
|<-- ChannelConfirm --|

| [data

	<::::::::::::
<-- Data (chan 5) ---	
--- ChannelConfirm ->	
--- [2] + data ----- >	data
	::::::::::::>
	data
	<::::::::::::

<-- [5] + data ------ | |

Figure 1: Example Usage of Channels

When the client and server communicate over UDP, data and control
messages can arrive out of order. For this reason, the client needs to
verify the server knows the client channel mapping before the client
sends unencapsulated, and the server needs to verify the client knows
the server channel mapping before the server sends unencapsulated. When
the client and server communicate over UDP, a Channel Confirmation
indication is sent after the Send (or Data) indication so the client
(or server) knows that it can send unencapsulated.

Figure 1 (Example Usage of Channels) demonstrates how this works. The
client performs an Allocate Request, and gets a response. It decides to
send data to a specific peer. Initially, it sends data to that peer
using a TURN Send indication on channel 0. That Send Indication tells
the TURN server that, once confirmed, the client will send data
unencapsulated to that peer on channel 2. Whenever the TURN server
receives a Send indication, it stores the mapping from channel number
to peer, and sends a ChannelConfirm indication (on channel 0). Once the
confirmation has been received by the client, the client can send data
to the peer on channel 2. Prior to receipt of the ChannelConfirm, any
other data the client wishes to send to the peer is sent using Send
indications, all of which indicate that channel 2 is to be used for
unencapsulated data. The same procedure happens from server to client;

the TURN server initially sends data using a Data indication on channel
@, and once confirmed with a ChannelConfirm, it can send it
unencapsulated on its selected channel (channel 5 in the example).

Over a reliable transport, such as TCP, the confirmation step is not
needed so the Channel Confirmation indication is not used. Clients can
immediately send the next piece of data to the peer on the requested
channel.

Allocations can also request specific attributes such as the desired
Lifetime of the allocation and the maximum Bandwidth. Clients can also
request specific port assignment behavior, for example, a specific port
number, odd or even port numbers, or pairs of sequential port numbers.

3.1. Transports TOC

TURN clients can communicate with a TURN server using UDP, TCP, or TLS
over TCP. A TURN server can then relay traffic between a reliable
transport used between the client and server (TCP or TLS over TCP), and
UDP used from server to peer. When relaying data sent from a stream-
based protocol to a UDP peer, the TURN server emits datagrams which are
the same length as the length field in the TURN framing or the length
of the DATA attribute in a Send Indication. Likewise, when a UDP
datagram is received by the TURN server and relayed to the client over
a stream-based transport, the length of the datagram is the length of
the TURN framing or Data Indication's DATA attribute.

The following table shows the possible combinations of transport
protocols from client to server and from server to peer:

client to TURN server TURN server to peer

ubp ubp
TCP ubp
TLS ubP

For TURN clients, using TLS over TCP provides two benefits. When using
TLS, the client can be assured that the address of the client's peers
are not visible to an attacker except by traffic analysis downstream of
the TURN server. Second, the client may be able to communicate with
TURN servers using TLS when it would not be able to communicate with
the same server using TCP or UDP, due to the configuration of a
firewall between the TURN client and its server. TLS between the client
and TURN server in this case just facilitates traversal.

In addition, an extension to TURN is planned to add support for TCP
allocations [I-D.jetf-behave-turn-tcp] (Perreault, S. and J. Rosenberg,
“Traversal Using Relays around NAT (TURN) Extensions for TCP
Allocations,” March 2010.).

3.2. About Tuples TOC

To relay data to and from the correct location, the TURN server
maintains an association between the 5-tuple used to communicate with
the client and the 5-tuple used to communicate with each of the
client's peers. The 5-tuple on the client side will consist of the
client's reflexive address -- the apparent source address and port of
the client (typically as rewritten by the last NAT)--and the
destination address and port used by the TURN server. The figure below
shows a typical topology. In this diagram, the client 5-tuple is for a
UDP flow between 192.0.2.1:7000 and 192.0.2.15:3490. The 5-tuple
between the TURN server and Peer B is for a UDP flow between
192.0.2.15:9000 (the TURN allocated address) and 192.0.2.210:18200.

While the terminology used in this document refers to 5-tuples, the
TURN server can store whatever identifier it likes that yields
identical results. Specifically, many implementations may use a
file-descriptor in place of a 5-tuple to represent a TCP connection.

Client's TURN // |
Host Server / |
Address Address // e +
10.1.1.2:17240 192.0.2.15:3490 / 192.0.2.180:16400
I I /7
| +-+ | /
I || I /
v || | // 192.0.2.210:18200
I + | | [+--------- + / I +
I I IN| N | 77 I I
| TURN | | | v| TURN |/ [|
| Client |----]A]---------- | Server |------------------ | Peer B |
I I |~ I |~ N I
I I I T I N | I
Fommmm - + [|1 Fommm - +| [+--------- +
|1 I I
Iy I I
+-+] I I
I I I
I
Client's TURN Peer B
Reflexive Allocated Transport
Address Address Address
192.0.2.1:7000 192.0.2.15:9000 192.0.2.210:18200
Figure 2
3.3. Keepalives TOC

Since the main purpose of STUN and TURN is to traverse NATs, it is
natural to consider which elements are responsible for generating
sufficient periodic traffic to insure that NAT bindings stay alive.
TURN clients need to send data frequently enough to keep both NAT
bindings and the TURN server permissions fresh. Like NAT bindings, the
TURN server permissions are refreshed by ordinary data traffic relayed
from the client to the peer. Unlike permissions, allocations on the
TURN server have an explicit expiration time and need to be refreshed
explicitly by the client with a TURN Refresh request. When an

allocation expires, all permissions associated with that allocation are
automatically deleted.

4. TURN Framing Mechanism TOC

All TURN control messages and all application data sent between the
client and the server MUST start with the TURN framing header. This
header is used for two purposes: indicating the channel number, and for
framing.

TURN uses a channel number to distinguish control traffic from data,
and to distinguish among multiple peers using the same allocation.
Channel number zero is reserved for TURN control messages. All TURN
requests, responses and indications between the client and server MUST
be sent on channel 0, and MUST NOT be sent on any other channel.
Channel OXFFFF is reserved for future use and MUST NOT be used by
clients or servers compliant to this specification. Other channel
numbers are assigned and communicated as described in Section 7
(Sending and Receiving Data). Because the framing is always used, TURN
needs to run on a separate port number from unframed STUN requests.
Over stream-based transports, the TURN client and server also need to
include an explicit length so that the TURN server can perform
conversion from streams to datagrams and vice versa. TURN framing has a
2 octet channel number and a 2 octet length field. Over stream-based
transports, the length field counts the number of octets immediately
after the length field itself. Over UDP the length is always set to
zero.

(0] 1 2 3
©1234567890123456789012345678901
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| Channel Number | Length |
totot-tototot-t-totot-t-tot-t-totot-t-t-tot-t-t-tot-t-t-F-F-+-+-+

Channel numbers are always defined within a particular allocation. If a
client has multiple allocations on a TURN server, there is no
relationship whatsoever between the channel numbers in each allocation.
Once created, a channel number persists for the lifetime of the
allocation. There is no way to explicitly remove a channel.
Consequently, a client which obtains an allocation with the intent of
holding it for extremely long periods, possibly for communication with
many different peers over time, may eventually exhaust the set of
channels. In that case, the client will need to obtain a new
allocation.

TOC

5. General Behavior

After the initial Allocate transaction, all subsequent TURN
transactions need to be sent in the context of a valid allocation. The
source and destination IP address and ports for these TURN messages
MUST match the internal 5-tuple of an existing allocation. These are
processed using the general server procedures in
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.) with a few important additions. For requests (in this
specification, the only subsequent request possible is a Refresh
request), if there is no matching allocation, the server MUST generate
a 437 (Allocation Mismatch) error response. For indications, if there
is no matching allocation, the indication is silently discarded. An
Allocate request MUST NOT be sent by a client within the context of an
existing allocation. Such a request MUST be rejected by the server with
a 437 (Allocation Mismatch) error response.

A subsequent request MUST be authenticated using the same username and
realm as the one used in the Allocate request that created the
allocation. If the request was authenticated but not with the matching
credential, the server MUST reject the request with a 401
(Unauthorized) error response.

When a server returns an error response, it MAY include an ALTERNATE-
SERVER attribute if it has positive knowledge that the problem reported
in the error response will not be a problem on the alternate server.
For example, a 443 response (Invalid IP Address) with an ALTERNATE-
SERVER means that the other server is responsible for that IP address.
A 442 (Unsupported Transport Protocol) with this attribute means that
the other server is known to support that transport protocol. A 507
(Insufficient Capacity) means that the other server is known to have
sufficient capacity. Using the ALTERNATE-SERVER mechanism in the 507
(Insufficient Capacity) response can only be done if the rejecting
server has definitive knowledge of available capacity on the target.
This will require some kind of state sharing mechanism between TURN
servers, which is beyond the scope of this specification. If a TURN
server attempts to redirect to another server without knowledge of
available capacity, it is possible that all servers are in a congested
state, resulting in series of rejections that only serve to further
increase the load on the system. This can cause congestion collapse.
If a client sends a request to a server and gets a 500 class error
response without an ALTERNATE-SERVER, or the transaction times out
without a response, and the client was utilizing the SRV procedures of
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.) to contact the server, the client SHOULD try another server
based on those procedures. However, the client SHOULD cache the fact
that the request to this server failed, and not retry that server again
for a configurable period of time. Five minutes is RECOMMENDED.

TURN clients and servers MUST NOT include the FINGERPRINT attribute in
any of the methods defined in this document.

6. Managing Allocations TOC

Communications between a TURN client and a TURN server on a new flow
begin with an Allocate transaction. All subsequent transactions happen
in the context of that allocation. The client refreshes allocations and
deallocates them using a Refresh transaction.

6.1. Client Behavior TOC

6.1.1. Initial Allocate Requests TOC

When a client wishes to obtain a transport address, it sends an
Allocate request to the server. This request is constructed and sent
using the general procedures defined in [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal

Utilities for (NAT) (STUN),” July 2008.). Clients MUST implement the
long term credential mechanism defined in [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal

Utilities for (NAT) (STUN),” July 2008.), and be prepared for the
server to use it.

The client SHOULD include a BANDWIDTH attribute, which indicates the
maximum bandwidth that will be used with this binding. If the maximum
is unknown, the attribute is not included in the request.

OPEN ISSUE: Bandwidth is very much underspecified. Is anyone
actually using it for capacity planning? If not we should remove.

The client MAY request a particular lifetime for the allocation by
including it in the LIFETIME attribute in the request.

The client MUST include a REQUESTED-TRANSPORT attribute. In this
specification, the REQUESTED-TRANSPORT will always be UDP. This
attribute is included to allow for future extensions to TURN.

The client MAY include a REQUESTED-PORT-PROPS or REQUESTED-IP attribute
in the request to obtain specific types of transport addresses. Whether
these are needed depends on the application using the TURN server. As
an example, the Real Time Transport Protocol (RTP) [RFC3550]
(Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson, “RTP: A

Transport Protocol for Real-Time Applications,” July 2003.) requires
that RTP and RTCP ports be an adjacent pair, even and odd respectively,
for compatibility with a previous version of that specification. The
REQUESTED-PORT-PROPS attribute allows the client to ask the relay for
those properties.

Processing of the response follows the general procedures of
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.). A successful response will include both a RELAY-ADDRESS
and an XOR-MAPPED-ADDRESS attribute, providing both a relayed transport
address and a reflexive transport address, respectively, to the client.
The value of the LIFETIME attribute in the response indicates the
amount of time after which the server will expire the allocation, if
not refreshed with a Refresh request. The server will allow the user to
send and receive at least the amount of data indicated in the BANDWIDTH
attribute per allocation. (At its discretion the server can optionally
discard UDP data above this threshold.)

If the response is an error response and contains a 442, 443 or 444
error code, the client knows that its requested properties could not be
met. The client MAY retry with different properties, with the same
properties (in a hope that something has changed on the server), or
give up, depending on the needs of the application. However, if the
client retries, it SHOULD wait 500ms, and if the request fails again,
wait 1 second, then 2 seconds, and so on, exponentially backing off.

6.1.2. Refresh Requests TOC

Before 3/4 of the lifetime of the allocation has passed (the lifetime
of the allocation is conveyed in the LIFETIME attribute of the Allocate
Response), the client SHOULD refresh the allocation with a Refresh
transaction if it wishes to keep the allocation.

To perform a refresh, the client generates a Refresh Request. The
client MUST use the same username, realm and password for the Refresh
request as it used in its initial Allocate Request. The Refresh request
MAY contain a proposed LIFETIME attribute. The client MAY include a
BANDWIDTH attribute if it wishes to request more or less bandwidth than
in the original request. If absent, it indicates no change in the
requested bandwidth from the Allocate request. The client MUST NOT
include a REQUESTED-IP, REQUESTED-TRANSPORT, or REQUESTED-PORT-PROPS
attribute in the Refresh request.

In a successful response, the LIFETIME attribute indicates the amount
of additional time (the number of seconds after the response is
received) that the allocation will live without being refreshed. A
successful response will also contain a BANDWIDTH attribute, indicating
the bandwidth the server is allowing for this allocation. Note that an

error response does not imply that the allocation has expired, just
that the refresh has failed.

If a client no longer needs an allocation, it SHOULD perform an
explicit deallocation. If the client wishes to explicitly remove the
allocation because it no longer needs it, it sends a Refresh request,
but sets the LIFETIME attribute to zero. This will cause the server to
remove the allocation, and all associated permissions and channel
numbers. For connection-oriented transports such as TCP, the client can
also remove the allocation (and all associated bindings) by closing the
relevant connection with the TURN server.

6.2. Server Behavior TOC

The server first processes the request according to the base protocol
procedures in [I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R.,
Matthews, P., and D. Wing, “Session Traversal Utilities for (NAT)
(STUN),” July 2008.), extended with the procedures for the long-term
credential mechanism.

6.2.1. Initial Allocate Requests TOC

When the server receives an Allocate request, the server attempts to
allocate a relayed transport address. It first looks for the BANDWIDTH
attribute in the request. If present, the server determines whether or
not it has sufficient capacity to handle a binding that will generate
the requested bandwidth.

If it does, the server attempts to allocate a transport address for the
client. The Allocate Request can contain several additional attributes
that allow the client to request specific characteristics of the
transport address.

6.2.1.1. REQUESTED-TRANSPORT TOC

First, the server checks for the REQUESTED-TRANSPORT attribute. This
indicates the transport protocol requested by the client. This
specification defines a value for UDP only, but support for TCP
allocations is planned in [I-D.jetf-behave-turn-tcp] (Perreault, S. and
J. Rosenberg, “Traversal Using Relays around NAT (TURN) Extensions for
TCP _Allocations,” March 2010.).

As a consequence of the REQUESTED-TRANSPORT attribute, it is
possible for a client to connect to the server over TCP or TLS over
TCP and request a UDP transport address. In this case, the server
will relay data between the transports.

If the requested transport is supported, the server allocates a port
using the requested transport protocol. If the REQUESTED-TRANSPORT
attribute contains a value of the transport protocol unknown to the
server, or known to the server but not supported by the server in the
context of this request, the server MUST reject the request and include
a 442 (Unsupported Transport Protocol) in the response. If the request
did not contain a REQUESTED-TRANSPORT attribute, the server MUST use
the same transport protocol as the request arrived on.

6.2.1.2. REQUESTED-IP TOC

Next, the server checks for the REQUESTED-IP attribute. If present, it
indicates a specific IP address from which the client would like its
transport address allocated. (The client could do this if it requesting
the second address in a specific port pair). If this IP address is not
a valid one for allocations on the server, the server MUST reject the
request and include a 443 (Invalid IP Address) error code in the
response, or else redirect the request to a server that is known to
support this IP address. If the IP address is one that is valid for
allocations (presumably, the server is configured to know the set of IP
addresses from which it performs allocations), the server MUST provide
an allocation from that IP address. If the attribute is not present,
the selection of an IP address is at the discretion of the server.

6.2.1.3. REQUESTED-PORT-PROPS TOC

Finally, the server checks for the REQUESTED-PORT-PROPS attribute. If
present, it indicates specific port properties desired by the client.
This attribute is split into two portions: one portion for port
behavior and the other for requested port alignment (whether the
allocated port is odd, even, reserved as a pair, or at the discretion
of the server).

If the port behavior requested is for a Specific Port, the server MUST
attempt to allocate that specific port for the client. If the specific
port is not available (in use or reserved), the server MUST reject the
request with a 444 (Invalid Port) response. For example, the STUN
server could reject a request for a Specific Port because the port is
temporarily reserved as part of an adjacent pair of ports, or because
the requested port is a well-known port (1-1023).

If the client requests "even" port alignment, the server MUST attempt
to allocate an even port for the client. If an even port cannot be
obtained, the server MUST reject the request with a 444 (Invalid Port)
response or redirect to an alternate server. If the client requests odd
port alignment, the server MUST attempt to allocate an odd port for the
client. If an odd port cannot be obtained, the server MUST reject the
request with a 444 (Invalid Port) response or redirect to an alternate
server. Finally, the "Even port with hold of the next higher port"
alignment is similar to requesting an even port. It is a request for an
even port, and MUST be rejected by the server if an even port cannot be
provided, or redirected to an alternate server. However, it is also a
hint from the client that the client will request the next higher port
with a separate Allocate request. As such, it is a request for the
server to allocate an even port whose next higher port is also
available, and furthermore, a request for the server to not allocate
that one higher port to any other request except for one that asks for
that port explicitly. The server can honor this request for adjacency
at its discretion. The only constraint is that the allocated port has
to be even.

Port alignment requests exist for compatibility with implementations
of RTP which predate RFC 3550. These implementations use the port
numbering conventions in (now obsolete) RFC 1889.

6.2.1.4. Creating the Allocation TOC

If any of the requested or desired constraints cannot be met, whether
it be bandwidth, transport protocol, IP address or port, instead of
rejecting the request, the server can alternately redirect the client
to a different server that may be able to fulfill the request. This is
accomplished using the 300 error response and ALTERNATE-SERVER
attribute. If the server does not redirect and cannot service the
request because the server has reached capacity, it sends a 507
(Insufficient Capacity) response. The server can also reject the
request with a 486 (Allocation Quota Reached) if the user or client is
not authorized to request additional allocations.

The server SHOULD only allocate ports in the range 1024-65535. This is
one of several ways to prohibit relayed transport addresses from being
used to attempt to run standard services.

Once a port is allocated, the server associates the allocation with the
5-tuple used to communicate between the client and the server. For TCP,
this amounts to associating the TCP connection from the TURN client
with the allocated transport address.

The new allocation MUST also be associated with the username, password
and realm used to authenticate the request. These credentials are used

in all subsequent requests to ensure that only the same client can use
or modify the allocation it was given.

In addition, the allocation created by the server is associated with a
set of permissions. Each permission is a specific IP address
identifying an external client. Initially, this list is null.

If the LIFETIME attribute was present in the request, and the value is
larger than the maximum duration the server is willing to use for the
lifetime of the allocation, the server MAY lower it to that maximum.
However, the server MUST NOT increase the duration requested in the
LIFETIME attribute. If there was no LIFETIME attribute, the server may
choose a duration at its discretion. Ten minutes is RECOMMENDED. In
either case, the resulting duration is added to the current time, and a
timer, called the allocation expiration timer, is set to fire at or
after that time. Section 7.2.3 (Allocation Activity Timer and
Permission Timeout) discusses behavior when the timer fires. Note that
the LIFETIME attribute an Allocate request can be zero, though this is
effectively a no-op, since it will create and destroy the allocation in
one transaction.

6.2.1.5. Sending the Allocate Response TOC

Once the port has been obtained and the allocation expiration timer has
been started, the server generates an Allocate Response using the
general procedures defined in [I-D.ietf-behave-rfc3489bis] (Rosenberg,
J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal Utilities
for (NAT) (STUN),” July 2008.), including the ones for long term
authentication. The transport address allocated to the client MUST be
included in the RELAY-ADDRESS attribute in the response. In addition,
this response MUST contain the XOR-MAPPED-ADDRESS attribute. This
allows the client to determine its reflexive transport address in
addition to a relayed transport address, from the same Allocate
request.

The server MUST add a LIFETIME attribute to the Allocate Response. This
attribute contains the duration, in seconds, of the allocation
expiration timer associated with this allocation.

The server MUST add a BANDWIDTH attribute to the Allocate Response.
This MUST be equal to the attribute from the request, if one was
present. Otherwise, it indicates a per-allocation limit that the server
is placing on the bandwidth usage on each binding. Such limits are
needed to prevent against denial-of-service attacks (See Section 11
(Security Considerations)).

T0C

6.2.2. Refresh Requests

A Refresh request is processed using the general server and long term
authentication procedures in [I-D.ietf-behave-rfc3489bis] (Rosenberg,
J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal Utilities
for (NAT) (STUN),” July 2008.). It is used to refresh and extend an
allocation, or to cause an immediate deallocation. It is processed as
follows.

First, the request MUST be authenticated using the same shared secret
as the one associated with the allocation. If the request was
authenticated but not with such a matching credential, the server MUST
generate a Refresh Error Response with a 401 response.

If the Refresh request contains a BANDWIDTH attribute, the server
checks that it can relay the requested volume of traffic.

Finally, a Refresh Request will set a new allocation expiration timer
for the allocation, effectively canceling the previous allocation
expiration timer. As with an Allocate request, the server can offer a
shorter allocation lifetime, but never a longer one.

A success Refresh response MUST contain a LIFETIME attribute and a
BANDWIDTH attribute.

7. Sending and Receiving Data TOC

As described in Section 4 (TURN Framing Mechanism), TURN allows a
client to send and receive data without utilizing TURN Send and Data
indications, by sending and receiving them on channels. Before sending
client-to-peer or peer-to-client data for a new peer, a TURN client or
server needs to assign a channel number that corresponds to that remote
peer. Once a channel number is assigned, it remains assigned through
the duration of the allocation. It cannot be unassigned or reassigned
to a different peer.

7.1. Client Behavior TOC

TOC

7.1.1. Sending

When the client wants to forward data to a peer, it checks if it has
assigned a channel number for communications with this peer (as
identified by its IP address and port) over this allocation:

*If one has not been assigned, the client assigns one of its own
choosing. This channel number MUST be one that is currently
unassigned by the client for this allocation. It MUST be between
1 and 65534. It is RECOMMENDED that the client choose one of the
unassigned numbers randomly, rather than sequentially. The state
of the channel is set to unconfirmed.

*If one has been assigned, that channel MUST be selected.

Next, the client checks if the channel number has been confirmed by the
server. If the channel number has been confirmed, the client simply
sends the data to the TURN server with the appropriate channel number
in the TURN framing.

If the channel number has not been confirmed, the client creates a Send
indication. It places the selected channel number in a CHANNEL-NUMBER
attribute, the peer IP address and port in a PEER-ADDRESS attribute,
and puts the data to be sent in a DATA attribute. (If the client just
wishes to create a permission, it can omit the DATA attribute.) If the
Send indication is sent over a reliable transport (ex: TCP), the client
marks that the channel number as confirmed. When the client receives a
ChannelConfirmation Indication, and the channel number, IP address and
port match the channel number assigned to that peer, the client marks
that the channel number is confirmed.

Since Send is an Indication, it generates no response. The client must
rely on application layer mechanisms to determine if the data was
received by the peer. A ChannelConfirmation Indication just means that
some Send indication was received by the TURN server. It does not mean
that a specific Send indication was received by the peer.

Note that Send Indications are not authenticated and do not contain
a MESSAGE-INTEGRITY attribute. Just like non-relayed data sent over
UDP or TCP, the authenticity and integrity of this data can only be
assured using security mechanisms at higher layers.

7.1.2. Receiving TOC

When the client receives a Data indication, it:

*records the channel number used by the server (from the CHANNEL-
NUMBER attribute) and associates it with the IP address and port

in the PEER-ADDRESS attribute, which identify the peer that sent
the data. The resulting mapping from channel number to transport
address MUST be stored by the client for the duration of the
allocation.

*delivers the contents of the DATA attribute to the client
application as if it was received from the peer's IP address and
port.

*If the Data indication was received over UDP, the client MUST
confirm the channel used by the server, by sending a
ChannelConfirmation Indication to the server. This indication
MUST contain the same PEER-ADDRESS and CHANNEL-NUMBER attributes
included in the Data indication. This indication is sent to the
server on channel 0 using the 5-tuple associated with this
allocation. Note that, due to round trip delays, a client may
receive several Data indications with the same channel number for
the same remote peer. It MUST process each as defined here,
resulting in several ChannelConfirmation indications.

When the client receives unencapsulated data, it checks the received
channel number. If the client has a mapping associated with the server
channel number it delivers the data to the client application as if it
was received directly from that peer. Otherwise, it silently discards
the data.

7.2. Server Behavior TOC

7.2.1. Receiving Data from the Client TOC
When the server receives a Data indication from the client, it:

*records the channel number used by the client (from the CHANNEL-
NUMBER attribute) and associates it with the IP address and port
in the PEER-ADDRESS attribute, which identify the peer to which
the data is to be sent. The resulting mapping from channel number
to peer transport address MUST be stored by the server for the
duration of the allocation.

*sends the contents of the DATA attribute in a UDP datagram,
sending it to the PEER-ADDRESS and sending from the allocated
transport address.

*if one doesn't exist, creates a permission for the IP address
from the PEER-ADDRESS (the port is ignored), and attaches the
permission to the allocation

*checks if a timer has been set for this permission. If none has
been started, the server starts one. It is RECOMMENDED that it
have a value of sixty seconds. If the timer is already running,
it MUST be reset.

*If the Send indication was received over UDP, the server MUST
confirm the channel used by the client, by sending a
ChannelConfirmation Indication to the client. This indication
MUST contain the same PEER-ADDRESS and CHANNEL-NUMBER attributes
included in the Send indication. This indication is sent to the
client on channel @ using the 5-tuple associated with this
allocation. Note that, due to round trip delays, a server may
receive several Send indications with the same channel number for
the same remote peer. It MUST process each as defined here,
resulting in several ChannelConfirmation indications.

When the server receives unencapsulated data, it checks the received
channel number:

*If the server has a mapping associated with the client channel
number it:

-sends a UDP datagram to the peer using the transport address
from the mapping, and sends from the allocated transport
address.

-checks if a permission activity timer is running for the
destination IP address of the peer. If one is not running, the
server starts one. It is RECOMMENDED that it have a value of
sixty seconds. If the timer is already running, it MUST be
reset.

*If the server has no mapping, it silently discards the data.

7.2.2. Receiving Data from Peers TOC

If a server receives a UDP packet on an allocated UDP transport
address, it checks the permissions associated with that allocation. If
the source IP address of the UDP packet matches one of the permissions
(the source port is not used), the UDP packet is accepted. Otherwise,
it is discarded. If the packet is accepted, it is forwarded to the
client as described below.

The server checks if it has assigned a channel number for
communications from this peer (as identified by its IP address and
port) over this allocation:

*If one has not been assigned, the client assigns one of its own
choosing. This channel number MUST be one that is currently
unassigned by the server for this allocation. It MUST be between
1 and 65534. It is RECOMMENDED that the server choose one of the
unassigned numbers randomly, rather than sequentially. The state
of the channel is set to unconfirmed.

*If one has been assigned, that channel MUST be selected.

Note that data from peers does not reset the permission activity timer.
Next, the server checks if the channel number has been confirmed by the
client. If the channel number has been confirmed, the server simply
sends the data to the client with the appropriate channel number in the
TURN framing.

If the channel number has not been confirmed, the server creates a Data
indication. It places the selected channel number in a CHANNEL-NUMBER
attribute, the peer IP address and port in a PEER-ADDRESS attribute,
and puts the data to be sent in a DATA attribute. If the Data
indication is sent over a reliable transport (ex: TCP), the server
marks that the channel number as confirmed. When the server receives a
ChannelConfirmation Indication, and the channel number, IP address and
port match the channel number assigned to that peer, the server marks
that the channel number is confirmed.

Since Data is an Indication, it generates no response. The server does
not provide reliability for the data. When sending over a reliable
transport to the client, if the server is unable to send the data
received from the peer (for example, because the TCP connection cannot
accept any more messages right now), it can silently discards UDP data
received from the peer.

Note that Send Indications are not authenticated and do not contain
a MESSAGE-INTEGRITY attribute. Just like non-relayed data sent over
UDP or TCP, the authenticity and integrity of this data can only be
assured using security mechanisms at higher layers.

7.2.3. Allocation Activity Timer and Permission Timeout TOC

When the allocation activity timer expires, the server MUST destroy the
allocation. This involves freeing the allocated transport address,
deleting permissions and channel numbers, and removing other state
associated with the allocation.

When a permission times out, the TURN server MUST NOT forward a packet
from that TURN peer to the TURN client.

8. New Attributes TOC
This STUN extension defines the following new attributes:

OXx000C: CHANNEL-NUMBER
OXx000D: LIFETIME

0x0010: BANDWIDTH

Ox0012: PEER-ADDRESS

0x0013: DATA

Ox0016: RELAY-ADDRESS
0x0018: REQUESTED-PORT-PROPS
0x0019: REQUESTED-TRANSPORT
0x0022: REQUESTED-IP

8.1. CHANNEL-NUMBER TOC

The channel number attribute represents the channel number assigned by
the sender, that corresponds with the peer specified in the PEER-
ADDRESS attribute. It is a 16-bit unsigned integer, plus two octets of
padding which MUST be set to zero.

0 1 2 3
012345678901234567890123456789601
B b e T e e e e e e h ke skt S R e R e e S S S T s ot sk sk T
| Channel Number | Reserved = 0 |
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+

8.2. LIFETIME TOC

The lifetime attribute represents the duration for which the server
will maintain an allocation in the absence of a refresh. It is a 32 bit
unsigned integral value representing the number of seconds remaining
until expiration.

T0C

8.3. BANDWIDTH
The bandwidth attribute represents the peak bandwidth, measured in

kilobits per second, that the client expects to use on the allocation
in each direction.

8.4. PEER-ADDRESS T0C

The PEER-ADDRESS specifies the address and port of the peer as seen
from the TURN server. It is encoded in the same way as XOR-MAPPED-
ADDRESS.

8.5. DATA TOC

The DATA attribute is present in most Send Indications and Data
Indications. It contains raw payload data that is to be sent (in the
case of a Send Request) or was received (in the case of a Data
Indication).

8.6. RELAY-ADDRESS T0C

The RELAY-ADDRESS is present in Allocate responses. It specifies the
address and port that the server allocated to the client. It is encoded
in the same way as XOR-MAPPED-ADDRESS.

8.7. REQUESTED-PORT-PROPS TOC

This attribute allows the client to request certain properties for the
port that is allocated by the server. The attribute can be used with
any transport protocol that has the notion of a 16 bit port space
(including TCP and UDP). The attribute is 32 bits long. Its format is:

(C] 1 2 3
©1234567890123456789012345678901
+-t-F-F-+-F-F-F-+-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-F-F-F-F-F-F+-+-+-+
| Reserved = 0 | A | Specific Port Number |
+ot-F-t-F-t-F+-+-+-+-+

The two bits labeled A in the diagram above are for requested port
alignment and have the following meaning:

00 no specific port alignment

01 odd port number

10 even port number

11 even port number; reserve next higher port

If the value of the A field is 00 (no specific port alignment), then
the Specific Port Number field can either be ©® or some non-zero port
number. If the Specific Port Number field is ©, then the client is not
putting any restrictions on the port number it would like allocated. If
the Specific Port Number is some non-zero port number, then the client
is requesting that the server allocate the specified port.

If the value of the A field is 01 (odd port number), then the Specific
Port Number field must be zero, and the client is requesting the server
allocate an odd-numbered port.

If the value of the A field is 10 (even port number), then the Specific
Port number field must be zero, and the client is requesting the server
allocate an even-numbered port.

If the value of the A field is 11 (even port number; reserve next
higher port), then the Specific Port Number field must be zero, and the
client is requesting the server allocate an even-numbered port. In
addition, the client is requesting the server reserve the next higher
port (i.e., N+1 if the server allocates port N), and should only
allocate the N+1 port number if it is explicit requested (with a
subsequent request specifying that exact port number)

In all cases, if a port with the requested properties cannot be
allocated, the server responds with a error response with an error code
of 444 (Invalid Port).

8.8. REQUESTED-TRANSPORT T0C

This attribute is used by the client to request a specific transport
protocol for the allocated transport address. It is a 32 bit unsigned
integer. Its values are:

OX0000 0OEO: UDP
OXx0000 O0O1: Reserved for TCP

If an Allocate request is sent over TCP and requests a UDP allocation,
or an Allocate request is sent over TLS over TCP and requests a UDP
allocation, the server will relay data between the two transports.
Extensions to TURN can define additional transport protocols in an
IETF-consensus RFC.

8.9. REQUESTED-IP TOC

The REQUESTED-IP attribute is used by the client to request that a
specific IP address be allocated to it. This attribute is needed since
it is anticipated that TURN servers will be multi-homed so as to be
able to allocate more than 64k transport addresses. As a consequence, a
client needing a second transport address on the same interface as a
previous one can make that request.

The format of this attribute is identical to XOR-MAPPED-ADDRESS.
However, the port component of the attribute is ignored by the server.
If a client wishes to request a specific IP address and port, it uses
both the REQUESTED-IP and REQUESTED-PORT-PROPS attributes.

9. New Error Response Codes TOC
This document defines the following new Error response codes:

437 (Allocation Mismatch): A request was received by the server
that requires an allocation to be in place, but there is none, or
a request was received which requires no allocation, but there is
one.

442 (Unsupported Transport Protocol): The Allocate request asked
for a transport protocol to be allocated that is not supported by
the server. If the server is aware of another server that
supports the requested protocol, it SHOULD include the other
server's address in an ALTERNATE-SERVER attribute in the error
response.

443 (Invalid IP Address): The Allocate request asked for a
transport address to be allocated from a specific IP address that

is not valid on the server.

444 (Invalid Port): The Allocate request asked for a port to be
allocated that is not available on the server.

486 (Allocation Quota Reached): The user or client is not
authorized to request additional allocations.

507 (Insufficient Capacity): The server cannot allocate a new port
for this client as it has exhausted its relay capacity.

T0C

10. Client Discovery of TURN Servers

The STUN extensions introduced by TURN differ from the binding requests
defined in [I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R.,
Matthews, P., and D. Wing, “Session Traversal Utilities for (NAT)
(STUN),” July 2008.) in that they are sent with additional framing and
demand substantial resources from the TURN server. In addition, it
seems likely that administrators might want to block connections from
clients to the TURN server for relaying separately from connections for
the purposes of binding discovery. As a consequence, TURN runs on a
separate port from STUN. The client discovers the address and port of
the TURN server using the same DNS procedures defined in
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.), but using an SRV service name of "turn" (or "turns" for
TURN over TLS) instead of just "stun".

For example, to find TURN servers in the example.com domain, the TURN
client performs a lookup for '_turn._udp.example.com',
'_turn._tcp.example.com', and '_turns._tcp.example.com' if the STUN
client wants to communicate with the TURN server using UDP, TCP, or TLS
over TCP, respectively.

11. Security Considerations TOC

TURN servers allocate bandwidth and port resources to clients, in
contrast to the Binding method defined in [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.). Therefore, a TURN server
requires authentication and authorization of STUN requests. This
authentication is provided by mechanisms defined in the STUN
specification itself, in particular digest authentication.

Because TURN servers allocate resources, they can be susceptible to
denial-of-service attacks. All Allocate transactions are authenticated,
so that an unknown attacker cannot launch an attack. An authenticated
attacker can generate multiple Allocate Requests, however. To prevent a
single malicious user from allocating all of the resources on the
server, it is RECOMMENDED that a server implement a modest per user
limit on the amount of bandwidth that can be allocated. Such a
mechanism does not prevent a large number of malicious users from each
requesting a small number of allocations. Attacks such as these are
possible using botnets, and are difficult to detect and prevent.
Implementors of TURN should keep up with best practices around
detection of anomalous botnet attacks.

A client will use the transport address learned from the RELAY-ADDRESS
attribute of the Allocate Response to tell other users how to reach
them. Therefore, a client needs to be certain that this address is

valid, and will actually route to them. Such validation occurs through
the message integrity checks provided in the Allocate response. They
can guarantee the authenticity and integrity of the allocated
addresses. Note that TURN is not susceptible to the attacks described
in Section 12.2.3, 12.2.4, 12.2.5 or 12.2.6 of
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.) [[TODO: Update section number references to 3489bis]].
These attacks are based on the fact that a STUN server mirrors the
source IP address, which cannot be authenticated. STUN does not use the
source address of the Allocate Request in providing the RELAY-ADDRESS,
and therefore, those attacks do not apply.

TURN cannot be used by clients for subverting firewall policies. TURN
has fairly limited applicability, requiring a user to explicitly
authorize permission to receive data from a peer, one IP address at a
time. Thus, it does not provide a general technique for externalizing
sockets. Rather, it has similar security properties to the placement of
an address-restricted NAT in the network, allowing messaging in from a
peer only if the internal client has sent a packet out towards the IP
address of that peer. This limitation means that TURN cannot be used to
run web servers, email servers, SIP servers, or other network servers
that service a large number of clients. Rather, it facilitates
rendezvous of NATted clients that use some other protocol, such as SIP,
to communicate IP addresses and ports for communications.
Confidentiality of the transport addresses learned through Allocate
transactions does not appear to be that important. If required, it can
be provided by running TURN over TLS.

TURN does not and cannot guarantee that UDP data is delivered in
sequence or to the correct address. As most TURN clients will only
communicate with a single peer, the use of a single channel number will
be very common. Consider an enterprise where Alice and Bob are involved
in separate calls through the enterprise NAT to their corporate TURN
server. If the corporate NAT reboots, it is possible that Bob will
obtain the exact NAT binding originally used by Alice. If Alice and Bob
were using identical channel numbers, Bob will receive unencapsulated
data intended for Alice and will send data accidentally to Alice's
peer. This is not a problem with TURN. This is precisely what would
happen if there was no TURN server and Bob and Alice instead provided a
(STUN) reflexive transport address to their peers. If detecting this
misdelivery is a problem, the client and its peer need to use message
integrity on their data.

One TURN-specific DoS attack bears extra discussion. An attacker who
can corrupt, drop, or cause the loss of a Send or Data indication sent
over UDP, and then forge a Channel Confirmation indication for the
corresponding channel number, can cause a TURN client (server) to start
sending unencapsulated data that the server (client) will discard.
Since indications are not integrity protected, this attack is not
prevented by cryptographic means. However, any attacker who can
generate this level of network disruption could simply prevent a large

fraction of the data from arriving at its destination, and therefore
protecting against this attack does not seem important. The

ChannelConfirmation forging attack is not possible when the client to

server communication is over TCP or TLS over TCP.
Relay servers are useful even for users not behind a NAT. They can

provide a way for truly anonymous communications. A user can cause a
call to have its media routed through a TURN server, so that the user's
IP addresses are never revealed.

Any relay addresses learned through an Allocate request will not
operate properly with IPSec Authentication Header (AH) (Kent, S.,

“IP

Authentication Header,” December 2005.) [RFC4302] in transport or
tunnel mode. However, tunnel-mode IPSec ESP (Kent,

Encapsulating Security Payload (ESP),” December 2005.) [RFC4303] should

still operate.

12.

IANA Considerations

T0C

This specification defines several new STUN methods, STUN attributes,

and STUN response codes. This section directs IANA to add these new
protocol elements to the IANA registry of STUN protocol elements.

12.

12.

1.

2.

New STUN Methods

Request/Response Transactions

0x003 : Allocate

0x004 : Refresh

Indications

Ox006 : Send

0x007 : Data

Ox009 : Channel Confirmation

New STUN Attributes

T0C

T0C

0x000C: CHANNEL-NUMBER
Ox0060D: LIFETIME

0x0010: BANDWIDTH

0x0012: PEER-ADDRESS

0x0013: DATA

0x0016: RELAY-ADDRESS
0x0018: REQUESTED-PORT-PROPS
0x0019: REQUESTED-TRANSPORT
0x0022: REQUESTED-IP

12.3. New STUN Response Codes TOC

437 Allocation Mismatch

442 Unsupported Transport Protocol
443 Invalid IP Address

444 Invalid Port

486 Allocation Quota Reached

507 Insufficient Capacity

13. IAB Considerations TOC

The IAB has studied the problem of "Unilateral Self Address Fixing",
which is the general process by which a client attempts to determine
its address in another realm on the other side of a NAT through a
collaborative protocol reflection mechanism REC 3424 (Daigle, L. and
IAB, “IAB Considerations for UNilateral Self-Address Fixing (UNSAF)
Across Network Address Translation,” November 2002.) [RFC3424]. The
TURN extension is an example of a protocol that performs this type of
function. The IAB has mandated that any protocols developed for this
purpose document a specific set of considerations.

TURN is an extension of the STUN protocol. As such, the specific usages
of STUN that use the TURN extensions need to specifically address these
considerations. Currently the only STUN usage that uses TURN is ICE
(Rosenberg, J., “Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traversal for Offer/
Answer Protocols,” October 2007.) [I-D.ietf-mmusic-ice].

T0C

14. Example

In this example, a TURN client is behind a NAT. This TURN client is
running SIP. The client has a private address of 10.0.1.1. The TURN
server is on the public side of the NAT, and is listening for TURN
requests on 192.0.2.3:8776. The public side of the NAT has an IP
address of 192.0.2.1. The client is attempting to send a SIP INVITE to
a peer, and wishes to allocate an IP address and port for inclusion in
the SDP of the INVITE. Normally, TURN would be used in conjunction with
ICE when applied to SIP. However, to keep the example simple, TURN 1is
shown without ICE.

The client communicates with a SIP user agent on the public network.
This user agent uses a 192.0.2.17:12734 for receipt of its RTP packets.

10.0.1.1 192.0.2.1 192.0.2.3 192.0.2.17

Client NAT TURN Server Peer
I I I I
| (1) Allocate | (2) Allocate |
[S=10.0.1.1:4334 |S=192.0.2.1:63346 |
|D=192.0.2.3:8776 |D=192.0.2.3:8776 |
|- e >|
I I I
| (4) Error | (3) Error |
[S=192.0.2.3:8776 |$=192.0.2.3:8776 |
|D=10.0.1.1:4334 |D=192.0.2.1:63346 |
| <o | <o |
I I I
| (5) Allocate | (6) Allocate |
[S=10.0.1.1:4334 [|$=192.0.2.1:63346 |
|D=192.0.2.3:8776 |D=192.0.2.3:8776 |
R R R >

| (8) Response | (7) Response
|[RA=192.0.2.3:32766 |RA=192.0.2.3:32766
|[MA=192.0.2.1:63346 |MA=192.0.2.1:63346
[S=192.0.2.3:8776 |S$=192.0.2.3:8776

|

I

I

I

|

I

I

I

|

|

I

I

|

|

I I
| [(allocates port 32766) |
I |
|

I

I

I

|

|D=10.0.1.1:4334 |D=192.0.2.1:63346 |
I

I

|

|

I

I

|

|

| (11) RTP
[S=192.0.2.17:12734
|D=192.0.2.3:32766
(no permission; packet dropped)
(12) SIP ACK

| (13) Send Indic. | (14) Send Indic. |
| TURN Channel=0 | TURN Channel=0 |

STUN DATA=RTP	STUN DATA=RTP
CHANNEL-NUMER=77	CHANNEL-NUMBER=77
PA=192.0.2.17:12734	PA=192.0.2.17:12734]
S=10.0.1.1:4334	S=192.0.2.1:63346
D=192.0.2.3:8776	D=192.0.2.3:8776

I I

| | permission created

I I I

I I | (15) RTP

I | |S=192.0.2.3:32766
I | |D=192.0.2.17:12734
I I

R >
I I
| (17) ChannelConf | (16) ChannelConf
| TURN Channel=0 | TURN Channel=0
|[PA=192.0.2.17:12734|PA=192.0.2.17:12734
[S=192.0.2.3:8776 |$=192.0.2.3:8776
|D=10.0.1.1:4334 |D=192.0.2.1:63346
|<----mmmmmemo oo |<----mmmmmeem oo I
I I I
| (18) TURN Framed | (19) TURN Framed |
| TURN Channel=77 | TURN Channel=77 | (20) RTP
[S=10.0.1.1:4334 |S=192.0.2.1:63346 |S=192.0.2.3:32766
|D=192.0.2.3:8776 |D=192.0.2.3:8776 |D=192.0.2.17:12734
I P e T D T >
I I I
| (23) Data Indic. | (22) Data Indic. |
| TURN Channel=0 | TURN Channel=0 |

|
|
|
|
|
|
|
|
|
|
|
|
|
| |
| |
| |
| CHANNEL -NUMBER=77 | CHANNEL -NUMBER=77 | |
| |
| |
| |
|
|
|
|
|
|
|
|
|
|
CHANNEL -NUMBER=33	CHANNEL-NUMBER=33	(21) RTP
S=192.0.2.3:8776	S=192.0.2.3:8776	S=192.0.2.17:12734
D=10.0.1.1:4334	D=192.0.2.1:63346	D=192.0.2.3:32766

| (24) ChannelConf | (25) ChannelConf

| TURN Channel=0 | TURN Channel=0

| CHANNEL -NUMBER=33 | CHANNEL -NUMBER=33
[S=10.0.0.1:4334 |$=192.0.2.3:8776
|D=192.0.2.3:8776 |D=192.0.2.3:8776
R D >

| (28) TURN Framed | (27) TURN Framed |

| TURN Channel=33 | TURN Channel=33 | (26) RTP
[S=192.0.2.3:8776 |$=192.0.2.3:8776 [S=192.0.2.17:12734
|D=10.0.1.1:4334 |D=192.0.2.1:63346 |D=192.0.2.3:32766

Figure 3

The message flow is shown in Figure 3. In step 1-2, the client
allocates a UDP port from the local operating system on its private
interface, obtaining 4334. It then attempts to obtain a port for RTP
traffic. RTCP processing is not shown in the example.

In step 1, the client sends an Allocate Request (1) with a source
address (denoted by S) of 10.0.1.1:4334 and a destination (denoted by
D) of 192.0.2.3:8776. This passes through the NAT (2), which allocates
a new UDP port (63346) on the NAT's public interface (192.0.2.1), and
creates an internal mapping between the internal address 10.0.1.1:4334
and that external address 192.0.2.1:63346. The NAT sends this request
to the TURN server (3). The TURN server challenges the request,
requesting credentials by sending a STUN error and including the NONCE
and REALM attributes. Message 3 is relayed, by the NAT, to the TURN
client (4). The client sends a new request (from the same UDP port),
including its credentials (5, 6). The TURN server authenticates the
request. The TURN server allocates a new UDP port on one of its
interfaces, 192.0.2.3:32766. The TURN server puts 192.0.2.3:32766 into
the RELAY-ADDRESS (denoted by RA) attribute of the response, and puts
the source IP address and UDP port of the request (as seen by the TURN
server) into the XOR-MAPPED-ADDRESS attribute (denoted by MA). In step
7, this message is sent back to the TURN client and relayed by the NAT
in step 8.

The client now proceeds to perform a basic SIP call setup. In message
9, the TURN client includes the TURN server's address (which it learned
in message 8) in the SDP of its INVITE (e.g., using syntax described
in[I-D.ietf-mmusic-ice] (Rosenberg, J., “Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols,” October 2007.)). The called
party responds with its SDP in a provisional response (18x) or a final
response (200 Ok). The called party's SDP includes its IP address and
UDP port, 192.0.2.17:12734. Immediately after sending its 200 Ok, the
called party sends an RTP packet to the TURN server's IP address (11).
This RTP packet is dropped by the TURN server, because the TURN server
has not been given permission to relay that data. Incoming packets are
dropped until a permission is created. The SIP exchange completes with
an SIP 200 Ok message (12).

Steps 13-20 show the client performing a channel allocation. The TURN
client needs to send an RTP packet. Since no channels and no
permissions have been created, the TURN client sends the RTP packet
inside of a Send Indication, using channel number ©, with the CHANNEL-
NUMBER attribute set to the channel number the TURN client wants to use
for subsequent communication with this TURN peer (77 is shown in the
example). The TURN peer's IP address and UDP port (which were learned
from the SDP answer received in step 10) are placed in the PEER-ADDRESS
attribute (denoted by PA). In message 13, the TURN client sends this
Send Indication, and it is relayed by the NAT to the TURN server (14).

Upon receipt of that message, the TURN server creates a permission,
which allows subsequent traffic from that same peer address to be
relayed to that TURN client's IP address and UDP port. The TURN server
sends the contents of the Send Indication's DATA attribute towards the
PEER-ADDRESS (15); this will typically be an RTP packet. Note that the
source address and port of message 15 is the TURN server's address,
192.0.2.3:32766, which is the allocated transport address communicated
to the TURN client in messages 7 and 8.

In step 16, the TURN server sends a channel confirmation message to the
TURN client. Once the TURN client receives this message, it can forgo
using the Send Indication for that channel. Instead, it can utilize the
channel number in the TURN framing header. Steps 18 and 19 show the
TURN client sending a message to TURN server using the TURN framing
header, with channel=1. Step 20 shows the TURN server removing the TURN
framing and sending the RTP packet to the TURN peer.

Steps 21-28 show an RTP packet from the TURN peer, which causes a
channel allocation by the TURN server. In packet 21, an RTP packet is
sent by the TURN peer to the TURN server. There is an existing
permission (created in step 14), so the TURN server accepts this
incoming RTP packet. The TURN server knows the TURN client to send this
packet to, but does not yet have a channel assigned for traffic in this
direction. The TURN server chooses a channel number (33 in the
example), and sends a Data Indication to the TURN client (message 22).
The NAT relays this to the TURN client (message 23). The TURN client
sends an Channel Confirmation message (24) which is relayed by the NAT
(25). When the TURN server receives the Channel Confirmation, it no
longer needs to use a Send Indication for traffic from that remote
peer; instead, it can use TURN framing with its chosen channel number
(33). The next RTP packet that arrives from that peer (26) is sent by
the TURN server using TURN framing indicating the channel number
(message 27) and relayed by the NAT to the TURN client (28).

15. Changes since version -04 TOC

This section lists the major changes between thiis document and draft-
ietf-behave-turn-04:

*Removed the ability to allocate addresses for TCP relaying. This
is now covered in a separate document. However, communication
between the client and the server can still run over TCP or TLS/
TCP. This resulted in the removal of the Connect method and the
TIMER-VAL and CONNECT-STAT attributes.

*Added the concept of channels. All communication between the
client and the server flows on a channel. Channels are numbered
0..65535. Channel 0 is used for TURN messages, while the

remaining channels are used for sending unencapsulated data to/
from a remote peer. This concept adds a new Channel Confirmation
method and a new CHANNEL-NUMBER attribute. The new attribute is
also used in the Send and Data methods.

*The framing mechanism formally used just for stream-oriented
transports is now also used for UDP, and the former Type and
Reserved fields in the header have been replaced by a Channel
Number field. The length field is zero when running over UDP.

*TURN now runs on its own port, rather than using the STUN port.
The use of channels requires this.

*Removed the SetActiveDestination concept. This has been replaced
by the concept of channels.

*Changed the allocation refresh mechanism. The new mechanism uses
a new Refresh method, rather than repeating the Allocation
transaction.

*Changed the syntax of SRV requests for secure transport. The new
syntax is "_turns._tcp" rather than the old "_turn._tls". This
change mirrors the corresponding change in STUN SRV syntax.

*Renamed the old REMOTE-ADDRESS attribute to PEER-ADDRESS, and
changed it to use the XOR-MAPPED-ADDRESS format.

*Changed the RELAY-ADDRESS attribute to use the XOR-MAPPED-ADDRESS
format (instead of the MAPPED-ADDRESS format)).

*Renamed the 437 error code from "No Binding" to "Allocation
Mismatch".

*Added a discussion of what happens if a client's public binding
on its outermost NAT changes.

*The document now consistently uses the term "peer" as the name of
a remote endpoint with which the client wishes to communicate.

*Rewrote much of the document to describe the new concepts. At the

same time, tried to make the presentation clearer and less
repetitive.

TOC

16. Acknowledgements

The authors would like to thank Marc Petit-Huguenin for his comments

and suggestions.

17. References

TOC

17.1. Normative References

[I-D.ietf-
behave-
rfc3489bis]

[RFC2119]

TOC
Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
“Session Traversal Utilities for (NAT) (STUN),”
draft-ietf-behave-rfc3489bis-18 (work in progress),
July 2008 (TXT).
Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997
(IXT, HTML, XML).

17.2. Informative References

[RFC3550]

[RFC3264]

[RFC4302]

[RFC4303]

[RFC3424]

[I-D.ietf-
mmusic-ice]

[RFC4787]

TOC
Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, “RTP: A Transport Protocol for Real-Time
Applications,” STD 64, RFC 3550, July 2003 (TXT, PS,
PDF) .
Rosenberg, J. and H. Schulzrinne, “An Offer/Answer
Model with Session Description Protocol (SDP),”
RFC 3264, June 2002 (TXT).
Kent, S., “IP Authentication Header,” RFC 4302,
December 2005 (TXT).
Kent, S., “IP Encapsulating Security Payload (ESP),”
RFC 4303, December 2005 (TXT).
Daigle, L. and IAB, “IAB Considerations for UNilateral
Self-Address Fixing (UNSAF) Across Network Address
Translation,” RFC 3424, November 2002 (TXT).
Rosenberg, J., “Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols,” draft-ietf-
mmusic-ice-19 (work in progress), October 2007 (TXT).
Audet, F. and C. Jennings, “Network Address
Translation (NAT) Behavioral Requirements for Unicast
UDP,"” BCP 127, RFC 4787, January 2007 (TXT).

http://www.ietf.org/internet-drafts/draft-ietf-behave-rfc3489bis-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-rfc3489bis-18.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc3550
http://www.rfc-editor.org/rfc/rfc3550.txt
http://www.rfc-editor.org/rfc/rfc3550.ps
http://www.rfc-editor.org/rfc/rfc3550.pdf
http://tools.ietf.org/html/rfc3264
http://tools.ietf.org/html/rfc3264
http://www.rfc-editor.org/rfc/rfc3264.txt
http://tools.ietf.org/html/rfc4302
http://www.rfc-editor.org/rfc/rfc4302.txt
http://tools.ietf.org/html/rfc4303
http://www.rfc-editor.org/rfc/rfc4303.txt
http://tools.ietf.org/html/rfc3424
http://tools.ietf.org/html/rfc3424
http://tools.ietf.org/html/rfc3424
http://www.rfc-editor.org/rfc/rfc3424.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://tools.ietf.org/html/rfc4787
http://tools.ietf.org/html/rfc4787
http://tools.ietf.org/html/rfc4787
http://www.rfc-editor.org/rfc/rfc4787.txt

[I-D.ietf-
behave-turn-

Perreault, S. and J. Rosenberg,
Relays around NAT (TURN) Extensions for TCP

“Traversal Using

tep]

Allocations,” draft-ietf-behave-turn-tcp-06 (work in

progress), March 2010 (TXT).

Authors' Addresses

Email:
URT:

Email:

Phone:
Fax:
Email:
URT:

Phone:
Fax:
Email:
URI:

Full Copyright Statement

_T0C
Jonathan Rosenberg
Cisco Systems, Inc.
Edison, NJ
us
jdrosen@cisco.com
http://www.jdrosen.net

Rohan Mahy
Plantronics,
rohan@ekabal.com

Inc.

Philip Matthews
Avaya, Inc.
1135 Innovation
Ottawa, Ontario
Canada

+1 613 592-4343

Drive
K2K 3G7

X223

philip_matthews@magma.ca

Dan Wing

Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134
USA

dwing@cisco.com

TOC

Copyright © The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions

contained in BCP 78, and except as set forth therein,

retain all their rights.

the authors

http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-tcp-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-tcp-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-tcp-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-tcp-06.txt
mailto:jdrosen@cisco.com
http://www.jdrosen.net
mailto:rohan@ekabal.com
mailto:philip_matthews@magma.ca
mailto:dwing@cisco.com

This document and the information contained herein are provided on an
“AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made
any independent effort to identify any such rights. Information on the
procedures with respect to rights in RFC documents can be found in

BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at http://
www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at ietf-

ipr@ietf.org.

http://www.ietf.org/ipr
http://www.ietf.org/ipr
mailto:ietf-ipr@ietf.org
mailto:ietf-ipr@ietf.org

	Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)draft-ietf-behave-turn-05
	Status of this Memo
	Abstract
	Table of Contents
	1. Introduction
	2. Terminology
	3. Overview of Operation
	3.1. Transports
	3.2. About Tuples
	3.3. Keepalives
	4. TURN Framing Mechanism
	5. General Behavior
	6. Managing Allocations
	6.1. Client Behavior
	6.1.1. Initial Allocate Requests
	6.1.2. Refresh Requests
	6.2. Server Behavior
	6.2.1. Initial Allocate Requests
	6.2.1.1. REQUESTED-TRANSPORT
	6.2.1.2. REQUESTED-IP
	6.2.1.3. REQUESTED-PORT-PROPS
	6.2.1.4. Creating the Allocation
	6.2.1.5. Sending the Allocate Response
	6.2.2. Refresh Requests
	7. Sending and Receiving Data
	7.1. Client Behavior
	7.1.1. Sending
	7.1.2. Receiving
	7.2. Server Behavior
	7.2.1. Receiving Data from the Client
	7.2.2. Receiving Data from Peers
	7.2.3. Allocation Activity Timer and Permission Timeout
	8. New Attributes
	8.1. CHANNEL-NUMBER
	8.2. LIFETIME
	8.3. BANDWIDTH
	8.4. PEER-ADDRESS
	8.5. DATA
	8.6. RELAY-ADDRESS
	8.7. REQUESTED-PORT-PROPS
	8.8. REQUESTED-TRANSPORT
	8.9. REQUESTED-IP
	9. New Error Response Codes
	10. Client Discovery of TURN Servers
	11. Security Considerations
	12. IANA Considerations
	12.1. New STUN Methods
	12.2. New STUN Attributes
	12.3. New STUN Response Codes
	13. IAB Considerations
	14. Example
	15. Changes since version -04
	16. Acknowledgements
	17. References
	17.1. Normative References
	17.2. Informative References
	Authors' Addresses
	Full Copyright Statement
	Intellectual Property

