Behave J. Rosenberg TOC

Internet-Draft Cisco
Intended status: Standards
R. Mahy
Track
Expires: July 25, 2008 Plantronics
P. Matthews
Avaya

January 22,
2008

Traversal Using Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN)
draft-ietf-behave-turn-06

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The 1list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on July 25, 2008.

Abstract

If a host is located behind a NAT, then in certain situations it can be
impossible for that host to communicate directly with other hosts
(peers) located behind other NATs. In these situations, it is necessary
for the host to use the services of an intermediate node that acts as a
communication relay. This specification defines a protocol, called TURN
(Traversal Using Relays around NAT), that allows the host to control
the operation of the relay and to exchange packets with its peers using
the relay.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

The TURN protocol can be used in isolation, but is more properly used
as part of the ICE (Interactive Connectivity Establishment) approach to
NAT traversal.

Table of Contents

1. Introduction
2. Overview of Operation
2.1. Transports
2.2. Allocations
2.3. Exchanging Data with Peers
2.4. Permissions
2.5. Channels
3. Terminology
4. General Behavior
5. Managing Allocations
5.1. Client Behavior
5.1.1. Initial Allocate Requests
5.1.2. Refresh Requests
5.2. Server Behavior
5.2.1. Receiving an Allocate Request
5.2.2. Refresh Requests
6. Send and Data Indications
6.1. Forming and Sending an Indication
6.2. Receiving an Indication
6.3. Relaying
7. Channel Mechanism
7.1. Forming and Sending a ChannelBind Request
7.2. Receiving a ChannelBind Request and Sending a Response
7.3. Receiving a ChannelBind Response
7.4. The ChannelData Message
7.5. Forming and Sending a ChannelData Message
7.6. Receiving a ChannelData Message
7.7. Relaying
8. New STUN Methods
9. New STUN Attributes
9.1. CHANNEL-NUMBER
9.2. LIFETIME
9.3. BANDWIDTH
9.4. PEER-ADDRESS
9.5. DATA
9.6. RELAY-ADDRESS
9.7. REQUESTED-PORT-PROPS
9.8. REQUESTED-TRANSPORT
9.9. REQUESTED-IP
10. New STUN Error Response Codes

[N

1. Client Discovery of TURN Servers

Security Considerations
IANA Considerations
IAB Considerations
Example
Changes from Previous Versions
16.1. Changes from -05 to -06
16.2. Changes from -04 to -05
Issues
17.1. Open Issues
17.2. Closed Issues
Acknowledgements
References
19.1. Normative References
19.2. Informative References
§ Authors' Addresses
§ Intellectual Property and Copyright Statements

[G I[N
o |0 B |w [N

[N
\l

=
[e9)

=
©

1. Introduction TOC

NOTE TO THE READER: This document is a work-in-progress. Please see the
list of open and closed issues in Section 17 (Issues). With only a few
exceptions, if there is an open issue the text has NOT been updated in
this area pending resolution of this issue - keep this in mind when
reading the text. In addition, in the interest of getting the document
out quickly in order to make progress on open issues, the authors have
elected to release the document is a bit more "raw" state than they
would prefer, resulting in some rough spots in the presentation.

Session Traversal Utilities for NAT (STUN) [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.) provides a suite of tools for
facilitating the traversal of NAT. Specifically, it defines the Binding
method, which is used by a client to determine its reflexive transport
address towards the STUN server. The reflexive transport address can be
used by the client for receiving packets from peers, but only when the
client is behind "good" NATs. In particular, if a client is behind a
NAT whose mapping behavior [RFC4787] (Audet, F. and C. Jennings,
“Network Address Translation (NAT) Behavioral Requirements for Unicast
UDP,"” January 2007.) is address or address and port dependent
(sometimes called "bad" NATs), the reflexive transport address will not
be usable for communicating with a peer.

The only way to obtain a UDP transport address that can be used for
corresponding with a peer through such a NAT is to make use of a relay.

The relay sits on the public side of the NAT, and allocates transport
addresses to clients reaching it from behind the private side of the
NAT. These allocated transport addresses are from IP addresses
belonging to the relay. When the relay receives a packet on one of
these allocated addresses, the relay forwards it toward the client.
This specification defines an extension to STUN, called TURN, that
allows a client to request an address on the TURN server, so that the
TURN server acts as a relay. This extension defines a handful of new
STUN methods. The Allocate method is the most fundamental component of
this set of extensions. It is used to provide the client with a
transport address that is relayed through the TURN server. A transport
address which relays through an intermediary is called a relayed
transport address.

Though a relayed transport address is highly likely to work when
corresponding with a peer, it comes at high cost to the provider of the
relay service. As a consequence, relayed transport addresses should
only be used as a last resort. Protocols using relayed transport
addresses should make use of mechanisms to dynamically determine
whether such an address is actually needed. One such mechanism, defined
for multimedia session establishment protocols based on the offer/
answer protocol in RFC 3264 (Rosenberg, J. and H. Schulzrinne, “An
Offer/Answer Model with Session Description Protocol (SDP),”

June 2002.) [RFC3264], is Interactive Connectivity Establishment (ICE)
[I-D.ietf-mmusic-ice] (Rosenberg, J., “Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols,” October 2007.).

Though originally invented for Voice over IP applications, TURN is
designed to be a general-purpose relay mechanism for NAT traversal.

2. Overview of Operation TOC

This section gives an overview of the operation of TURN. It is non-
normative.

In a typical configuration, a TURN client is connected to a private
network (Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and E.
Lear, “Address Allocation for Private Internets,” February 1996.)
[RFC1918] and through one or more NATs to the public Internet. On the
public Internet is a TURN server. Elsewhere in the Internet are one or
more peers that the TURN client wishes to communicate with. These peers
may or may not be behind one or more NATs.

Client's TURN // |
Host Transport Server / |
Address Address +-+ // e +
10.1.1.2:17240 192.0.2.15:3478 IN|/ 192.168.100.2:16400
I I |A]
I +-+ I /17|
I (! I /o+-+
\Y | | | / 192.0.2.210:18200
I + | | [+--------- + / I +
I I IN| N | 77 I I
| TURN | | v| TURN |/ [|
| Client |----]A|---------- | Server |------------------ | Peer B |
I I (I I |~ N I
I I [TI] I N | I
Fommmm - + | 1] Fommm - +| [+--------- +
[1] I I
[1] I I
+-+] I I
I I I
I I I
Client's | Peer B
Server-Reflexive Relayed Transport
Transport Address Transport Address Address
192.0.2.1:7000 192.0.2.15:9000 192.0.2.210:18200
Figure 1

Figure 1 shows a typical deployment. In this figure, the TURN client
and the TURN server are separated by a NAT, with the client on the
private side and the server on the public side of the NAT. This NAT is
assumed to be a “bad” NAT; for example, it might have a mapping
property of address-and-port-dependent mapping (see [RFC4787] (Audet,
F. and C. Jennings, “Network Address Translation (NAT) Behavioral
Requirements for Unicast UDP,” January 2007.)) for a description of
what this means).

The client has allocated a local port on one of its addresses for use
in communicating with the server. The combination of an IP address and
a port is called a TRANSPORT ADDRESS and since this (IP address, port)
combination is located on the client and not on the NAT, it is called
the client’s HOST transport address.

The client sends TURN messages from its host transport address to a
transport address on the TURN server which is known as the TURN SERVER

ADDRESS. The client learns the server’s address through some
unspecified means (e.g., configuration), and this address is typically
used by many clients simultaneously. The TURN server address is used by
the client to send both commands and data to the server; the commands
are processed by the TURN server, while the data is relayed on to the
peers.

Since the client is behind a NAT, the server sees these packets as
coming from a transport address on the NAT itself. This address is
known as the client’s SERVER-REFLEXIVE transport address; packets sent
by the server to the client’s server-reflexive transport address will
be forwarded by the NAT to the client’s host transport address.

The client uses TURN commands to allocate a RELAYED transport address,
which is an transport address located on the server. The server ensures
that there is a one-to-one relationship between the client’s server-
reflexive transport address and the relayed transport address; thus a
packet received at the relayed transport address can be unambiguously
relayed by the server to the client.

The client will typically communicate this relayed transport address to
one or more peers through some mechanism not specified here (e.g., an
ICE offer or answer [I-D.ietf-mmusic-ice] (Rosenberg, J., “Interactive
Connectivity Establishment (ICE): A Protocol for Network Address
Translator (NAT) Traversal for Offer/Answer Protocols,”

October 2007.)). Once this is done, peers can send data packets to the
relayed transport address and the server will forward them to the
client. In the reverse direction, the client can send data packets to
the server (at its TURN server address) and these will be forwarded by
the server to the appropriate peer, and the peer will see them as
coming from the relayed transport address; in this direction, the
client must specify the appropriate peer.

2.1. Transports TOC

TURN as defined in this specification only allows the use of UDP
between the server and the peer. However, this specification allows the
use of any one of UDP, TCP, or TLS over TCP to carry the TURN messages
between the client and the server.

TURN client to TURN server TURN server to peer

ubP ubpP
TCP ubp
TLS over TCP ubp

For TURN clients, using TLS over TCP to communicate with the TURN
server provides two benefits. First, the client can be assured that the
addresses of its peers are not visible to any attackers between it and

the server. Second, the client may be able to communicate with TURN
servers using TLS when it would not be able to communicate with the
same server using TCP or UDP, due to the policy of a firewall between
the TURN client and its server. In this second case, TLS between the
client and TURN server facilitates traversal.

There is a planned extension to TURN to add support for TCP between the
server and the peers [I-D.jietf-behave-turn-tcp] (Perreault, S. and J.
Rosenberg, “Traversal Using Relays around NAT (TURN) Extensions for TCP
Allocations,” March 2010.). For this reason, allocations that use UDP
between the server and the peers are known as UDP allocations, while
allocations that use TCP between the server and the peers are known as
TCP allocations. This specification describes only UDP allocations.

2.2. Allocations TOC

To allocate a relayed transport address, the client uses an Allocate
transaction. The client sends a Allocate Request to the server, and the
server replies with an Allocate Response containing the allocated
relayed transport address. The client can include attributes in the
Allocate Request that describe the type of allocation it desires (e.g.,
the lifetime of the allocation). And since relaying data can require
lots of bandwidth, the server may require that the client authenticate
itself using STUN’s long-term credential mechanism, to show that it is
authorized to use the server.

Once a relayed transport address is allocated, a client must keep the
allocation alive. This is done by the client periodically doing a
Refresh transaction with the server, where the client includes the
allocated relayed transport address in the Refresh Request. TURN
deliberately uses a different method (Refresh rather than Allocate) for
refreshes to ensure that the client is informed if the allocation
vanishes for some reason.

The frequency of the Refresh transaction is determined by the lifetime
of the allocation. The client can request a lifetime in the Allocate
Request and may modify its request in a Refresh Request, and the server
always indicates the actual lifetime in the response. The client must
issue a new Refresh transaction within 'lifetime' seconds of the
previous Allocate or Refresh transaction. If a client no longer wishes
to use an Allocation, it should do a Refresh transaction with a
requested lifetime of 0.

Note that sending or receiving data from a peer DOES NOT refresh the
allocation.

The server remembers the 5-tuple used in the Allocate Request.
Subsequent transactions between the client and the server use this same
5-tuple. In this way, the server knows which client owns the allocated
relayed transport address. If the client wishes to allocate a second

relayed transport address, it must use a different 5-tuple for this
allocation (e.g., by using a different client host address).

While the terminology used in this document refers to 5-tuples, the
TURN server can store whatever identifier it likes that yields
identical results. Specifically, many implementations use a file-
descriptor in place of a 5-tuple to represent a TCP connection.

2.3. Exchanging Data with Peers TOC

The client can use the relayed transport address to exchange data with
its peers by using Send and Data indications. A Send Indication is sent
from a client to the TURN server and contains, in attributes inside the
message, the transport address of the peer and the data to be sent to
that peer. When the TURN server receives the Send Indication, it
extracts the data from the Send Indication and sends it in a UDP
datagram to the peer, using the allocated relay address as the source
address. In the reverse direction, UDP datagrams arriving at the relay
address on the TURN server are converted into Data Indications and sent
to the client, with the transport address of the peer included in an
attribute in the Data Indication.

Note that a client can use a single relayed transport address to
exchange data with multiple peers at the same time.

TURN TURN Peer Peer
client server A B
| --- Allocate Req -->|
|<-- Allocate Resp ---|

I |
--- Send (Peer A)--->|

|

|

|
| |
=== data :::>		
	<:: data ====	
<-- Data (Peer A)----		
--- Send (Peer B)--->		
=== data :::::::::::::::::>		
	<:: data ::::::::::::::::::l	

<-- Data (Peer B)----| |

Figure 2

In the figure above, the client first allocates a relayed transport
address. It then sends data to Peer A using a Send Indication; at the
server, the data is extracted and forwarded in a UDP datagram to Peer
A, using the relayed transport address as the source transport address.
When a UDP datagram from Peer A is received at the relayed transport
address, the contents are placed into a Data Indication and forwarded
to the client. A similar exchange happens with Peer B.

2.4. Permissions TOC

To ease concerns amongst enterprise IT administrators that TURN could
be used to bypass corporate firewall security, TURN includes the notion
of permissions. TURN permissions mimic the address-restricted filtering
mechanism of NATs that comply with [RFC4787] (Audet, F. and C.
Jennings, “Network Address Translation (NAT) Behavioral Requirements
for Unicast UDP,” January 2007.).

A TURN server will drop a UDP datagram arriving at a relayed transport
address from a peer unless the client has recently sent data to a peer
with the same IP address (the port numbers can differ). See the
normative description for the precise definition of “recently”.

A permission will timeout if not refreshed periodically. The client
refreshes a permission by sending data to the corresponding peer. Data
received from the peer DOES NOT refresh the permission.

2.5. Channels TOC

In some applications, the overhead of using Send and Data indications
can be substantial. For example, for applications like VoIP which
utilize small packets, Send and Data Indications, with 36 bytes of
overhead, can have a substantial impact on overall bandwidth usage. To
remedy this, TURN clients can assign a CHANNEL to a peer. Data to and
from such a peer can then be sent using an alternate packet format that
adds only 4 bytes per packet of overhead.

The alternate packet format is known as the ChannelData message. The
ChannelData message does not use the STUN header used by other TURN
messages, but instead has a 4-byte header that includes a number known
as a channel number.

To create a channel, the client sends a ChannelBind request to the
server, and includes an unallocated channel number and the transport
address of the peer. Once the client receives the response to the
ChannelBind request, it can send data to that peer using a ChannelData
message. Similarly, once the server has received the request, it can
relay data from that peer towards the client using a ChannelData

message. There is no way to modify channel bindings, so once a channel
is bound to a peer, it remains bound for the lifetime of the
allocation.
When the server receives a ChannelData message from the client, it uses
the channel number to determine the destination peer and then forwards
the data inside a UDP datagram to the peer. In the reverse direction,
when a UDP datagram arives at the relayed transport address from that
the server inserts it into a ChannelData message containing the
channel number bound to that peer; in this way the client can determine

peer,

the peer that send the UDP datagram.

TURN
client

|--- Allocate Req -->|
|<-- Allocate Resp ---|
I I
--- Send (Peer A)--->|
I
I

<-- Data (Peer A)----|
I

- ChannelBind Req -->|
(Peer A to 0x4001) |

I
<- ChannelBind Resp -|

I
-- [0x4001] data --->|
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|<- [6x4001] data --->|
I I
|--- Send (Peer B)--->|
I I
I I
I
I

<-- Data (Peer B)----|

TURN
server

|<== data

|<== data

|<== data

Peer Peer

A B

| |

| |

| |

| |
===>| |
| |
==== |
| |

| |

| |

| |

| |

| |

| |

| |
===>| |
| |
==== |
| |

| |

| |
S=========sss==msD |
|

Figure 3

The figure above shows the channel mechanism in use. The client begins
by allocating a relayed transport address, and then uses that address
to exchange data with Peer A. After a bit, the client decides to bind a
channel to Peer A. To do this, it sends a ChannelBind Request to the

server, specifying the transport address of Peer A and a channel number
(0x4001). After that, the client can send application data encapsulated
inside ChannelData messages to Peer A: this is shown as "[0x4001] data"
where 0x4001 is the channel number.

Note that ChannelData messages can only be used for peers to which the
client has bound a channel. In the example above, Peer A has been bound
to a channel, but Peer B has not, so application data to and from Peer
B uses Send and Data indications.

Channel bindings are always initiated by the client.

3. Terminology TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

Readers are expected to be familar with [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.) and the terms defined there.
The following terms are used in this document:

TURN: A protocol spoken between a TURN client and a TURN server. It
is an extension to the STUN protocol [I-D.ietf-behave-rfc3489bis]

(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session
Traversal Utilities for (NAT) (STUN),” July 2008.). The protocol
allows a client to allocate and use a relayed transport address.

TURN client: A STUN client that implements this specification.

TURN server: A STUN server that implements this specification. It
relays data between a TURN client and its peer(s).

Peer: A host with which the TURN client wishes to communicate. The
TURN server relays traffic between the TURN client and its
peer(s). The peer does not interact with the TURN server using
the protocol defined in this document; rather, the peer receives

data sent by the TURN server and the peer sends data towards the
TURN server.

Host Transport Address: A transport address allocated on a host.

Server-Reflexive Transport Address: A transport address on the
"public side" of a NAT. This address is allocated by the NAT to
correspond to a specific host transport address.

Relayed Transport Address: A transport address that exists on a
TURN server. If a permission exists, packets that arrive at this
address are relayed towards the TURN client.

Allocation: The transport address granted to a client through an
Allocate request, along with related state, such as permissions
and expiration timers. See also Relayed Transport Address.

5-tuple: A combination of the source IP address and port,
destination IP address and port, and transport protocol (UDP or
TCP). A 5-tuple uniquely identifies a TCP connection or the bi-
directional flow of UDP datagrams.

Permission: The IP address and transport protocol (but not the
port) of a peer that is permitted to send traffic to the TURN
server and have that traffic relayed to the TURN client. The TURN
server will only forward traffic to its client from peers that
match an existing permission.

4. General Behavior TOC

After the initial Allocate transaction, all subsequent TURN
transactions need to be sent in the context of a valid allocation. The
source and destination IP address and ports for these TURN messages
MUST match the those used in the initial Allocate Request. These are
processed using the general server procedures in
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.) with a few important additions. For requests, if there is
no matching allocation, the server MUST generate a 437 (Allocation
Mismatch) error response. For indications, if there is no matching
allocation, the indication is silently discarded. An Allocate request
MUST NOT be sent by a client within the context of an existing
allocation. Such a request MUST be rejected by the server with a 437
(Allocation Mismatch) error response.

A subsequent request MUST be authenticated using the same username,
password and realm as the one used in the Allocate request that created

the allocation. If the request was authenticated but not with the
matching credential, the server MUST reject the request with a 401
(Unauthorized) error response.

When a server returns an error response, it MAY include an ALTERNATE-
SERVER attribute if it has positive knowledge that the problem reported
in the error response will not be a problem on the alternate server.
For example, a 443 response (Invalid IP Address) with an ALTERNATE-
SERVER means that the other server is responsible for that IP address.
A 442 (Unsupported Transport Protocol) with this attribute means that
the other server is known to support that transport protocol. A 507
(Insufficient Capacity) means that the other server is known to have
sufficient capacity. Using the ALTERNATE-SERVER mechanism in the 507
(Insufficient Capacity) response can only be done if the rejecting
server has definitive knowledge of available capacity on the target.
This will require some kind of state sharing mechanism between TURN
servers, which is beyond the scope of this specification. If a TURN
server attempts to redirect to another server without knowledge of
available capacity, it is possible that all servers are in a congested
state, resulting in series of rejections that only serve to further
increase the load on the system. This can cause congestion collapse.

If a client sends a request to a server and gets a 500 class error
response without an ALTERNATE-SERVER, or the STUN transaction times out
without a response, and the client was utilizing the SRV procedures of
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.) to contact the server, the client SHOULD try another server
based on those procedures. However, the client SHOULD cache the fact
that the request to this server failed, and not retry that server again
for a configurable period of time. Five minutes is RECOMMENDED.

TURN clients and servers MUST NOT include the FINGERPRINT attribute in
any of the methods defined in this document.

5. Managing Allocations TOC

Communications between a TURN client and a TURN server begin with an
Allocate transaction. All subsequent transactions happen in the context
of that allocation, and happen on the same 5-tuple. The client
refreshes allocations and deallocates them using a Refresh transaction.

5.1. Client Behavior TOC

5.1.1. Initial Allocate Requests TOC

When a client wishes to obtain a transport address, it sends an
Allocate request to the server. This request is constructed and sent
using the general procedures defined in [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.). Clients MUST implement the
long term credential mechanism defined in [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.), and be prepared for the
server to demand credentials for requests.

The client SHOULD include a BANDWIDTH attribute, which indicates the
maximum bandwidth that will be used with this binding. If the maximum
is unknown, the attribute is not included in the request.

The client MAY request a particular lifetime for the allocation by
including it in the LIFETIME attribute in the request.

The client MUST include a REQUESTED-TRANSPORT attribute. In this
specification, the REQUESTED-TRANSPORT MUST always be UDP. This
attribute is included to allow for future extensions to TURN (e.g.,
[I-D.ietf-behave-turn-tcp] (Perreault, S. and J. Rosenberg, “Traversal
Using Relays around NAT (TURN) Extensions for TCP Allocations,”

March 2010.))

The client MAY include a REQUESTED-PORT-PROPS or REQUESTED-IP attribute
in the request to obtain specific types of transport addresses, if
desired.

Processing of the response follows the general procedures of
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.). A successful response will include both a RELAY-ADDRESS
and an XOR-MAPPED-ADDRESS attribute, providing both a relayed transport
address and a reflexive transport address, respectively, to the client.
The value of the LIFETIME attribute in the response indicates the
amount of time after which the server will expire the allocation, if
not refreshed with a Refresh request. The server will allow the user to
send and receive at least the amount of data indicated in the BANDWIDTH
attribute per allocation. (At its discretion the server can optionally
discard UDP data above this threshold.)

If the response is an error response and contains a 442, 443 or 444
error code, the client knows that its requested properties could not be
met. The client MAY retry with different properties, with the same
properties (in a hope that something has changed on the server), or
give up, depending on the needs of the application. However, if the
client retries, it SHOULD wait 500ms, and if the request fails again,
wait 1 second, then 2 seconds, and so on, exponentially backing off.

T0C

5.1.2. Refresh Requests

TURN permissions are kept alive by traffic flowing through them, and
persist for the lifetime of the allocation. However, The allocations
themselves have to be kept alive through Refresh Requests.

Before 3/4 of the lifetime of the allocation has passed (the lifetime
of the allocation is conveyed in the LIFETIME attribute of the Allocate
Response), the client SHOULD refresh the allocation with a Refresh
transaction if it wishes to keep the allocation.

To perform a refresh, the client generates a Refresh Request. The
client MUST use the same username, realm and password for the Refresh
request as it used in its initial Allocate Request. The Refresh request
MAY contain a proposed LIFETIME attribute. The client MAY include a
BANDWIDTH attribute if it wishes to request more or less bandwidth than
in the original request (this might also be the first time the TURN
client indicates bandwidth to the TURN server). If the BANDWIDTH
attribute is absent, it indicates no change in the requested bandwidth
from the Allocate request. The client MUST NOT include a REQUESTED-IP,
REQUESTED-TRANSPORT, or REQUESTED-PORT-PROPS attribute in the Refresh
request.

In a successful response, the LIFETIME attribute indicates the amount
of additional time (the number of seconds after the response is
received) that the allocation will live without being refreshed. A
successful response will also contain a BANDWIDTH attribute, indicating
the bandwidth the server is allowing for this allocation. Note that an
error response does not imply that the allocation has expired, just
that the refresh has failed.

If a client no longer needs an allocation, it SHOULD perform an
explicit deallocation. If the client wishes to explicitly remove the
allocation because it no longer needs it, it sends a Refresh request,
but sets the LIFETIME attribute to zero. This will cause the server to
remove the allocation, and all associated permissions and channel
numbers. For connection-oriented transports such as TCP, the client can
also remove the allocation (and all associated bindings) by closing the
relevant connection with the TURN server.

5.2. Server Behavior TOC

5.2.1. Receiving an Allocate Request TOC

When the server receives an Allocate request, the server attempts to
allocate a relayed transport address.

When the server receives the Allocate Request, it begins by processing
it according to the base protocol procedures described in
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.), plus the Long-Term Credential Mechanism procedures if the
server 1is using this mechanism.

It then checks if the 5-tuple used for the Allocate Request matches the
5-tuple used for an existing allocation. If there is a match, then:

*If the transport protocol is UDP, and the transaction id in the
request message matches the transaction id used for the original
allocation, then the server treats this as a retransmission of
the original request, and replies with the same response as it
did to the original request. The server may do this by either
storing its original response and resending it, or by rebuilding
its original response from other state data.

*If the transport protocol is not UDP, or if the transaction id in
the request message does not match the transaction id used for
the original allocation, then the server replies with an error
response containing the error code 437 Allocation Mismatch.

If the 5-tuple does not match an existing allocation, then processing
continues as described below.

5.2.1.1. BANDWIDTH T0C

The server checks for the BANDWIDTH attribute in the request. If
present, the server determines whether or not it has sufficient
capacity to handle a binding that will generate the requested
bandwidth.

If it does, the server attempts to allocate a transport address for the
client. The Allocate Request can contain several additional attributes
that allow the client to request specific characteristics of the
transport address. If it doesn't, it sends an error response.

5.2.1.2. REQUESTED-TRANSPORT T0C

The server checks for the REQUESTED-TRANSPORT attribute. This indicates
the transport protocol requested by the client. This specification
defines a value for UDP only, but support for TCP allocations is
planned in [I-D.ietf-behave-turn-tcp] (Perreault, S. and J. Rosenberg,
“Traversal Using Relays around NAT (TURN) Extensions for TCP
Allocations,” March 2010.).

As a consequence of the REQUESTED-TRANSPORT attribute, it is
possible for a client to connect to the server over TCP or TLS over
TCP and request a UDP transport address. In this case, the server
will relay data between the transports.

If the requested transport is supported, the server allocates a port
using the requested transport protocol. If the REQUESTED-TRANSPORT
attribute contains a value of the transport protocol unknown to the
server, or known to the server but not supported by the server in the
context of this request, the server MUST reject the request and include
a 442 (Unsupported Transport Protocol) in the response. If the request
did not contain a REQUESTED-TRANSPORT attribute, the server MUST use
the same transport protocol as the request arrived on.

5.2.1.3. REQUESTED-IP TOC

The server checks for the REQUESTED-IP attribute. If present, it
indicates a specific IP address from which the client would like its
transport address allocated. (The client could do this if it requesting
the second address in a specific port pair). If this IP address is not
a valid one for allocations on the server, the server MUST reject the
request and include a 443 (Invalid IP Address) error code in the
response, or else redirect the request to a server that is known to
support this IP address. If the IP address is one that is valid for
allocations (presumably, the server is configured to know the set of IP
addresses from which it performs allocations), the server MUST provide
an allocation from that IP address. If the attribute is not present,
the selection of an IP address is at the discretion of the server.

5.2.1.4. REQUESTED-PORT-PROPS TOC

The server checks for the REQUESTED-PORT-PROPS attribute. If present,
it indicates specific port properties desired by the client. This
attribute is split into two portions: one portion for port behavior and
the other for requested port alignment (whether the allocated port is
odd, even, reserved as a pair, or at the discretion of the server).

If the port behavior requested is for a Specific Port, the server MUST
attempt to allocate that specific port for the client. If the specific
port is not available (in use or reserved), the server MUST reject the
request with a 444 (Invalid Port) response. For example, the STUN
server could reject a request for a Specific Port because the port is
temporarily reserved as part of an adjacent pair of ports, or because
the requested port is a well-known port (1-1023).

If the client requests "even" port alignment, the server MUST attempt
to allocate an even port for the client. If an even port cannot be
obtained, the server MUST reject the request with a 444 (Invalid Port)
response or redirect to an alternate server. If the client requests odd
port alignment, the server MUST attempt to allocate an odd port for the
client. If an odd port cannot be obtained, the server MUST reject the
request with a 444 (Invalid Port) response or redirect to an alternate
server. Finally, the "Even port with hold of the next higher port"
alignment is similar to requesting an even port. It is a request for an
even port, and MUST be rejected by the server if an even port cannot be
provided, or redirected to an alternate server. However, it is also a
hint from the client that the client will request the next higher port
with a separate Allocate request. As such, it is a request for the
server to allocate an even port whose next higher port is also
available, and furthermore, a request for the server to not allocate
that one higher port to any other request except for one that asks for
that port explicitly. The server can honor this request for adjacency
at its discretion. The only constraint is that the allocated port
number MUST be even.

Port alignment requests exist for compatibility with implementations
of RTP which predate [RFC3550] (Schulzrinne, H., Casner, S.,
Frederick, R., and V. Jacobson, “RTP: A Transport Protocol for Real-
Time Applications,” July 2003.). These implementations use the port
numbering conventions in (now obsolete) [RFC1889] (Schulzrinne, H.,
Casner, S., Frederick, R., and V. Jacobson, “RTP: A Transport
Protocol for Real-Time Applications,” January 1996.).

5.2.1.5. Lifetime TOC

The server checks for a LIFETIME attribute. If present, it indicates
the lifetime the client would like the server to assign to the
allocation.

If the LIFETIME attribute is malformed, or if the requested lifetime
value is less than 32 seconds, the server replies with an error
response with an error code of XXX Lifetime Malformed or Invalid.

5.2.1.6. Creating the Allocation TOC

If any of the requested or desired constraints cannot be met, whether
it be bandwidth, transport protocol, IP address or port, the server can
redirect the client to a different server that may be able to fulfill
the request. This is accomplished using the 300 error response and

ALTERNATE-SERVER attribute. If the server does not redirect and cannot
service the request because the server has reached capacity, it sends a
507 (Insufficient Capacity) response. The server can also reject the
request with a 486 (Allocation Quota Reached) if the user or client is
not authorized to request additional allocations.

The server SHOULD only allocate ports from the range 49152 - 65535 (the
Dynamic and/or Private Port range [Port-Numbers] (, “IANA Port Numbers
Registry,” .)), unless the TURN server application knows, through some
means not specified here, that other applications running on the same
host as the TURN server application will not be impacted by allocating
ports outside this range. This condition can often be satisfied by
running the TURN server application on a dedicated machine and/or by
arranging that any other applications on the machine allocate ports
before the TURN server application starts. In any case, the TURN server
SHOULD NOT allocate ports in the range @ - 1023 (the Well-Known Port
range) to discourage clients from using TURN to run standard services.
Once a port is allocated, the server associates the allocation with the
5-tuple used to communicate between the client and the server. For TCP,
this amounts to associating the TCP connection from the TURN client
with the allocated transport address.

The new allocation MUST also be associated with the username, password
and realm used to authenticate the request. These credentials are used
in all subsequent requests to ensure that only the same client can use
or modify the allocation it was given.

In addition, the allocation created by the server is associated with a
set of permissions and a set of channel bindings. Each set is initially
empty.

If the LIFETIME attribute was present in the request, and the value is
larger than the maximum duration the server is willing to use for the
lifetime of the allocation, the server MAY lower it to that maximum.
However, the server MUST NOT increase the duration requested in the
LIFETIME attribute. If there was no LIFETIME attribute, the server may
choose a duration at its discretion. Ten minutes is RECOMMENDED. In
either case, the resulting duration is added to the current time, and a
timer, called the allocation expiration timer, is set to expire at or
after that time. Note that the LIFETIME attribute in an Allocate
request can be zero, though this is effectively a no-op, since it will
create and destroy the allocation in one transaction.

5.2.1.7. Sending the Allocate Response TOC

Once the port has been obtained and the allocation expiration timer has
been started, the server generates an Allocate Response using the
general procedures defined in [I-D.ietf-behave-rfc3489bis] (Rosenberg,
J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal Utilities
for (NAT) (STUN),” July 2008.), including the ones for long term

authentication. The transport address allocated to the client MUST be
included in the RELAY-ADDRESS attribute in the response. In addition,
this response MUST contain the XOR-MAPPED-ADDRESS attribute. This
allows the client to determine its reflexive transport address in
addition to a relayed transport address, from the same Allocate
request.

The server MUST add a LIFETIME attribute to the Allocate Response. This
attribute contains the duration, in seconds, of the allocation
expiration timer associated with this allocation.

The server MUST add a BANDWIDTH attribute to the Allocate Response.
This MUST be equal to the attribute from the request, if one was
present. Otherwise, it indicates a per-allocation limit that the server
is placing on the bandwidth usage on each binding. Such limits are
needed to prevent against denial-of-service attacks (see Section 12
(Security Considerations)).

5.2.2. Refresh Requests TOC

A Refresh request is processed using the general server and long term
authentication procedures in [I-D.ietf-behave-rfc3489bis] (Rosenberg,
J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal Utilities
for (NAT) (STUN),” July 2008.). It is used to refresh and extend an
allocation, or to cause an immediate deallocation. It is processed as
follows.

First, the request MUST be authenticated using the same shared secret
as the one associated with the allocation. If the request was
authenticated but not with such a matching credential, the server MUST
generate a Refresh Error Response with a 401 response.

If the Refresh request contains a BANDWIDTH attribute, the server
checks that it can relay the requested volume of traffic.

Finally, a Refresh Request will set a new allocation expiration timer
for the allocation, effectively canceling the previous allocation
expiration timer. As with an Allocate request, the server MAY utilize a
shorter allocation lifetime, but MUST NOT utilize a longer lifetime.

A success Refresh response MUST contain a LIFETIME attribute. If its
associated Allocate request contained the BANDWIDTH attribute, or this
Refresh request contained a new BANDWIDTH attribute, the response MUST
also contain the BANDWIDTH attribute.

6. Send and Data Indications TOC

TURN supports two ways to send and receive data from peers. This
section describes the use of Send and Data indications, while Section 7
(Channel Mechanism) describes the use of the Channel Mechanism.

6.1. Forming and Sending an Indication TOC

When the client has data to send to a peer, it uses a Send Indication
to pass the data to the server. When the server has data to send to the
client, it uses a Data Indication to pass the data to the client. A
client can also use a Send Indication without a DATA attribute to
install or refresh a permission for the specified IP address. Both
indications are formed following the general rules described in [ref
3489bis] with the extra considerations described below.

A Send Indication MUST contain a PEER-ADDRESS attribute and MAY contain
a DATA attribute, while a Data Indication MUST contain both attributes.
The PEER-ADDRESS attribute contains the transport address of the peer
to which the data is to be sent (in the case of a Send Indication) or
from which the data was received (in the case of a Data Indication).
This peer address is the transport address of the peer as seen by the
server, which may not be the same as the host transport address of the
peer. The DATA attribute contains the actual application data. Note
that the application data may need to be padded to ensure the DATA
attribute length is a multiple of 4.

No other attributes are included. For example, neither the FINGERPRINT
attribute nor any authentication attributes are included. The latter
holds even if the server is using the Long-Term Credential Mechanism,
since indications cannot be authenticated using this mechanism.

Both the Send and Data indications MUST be sent using the 5-tuple of
the original allocation. Thus, in the case of the Send Indication, the
source transport address is the client’s host transport address, the
destination transport address is the TURN server address, and the
transport protocol is the same as was used for the Allocate request.
For the Data Indication, the source and destination transport addresses
are the reverse.

6.2. Receiving an Indication TOC

When a Send Indication is received at the server, or a Data Indication
is received at the client, the receiver first does the basic indication
processing described in [3489bis]. Once this is done, it does the
processing specific to the Send and Data methods described below.

A Send Indication MUST contain a PEER-ADDRESS attribute and MAY contain
a DATA attribute, while a Data Indication MUST contain both attributes.
Any other attributes appearing in the message are treated as
unexpected.

TODO: Add check that Send or Data indication arrives with
appropriate 5-tuple. Since this check applies to all STUN messages,
not just Send and Data indications, perhaps this goes under the
general processing section.

6.3. Relaying TOC

When the server receives a valid Send Indication contains a DATA
attribute, it forms a UDP datagram as follows:

*the source transport address is the relayed transport address of
the allocation, where the allocation is determined by the 5-tuple
on which the Send Indication arrived;

*the destination transport address is taken from the PEER-ADDRESS
attribute;

*the data following the UDP header is the contents of the value
field of the DATA attribute;

*the Length field in the UDP header is set to the Length field of
the DATA attribute;

*the Checksum field in the UDP header is computed as described in
[RFC 768].

The resulting UDP datagram is then sent to the peer.

When the server receives a valid Send Indication (with or without a
DATA attribute), it also updates the permission associated with the IP
address contained in the PEER-ADDRESS attribute. For a certain interval
after the permission is updated, UDP datagrams received from peers with
source IP address equal to the IP address contained in the PEER-ADDRESS
attribute can be forwarded to the client. Note that only the IP
addresses are considered and the port numbers are irrelevent. This
permission is specific to the allocation and has no affect on any other
allocation. The recommended length of time is 60 seconds from when the
Send Indication is received.

When the server receives a UDP datagram with a destination transport
address corresponding to an active (i.e., still alive) allocation, then
it first checks to see if it is permitted to relay the datagram. If it
is not permitted, the UDP datagram MUST be discarded.

If relaying is permitted, the server forms and send a Data Indication
as described in Section 6.1 (Forming and Sending an Indication), using
the data following the UDP header as the application data.

7. Channel Mechanism TOC

As described in the overview, channel mechanism provides a way for a
client and server to send application data using ChannelData messages,
which have less overhead than Send and Data indications.

Channel bindings are always initiated by the client. The client can
bind a channel to a peer at any time during the lifetime of the
allocation. The client may bind a channel to a peer before exchanging
data with it, or after exchanging data with it (using Send and Data
indications) for some time, or may choose never to bind a channel it.
The client can also bind channels to some peers while not binding
channels to other peers.

Once a channel is bound to a peer, the channel binding cannot be
changed. There is no way to unbind a channel or bind it to a different
peer.

Channel bindings are specific to an allocation, so that a binding in
one allocation has no relationship to a binding in any other
allocation. If an allocation expires, all its channel bindings expire
with it.

7.1. Forming and Sending a ChannelBind Request TOC

When a client wishes to bind a channel to a peer in an allocation, it
forms a ChannelBind Request. The Request formed following the general
rules described in [I-D.jetf-behave-rfc3489bis] (Rosenberg, J., Mahy,
R., Matthews, P., and D. Wing, “Session Traversal Utilities for (NAT)
(STUN),” July 2008.) with the extra considerations described below.

A ChannelBind Request MUST contain both a CHANNEL-NUMBER attribute and
a PEER-ADDRESS attribute. The CHANNEL-NUMBER attribute specifies the
number of the channel that the client wishes to bind to the peer. The
channel number MUST be in the range 0x4000 to OXFFFE (inclusive) and
the channel MUST NOT be already bound to a different peer. It is
acceptable to rebind a channel to the peer it is already bound to. The
PEER-ADDRESS attribute specifies the peer address to bind the channel
to.

Once formed, the ChannelBind Request is sent using the 5-tuple for the
allocation.

The client SHOULD be prepared to receive ChannelData messages on the
channel as soon as it has sent the ChannelBind Request. Over UDP, it is
possible for the client to receive these before it receives a
ChannelBind Success Response.

Over UDP, the client SHOULD NOT send ChannelData messages on the
channel until it has received a ChannelBind Success Response for the
binding attempt. Sending them before the success response is received

risks having them dropped by the server if he ChannelBind Request was
lost.

7.2. Receiving a ChannelBind Request and Sending a Response TOC

When the server receives a ChannelBind Request, it first does the basic
request processing described in [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.). Once this is done, it does
the processing specific to the ChannelBind method described below.

The server checks that the ChannelBind Request contains both a CHANNEL-
NUMBER attribute and a PEER-ADDRESS attribute. If the PEER-ADDRESS
attribute is missing or malformed, then the server rejects the request
with an Error Response containing the error code XXX “Peer address
missing or invalid”. If the CHANNEL-NUMBER attribute is missing or
malformed, or the channel number is not in the range 0x4000 to OxFFFE
(inclusive), or the channel is already bound to another peer (already
bound to the same peer is OK) the server rejects the request with an
Error Response containing the error code XXX “Channel number missing or
invalid”. Otherwise, if no errors are detected, the server replies with
a ChannelBind Success Response.

7.3. Receiving a ChannelBind Response TOC
When the client receives a ChannelBind response (either success or

error), it processes it as specified in [3489bis]. Any additional
processing is implementation specific.

7.4. The ChannelData Message TOC

The ChannelData message is used to carry application data between the
client and the server. It has the following format:

0] 1 2 3
0123456789061 23456789012345678901
+ot-t-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| Channel Number | Length |
Bk e e R Ik T T S P S T R e e R R T ok ks ST T T S P S

I I
/ Application Data /
/ /
| I
[B +
I

o m oo oo o oo +

The Channel Number field specifies the number of the channel on which
the data is traveling, and thus the address of the peer that is sending
or is to receive the data. The channel number MUST be in the range
0x4000 - OXFFFF, with channel number OXFFFF being reserved for possible
future extensions.

Channel numbers 0x0000 - Ox3FFF cannot be used because bits 0 and 1 are
used to distinguish ChannelData messages from STUN-formatted messages
(i.e., Allocate, Send, Data, ChannelBind, etc). STUN-formatted messages
always have bits 0 and 1 as “00”, while ChannelData messages use
combinations “©1”, “10”, and “11".

The Length field specifies the length in bytes of the application data
field (i.e., it does not include the size of the ChannelData header).
Note that 0 is a valid length.

The Application Data field carries the data the client is trying to
send to the peer, or that the peer is sending to the client.

7.5. Forming and Sending a ChannelData Message TOC

Once a client has bound a channel to a peer, then when the client has
data to send to that peer it may use either a ChannelData message or a
Send Indication; that is, the client is not obligated to use the
channel when it exists and may freely intermix the two message types
when sending data to the peer. The server, on the other hand, SHOULD
use the ChannelData message if a channel has been bound to the peer.
The fields of the ChannelData message are filled in as described in
Section 7.4 (The ChannelData Message).

Over stream transports, the ChannelData message MUST be padded to a
multiple of four bytes in order to ensure the alignment of subsequent
messages. The padding is not reflected in the length field of the
ChannelData message, so the actual size of a ChannelData message
(including padding) is (4 + Length) rounded up to the nearest multiple
of 4. Over UDP, the padding is not required but MAY be included.

The ChannelData message is then sent on the 5-tuple associated with the
allocation.

7.6. Receiving a ChannelData Message TOC

The receiver of the ChannelData message uses bits © and 1 to
distinguish it from STUN-formatted messages, as described in

Section 7.4 (The ChannelData Message).

If the ChannelData message is received in a UDP datagram, and if the
UDP datagram is too short to contain the claimed length of the
ChannelData message (i.e., the UDP header length field value is less
than the ChannelData header length field value + 4 + 8), then the
message is silently discarded.

If the ChannelData message is received over TCP or over TLS over TCP,
then the actual length of the ChannelData message is as described in
Section 7.5 (Forming and Sending a ChannelData Message).

If the ChannelData message is received on a channel which is not bound
to any peer, then the message is silently discarded.

7.7. Relaying TOC

When the server receives a valid ChannelData message, it forms a UDP
datagram as follows: the source transport address is the relayed
transport address of the allocation, where the allocation is determined
by the 5-tuple on which the ChannelData message arrived; the
destination transport address is the peer address to which the channel
is bound; the data following the UDP header is the contents of the data
field of the ChannelData message; the Length field in the UDP header is
set to the Length field of the ChannelData message + 8; and the
Checksum field in the UDP header is computed as described in [RFC 768].
The resulting UDP datagram is then sent to the peer.

The server also updates the permission associated with the IP address
part of the peer address to which the UDP datagram is sent.

When the server receives a UDP datagram with a destination transport
address corresponding to an active (i.e., still alive) allocation, then
it first checks to see if it is permitted to relay the datagram. If the
allocation contains an active permission for the source IP address
(from the IP header) of the received UDP datagram, then the UDP
datagram is permitted. Otherwise, the UDP datagram MUST be discarded.
To relay the UDP datagram, the server forms and send a ChannelData
message as described in Section 7.5 (Forming and Sending a ChannelData

Message)

8. New STUN Methods TOC
This section lists the codepoints for the new STUN methods defined in
this specification. See elsewhere in this document for the semantics of

these new methods.

Request/Response Transactions

0x003 : Allocate
0x004 : Refresh
Indications
0x006 : Send
Ox007 : Data
9. New STUN Attributes TOC

This STUN extension defines the following new attributes:

0x000C: CHANNEL-NUMBER
Ox000D: LIFETIME

0x0010: BANDWIDTH

0x0012: PEER-ADDRESS

0x0013: DATA

0x0016: RELAY-ADDRESS
0x0018: REQUESTED-PORT-PROPS
0x0019: REQUESTED-TRANSPORT
0x0022: REQUESTED-IP

9.1. CHANNEL-NUMBER TOC

The CHANNEL-NUMBER attribute contains the number of the channel. It is
a 16-bit unsigned integer, followed by a two-octet RFFU field which
MUST be set to @ on transmission and ignored on reception.

0 1 2 3
©12345678901234567890123456789¢01
+-+-F-F-+-F-F-F-+-F-F-F-+-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F+-+-+-+
| Channel Number | RFFU |
+ot-F-t-F-t-t-F-t-F-F-F-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+

9.2. LIFETIME TOC

The lifetime attribute represents the duration for which the server
will maintain an allocation in the absence of a refresh. It is a 32 bit
unsigned integral value representing the number of seconds remaining
until expiration.

9.3. BANDWIDTH TOC
The bandwidth attribute represents the peak bandwidth, measured in

kilobits per second, that the client expects to use on the allocation
in each direction.

9.4. PEER-ADDRESS TOC
The PEER-ADDRESS specifies the address and port of the peer as seen

from the TURN server. It is encoded in the same way as XOR-MAPPED-
ADDRESS.

9.5. DATA T0C

The DATA attribute is present in most Send Indications and Data
Indications. It contains raw payload data that is to be sent (in the
case of a Send Request) or was received (in the case of a Data
Indication).

9.6. RELAY-ADDRESS TOC

The RELAY-ADDRESS is present in Allocate responses. It specifies the
address and port that the server allocated to the client. It is encoded
in the same way as XOR-MAPPED-ADDRESS.

9.7. REQUESTED-PORT-PROPS

This attribute allows the client to request certain properties for the
port that is allocated by the server. The attribute can be used with
any transport protocol that has the notion of a 16 bit port space
(including TCP and UDP). The attribute is 32 bits long. Its format is:

0 1 2 3
©1234567890123456789012345678901
B o e b e e T e e o ST S S S S S S
| Reserved = 0 | A | Specific Port Number |
totodtottototot-t-tot-F-+-+

The two bits labeled A in the diagram above are for requested port
alignment and have the following meaning:

00 no specific port alignment

01 odd port number

10 even port number

11 even port number; reserve next higher port

If the value of the A field is 00 (no specific port alignment), then
the Specific Port Number field can either be 0 or some non-zero port
number. If the Specific Port Number field is 0, then the client is not
putting any restrictions on the port number it would like allocated. If
the Specific Port Number is some non-zero port number, then the client
is requesting that the server allocate the specified port and the
server MUST provide that port.

If the value of the A field is 01 (odd port number), then the Specific
Port Number field MUST be zero, and the client is requesting the server
allocate an odd-numbered port. The server MUST provide an odd port
number.

If the value of the A field is 10 (even port number), then the Specific
Port number field MUST be zero, and the client is requesting the server
allocate an even-numbered port. The server MUST provide an even port
number.

If the value of the A field is 11 (even port number; reserve next
higher port), then the Specific Port Number field MUST be zero, and the
client is requesting the server allocate an even-numbered port. The
server MUST return an even port number. In addition, the client is
requesting the server reserve the next higher port (i.e., N+1 if the
server allocates port N). The server SHOULD only allocate the N+1 port
number if it is explicitly requested (with a subsequent request
specifying that exact port number by the same TURN client, over a
different alllocation).

In all cases, if a port with the requested properties cannot be
allocated, the server MUST respond with a error response with an error
code of 444 (Invalid Port).

9.8. REQUESTED-TRANSPORT TOC

This attribute is used by the client to request a specific transport
protocol for the allocated transport address. It has the following
format:

(0] 1 2 3
012345678901 23456789012345678901
S S O T S S S S SR
| Protocol | RFFU |
ottt ottt ododododototototodt ottt odotototot ottt ottt

The Protocol field specifies the desired protocol. The codepoints used
in this field are taken from those allowed in the Protocol field in the
IPv4 header and the NextHeader field in the IPv6 header
[Protocol-Numbers] (, “IANA Protocol Numbers Registry,” 2005.). This
specification only allows the use of codepoint 17 (User Datagram
Protocol).

The RFFU field is set to zero on transmission and ignored on
receiption. It is reserved for future uses.

9.9. REQUESTED-IP _TOC

The REQUESTED-IP attribute is used by the client to request that a
specific IP address be allocated by the TURN server. This attribute is
needed since it is anticipated that TURN servers will be multi-homed so
as to be able to allocate more than 64k transport addresses. As a
consequence, a client needing a second transport address on the same
interface as a previous one can use this attribute to request a remote
address from the same TURN server interface as the TURN client's
previous remote address.

The format of this attribute is identical to XOR-MAPPED-ADDRESS.
However, the port component of the attribute MUST be ignored by the
server. If a client wishes to request a specific IP address and port,
it uses both the REQUESTED-IP and REQUESTED-PORT-PROPS attributes.

10. New STUN Error Response Codes TOC
This document defines the following new error response codes:

437 (Allocation Mismatch): A request was received by the server
that requires an allocation to be in place, but there is none, or

a request was received which requires no allocation, but there is
one.

442 (Unsupported Transport Protocol): The Allocate request asked
for a transport protocol to be allocated that is not supported by
the server. If the server is aware of another server that
supports the requested protocol, it SHOULD include the other
server's address in an ALTERNATE-SERVER attribute in the error
response.

443 (Invalid IP Address): The Allocate request asked for a
transport address to be allocated from a specific IP address that
is not valid on the server.

444 (Invalid Port): The Allocate request asked for a port to be
allocated that is not available on the server.

486 (Allocation Quota Reached): The user or client is not
authorized to request additional allocations.

(tbd) (Channel Number Missing or Invalid): The request requires a
channel number, but the CHANNEL-NUMBER attribute is missing, or
the specified channel number is invalid in some way.

(thd) (Peer Address Missing or Invalid): The request requires a
peer transport address, but the PEER-ADDRESS attribute is
missing, or the specified peer transport address is invalid in
some way.

(thd) (Lifetime Malformed or Invalid): The LIFETIME attribute is
malformed or the specified lifetime is invalid in some way.

507 (Insufficient Capacity): The server cannot allocate a new port
for this client as it has exhausted its relay capacity.

11. Client Discovery of TURN Servers TOC

The STUN extensions introduced by TURN differ from the binding requests
defined in [I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R.,
Matthews, P., and D. Wing, “Session Traversal Utilities for (NAT)
(STUN),” July 2008.) in that they are sent with additional framing and
demand substantial resources from the TURN server. In addition, it
seems likely that administrators might want to block connections from
clients to the TURN server for relaying separately from connections for
the purposes of binding discovery. As a consequence, TURN runs on a
separate port from STUN. The client discovers the address and port of

the TURN server using the same DNS procedures defined in
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.), but using an SRV service name of "turn" (or "turns" for
TURN over TLS) instead of just "stun".

For example, to find TURN servers in the example.com domain, the TURN
client performs a lookup for '_turn._udp.example.com',
'_turn._tcp.example.com', and '_turns._tcp.example.com' if the STUN
client wants to communicate with the TURN server using UDP, TCP, or TLS
over TCP, respectively.

12. Security Considerations TOC

TURN servers allocate bandwidth and port resources to clients, in
contrast to the Binding method defined in [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.). Therefore, a TURN server
requires authentication and authorization of STUN requests. This
authentication is provided by mechanisms defined in the STUN
specification itself, in particular digest authentication.

Because TURN servers allocate resources, they can be susceptible to
denial-of-service attacks. All Allocate transactions are authenticated,
so that an unknown attacker cannot launch an attack. An authenticated
attacker can generate multiple Allocate Requests, however. To prevent a
single malicious user from allocating all of the resources on the
server, it is RECOMMENDED that a server implement a modest per user
limit on the amount of bandwidth that can be allocated. Such a
mechanism does not prevent a large number of malicious users from each
requesting a small number of allocations. Attacks such as these are
possible using botnets, and are difficult to detect and prevent.
Implementors of TURN should keep up with best practices around
detection of anomalous botnet attacks.

A client will use the transport address learned from the RELAY-ADDRESS
attribute of the Allocate Response to tell other users how to reach
them. Therefore, a client needs to be certain that this address is
valid, and will actually route to them. Such validation occurs through
the message integrity checks provided in the Allocate response. They
can guarantee the authenticity and integrity of the allocated
addresses. Note that TURN is not susceptible to the attacks described
in Section 12.2.3, 12.2.4, 12.2.5 or 12.2.6 of
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.) [[TODO: Update section number references to 3489bis]].
These attacks are based on the fact that a STUN server mirrors the
source IP address, which cannot be authenticated. STUN does not use the

source address of the Allocate Request in providing the RELAY-ADDRESS,
and therefore, those attacks do not apply.

TURN cannot be used by clients for subverting firewall policies. TURN
has fairly limited applicability, requiring a user to explicitly
authorize permission to receive data from a peer, one IP address at a
time. Thus, it does not provide a general technique for externalizing
sockets. Rather, it has similar security properties to the placement of
an address-restricted NAT in the network, allowing messaging in from a
peer only if the internal client has sent a packet out towards the IP
address of that peer. This limitation means that TURN cannot be used to
run web servers, email servers, SIP servers, or other network servers
that service a large number of clients. Rather, it facilitates
rendezvous of NATted clients that use some other protocol, such as SIP,
to communicate IP addresses and ports for communications.
Confidentiality of the transport addresses learned through Allocate
transactions does not appear to be that important. If required, it can
be provided by running TURN over TLS.

TURN does not and cannot guarantee that UDP data is delivered in
sequence or to the correct address. As most TURN clients will only
communicate with a single peer, the use of a single channel number will
be very common. Consider an enterprise where Alice and Bob are involved
in separate calls through the enterprise NAT to their corporate TURN
server. If the corporate NAT reboots, it is possible that Bob will
obtain the exact NAT binding originally used by Alice. If Alice and Bob
were using identical channel numbers, Bob will receive unencapsulated
data intended for Alice and will send data accidentally to Alice's
peer. This is not a problem with TURN. This is precisely what would
happen if there was no TURN server and Bob and Alice instead provided a
(STUN) reflexive transport address to their peers. If detecting this
misdelivery is a problem, the client and its peer need to use message
integrity on their data.

One TURN-specific DoS attack bears extra discussion. An attacker who
can corrupt, drop, or cause the loss of a Send or Data indication sent
over UDP, and then forge a Channel Confirmation indication for the
corresponding channel number, can cause a TURN client (server) to start
sending unencapsulated data that the server (client) will discard.
Since indications are not integrity protected, this attack is not
prevented by cryptographic means. However, any attacker who can
generate this level of network disruption could simply prevent a large
fraction of the data from arriving at its destination, and therefore
protecting against this attack does not seem important. The
ChannelConfirmation forging attack is not possible when the client to
server communication is over TCP or TLS over TCP.

Relay servers are useful even for users not behind a NAT. They can
provide a way for truly anonymous communications. A user can cause a
call to have its media routed through a TURN server, so that the user's
IP addresses are never revealed.

Any relay addresses learned through an Allocate request will not
operate properly with IPSec Authentication Header (AH) (Kent, S., “IP

Authentication Header,” December 2005.) [RFC4302] in transport or
tunnel mode. However, tunnel-mode IPSec ESP (Kent, S., “IP
Encapsulating Security Payload (ESP),” December 2005.) [RFC4303] should
still operate.

13. IANA Considerations TOC

Since TURN is an extension to STUN [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.), the methods, attributes and
error codes defined in this specification are new method, attributes,
and error codes for STUN. This section directs IANA to add these new
protocol elements to the IANA registry of STUN protocol elements.

The codepoints for the new STUN methods defined in this specification
are listed in Section 8 (New STUN Methods).

The codepoints for the new STUN attributes defined in this
specification are listed in Section 9 (New STUN Attributes).

The codepoints for the new STUN error codes defined in this
specification are listed in Section 10 (New STUN Error Response Codes).
Extensions to TURN can be made through IETF consensus.

14. IAB Considerations TOC

The IAB has studied the problem of "Unilateral Self Address Fixing",
which is the general process by which a client attempts to determine
its address in another realm on the other side of a NAT through a
collaborative protocol reflection mechanism [RFC3424] (Daigle, L. and
IAB, “IAB Considerations for UNilateral Self-Address Fixing (UNSAF)
Across Network Address Translation,” November 2002.). The TURN
extension is an example of a protocol that performs this type of
function. The IAB has mandated that any protocols developed for this
purpose document a specific set of considerations.

TURN is an extension of the STUN protocol. As such, the specific usages
of STUN that use the TURN extensions need to specifically address these
considerations. Currently the only STUN usage that uses TURN is ICE
(Rosenberg, J., “Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traversal for Offer/
Answer Protocols,” October 2007.) [I-D.ietf-mmusic-ice].

TOC

15. Example

TBD

16. Changes from Previous Versions TOC
Note to RFC Editor: Please remove this section prior to publication of
this document as an RFC.

This section lists the changes between the various versions of this
specification.

16.1. Changes from -05 to -06 TOC

*Changed the mechanism for allocating channels to the one proposed
by Eric Rescorla at the Dec 2007 IETF meeting.

*Removed the framing mechanism (which was used to frame all
messages) and replaced it with the ChannelData message. As part
of this change, noted that the demux of ChannelData messages from
TURN messages can be done using the first two bits of the
message.

*Rewrote the sections on transmitted and receiving data as a
result of the above to changes, splitting it into a section on
Send and Data Indications and a separate section on channels.

*Clarified the handling of Allocate Request messages. In
particular, subsequent Allocate Request messages over UDP with
the same transaction id are not an error but a retransmission.

*Restricted the range of ports available for allocation to the
Dynamic and/or Private Port range, and noted when ports outside
this range can be used.

*Changed the format of the REQUESTED-TRANSPORT attribute. The
previous version used 00 for UDP and 01 for TCP; the new version
uses protocol numbers from the IANA protocol number registry. The
format of the attribute also changed.

*Made a large number of changes to the non-normative portion of
the document to reflect technical changes and improve the

presentation.

*Added the Issues section.

16.2. Changes from -04 to -05 _TOC _

*Removed the ability to allocate addresses for TCP relaying. This
is now covered in a separate document. However, communication
between the client and the server can still run over TCP or TLS/
TCP. This resulted in the removal of the Connect method and the
TIMER-VAL and CONNECT-STAT attributes.

*Added the concept of channels. All communication between the
client and the server flows on a channel. Channels are numbered
0..65535. Channel 0 is used for TURN messages, while the
remaining channels are used for sending unencapsulated data to/
from a remote peer. This concept adds a new Channel Confirmation
method and a new CHANNEL-NUMBER attribute. The new attribute is
also used in the Send and Data methods.

*The framing mechanism formally used just for stream-oriented
transports is now also used for UDP, and the former Type and
Reserved fields in the header have been replaced by a Channel
Number field. The length field is zero when running over UDP.

*TURN now runs on its own port, rather than using the STUN port.
The use of channels requires this.

*Removed the SetActiveDestination concept. This has been replaced
by the concept of channels.

*Changed the allocation refresh mechanism. The new mechanism uses
a new Refresh method, rather than repeating the Allocation
transaction.

*Changed the syntax of SRV requests for secure transport. The new
syntax is "_turns._tcp" rather than the old "_turn._tls". This
change mirrors the corresponding change in STUN SRV syntax.

*Renamed the old REMOTE-ADDRESS attribute to PEER-ADDRESS, and
changed it to use the XOR-MAPPED-ADDRESS format.

*Changed the RELAY-ADDRESS attribute to use the XOR-MAPPED-ADDRESS
format (instead of the MAPPED-ADDRESS format)).

*Renamed the 437 error code from "No Binding" to "Allocation
Mismatch".

*Added a discussion of what happens if a client's public binding
on its outermost NAT changes.

*The document now consistently uses the term "peer" as the name of
a remote endpoint with which the client wishes to communicate.

*Rewrote much of the document to describe the new concepts. At the
same time, tried to make the presentation clearer and less
repetitive.

17. TIssues TOC

NOTE to RFC Editor: Please remove this section prior to publication of
this document as an RFC.

This section lists the open and now closed issues in this document. The
descriptions here are brief, and the reader should consult the
corresponding thread on the mailing list for a more in-depth
description of the issue and the resolutions being considered.

17.1. Open Issues T0C

1. Bandwidth: What should we do with the BANDWIDTH attribute,
which is currently ill-specified? Should we remove it? Or
should we try to come up with a good specification, perhaps
using ideas from RSVP?

2. Permission Policy: What should the permission policy be?
Address-restricted, as is currently specified in the document?
Or address-and-port-restricted, as many firewalls implement
today? Or should we leave this open to the implementor, under
the assumption that the IT administrator will only allow
clients to contact those servers that implement whatever
permission policy the IT administrator can accept?

3. Port Adjacency: The spec currently allows a client to request
that the server allocate a port and also reserve the next
higher port number for a possible future allocation (on a
different 5-tuple). However, the exact behavior of the server
in this case is ill-specified. For example, must the next-
higher-port be available for the allocation of the lower port
number to succeed? How long is the next-higher-port reserved?
30 seconds? For the lifetime of the lower-numbered-port's
allocation? Or should we just ditch this feature, since it is
difficult to implement, it is at odds with port randomization,
and paired port numbers applications don't work well with NATs
anyway?

10.

11.

Demuxing ChannelData messages: How does a client or server
demux STUN-formatted messages from ChannelData messages? Does
it use the first two bits (as currently specified) or just one
bit? And how many channels do we need anyway? Some people are
guestioning the need for any more than 200 channels. If we
don't need many channels, then the demux algorithm might become
simpler.

Deallocating Channels: Do we need a mechanism for deallocating
channels? Some have argued for this feature, because a TURN
server administrator will want a way to recover resources for
channels no longer in active use. If yes, then what is the
mechanism? For example, should a channel binding expire when
the corresponding permission expires?

Permissions and Channel Allocations: Should allocating a
channel for a peer automatically install a permission for that
peer's IP address?

Permission and Allocation Lifetimes: What should the default
permission lifetime be? Should there be a minumum value? Should
there be a way for the client to modify the permission
lifetime? Should there be a way for the client to learn the
current permission lifetime? And what is the relationship of
the permission lifetime to the allocation lifetime? Does it
make sense for the allocation lifetime to be less than the
permission lifetime?

Preserving bits in the IP header: What bits (if any) should be
preserved in the IP header when a packet is relayed by the
server? The bits under consideration are currently the Don't
Fragment (DF) bit, the Explicit Congestion Notification (ECN)
bits, and the DiffServ (DS) bits.

Exceeding the Path MTU Size: TURN adds an overhead of 4 bytes
(ChannelData msg) or 36 bytes (Send or Data Indication), thus
potentially exceeding the path MTU between the client and
server. This could either cause IP fragmentation, or cause the
packet to be dropped if the DF bit is set. Who handles this
problem? Does TURN need to handle this, or is this left up to
the application to handle?

Allowed PEER-ADDRESS values: Should there be any restrictions
on the IP address the client can specify in the PEER-ADDRESS
attribute? Are multicast addresses allowed? What about 0.0.0.07?
Any other restrictions?

Discarding UDP datagrams: If the server discards a received UDP
datagram on the relayed transport address (because there is no

12.

13.

14.

15.

17.2.

corresponding permission), then does the server send an ICMP
response? If so, what error code does it use? (What does RFC
4787 say about the corresponding situation in NATs? I believe
many NATs silently discard these packets by default, or have a
"stealth mode" that enables this behavior.)

Authentication: Is the use of STUN's Long-Term Authentication
Mechanism by a TURN server mandatory? The document currently
implicitly assumes "yes", but what about someone who wants to
operate a public TURN server?

Re-using the 5-tuple: If an allocation expires, is there any
reason a client should not be able to immediately create a new
allocation using the same 5-tuple?

Password change: Is it possible to change the password for the
Long-Term Authentication mechanism during the lifetime of an
allocation? If so, how is it done?

IPv6: TURN probably works fine in an all IPv6 environment, but
there are a number of mixed IPv4/IPv6 cases that are ill-
specified. As an example, the server needs to check that the
PEER-ADDRESS in a Send Indication is of the same address family
as the relayed transport address. Should we carefully work
through all these cases and make sure we have caught them all,
or should we just state that this document covers the IPv4 case
only, and punt the specification of IPv6 and mixed IPv4/IPv6
operation to draft-ietf-behave-turn-ipv6? Does the current
interest in resurecting IPv4-to-IPv6 NATs have any impact on
TURN?

Closed Issues TOC

Channel Allocation: Should TURN use the mechanism proposed by
EKR to allocate channels? RESOLUTION: Yes. Document now
reflects this.

Stateful Allocations: Does a TURN server need to distinguish
between the case where the client retransmits the initial
Allocate Request because the Allocate Response was lost and the
case where the client sends an Allocate Request because it
thinks the allocation does not exist? RESOLUTION: Yes. Document
now reflects this.

Port Range: From what range of port numbers should a TURN
server allocate ports? RESOLUTION: The server SHOULD allocate

from the Dynamic and/or Private Port range unless it is sure it
will not interfere with other apps on the same machine.
Document now reflects this.

4. Framing Header for STUN-formatted messages: Should TURN use the
framing mechanism for STUN-formatted messages? RESOLUTION: NO.
Document now reflects this. However, see related issues.

5. Length field in ChannelData header: Over UDP, the length of the
application data field in the ChannelData message can be
determined from the length field in the UDP header. So should
the length field in the ChannelData header be set to zero in
this case? RESOLUTION: No, the ChannelData length field should
have the same semantics over both TCP and UDP. Document now
reflects this.

18. Acknowledgements TOC

The authors would like to thank the various participants in the BEHAVE
working group for their many comments on this draft. Marc Petit-
Huguenin, Remi Denis-Courmont, Cullen Jennings, Lars Eggert, Magnus
Westerlund, and Eric Rescorla have been particularly helpful, with Eric
also suggesting the channel allocation mechanism. Christian Huitema was
an early contributor to this document and was a co-author on the first
few drafts. Finally, the authors would like to thank Dan Wing for his
huge help in restarting progress on this draft after work had stalled.

19. References TOC

19.1. Normative References

TOC
[I-D.ietf- Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
behave- “Session Traversal Utilities for (NAT) (STUN),”
rfc3489his] draft-ietf-behave-rfc3489bis-18 (work in progress),
July 2008 (TXT).
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate

Reguirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

http://www.ietf.org/internet-drafts/draft-ietf-behave-rfc3489bis-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-rfc3489bis-18.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml

19.2. Informative References TOC

[RFC3550]

[RFC1889]

[RFC1918]

[RFC3264]

[RFC4302]

[RFC4303]

[RFC3424]

[I-D.ietf-
mmusic-ice]

[RFC4787]

[I-D.ietf-
behave-turn-
tep]

[Port-
Numbers]
[Protocol-
Numbers]

Authors' Addresses

Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, “RTP: A Transport Protocol for Real-Time
Applications,” STD 64, RFC 3550, July 2003 (TXT, PS,
PDF) .

Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, “RTP: A Transport Protocol for Real-Time
Applications,” RFC 1889, January 1996 (TXT).
Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot,
G., and E. Lear, “Address Allocation for Private
Internets,” BCP 5, RFC 1918, February 1996 (TXT).
Rosenberg, J. and H. Schulzrinne, “An Offer/Answer
Model with Session Description Protocol (SDP),”

RFC 3264, June 2002 (TXT).

Kent, S., “IP Authentication Header,” RFC 4302,
December 2005 (TXT).

Kent, S., “IP Encapsulating Security Payload (ESP),”
RFC 4303, December 2005 (TXT).

Daigle, L. and IAB, “IAB Considerations for
UNilateral Self-Address Fixing (UNSAF) Across Network
Address Translation,” RFC 3424, November 2002 (TXT).
Rosenberg, J., “Interactive Connectivity
Establishment (ICE): A Protocol for Network Address
Translator (NAT) Traversal for Offer/Answer
Protocols,” draft-ietf-mmusic-ice-19 (work in
progress), October 2007 (TXT).

Audet, F. and C. Jennings, “Network Address
Translation (NAT) Behavioral Requirements for Unicast
UDP,” BCP 127, RFC 4787, January 2007 (TXT).
Perreault, S. and J. Rosenberg, “Traversal Using
Relays around NAT (TURN) Extensions for TCP
Allocations,” draft-ietf-behave-turn-tcp-06 (work in
progress), March 2010 (TXT).

“IANA Port Numbers Registry.”

“IANA Protocol Numbers Registry,” 2005.

TOC
Jonathan Rosenberg
Cisco Systems, Inc.
Edison, NJ
USA

http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc3550
http://www.rfc-editor.org/rfc/rfc3550.txt
http://www.rfc-editor.org/rfc/rfc3550.ps
http://www.rfc-editor.org/rfc/rfc3550.pdf
mailto:schulzrinne@fokus.gmd.de
mailto:casner@precept.com
mailto:frederic@parc.xerox.com
mailto:van@ee.lbl.gov
mailto:van@ee.lbl.gov
http://tools.ietf.org/html/rfc1889
http://tools.ietf.org/html/rfc1889
http://www.rfc-editor.org/rfc/rfc1889.txt
mailto:yakov@cisco.com
mailto:rgm3@is.chrysler.com
mailto:Daniel.Karrenberg@ripe.net
mailto:GeertJan.deGroot@ripe.net
mailto:GeertJan.deGroot@ripe.net
mailto:lear@sgi.com
http://tools.ietf.org/html/rfc1918
http://tools.ietf.org/html/rfc1918
http://www.rfc-editor.org/rfc/rfc1918.txt
http://tools.ietf.org/html/rfc3264
http://tools.ietf.org/html/rfc3264
http://www.rfc-editor.org/rfc/rfc3264.txt
http://tools.ietf.org/html/rfc4302
http://www.rfc-editor.org/rfc/rfc4302.txt
http://tools.ietf.org/html/rfc4303
http://www.rfc-editor.org/rfc/rfc4303.txt
http://tools.ietf.org/html/rfc3424
http://tools.ietf.org/html/rfc3424
http://tools.ietf.org/html/rfc3424
http://www.rfc-editor.org/rfc/rfc3424.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://tools.ietf.org/html/rfc4787
http://tools.ietf.org/html/rfc4787
http://tools.ietf.org/html/rfc4787
http://www.rfc-editor.org/rfc/rfc4787.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-tcp-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-tcp-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-tcp-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-tcp-06.txt
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/protocol-numbers

Email: jdrosen@cisco.com
URI: http://www.jdrosen.net

Rohan Mahy
Plantronics, Inc.
Email: rohan@ekabal.com

Philip Matthews

Avaya, Inc.

1135 Innovation Drive
Ottawa, Ontario K2K 3G7

Canada
Phone: +1 613 592-4343 x223
Fax:
Email: philip matthews@magma.ca
URT:

Full Copyright Statement
TOC
Copyright © The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
“AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made
any independent effort to identify any such rights. Information on the
procedures with respect to rights in RFC documents can be found in

BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at http://
www.ietf.org/ipr.

mailto:jdrosen@cisco.com
http://www.jdrosen.net
mailto:rohan@ekabal.com
mailto:philip_matthews@magma.ca
http://www.ietf.org/ipr
http://www.ietf.org/ipr

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at ietf-

ipr@ietf.org.

mailto:ietf-ipr@ietf.org
mailto:ietf-ipr@ietf.org

	Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)draft-ietf-behave-turn-06
	Status of this Memo
	Abstract
	Table of Contents
	1. Introduction
	2. Overview of Operation
	2.1. Transports
	2.2. Allocations
	2.3. Exchanging Data with Peers
	2.4. Permissions
	2.5. Channels
	3. Terminology
	4. General Behavior
	5. Managing Allocations
	5.1. Client Behavior
	5.1.1. Initial Allocate Requests
	5.1.2. Refresh Requests
	5.2. Server Behavior
	5.2.1. Receiving an Allocate Request
	5.2.1.1. BANDWIDTH
	5.2.1.2. REQUESTED-TRANSPORT
	5.2.1.3. REQUESTED-IP
	5.2.1.4. REQUESTED-PORT-PROPS
	5.2.1.5. Lifetime
	5.2.1.6. Creating the Allocation
	5.2.1.7. Sending the Allocate Response
	5.2.2. Refresh Requests
	6. Send and Data Indications
	6.1. Forming and Sending an Indication
	6.2. Receiving an Indication
	6.3. Relaying
	7. Channel Mechanism
	7.1. Forming and Sending a ChannelBind Request
	7.2. Receiving a ChannelBind Request and Sending a Response
	7.3. Receiving a ChannelBind Response
	7.4. The ChannelData Message
	7.5. Forming and Sending a ChannelData Message
	7.6. Receiving a ChannelData Message
	7.7. Relaying
	8. New STUN Methods
	9. New STUN Attributes
	9.1. CHANNEL-NUMBER
	9.2. LIFETIME
	9.3. BANDWIDTH
	9.4. PEER-ADDRESS
	9.5. DATA
	9.6. RELAY-ADDRESS
	9.7. REQUESTED-PORT-PROPS
	9.8. REQUESTED-TRANSPORT
	9.9. REQUESTED-IP
	10. New STUN Error Response Codes
	11. Client Discovery of TURN Servers
	12. Security Considerations
	13. IANA Considerations
	14. IAB Considerations
	15. Example
	16. Changes from Previous Versions
	16.1. Changes from -05 to -06
	16.2. Changes from -04 to -05
	17. Issues
	17.1. Open Issues
	17.2. Closed Issues
	18. Acknowledgements
	19. References
	19.1. Normative References
	19.2. Informative References
	Authors' Addresses
	Full Copyright Statement
	Intellectual Property

