BEHAVE WG J. Rosenberg ToC

Internet-Draft Cisco
Intended status: Standards
R. Mahy
Track
Expires: August 28, 2008 Plantronics
P. Matthews
Avaya

February 25,
2008

Traversal Using Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN)
draft-ietf-behave-turn-07

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The 1list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on August 28, 2008.

Abstract

If a host is located behind a NAT, then in certain situations it can be
impossible for that host to communicate directly with other hosts
(peers) located behind other NATs. In these situations, it is necessary
for the host to use the services of an intermediate node that acts as a
communication relay. This specification defines a protocol, called TURN
(Traversal Using Relays around NAT), that allows the host to control
the operation of the relay and to exchange packets with its peers using
the relay.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

The TURN protocol can be used in isolation, but is more properly used
as part of the ICE (Interactive Connectivity Establishment) approach to
NAT traversal.

Table of Contents

Introduction

Overview of Operation

2.1. Transports

2.2. Allocations

2.3. Exchanging Data with Peers

2.4. Channels

2.5. Permissions

Terminology

General Behavior

Allocations

Creating an Allocation

6.1. Sending an Allocate Request

6.2. Receiving an Allocate Request

6.3. Receiving an Allocate Response

Refreshing an Allocation

7.1. Sending a Refresh Request

7.2. Receiving a Refresh Request

7.3. Receiving a Refresh Response

Permissions

Send and Data Indications

9.1. Sending a Send Indication

9.2. Receiving a Send Indication

9.3. Receiving a UDP Datagram

9.4. Receiving a Data Indication

10. Channels
10.1. Sending a ChannelBind Request
10.2. Receiving a ChannelBind Request
10.3. Receiving a ChannelBind Response
10.4. The ChannelData Message
10.5. Sending a ChannelData Message
10.6. Receiving a ChannelData Message
10.7. Relaying

11. IP Header Fields and Path MTU

11.1. DiffServ Code Point (DSCP)

11.2. Don't Fragment (DF) bit

11.3. Other IP Header Fields

11.4. Path MTU

New STUN Methods
New STUN Attributes
13.1. CHANNEL-NUMBER
13.2. LIFETIME

Al

[

™

[

[T
w N

13.3 BANDWIDTH
13.4 PEER-ADDRESS
13.5 DATA
13.6 RELAY -ADDRESS
13.7 REQUESTED-PROPS
13.8 REQUESTED-TRANSPORT
13.9. RESERVATION-TOKEN
14. New STUN Error Response Codes
15. Security Considerations
16. TIANA Considerations
17. 1IAB Considerations
18. Example
19. Changes from Previous Versions
19.1. Changes from -06 to -07
19.2. Changes from -05 to -06
19.3. Changes from -04 to -05
20. Open Issues
21. Acknowledgements
22. References
22.1. Normative References
22.2. Informative References
8§ Authors' Addresses
§ 1Intellectual Property and Copyright Statements

1. Introduction TOC

Session Traversal Utilities for NAT (STUN) [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.) provides a suite of tools for
facilitating the traversal of NAT. Specifically, it defines the Binding
method, which is used by a client to determine its reflexive transport
address towards the STUN server. The reflexive transport address can be
used by the client for receiving packets from peers, but only when the
client is behind "good" NATs. In particular, if a client is behind a
NAT whose mapping behavior [RFC4787] (Audet, F. and C. Jennings,
“Network Address Translation (NAT) Behavioral Requirements for Unicast
UDP,"” January 2007.) is address or address and port dependent
(sometimes called "bad" NATs), the reflexive transport address will not
be usable for communicating with a peer.

The only reliable way to obtain a UDP transport address that can be
used for corresponding with a peer through such a NAT is to make use of
a relay. The relay sits on the public side of the NAT, and allocates
transport addresses to clients reaching it from behind the private side
of the NAT. These allocated transport addresses, called relayed
transport address, are IP addresses and ports on the relay. When the

relay receives a packet on one of these allocated addresses, the relay
forwards it toward the client.

This specification defines an extension to STUN, called TURN, that
allows a client to request a relayed transport address on a TURN
server.

Though a relayed transport address is highly likely to work when
corresponding with a peer, it comes at high cost to the provider of the
relay service. As a consequence, relayed transport addresses should
only be used as a last resort. Protocols using relayed transport
addresses should make use of mechanisms to dynamically determine
whether such an address is actually needed. One such mechanism, defined
for multimedia session establishment protocols based on the offer/
answer protocol in RFC 3264 (Rosenberg, J. and H. Schulzrinne, “An
Offer/Answer Model with Session Description Protocol (SDP),”

June 2002.) [RFC3264], is Interactive Connectivity Establishment (ICE)
[I-D.ietf-mmusic-ice] (Rosenberg, J., “Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols,” October 2007.).

TURN was originally invented to support multimedia sessions signaled
using SIP. Since SIP supports forking, TURN supports multiple peers per
client; a feature not supported by other approaches (e.g., SOCKS
[RFC1928] (Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and L.
Jones, “SOCKS Protocol Version 5,” March 1996.)). However, care has
been taken in the later stages of its development to make sure that
TURN is suitable for other types of applications.

2. Overview of Operation TOC

This section gives an overview of the operation of TURN. It is non-
normative.

In a typical configuration, a TURN client is connected to a private
network (Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and E.
Lear, “Address Allocation for Private Internets,” February 1996.)
[RFC1918] and through one or more NATs to the public Internet. On the
public Internet is a TURN server. Elsewhere in the Internet are one or
more peers that the TURN client wishes to communicate with. These peers
may or may not be behind one or more NATs.

Client's TURN // |
Host Transport Server / |
Address Address +-+ // e +
10.1.1.2:17240 192.0.2.15:3478 IN|/ 192.168.100.2:16400
I I |A]
I +-+ I /17|
I (! I /o+-+
\Y | | | / 192.0.2.210:18200
I + | | [+--------- + / I +
I I IN| N | 77 I I
| TURN | | v| TURN |/ [|
| Client |----]A|---------- | Server |------------------ | Peer B |
I I (I I |~ N I
I I [TI] I N | I
Fommmm - + | 1] Fommm - +| [+--------- +
[1] I I
[1] I I
+-+] I I
I I I
I I I
Client's | Peer B
Server-Reflexive Relayed Transport
Transport Address Transport Address Address
192.0.2.1:7000 192.0.2.15:9000 192.0.2.210:18200
Figure 1

Figure 1 shows a typical deployment. In this figure, the TURN client
and the TURN server are separated by a NAT, with the client on the
private side and the server on the public side of the NAT. This NAT is
assumed to be a “bad” NAT; for example, it might have a mapping
property of address-and-port-dependent mapping (see [RFC4787] (Audet,
F. and C. Jennings, “Network Address Translation (NAT) Behavioral
Requirements for Unicast UDP,” January 2007.)) for a description of
what this means).

The client has allocated a local port on one of its addresses for use
in communicating with the server. The combination of an IP address and
a port is called a TRANSPORT ADDRESS and since this (IP address, port)
combination is located on the client and not on the NAT, it is called
the client’s HOST transport address.

The client sends TURN messages from its host transport address to a
transport address on the TURN server which is known as the TURN SERVER

ADDRESS. The client learns the server’s address through some
unspecified means (e.g., configuration), and this address is typically
used by many clients simultaneously. The TURN server address is used by
the client to send both commands and data to the server; the commands
are processed by the TURN server, while the data is relayed on to the
peers.

Since the client is behind a NAT, the server sees these packets as
coming from a transport address on the NAT itself. This address is
known as the client’s SERVER-REFLEXIVE transport address; packets sent
by the server to the client’s server-reflexive transport address will
be forwarded by the NAT to the client’s host transport address.

The client uses TURN commands to allocate a RELAYED TRANSPORT ADDRESS,
which is an transport address located on the TURN server. The server
ensures that there is a one-to-one relationship between the client’s
server-reflexive transport address and the relayed transport address;
thus a packet received at the relayed transport address can be
unambiguously relayed by the server to the client.

The client will typically communicate this relayed transport address to
one or more peers through some mechanism not specified here (e.g., an
ICE offer or answer [I-D.ietf-mmusic-ice] (Rosenberg, J., “Interactive
Connectivity Establishment (ICE): A Protocol for Network Address
Translator (NAT) Traversal for Offer/Answer Protocols,”

October 2007.)). Once this is done, the client can send data to the
server to relay towards its peers. In the reverse direction, peers can
send data to the the relayed transport address of the client. The
server will relay this data to the client as long as the client
explicitly created a permission (see Section 2.5 (Permissions)) for the
IP address of the peer.

2.1. Transports TOC

TURN as defined in this specification only allows the use of UDP
between the server and the peer. However, this specification allows the
use of any one of UDP, TCP, or TLS over TCP to carry the TURN messages
between the client and the server.

TURN client to TURN server TURN server to peer

ubp ubp
TCP ubp
TLS over TCP ubpP

If TCP or TLS over TCP is used between the client and the server, then
the server will convert between stream transport and UDP transport when
relaying data. TURN allows both TCP and TLS over TCP as transports in

part because many firewalls are configured to not pass any UDP traffic.

For TURN clients, using TLS over TCP to communicate with the TURN
server provides two benefits. First, the client can be assured that the
addresses of its peers are not visible to any attackers between it and
the server. Second, the client may be able to communicate with TURN
servers using TLS when it would not be able to communicate with the
same server using TCP or UDP, due to the policy of a firewall between
the TURN client and its server. In this second case, TLS between the
client and TURN server facilitates traversal.

There is a planned extension to TURN to add support for TCP between the
server and the peers [I-D.ietf-behave-turn-tcp] (Perreault, S. and J.
Rosenberg, “Traversal Using Relays around NAT (TURN) Extensions for TCP

Allocations,” March 2010.). For this reason, allocations that use UDP
between the server and the peers are known as UDP allocations, while
allocations that use TCP between the server and the peers are known as
TCP allocations. This specification describes only UDP allocations.

2.2. Allocations TOC

To allocate a relayed transport address, the client uses an Allocate
transaction. The client sends a Allocate Request to the server, and the
server replies with an Allocate Response containing the allocated
relayed transport address. The client can include attributes in the
Allocate Request that describe the type of allocation it desires (e.g.,
the lifetime of the allocation). And since relaying data can require
lots of bandwidth, the server typically requires that the client
authenticate itself using STUN’s long-term credential mechanism, to
show that it is authorized to use the server.

Once a relayed transport address is allocated, a client must keep the
allocation alive. To do this, the client periodically sends a Refresh
Request to the server with the allocated related transport address.
TURN deliberately uses a different method (Refresh rather than
Allocate) for refreshes to ensure that the client is informed if the
allocation vanishes for some reason.

The frequency of the Refresh transaction is determined by the lifetime
of the allocation. The client can request a lifetime in the Allocate
Request and may modify its request in a Refresh Request, and the server
always indicates the actual lifetime in the response. The client must
issue a new Refresh transaction within 'lifetime' seconds of the
previous Allocate or Refresh transaction. If a client no longer wishes
to use an Allocation, it should do a Refresh transaction with a
requested lifetime of 0.

Note that sending or receiving data from a peer DOES NOT refresh the
allocation.

The server keeps track of the client reflexive transport address and
port, the server transport address and port, and the protocol used by
the client to communicate with the server. (Together known as a 5-

tuple. The server remembers the 5-tuple used in the Allocate Request.
Subsequent transactions between the client and the server use this same
5-tuple. In this way, the server knows which client owns the allocated
relayed transport address. If the client wishes to allocate a second
relayed transport address, it must use a different 5-tuple for this
allocation (e.g., by using a different client host address).,

While the terminology used in this document refers to 5-tuples, the
TURN server can store whatever identifier it likes that yields
identical results. Specifically, many implementations use a file-
descriptor in place of a 5-tuple to represent a TCP connection.

2.3. Exchanging Data with Peers TOC

There are two ways for the client and peers to exchange data using the
TURN server. The first way uses Send and Data indications, the second
way uses channels. Common to both ways is the ability of the client to
communicate with multiple peers using a single allocated relayed
transport address; thus both ways include a means for the client to
indicate to the server which peer to forward the data to, and for the
server to indicate which peer sent the data.

When using the first way, the client sends a Send indication to the
TURN server containing, in attributes inside the indication, the
transport address of the peer and the data to be sent to that peer.
When the TURN server receives the Send Indication, it extracts the data
from the Send Indication and sends it in a UDP datagram to the peer,
using the allocated relay address as the source address. In the reverse
direction, UDP datagrams arriving at the relay address on the TURN
server are converted into Data Indications and sent to the client, with
the transport address of the peer included in an attribute in the Data
Indication.

TURN TURN Peer Peer

client server A B
|--- Allocate Req -->|
|<-- Allocate Resp ---|

I |
--- Send (Peer A)--->|

|

|

|
| |
=== data :::>		
	<:: data ====	
<-- Data (Peer A)----		
--- Send (Peer B)--->		
=== data :::::::::::::::::>		
I	<:: data ::::::::::::::::::l	
<-- Data (Peer B)----		

Figure 2

In the figure above, the client first allocates a relayed transport
address. It then sends data to Peer A using a Send Indication; at the
server, the data is extracted and forwarded in a UDP datagram to Peer
A, using the relayed transport address as the source transport address.
When a UDP datagram from Peer A is received at the relayed transport
address, the contents are placed into a Data Indication and forwarded
to the client. A similar exchange happens with Peer B.

2.4. Channels TOC

For some applications (e.g. Voice over IP), the 36 bytes of overhead
that a Send or Data indication adds to the application data can
substantially increase the bandwidth required between the client and
the server. To remedy this, TURN offers a second way for the client and
server to associate data with a specific peer.

This second way uses an alternate packet format known as the
ChannelData message. The ChannelData message does not use the STUN
header used by other TURN messages, but instead has a 4-byte header
that includes a number known as a channel number. Each channel number
in use is bound to a specific peer and thus serves as a shorthand for
the peer's address.

To bind a channel to a peer, the client sends a ChannelBind request to
the server, and includes an unbound channel number and the transport
address of the peer. Once the channel is bound, the client can use a
ChannelData message to send the server data destined for the peer.

Similarly, the server can relay data from that peer towards the client
using a ChannelData message.

Channel bindings last for 10 minutes unless refreshed. Channel bindings
are refreshed by sending ChannelData messages from the client to the
server, or by rebinding the channel to the peer.

TURN TURN Peer Peer
client server A B
| --- Allocate Req -->|
|<-- Allocate Resp ---|

I I
--- Send (Peer A)--->|

|

|

|
| |
	::: data :::>	
	<:: data ====	
<-- Data (Peer A)----		
- ChannelBind Req -->		
(Peer A to 0x4001)		
<- ChannelBind Resp -		
-- [6x4001] data --->		
I	::: data :::>	
	<:: data ====	
<- [0x4001] data --->		
--- Send (Peer B)--->		
=== data :::::::::::::::::>		
	<:: data ::::::::::::::::::l	
<-- Data (Peer B)----		

Figure 3

The figure above shows the channel mechanism in use. The client begins
by allocating a relayed transport address, and then uses that address
to exchange data with Peer A. After a bit, the client decides to bind a
channel to Peer A. To do this, it sends a ChannelBind request to the
server, specifying the transport address of Peer A and a channel number
(0x4001). After that, the client can send application data encapsulated
inside ChannelData messages to Peer A: this is shown as "[0x4001] data"
where 0x4001 is the channel number.

Note that ChannelData messages can only be used for peers to which the
client has bound a channel. In the example above, Peer A has been bound
to a channel, but Peer B has not, so application data to and from Peer
B uses Send and Data indications.

Channel bindings are always initiated by the client.

2.5. Permissions TOC

To ease concerns amongst enterprise IT administrators that TURN could
be used to bypass corporate firewall security, TURN includes the notion
of permissions. TURN permissions mimic the address-restricted filtering
mechanism of NATs that comply with [RFC4787] (Audet, F. and C.
Jennings, “Network Address Translation (NAT) Behavioral Requirements
for Unicast UDP,” January 2007.).

The client can install a permission by sending data to a peer (or by
doing certain other things). Once a permission is installed, any peer
with the same IP address (the ports numbers can differ) is permitted to
send data to the client. After 5 minutes, the permission times out and
the server drops any UDP datagrams arriving at the relayed transport
from that IP address. Note that permissions are within the context of
an allocation, so adding or expiring a permission in one allocation
does not affect other allocations.

Data received from the peer DOES NOT refresh the permission.

3. Terminology TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

Readers are expected to be familar with [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.) and the terms defined there.
The following terms are used in this document:

TURN: A protocol spoken between a TURN client and a TURN server. It
is an extension to the STUN protocol [I-D.ietf-behave-rfc3489bis]

(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session
Traversal Utilities for (NAT) (STUN),” July 2008.). The protocol
allows a client to allocate and use a relayed transport address.

TURN client: A STUN client that implements this specification.

TURN server:
A STUN server that implements this specification. It
relays data between a TURN client and its peer(s).

Peer: A host with which the TURN client wishes to communicate. The
TURN server relays traffic between the TURN client and its
peer(s). The peer does not interact with the TURN server using
the protocol defined in this document; rather, the peer receives
data sent by the TURN server and the peer sends data towards the
TURN server.

Host Transport Address: A transport address allocated on a host.

Server-Reflexive Transport Address: A transport address on the
"public side" of a NAT. This address is allocated by the NAT to
correspond to a specific host transport address.

Relayed Transport Address: A transport address that exists on a
TURN server. If a permission exists, packets that arrive at this
address are relayed towards the TURN client.

Allocation: The relayed transport address granted to a client
through an Allocate request, along with related state, such as
permissions and expiration timers.

5-tuple: The combination (client IP address and port, server IP
address and port, and transport protocol (UDP or TCP)) used to
communicate between the client and the server . The 5-tuple
uniquely identifies this communication stream. The 5-tuple also
uniquely identifies the Allocation on the server.

Permission: The IP address and transport protocol (but not the
port) of a peer that is permitted to send traffic to the TURN
server and have that traffic relayed to the TURN client. The TURN
server will only forward traffic to its client from peers that
match an existing permission.

4. General Behavior TOC

This section contains general TURN processing rules that apply to all
TURN messages.

TURN is an extension to STUN. All TURN messages, with the exception of
the ChannelData message, are STUN-formatted messages. All the base
processing rules described in [I-D.ietf-behave-rfc3489bis] (Rosenberg,
J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal Utilities
for (NAT) (STUN),” July 2008.) apply to STUN-formatted messages. This

means that all the message-forming and -processing descriptions in this
document are implicitly prefixed with the rules of
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.).

In addition, the server SHOULD require that all TURN requests use the
Long-Term Credential mechanism described in
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.), and the client MUST be prepared to authenticate requests
if required. The server's administrator MUST choose a realm value that
will uniquely identify the username and password combination that the
client must use, even if the client uses multiple servers under
different administrations. The server's administrator MAY choose to
allocate a unique username to each client, or MAY choose to allocate
the same username to more than one client (for example, to all clients
from the same department or company).

The client and/or the server MAY include the FINGERPRINT attribute in
any of the methods defined in this document. However, TURN does not use
the backwards-compatibility mechanism described in
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.).

By default, TURN runs on the same port as STUN. However, either the SRV
procedures or the ALTERNATE-SERVER procedures described in Section 6
(Creating an Allocation) may be used to run TURN on a different port.

5. Allocations TOC

All TURN operations revolve around allocations, and all TURN messages

are associated with an allocation. An allocation conceptually consists
of the following state data:

*Relayed transport address

*The 5-tuple: client IP address, client port, server IP address,
server port, transport protocol

*Username

*Transaction ID of the Allocate request
*Bandwidth

*Time-to-expiry

*List of permissions

*List of channel to peer bindings

The relayed transport address is the transport address allocated by the
server for communicating with peers, while the 5-tuple describes the
communication path between the client and the server. Both of these
MUST be unique across all allocations, so either one can be used to
uniquely identify the allocation.

When a TURN message arrives at the server from the client, the server
uses the 5-tuple in the message to identify the associated allocation.
For all TURN messages (including ChannelData) EXCEPT an Allocate
request, if the 5-tuple does not identify an existing allocation, then
the message MUST either be rejected with a 437 Allocation Mismatch
error (if it is a request), or silently ignored (if it is an indication
or a ChannelData message). A client receiving a 437 error response to a
request other than Allocate MUST assume the allocation no longer
exists.

The username and password of the allocation is the username and
password of the authenticated Allocate request that creates the
allocation. Subsequent requests on an allocation use the same username
and password as those used to create the allocation, to prevent
attackers from hijacking the client's allocation. Specifically, if the
server requires the use of the Long-Term Credential mechanism, and if a
non-Allocate request passes authentication under this mechanism, and if
the 5-tuple identifies an existing allocation, but the request does not
use the same username as used to create the allocation, then the
request MUST be rejected with a 438 (Wrong Credentials) error.

The transaction ID of the allocation is the transaction ID used in the
Allocate request. This is used to detect retransmissions of the
Allocate request over UDP (see Section 6.2 (Receiving an Allocate
Request) for details).

The bandwidth is the maximum bandwidth between the client and the
server that the client expects to need (in either direction). The
server MAY choose to police this value and refuse allocations to ensure
that the total bandwidth across all allocations does not exceed the
server's capacity. Servers that do so SHOULD require that an
allocation's bandwidth lie within two values: the minimum per -
allocation bandwidth and the maximum per-allocation bandwidth.

NOTE: Readers should be aware that the details around bandwidth are
still preliminary. The present description is likely to change,
perhaps significantly, before the specification is finalized.

The time-to-expiry is the time in seconds left until the allocation
expires. Each Allocate or Refresh transaction sets this timer, which
then ticks down towards 0. By default, each Allocate or Refresh
transaction resets this timer to 600 seconds (10 minutes), but the
client can request a different value in the Allocate and Refresh
request. Allocations can only be refreshed using the Refresh request;
sending data to a peer does not refresh an allocation. When an

allocation expires, the state data associated with the allocation is
freed. However the server MUST ensure that neither the relayed
transport address nor the client reflexive transport address from the
5-tuple are re-used in other allocations until 2 minutes after the
allocation expires; this ensures that any messages that are in transit
when the allocation expires are gone before either of these transport
addresses are re-used.

The list of permissions is described in Section 8 (Permissions) and the
list of channels is described in Section 10 (Channels).

6. Creating an Allocation TOC

An allocation on the server is created using an Allocate transaction.

6.1. Sending an Allocate Request TOC

The client forms an Allocate request as follows.

The client first needs to pick a host transport address that the server
does not think is currently in use, or was recently in use. The client
SHOULD pick a currently-unused transport address on the client's host
(typically by allowing its 0S to pick a currently-unused port for a new
socket).

The client needs to pick a transport protocol to use between the client
and the server. The transport protocol MUST be one of UDP, TCP, or TLS
over TCP. Since this specification only allows UDP between the server
and the peers, it is RECOMMENDED that the client pick UDP unless it has
a reason to use a different transport. One reason to pick a different
transport would be that the client believes, either through
configuration or by experiment, that it is unable to contact any TURN
server using UDP. See Section 2.1 (Transports) for more discussion.

The client must also pick a server transport address. Typically, this
is done by the client learning (perhaps through configuration) one or
more domain names for TURN servers. In this case, the client uses the
DNS procedures described in [I-D.ietf-behave-rfc3489bis] (Rosenberag,
J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal Utilities
for (NAT) (STUN),” July 2008.), but using an SRV service name of "turn"
(or "turns" for TURN over TLS) instead of "stun" (or "stuns"). For
example, to find servers in the example.com domain, the client performs
a lookup for '_turn._udp.example.com', '_turn._tcp.example.com', and
'_turns._tcp.example.com' if the client wants to communicate with the
server using UDP, TCP, or TLS over TCP, respectively.

The client MUST include a REQUESTED-TRANSPORT attribute in the request.
This attribute specifies the transport protocol between the server and
the peers (note: NOT the one in the 5-tuple). In this specification,

the REQUESTED-TRANSPORT type is always UDP. This attribute is included
to allow future extensions specify other protocols (e.g.,
[I-D.ietf-behave-turn-tcp] (Perreault, S. and J. Rosenberg, “Traversal
Using Relays around NAT (TURN) Extensions for TCP Allocations,”

March 2010.)).

The client MAY include a BANDWIDTH attribute, describing the maximum
bandwidth that the client expects to exchange between it and the server
over this allocation. This is just a request, and the server may elect
to use a different value. If the client omits this attribute, the
server will pick a bandwidth for the allocation.

If the client wishes the server to initialize the time-to-expire field
of the allocation to some value other the default lifetime, then it MAY
include a LIFETIME attribute specifying its desired value. This is just
a request, and the server may elect to use a different value. Note that
the server will ignore requests to initialize the field to less than
the default value.

If the client wishes to communicate with older peers that make certain
assumptions about the port numbers that an endpoint uses, then it MAY
include either a REQUESTED-PROPS attribute or a RESERVATION-TOKEN
attribute (but not both). Using the REQUESTED-PROPS attribute, the
client can request:

*That the server allocate a relayed transport address with an even
port number, OR

*That the server reserve a pair of relayed transport addresses
with adjacent port numbers N and N+1, where N is even and N+1 is
odd, and then use port N for the current allocation. In this
case, the server returns a RESERVATION-TOKEN attribute in the
response which the client can then include in a subsequent
Allocate request to create an allocation with port number N+1.

The client then sends the allocation on the 5-tuple.

6.2. Receiving an Allocate Request TOC

When the server receives an Allocate request, it performs the following
checks:

1. The server checks the credentials of the request, as per the
Long-Term Credential mechanism of [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session
Traversal Utilities for (NAT) (STUN),” July 2008.).

2. The server checks if the 5-tuple is currently in use by an
existing allocation, or was it in use by another allocation

within the last 2 minutes. If yes, then there are two sub-
cases:

*If the transport protocol in the 5-tuple is UDP, and if the
5-tuple is currently in use by an existing allocation, and
if the transaction id of the request matches the transaction
id stored with the allocation, then the request is a
retransmission of the original request. The server replies
either with a stored copy of the original response, or with
a response rebuilt from the stored state data. If the server
chooses to rebuild the response, then (a) it need not parse
the request further, but can immediately start building a
success response, (b) the value of the LIFETIME attribute
can be set to the current value of the time-to-expire timer,
and (c) the server may need to include an extra field in the
allocation to store the token returned in a RESERVATION-
TOKEN attribute.

*Otherwise, the server rejects the request with a 437
(Allocation Mismatch) error.

NOTE: If the request includes credentials that are acceptable
to server, but the 5-tuple is already in use, then it is
important that the server reject the request with a 437
(Allocation Mismatch) error rather than a 401 (Unauthorized)
error. This ensures that the client knows that the problem is
with the 5-tuple, rather than (wrongly) believing that the
problem lies with its credentials.

The server checks if the request contain a REQUESTED-TRANPORT
attribute. If the REQUESTED-TRANSPORT attribute is not included
or is malformed, the server rejects the request with a 400 (Bad
Request) error. Otherwise, if the attribute is included but
specifies a protocol other that UDP, the server rejects the
request with a 422 (Unsupported Transport Protocol) error.

The server checks if the request contains a BANDWIDTH
attribute. If yes, but the attribute is malformed or is out of
range, the server rejects the request with a 400 (Bad Request)
error. Otherwise, the server checks if it is willing to grant
the bandwidth request. The details of this check are described
below. If the server is not willing, it rejects the request
with a 507 (Insufficient Bandwidth Capacity) error.

The server checks if the request contains a REQUESTED-PROPS
attribute. If yes, then the server checks if it understands the
prop-type and can satisfy the request. If the prop-type is not
understood, or if the server cannot satisfy the request, then

the server rejects the request with a 508 (Insufficient Port
Capacity) error.

6. The server checks if the request contains a RESERVATION-TOKEN
attribute. If yes, and the request also contains a REQUESTED-
PROPS attribute, then the server rejectes the request with a
400 (Bad Request) error. Otherwise it checks to see if the
token is valid (i.e., the token is in range and has not
expired, and the corresponding relayed transport address is
still available). If the token is not valid for some reason,
the server rejects the request with a 508 (Insufficient Port
Capacity) error.

7. At any point, the server MAY also choose to reject the request
with a 486 (Allocation Quota Reached) error if it feels the
client is trying to exceed some locally-defined allocation
guota. The server is free to define this allocation quota any
way it wishes, but SHOULD define it based on the username used
to authenticate the request, and not on the client's transport
address.

If the server rejects the request with one of the error codes 422
(Unsupported Transport Protocol), 486 (Allocation Quota Reached), 507
(Insufficient Bandwidth Capacity) or 508 (Insufficient Port Capacity),
it MAY include an ALTERNATE-SERVER attribute in the error response
redirecting the client to another server that it believes will accept
the request. If the attribute is included, the address MUST be from the
same address family as the server's transport address. Note that, if
the attribute is included, the client will try this alternate server
before trying the other servers given by the SRV procedures.

If all the checks pass, the server creates the allocation. The 5-tuple
is set to the 5-tuple from the Allocate request, while the list of
permissions and the list of channels are initially empty.

When allocating a relayed transport address for the allocation, the
server MUST allocate an IP address of the same family (e.g, IPv4 vs.
IPv6) as the server's transport address.

NOTE: An extension to TURN to allow an address from a different
address family is currently in progress [I-D.ietf-behave-turn-ipv6]
(Camarillo, G., Novo, 0., and S. Perreault, “Traversal Using Relays
around NAT (TURN) Extension for IPv6,” March 2010.).

In addition, the server SHOULD only allocate ports from the range 49152
- 65535 (the Dynamic and/or Private Port range [Port-Numbers] (, “TIANA
Port Numbers Registry,” .)), unless the TURN server application knows,
through some means not specified here, that other applications running
on the same host as the TURN server application will not be impacted by
allocating ports outside this range. This condition can often be
satisfied by running the TURN server application on a dedicated machine

and/or by arranging that any other applications on the machine allocate
ports before the TURN server application starts. In any case, the TURN
server SHOULD NOT allocate ports in the range 0 - 1023 (the Well-Known
Port range) to discourage clients from using TURN to run standard
services.

If the request contains a REQUESTED-PROPS attribute requesting a pair
of ports, then the server looks for a pair of port numbers N and N+1 on
the same IP address, where N is even. Port N is used in the current
allocation, while the relayed transport address with port N+1 is
assigned a token and reserved for a future allocation. The server MUST
hold this reservation for at least 30 seconds, and MAY choose to hold
longer (e.g. until the allocation with port N expires). The server then
includes the token in a RESERVATION-TOKEN attribute in the success
response.

If the request contains a RESERVATION-TOKEN, the server uses the
previously-reserved transport address corresponding to the included
token (if it is still available).

The server determines the initial value of the allocation's bandwidth
as follows. If the BANDWIDTH attribute was not included, or if the
requested bandwidth is less than the minimum per-allocation bandwidth,
then the server behaves as if the minimum per-allocation bandwidth was
requested. Otherwise, if the request bandwidth is greater than the
maximum per-allocation bandwidth, then the server behaves as if the
maximum per-allocation bandwidth was requested.

The server then check if the (updated) requested bandwidth is
available, and if necessary reduces the requested bandwidth to the
amount that is willing to grant. If the result less than the minimum
per-allocation bandwidth, then the server considers the request to be
unsatisfiable, and rejects the request with a 507 (Insufficient
Bandwidth Capacity) error. Otherwise, the requested bandwidth becomes
the bandwidth of the allocation.

The server determines the initial value of the time-to-expire field as
follows. If the request contains a LIFETIME attribute, and the proposed
lifetime value is greater than the default lifetime, and the proposed
lifetime value is otherwise acceptable to the server, then the server
uses that value. Otherwise, the server uses the default value. It is
RECOMMENDED that the server impose a maximum lifetime of no more than
3600 seconds (1 hour).

NOTE: Both the bandwidth and the time-to-expire are recomputed with
each successful Refresh request. Thus the values computed here apply
only until the first refresh.

Once the allocation is created, the server replies with a success
response. The success response contains:

*A RELAYED-ADDRESS attribute containing the relayed transport
address;

*A LIFETIME attribute containing the current value of the time-to-
expire timer;

*A BANDWIDTH attribute containing the actual bandwidth of the
allocation; and

*A RESERVATION-TOKEN attribute (if a second relayed transport
address was reserved).

*An XOR-MAPPED-ADDRESS attribute containing the client's IP
address and port (from the 5-tuple);

NOTE: The XOR-MAPPED-ADDRESS attribute is included in the response
as a convenience to the client. TURN itself does not make use of
this value, but clients running ICE can often need this value and
can thus avoid having to do an extra Binding transaction with some
STUN server to learn it.

The response (either success or error) is sent back to the client on
the 5-tuple.

6.3. Receiving an Allocate Response TOC

If the client receives a success response, then it MUST check that the
relayed transport address is in an address family that the client
understands and is prepared to deal with. This specification only
covers the case where the relayed transport address is of the same
address family as the client's transport address. If the relayed
transport address is not in an address family that the client is
prepared to deal with, then the client MUST delete the allocation
(Section 7 (Refreshing an Allocation)) and MUST NOT attempt to create
another allocation on that server until it believes the mismatch has
been fixed.

Otherwise, the client creates its own copy of the allocation data
structure to track what is happening on the server. In particular, the
client needs to remember the actual lifetime and the actual bandwith
received back from the server, rather than the values sent to the
server in the request. The client must also remember the 5-tuple used
for the request and the username and password it used to authenticate
the request to ensure that it reuses them for subsequent messages. The
client also needs to track the channels and permissions it establishes
on the server.

The client will probably wish to send the relayed transport address to
peers (using some method not specified here) so the peers can
communicate with it. The client may also wish to use the server-
reflexive address it receives in the XOR-MAPPED-ADDRESS attribute in
its ICE processing.

If the client receives an error response, then the processing depends
on the actual error code returned:

*(Request timed out): There is either a problem with the server,
or a problem reaching the server with the chosen transport. The
client MAY choose to try again using a different transport (e.g.,
TCP instead of UDP), or the client MAY try a different server.

*400 (Bad Request): The server believes the client's request is
malformed for some reason. The client MAY notify the user or
operator and SHOULD NOT retry the same request with this server
until it believes the problem has been fixed. The client MAY try
a different server.

*401 (Unauthorized): If the client has followed the procedures of
the Long-Term Credential mechanism and still gets this error,
then the server is not accepting the client's credentials. The
client SHOULD notify the user or operator and SHOULD NOT send any
further requests to this server until it believes the problem has
been fixed. The client MAY try a different server.

*437 (Allocation Mismatch): This indicates that the client has
picked a 5-tuple which the server sees as already in use or which
was recently in use. One way this could happen is if an
intervening NAT assigned a mapped transport address that was
recently used by another allocation. The client SHOULD pick
another client transport address and retry the Allocate request
(using a different transaction id). The client SHOULD try three
different client transport addresses before giving up on this
server. Once the client gives up on the server, it SHOULD NOT try
to create another allocation on the server for 2 minutes.

*438 (Wrong Credentials): The client should not receive this error
in response to a Allocate request. The client MAY notify the user
or operator and SHOULD NOT retry the same request with this
server until it believes the problem has been fixed. The client
MAY try a different server.

*442 (Unsupported Transport Address): The client should not
receive this error in response to a request for a UDP allocation.
The client MAY notify the user or operator and SHOULD NOT retry
the same request with this server until it believes the problem
has been fixed. The client MAY try a different server.

*486 (Allocation Quota Reached): The server is currently unable to
create any more allocations with this username. The client SHOULD
wait at least 1 minute before trying to create any more
allocations on the server. The client MAY try a different server.

*507 (Insufficient Bandwidth Capacity): The server is currently
unable to allocate any bandwidth to this allocation. The client
SHOULD wait at least 1 minute before trying to create any more
allocations on the server. The client MAY try a different server.

*508 (Insufficient Port Capacity): The server has no more relayed
transport addresses avaiable, or has none with the requested
properties, or the one that was reserved is no longer available.
If the client is using either the REQUESTED-PROPS or the
RESERVATION-TOKEN attribute, then the client MAY choose to remove
this attribute and try again immediately. Otherwise, the client
SHOULD wait at least 1 minute before trying to create any more
allocations on this server. The client MAY try a different
server.,

If the error response contains an ALTERNATE-SERVER attribute, and the
client elects to try a different server, the the client SHOULD try the
alternate server specified in that attribute (while obeying the rules
in [I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.) for avoiding redirection loops) before trying any other
servers found using the SRV procedures of [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.).

7. Refreshing an Allocation TOC

A Refresh transaction can be used to either (a) refresh an existing
allocation and update its time-to-expire and bandwidth, or (b) delete
an existing allocation.

If a client wishes to continue using an allocation, then the client
MUST refresh it before it expires. It is suggested that the client
refresh the allocation roughly 1 minute before it expires. If a client
no longer wishes to use an allocation, then it SHOULD explicitly delete
the allocation. A client MAY also change the bandwidth and/or the time-
to-expire of an allocation at any time for other reasons.

7.1. Sending a Refresh Request TOC

If the client wishes to immediately delete an existing allocation, it
includes a LIFETIME attribute with a value of @. All other forms of the
request refresh the allocation.

The Refresh transaction updates the time-to-expire timer of an
allocation. If the client wishes the server to set the time-to-expire

timer to something other than the default lifetime, it includes a
LIFETIME attribute with the requested value. The server then computes a
new time-to-expire value in the same way as it does for an Allocate
transaction, with the exception that a requested lifetime of O causes
the server to immediately delete the allocation.

The Refresh transaction also updates the bandwidth of an allocation. If
the client wishes the server to update the bandwidth to something other
than the mimimum per-allocation bandwidth, it includes the BANDWIDTH
attribute with the requested value.

The Refresh transaction is sent on the 5-tuple for the allocation.

7.2. Receiving a Refresh Request TOC

When the server receives a Refresh request, it processes it as follows.
If, during processing, an error in the request is detected (for
example, a syntax error in the request which causes a 400 error), then
the request is rejected with an error response but the allocation is
NOT deleted (but note that a 437 error will indicate that the
allocation was not found).

The server determines the new value for the time-to-expire field as
follows. If the request contains a LIFETIME attribute, and the
attribute value is 0, then the server uses a value of 0, which causes
the allocation to expire. Otherwise, if the request contains a LIFETIME
attribute and the attribute value is greater than the default lifetime,
and the attribute value is otherwise acceptable to the server, then the
server uses the attribute value. Otherwise, the server uses the default
value. It is RECOMMENDED that the server impose a maximum lifetime of
no more than 3600 seconds (1 hour).

Assuming the allocation is not now expired, the server then determines
a new value for the bandwidth as follows. If the request contains a
BANDWIDTH attribute, or if the requested bandwidth is less than the
minimum per-allocation bandwidth, then the server behaves as if the
minimum per-allocation bandwidth was requested. Otherwise, if the
request bandwidth is greater than the maximum per-allocation bandwidth,
then the server behaves as if the maximum per-allocation bandwidth was
requested.

The server then compares the requested allocation bandwidth with the
current allocation bandwidth. If the requested bandwidth is smaller,
the current allocation bandwidth is updated. If the requested bandwidth
is larger, then the current allocation bandwidth is increased to either
the requested bandwidth or to the maximum currently available,
whichever is smaller.

The server then constructs a success response containing:

*A LIFETIME attribute containing the current value of the time-to-
expire timer; and

*A BANDWIDTH attribute containing the actual bandwidth of the
allocation.

The response is then sent on the 5-tuple.

7.3. Receiving a Refresh Response TOC

If the client receives a success response to its Refresh request, it
updates its copy of the allocation data structure with the bandwidth
and time-to-expire values contained in the response.

If the client receives an 437 (Allocation Mismatch) error response to
its Refresh request, then it must consider the allocation as having
expired, as described in Section 4 (General Behavior). All other errors
indicate a software error on the part of either the client or the
server.

8. Permissions TOC

For each allocation, the server keeps a list of zero or more
permissions. Each permission consists an IP address which uniquely
identifies the permission, and an associated time-to-expiry. The IP
address describes a peer that is allowed to send data to the client,
and the time-to-expiry is the number of seconds until the permission
expires.

Various events, as described in subsequent sections, can cause a
permission for a given IP address to be installed or refreshed. This
causes one of two things to happen:

*If no permission for that IP address exists, then a permission is
created with the given IP address and a time-to-expiry equal to
the default permission lifetime.

*If a permission for that IP address already exists, then the
lifetime for that permission is reset to the default permission
lifetime.

The default permission lifetime MUST be 300 seconds (= 5 minutes).

Each permission’s time-to-expire decreases down once per second until
it reaches 0, at which point the permission expires and is deleted.
When a UDP datagram arrives at the relayed transport address for the
allocation, the server checks the list of permissions for that
allocation. If there is a permission with an IP address that is equal
to the source IP address of the UDP datagram, then the UDP datagram can
be relayed to the client. Otherwise, the UDP datagram is silently

discarded. Note that only IP addresses are compared; port numbers are
irrelevant.

The permissions for one allocation are totally unrelated to the
permissions for a different allocation. If an allocation expires, all
its permissions expire with it.

NOTE: Though TURN permissions expire after 5 minutes, many NATs
deployed at the time of publication expire their UDP bindings
considerably faster. Thus an application using TURN will probably
wish to send some sort of keep-alive traffic at a much faster rate.
Applications using ICE should follow the keep-alive guidelines of
ICE [I-D.ietf-mmusic-ice] (Rosenberg, J., “Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)

Traversal for Offer/Answer Protocols,” October 2007.), and
applications not using ICE are advised to do something similar.

9. Send and Data Indications TOC

TURN supports two ways to send and receive data from peers. This
section describes the use of Send and Data indications, while
Section 10 (Channels) describes the use of the Channel Mechanism.

9.1. Sending a Send Indication TOC

A client can use a Send Indication to pass data to the server for
relaying to a peer. A client can also use a Send Indication without a
DATA attribute to install or refresh a permission for the specified IP
address. A client may use a Send indication to send data to a peer even
if a channel is bound to that peer.

When forming a Send Indication, the client MUST include a PEER-ADDRESS
attribute and MAY include a DATA attribute. If the DATA attribute is
included, then the DATA attribute contains the actual application data
to be sent to the peer, and the PEER-ADDRESS attribute contains the
transport address of the peer to which the data is to be sent. If the
DATA attribute is not present, then the PEER-ADDRESS attribute contains
the IP address for which a permission is to be installed or refreshed;
in this case the port specified in the attribute is ignored.

Note that no authentication attributes are included, since indications
cannot be authenticated using the Long-Term Credential mechanism.

The Send Indication MUST be sent using the same 5-tuple used for the
original allocation.

9.2. Receiving a Send Indication TOC

When the server receives a Send indication, it processes it as follows.
If the received Send indication contains a DATA attribute, then it
forms a UDP datagram as follows:

*the source transport address is the relayed transport address of
the allocation, where the allocation is determined by the 5-tuple
on which the Send Indication arrived;

*the destination transport address is taken from the PEER-ADDRESS
attribute;

*the data following the UDP header is the contents of the value
field of the DATA attribute.

The resulting UDP datagram is then sent to the peer. If any errors are
detected during this process (e.g., the Send indication does not
contain a PEER-ADDRESS attribute), the received indication is silently
discarded and no UDP datagram is sent.

When the server receives a valid Send Indication, either with or
without a DATA attribute, it also installs or refreshes a permission
for the IP address contained in the PEER-ADDRESS attribute (see
Section 8 (Permissions)).

9.3. Receiving a UDP Datagram TOC

When the server receives a UDP datagram at a currently allocated
relayed transport address, the server looks up the allocation
associated with the relayed transport address. It then checks to see if
relaying is permitted, as described in section Section 8
(Permissions)).

If relaying is permitted, and there is no channel bound to the peer
that sent the UDP datagram (see ISection 10 (Channels)), then the
server forms and sends a Data indication. The Data indication MUST
contain both a PEER-ADDRESS and a DATA attribute. The DATA attribute is
set to the value of the ‘data octets’ field from the datagram, and the
PEER-ADDRESS attribute is set to the source transport address of the
received UDP datagram. The Data indication is then sent on the 5-tuple
associated with the allocation.

T0C

9.4. Receiving a Data Indication

When the client receives a Data indication, it checks that the Data
indication contains both a PEER-ADDRESS and a DATA attribute. It then
delivers the data octets inside the DATA attribute to the application,
along with an indication that they were received from the peer whose
transport address is given by the PEER-ADDRESS attribute.

10. Channels TOC

Channels provide a way for the client and server to send application
data using ChannelData messages, which have less overhead than Send and
Data indications.

Channel bindings are always initiated by the client. The client can
bind a channel to a peer at any time during the lifetime of the
allocation. The client may bind a channel to a peer before exchanging
data with it, or after exchanging data with it (using Send and Data
indications) for some time, or may choose never to bind a channel it.
The client can also bind channels to some peers while not binding
channels to other peers.

Channel bindings are specific to an allocation, so that a binding in
one allocation has no relationship to a binding in any other
allocation. If an allocation expires, all its channel bindings expire
with it.

A channel binding consists of:

*A channel number;
*A transport address (of the peer);
*A time-to-expiry timer.

within the context of an allocation, a channel binding is uniquely
identified either by the channel number or by the transport address.
Thus the same channel cannot be bound to two different transport
addresses, nor can the same transport address be bound to two different
channels.

A channel binding last for 10 minutes unless refreshed. Refreshing the
binding (by the server receiving either a ChannelBind request rebinding
the channel to the same peer, or by the server receiving a ChannelData
message on that channel) resets the time-to-expire timer back to 10
minutes. When the channel binding expires, the channel becomes unbound
and available for binding to a different transport address.

When binding a channel to a peer, the client SHOULD be prepared to
receive ChannelData messages on the channel from the server as soon as
it has sent the ChannelBind request. Over UDP, it is possible for the

client to receive ChannelData messages from the server before it
receives a ChannelBind success response.

In the other direction, the client MAY elect to send ChannelData
messages before receiving the ChannelBind success response. Doing so,
however, runs the risk of having the ChannelData messages dropped by
the server if the ChannelBind request does not succeed for some reason
(e.g., packet lost if the request is sent over UDP, or the server being
unable to fulfill the request). A client that wishes to be safe should
either queue the data, or use Send indications until the channel
binding is confirmed.

10.1. Sending a ChannelBind Request TOC

A channel binding is created using a ChannelBind transaction. A channel
binding can also be refreshed using a ChannelBind transaction.

To initiate the ChannelBind transaction, the client forms a ChannelBind
request. The channel to be bound is specified in a CHANNEL-NUMBER
attribute, and the peer's transport address is specified in a PEER-
ADDRESS attribute. Section 10.2 (Receiving a ChannelBind Request)
describes the restrictions on these attributes.

Note that rebinding a channel to the same transport address that it is
already bound to provides a way to refresh a channel binding without
sending data to the peer.

Once formed, the ChannelBind Request is sent using the 5-tuple for the
allocation.

10.2. Receiving a ChannelBind Request TOC

When the server receives a ChannelBind request, it checks the
following:

*The request contains both a CHANNEL-NUMBER and a PEER-ADDRESS
attribute;

*The channel number is in the range 0x4000 to OXFFFE (inclusive);

*The channel number is not currently bound to a different
transport address (same transport address is OK);

*The transport address is not currently bound to a different
channel number.

If any of these tests fail, the server replies with an error response
with error code 400 "Bad Request". Otherwise, the ChannelBind request
is valid and the server replies with a ChannelBind success response.
If ChannelBind request is valid, then the server creates or refreshes
the channel binding using the channel number in the CHANNEL-ADDRESS
attribute and the transport address in the PEER-ADDRESS attribute. The
server also installs or refreshes a permission for the IP address in
the PEER-ADDRESS attribute.

10.3. Receiving a ChannelBind Response TOC

When the client receives a successful ChannelBind response, it updates
its data structures to record that the channel binding is now active.

10.4. The ChannelData Message TOC

The ChannelData message is used to carry application data between the
client and the server. It has the following format:

0] 1 2 3
©1234567890123456789012345678901
B T e e s S S S
| Channel Number | Length |
B o e S e S S e e S S

| I
/ Application Data /
/ /
| I
[B +
|

U +

The Channel Number field specifies the number of the channel on which
the data is traveling, and thus the address of the peer that is sending
or is to receive the data. The channel number MUST be in the range
0x4000 - OXFFFF, with channel number OXFFFF being reserved for possible
future extensions.

Channel numbers 0x0000 - Ox3FFF cannot be used because bits 0 and 1 are
used to distinguish ChannelData messages from STUN-formatted messages
(i.e., Allocate, Send, Data, ChannelBind, etc). STUN-formatted messages
always have bits © and 1 as “00”, while ChannelData messages use
combinations “©1”, “10”, and “11".

The Length field specifies the length in bytes of the application data
field (i.e., it does not include the size of the ChannelData header).
Note that 0 is a valid length.

The Application Data field carries the data the client is trying to
send to the peer, or that the peer is sending to the client.

10.5. Sending a ChannelData Message TOC

Once a client has bound a channel to a peer, then when the client has
data to send to that peer it may use either a ChannelData message or a
Send Indication; that is, the client is not obligated to use the
channel when it exists and may freely intermix the two message types
when sending data to the peer. The server, on the other hand, MUST use
the ChannelData message if a channel has been bound to the peer.

The fields of the ChannelData message are filled in as described in
Section 10.4 (The ChannelData Message).

Over stream transports, the ChannelData message MUST be padded to a
multiple of four bytes in order to ensure the alignment of subsequent
messages. The padding is not reflected in the length field of the
ChannelData message, so the actual size of a ChannelData message
(including padding) is (4 + Length) rounded up to the nearest multiple
of 4. Over UDP, the padding is not required but MAY be included.

The ChannelData message is then sent on the 5-tuple associated with the
allocation.

10.6. Receiving a ChannelData Message TOC

The receiver of the ChannelData message uses bits © and 1 to
distinguish it from STUN-formatted messages, as described in

Section 10.4 (The ChannelData Message).

If the ChannelData message is received in a UDP datagram, and if the
UDP datagram is too short to contain the claimed length of the
ChannelData message (i.e., the UDP header length field value is less
than the ChannelData header length field value + 4 + 8), then the
message is silently discarded.

If the ChannelData message is received over TCP or over TLS over TCP,
then the actual length of the ChannelData message is as described in
Section 10.5 (Sending a ChannelData Message).

If the ChannelData message is received on a channel which is not bound
to any peer, then the message is silently discarded.

T0C

10.7. Relaying

When a server receives a ChannelData message, it first processes it as
described in the previous section. If no errors are detected, it relays
the application data to the peer by forming a UDP datagram as follows:

*the source transport address is the relayed transport address of
the allocation, where the allocation is determined by the 5-tuple
on which the ChannelData message arrived;

*the destination transport address is the transport address to
which the channel is bound;

*the data following the UDP header is the contents of the data
field of the ChannelData message.

The resulting UDP datagram is then sent to the peer.

If the ChannelData message is valid, then the server refreshes the
channel binding, and also installs or refreshes a permission for the IP
address part of the transport address to which the UDP datagram is sent
(see Section 8 (Permissions)).

In the other direction, when the server receives a UDP datagram on the
relayed transport address associated with an allocation, then it first
checks to see if it is permitted to relay the datagram. This check is
done as described in Section 8 (Permissions). If relaying is permitted,
then the server checks to see if there is a channel bound to the peer
that sent the UDP datagram. If there is, then it SHOULD form and send a
ChannelData message as described in Section 10.5 (Sending a ChannelData
Message). If no channel is bound to the peer, then it MUST form and
send a Data indication as described in Section 9.3 (Receiving a UDP

Datagram).

11. IP Header Fields and Path MTU TOC

This section describes how the server should set various fields in the
IP header when relaying application data. The requirements here
document the desired behavior of the server, but it is recognized that
some of these requirements may be impossible to implement in certain
environments.

NOTE: The recommendations in this section are the result of much
discussion, and are a compromise between the perfect relaying
solution and one that can be implemented easily. In particular,
these recommendations takes into account the following:

*TURN allows a TCP, or a TLS over TCP, connection between the
client and the server, while using a UDP connection between

the server and a peer. For this reason, the notion of a single
end-to-end connection does not always exist.

*Many people want to run a TURN server as a process in user-
space under common operating systems, without requiring the
server process to have special privileges (such as those
required to use RAW sockets). One motivation for this is the
desire to implement a TURN server in a peer application in a
peer-to-peer overlay to provide relaying functions to other
peers which reside behind 'bad' NATs; such applications are
often downloaded by users with very little knowledge of
computers and networking.

*A process in user-space under many common operating systems is
rather restricted in which fields in the IP header it can set
and (even worse) read.

*TURN is the relay solution of last resort. It is intended to
be used only when a direct connection between the TURN client
and the peer cannot be established.

11.1. DiffServ Code Point (DSCP) TOC

If the client-server connection uses UDP, then the server SHOULD read
the DSCP from the IP header of the received Data indication or
ChannelData message and use that DSCP for the corresponding outgoing
UDP datagram. In the reverse direction, the server SHOULD read the DSCP
from the arriving UDP datagram and use that DSCP for the corresponding
outgoing Data indication or ChannelData message.

If the client-server connection uses TCP (or TLS over TCP), then to the
extent possible, the server SHOULD read the DSCP from the TCP
connection whenever it reads a Data indication or a ChannelData message
from the TCP socket, and use that DSCP for the corresponding outgoing
UDP datagram. In the reverse direction, the server SHOULD read the DSCP
from the IP header of the received UDP datagram, and set the DSCP of
the TCP connection to the same value.

If, for efficiency or other reasons, the server is unable to read the
DSCP for every message, then it SHOULD read these values at frequent
intervals and use the DSCP learned for all outgoing packets (in the
appropriate direction and on this allocation) until the next time it
reads the DSCP.

NOTE: By copying the DSCP, the server ensures that the application
data gets consistent QoS treatment along the entire path from the
client to the peer.

11.2. Don't Fragment (DF) bit _TOC _

When the client sends a Data indication or ChannelData message to the
server using UDP IPv4, it SHOULD NOT set the DF (Don't Fragment) bit
unless the application explicitly requests the bit to be set.

When the server sends a UDP datagram to a peer over IPv4, or when sends
a Data indication or a ChannelData message to the client using UDP over
IPv4, the server SHOULD NOT set the DF bit.

When using TCP or TLS over TCP, the client and the server MAY let the
setting of the DF bit be determined by the TCP/IP stack.

NOTE: By not setting the DF bit over UDP, the server maximizes the
chances that the UDP datagram, Data indication, or ChannelData
message will be delivered. This is consistent with the view that
TURN is a relay solution of last resort.

11.3. Other IP Header Fields TOC

The server SHOULD NOT preserve the ECN (Explicit Congestion
Notification) field, and MAY preserve thee TTL (Time-To-Live) fields
when relaying application data.

NOTE: The ECN field is not preserved because the view is that there
are two connections here: one between the client and the server, and
a second between the server and a peer. For example, if the client-
server connection uses TCP, then the ECN field conveys useful
information between the two TCP stacks, but is meaningless outside
that TCP connection.

The TTL field need not be preserved because there seems to be little
chance of a forwarding loop, and because reading the TTL field is
impossible without using RAW sockets in most situations.

11.4. Path MTU Toc

Applications using TURN SHOULD follow the guidelines in
[I-D.ietf-tsvwg-udp-quidelines] (Eggert, L. and G. Fairhurst, “Unicast
UDP Usage Guidelines for Application Designers,” October 2008.), but
use the algorithm of [RFC4821] (Mathis, M. and J. Heffner,

“Packetization Layer Path MTU Discovery,” March 2007.) rather than the
algorithm of [RFC1191] (Mogul, J. and S. Deering, “Path MTU discovery,”
November 1990.) to determine the Path MTU. This algorithm should be run
at the application level (and not at the TURN layer or below) and used
to discovery the maximum size of a application PDU that can be
successfully delivered to the far end application.

NOTE: According to [I-D.ietf-tsvwg-udp-guidelines] (Eggert, L. and
G. Fairhurst, “Unicast UDP Usage Guidelines for Application
Designers,” October 2008.), applications using UDP should do Path
MTU Discovery. If they do not do Path MTU Discovery, then they must
restrict their packet size to 576 (over IPv4) or 1280 (over IPv6).

The original Path MTU Discovery algorithm [RFC1191] (Mogul, J. and
S. Deering, “Path MTU discovery,” November 1990.) will not work
because a TURN server does not relay ICMP packets.

The Path MTU Discover algorithm described in [RFC4821] (Mathis, M.
and J. Heffner, “Packetization Layer Path MTU Discovery,”

March 2007.) will work. However, when run over a path that goes
through a TURN server, it will not discover the Path MTU (because
the DF bit is not set by the server), but intead will discover the
maximum size of an application PDU that can be delivered between the
client and the peer. Applications that limit themselves to this
discovered size WILL be able to communicate effectively, though the
application PDU may end up being fragmented on the section of the
path after the server.

Applications that instead restrict their packet size to 576 or 1280
may suffer from the fact that TURN adds some overhead between the
client and the server. Thus in some situations, these applications
will see their maximum-sized packets dropped. However, this overhead
is only 4 bytes when channels are used, so the chances of this
happening are small.

12. New STUN Methods TOC

This section lists the codepoints for the new STUN methods defined in
this specification. See elsewhere in this document for the semantics of
these new methods.

Request/Response Transactions

O0x003 : Allocate
0x004 : Refresh
0x009 : ChannelBind
Indications
Ox006 : Send
0x007 : Data
13. New STUN Attributes TOC

This STUN extension defines the following new attributes:

0x0060C: CHANNEL-NUMBER
Ox000D: LIFETIME

0x0010: BANDWIDTH

0x0012: PEER-ADDRESS
0x0013: DATA

0x0016: RELAY-ADDRESS
0x0018: REQUESTED-PROPS
0x0019: REQUESTED-TRANSPORT
0x0022: RESERVATION-TOKEN

13.1. CHANNEL-NUMBER TOC

The CHANNEL-NUMBER attribute contains the number of the channel. It is
a 16-bit unsigned integer, followed by a two-oct