BEHAVE WG J. Rosenberg ToC

Internet-Draft Cisco

Intended status: Standards
R. Mahy

Track

Expires: January 14, 2009 Plantronics
P. Matthews
(Unaffiliated)

July 13, 2008

Traversal Using Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN)
draft-ietf-behave-turn-09

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 14, 2009.

Abstract

If a host is located behind a NAT, then in certain situations it can be
impossible for that host to communicate directly with other hosts
(peers) located behind other NATs. In these situations, it is necessary
for the host to use the services of an intermediate node that acts as a
communication relay. This specification defines a protocol, called TURN
(Traversal Using Relays around NAT), that allows the host to control
the operation of the relay and to exchange packets with its peers using
the relay.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

The TURN protocol can be used in isolation, but is more properly used
as part of the ICE (Interactive Connectivity Establishment) approach to
NAT traversal.

Table of Contents

1. Introduction
2. Overview of Operation
2.1. Transports
2.2. Allocations
2.3. Exchanging Data with Peers
2.4. Channels
2.5. Permissions
2.6. Preserving vs. Non-Preserving Allocations
3. Terminology
4. General Behavior
5. Allocations
6. Creating an Allocation
6.1. Sending an Allocate Request
6.2. Receiving an Allocate Request
6.3. Receiving an Allocate Response
7. Refreshing an Allocation
7.1. Sending a Refresh Request
7.2. Receiving a Refresh Request
7.3. Receiving a Refresh Response
8. Permissions
9. Send and Data Indications

9.1. Sending a Send Indication
9.2. Receiving a Send Indication
9.3. Receiving a UDP Datagram
9.4. Receiving a Data Indication

10. Channels
10.1. Sending a ChannelBind Request
10.2. Receiving a ChannelBind Request
10.3. Receiving a ChannelBind Response
10.4. The ChannelData Message
10.5. Sending a ChannelData Message
10.6. Receiving a ChannelData Message
10.7. Relaying Data from the Peer

11. 1IP and ICMP

11.1. 1IP

11.2. ICMP

New STUN Methods
New STUN Attributes

13.1. CHANNEL-NUMBER

13.2. LIFETIME

13.3. PEER-ADDRESS

[T
w N

=
w
N

DATA

13.5 RELAYED-ADDRESS
13.6 REQUESTED-PROPS
13.7 REQUESTED - TRANSPORT
13.8 RESERVATION-TOKEN
13.9. ICMP

14. New STUN Error Response Codes

15. Security Considerations

16. IANA Considerations

17. IAB Considerations

18. Example

19. Open Issues

20. Changes from Previous Versions
20.1. Changes from -08 to -09
20.2. Changes from -07 to -08
20.3. Changes from -06 to -07
20.4. Changes from -05 to -06
20.5. Changes from -04 to -05

21. Open Issues

22. Acknowledgements

23. References
23.1. Normative References
23.2. Informative References

§ Authors' Addresses

§ Intellectual Property and Copyright Statements

1. Introduction TOC

Session Traversal Utilities for NAT (STUN) [I-D.ietf-behave-rfc3489bis]

(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.) provides a suite of tools for
facilitating the traversal of NAT. Specifically, it defines the Binding
method, which is used by a client to determine its reflexive transport
address towards the STUN server. The reflexive transport address can be
used by the client for receiving packets from peers, but only when the
client is behind "good" NATs. In particular, if a client is behind a
NAT whose mapping behavior [RFC4787] (Audet, F. and C. Jennings,
“Network Address Translation (NAT) Behavioral Requirements for Unicast
UDP,"” January 2007.) is address or address and port dependent
(sometimes called "bad" NATs), the reflexive transport address will not
be usable for communicating with a peer.

The only reliable way to obtain a UDP transport address that can be
used for corresponding with a peer through such a NAT is to make use of
a relay. The relay sits on the public side of the NAT, and allocates
transport addresses to clients reaching it from behind the private side

of the NAT. These allocated transport addresses, called relayed
transport address, are IP addresses and ports on the relay. When the
relay receives a packet on one of these allocated addresses, the relay
forwards it toward the client.

This specification defines an extension to STUN, called TURN, that
allows a client to request a relayed transport address on a TURN
server.

Though a relayed transport address is highly likely to work when
corresponding with a peer, it comes at high cost to the provider of the
relay service. As a consequence, relayed transport addresses should
only be used as a last resort. Protocols using relayed transport
addresses should make use of mechanisms to dynamically determine
whether such an address is actually needed. One such mechanism, defined
for multimedia session establishment protocols based on the offer/
answer protocol in REC 3264 (Rosenberg, J. and H. Schulzrinne, “An
offer/Answer Model with Session Description Protocol (SDP),”

June 2002.) [RFC3264], is Interactive Connectivity Establishment (ICE)
[I-D.ietf-mmusic-ice] (Rosenberg, J., “Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols,” October 2007.).

TURN was originally invented to support multimedia sessions signaled
using SIP. Since SIP supports forking, TURN supports multiple peers per
client; a feature not supported by other approaches (e.g., SOCKS
[RFEC1928] (Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and L.
Jones, “SOCKS Protocol Version 5,” March 1996.)). However, care has
been taken in the later stages of its development to make sure that
TURN is suitable for other types of applications.

2. Overview of Operation TOC

This section gives an overview of the operation of TURN. It is non-
normative.

In a typical configuration, a TURN client is connected to a private
network (Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and E.
Lear, “Address Allocation for Private Internets,” February 1996.)
[RFC1918] and through one or more NATs to the public Internet. On the
public Internet is a TURN server. Elsewhere in the Internet are one or
more peers that the TURN client wishes to communicate with. These peers
may or may not be behind one or more NATs.

Client's TURN // |
Host Transport Server / |
Address Address +-+ // e +
10.1.1.2:17240 192.0.2.15:3478 IN|/ 192.168.100.2:16400
I I |A]
I +-+ I /17|
I (! I /o+-+
\Y | | | / 192.0.2.210:18200
I + | | [+--------- + / I +
I I IN| N | 77 I I
| TURN | | v| TURN |/ [|
| Client |----]A|---------- | Server |------------------ | Peer B |
I I (I I |~ N I
I I [TI] I N | I
Fommmm - + | 1] Fommm - +| [+--------- +
[1] I I
[1] I I
+-+] I I
I I I
I I I
Client's | Peer B
Server-Reflexive Relayed Transport
Transport Address Transport Address Address
192.0.2.1:7000 192.0.2.15:9000 192.0.2.210:18200
Figure 1

Figure 1 shows a typical deployment. In this figure, the TURN client
and the TURN server are separated by a NAT, with the client on the
private side and the server on the public side of the NAT. This NAT is
assumed to be a “bad” NAT; for example, it might have a mapping
property of address-and-port-dependent mapping (see [RFC4787] (Audet,
F. and C. Jennings, “Network Address Translation (NAT) Behavioral
Requirements for Unicast UDP,” January 2007.) for a description of what
this means).

The client has allocated a local port on one of its addresses for use
in communicating with the server. The combination of an IP address and
a port is called a TRANSPORT ADDRESS and since this (IP address, port)
combination is located on the client and not on the NAT, it is called
the client’s HOST transport address.

The client sends TURN messages from its host transport address to a
transport address on the TURN server which is known as the TURN SERVER

ADDRESS. The client learns the server’s address through some
unspecified means (e.g., configuration), and this address is typically
used by many clients simultaneously. The TURN server address is used by
the client to send both commands and data to the server; the commands
are processed by the TURN server, while the data is relayed on to the
peers.

Since the client is behind a NAT, the server sees these packets as
coming from a transport address on the NAT itself. This address is
known as the client’s SERVER-REFLEXIVE transport address; packets sent
by the server to the client’s server-reflexive transport address will
be forwarded by the NAT to the client’s host transport address.

The client uses TURN commands to allocate a RELAYED TRANSPORT ADDRESS,
which is an transport address located on the TURN server. The server
ensures that there is a one-to-one relationship between the client’s
server-reflexive transport address and the relayed transport address;
thus a packet received at the relayed transport address can be
unambiguously relayed by the server to the client.

The client will typically communicate this relayed transport address to
one or more peers through some mechanism not specified here (e.g., an
ICE offer or answer [I-D.ietf-mmusic-ice] (Rosenberg, J., “Interactive
Connectivity Establishment (ICE): A Protocol for Network Address
Translator (NAT) Traversal for Offer/Answer Protocols,”

October 2007.)). Once this is done, the client can send data to the
server to relay towards its peers. In the reverse direction, peers can
send data to the relayed transport address of the client. The server
will relay this data to the client as long as the client explicitly
created a permission (see Section 2.5 (Permissions)) for the IP address
of the peer.

2.1. Transports TOC

TURN as defined in this specification only allows the use of UDP
between the server and the peer. However, this specification allows the
use of any one of UDP, TCP, or TLS over TCP to carry the TURN messages
between the client and the server.

TURN client to TURN server TURN server to peer

ubp ubp
TCP ubp
TLS over TCP ubpP

If TCP or TLS over TCP is used between the client and the server, then
the server will convert between these transports and UDP transport when
relaying data to/from the peer.

TURN supports TCP transport between the client and the server because
some firewalls are configured to block UDP entirely. These firewalls
block UDP but not TCP in part because TCP has properties that make the
intention of the nodes being protected by the firewall more obvious to
the firewall. For example, TCP has a three-way handshake that makes in
clearer that the protected node really wishes to have that particular
connection established, while for UDP the best the firewall can do is
guess which flows are desired by using filtering rules. Also, TCP has
explicit connection teardown, while for UDP the firewall has to use
timers to guess when the flow is finished

TURN supports TLS over TCP transport between the client and the server
because TLS provides additional security properties not provided by
TURN's default digest authentication; properties which some clients may
wish to take advantage of. In particular, TLS provides a way for the
client to ascertain that it is talking to the server that it intended
to, and also provides for confidentiality of TURN control messages.
TURN does not require TLS because the overhead of using TLS is higher
than that of digest authentication; for example, using TLS likely means
that most application data will be doubly encrypted (once by TLS and
once to ensure it is still encrypted in the UDP datagram).

There is a planned extension to TURN to add support for TCP between the
server and the peers [I-D.ietf-behave-turn-tcp] (Perreault, S. and J.
Rosenberg, “Traversal Using Relays around NAT (TURN) Extensions for TCP
Allocations,” March 2010.). For this reason, allocations that use UDP
between the server and the peers are known as UDP allocations, while
allocations that use TCP between the server and the peers are known as
TCP allocations. This specification describes only UDP allocations.

2.2. Allocations TOC

To allocate a relayed transport address, the client uses an Allocate
transaction. The client sends a Allocate request to the server, and the
server replies with an Allocate response containing the allocated
relayed transport address. The client can include attributes in the
Allocate request that describe the type of allocation it desires (e.g.,
the lifetime of the allocation). And since relaying data may require
lots of bandwidth, the server typically requires that the client
authenticate itself using STUN’s long-term credential mechanism, to
show that it is authorized to use the server.

Once a relayed transport address is allocated, a client must keep the
allocation alive. To do this, the client periodically sends a Refresh
request to the server with the allocated related transport address.
TURN deliberately uses a different method (Refresh rather than
Allocate) for refreshes to ensure that the client is informed if the
allocation vanishes for some reason.

The frequency of the Refresh transaction is determined by the lifetime
of the allocation. The client can request a lifetime in the Allocate
request and may modify its request in a Refresh request, and the server
always indicates the actual lifetime in the response. The client must
issue a new Refresh transaction within 'lifetime' seconds of the
previous Allocate or Refresh transaction. If a client no longer wishes
to use an Allocation, it should do a Refresh transaction with a
requested lifetime of 0.

Note that sending or receiving data from a peer DOES NOT refresh the
allocation.

Both the server and the client keeps track of the client transport
address and port, the server transport address and port, and the
protocol used by the client to communicate with the server. These 5
values are collectively referred to as the 5-TUPLE. The server
remembers the 5-tuple used in the Allocate request. Subsequent
transactions between the client and the server use this same 5-tuple.
In this way, the server knows which client owns the allocated relayed
transport address. If the client wishes to allocate a second relayed
transport address, it must use a different 5-tuple for this allocation
(e.g., by using a different client host address or port).,

NOTE: While the terminology used in this document refers to 5-
tuples, the TURN server can store whatever identifier it likes that
yields identical results. Specifically, many implementations use a
file-descriptor in place of a 5-tuple to represent a TCP connection.

NOTE: In some applications of TURN, a client may send and receive
packets other than TURN packets on the address and port it is using
to communicate with the TURN server. This can happen, for example,
when using TURN with ICE [I-D.ietf-mmusic-ice] (Rosenberg, J.,
“Interactive Connectivity Establishment (ICE): A Protocol for
Network Address Translator (NAT) Traversal for Offer/Answer
Protocols,” October 2007.). In these cases, the client can examine
the 5-tuple for an arriving packet and use the 5-tuple to
distinguish packets received from the TURN server from packets
received from other nodes.

2.3. Exchanging Data with Peers TOC

There are two ways for the client and peers to exchange data using the
TURN server. The first way uses Send and Data indications, the second
way uses channels. Common to both ways is the ability of the client to
communicate with multiple peers using a single allocated relayed
transport address; thus both ways include a means for the client to
indicate to the server which peer to forward the data to, and for the
server to indicate which peer sent the data.

When using the first way, the client sends a Send indication to the
TURN server containing, in attributes inside the indication, the
transport address of the peer and the data to be sent to that peer.
When the TURN server receives the Send indication, it extracts the data
from the Send indication and sends it in a UDP datagram to the peer,
using the allocated relay address as the source address. In the reverse
direction, UDP datagrams arriving at the relay address on the TURN
server are converted into Data indications and sent to the client, with
the transport address of the peer included in an attribute in the Data
indication.

TURN TURN Peer Peer
client server A B
| --- Allocate Req -->|
|<-- Allocate Resp ---|

I |
--- Send (Peer A)--->|

|

|

|
| |
=== data :::>		
	<:: data ====	
<-- Data (Peer A)----		
--- Send (Peer B)--->		
=== data :::::::::::::::::>		
	<:: data ::::::::::::::::::l	
<-- Data (Peer B)----]		

Figure 2

In the figure above, the client first allocates a relayed transport
address. It then sends data to Peer A using a Send indication; at the
server, the data is extracted and forwarded in a UDP datagram to Peer
A, using the relayed transport address as the source transport address.
When a UDP datagram from Peer A is received at the relayed transport
address, the contents are placed into a Data indication and forwarded
to the client. A similar exchange happens with Peer B.

2.4. Channels TOC

For some applications (e.g. Voice over IP), the 36 bytes of overhead
that a Send or Data indication adds to the application data can

substantially increase the bandwidth required between the client and
the server. To remedy this, TURN offers a second way for the client and
server to associate data with a specific peer.

This second way uses an alternate packet format known as the
ChannelData message. The ChannelData message does not use the STUN
header used by other TURN messages, but instead has a 4-byte header
that includes a number known as a channel number. Each channel number
in use is bound to a specific peer and thus serves as a shorthand for
the peer's address.

To bind a channel to a peer, the client sends a ChannelBind request to
the server, and includes an unbound channel number and the transport
address of the peer. Once the channel is bound, the client can use a
ChannelData message to send the server data destined for the peer.
Similarly, the server can relay data from that peer towards the client
using a ChannelData message.

Channel bindings last for 10 minutes unless refreshed. Channel bindings
are refreshed by sending ChannelData messages from the client to the
server, or by rebinding the channel to the peer.

TURN TURN Peer Peer

client server A B
|--- Allocate Req -->|
|<-- Allocate Resp ---|

I |
--- Send (Peer A)--->|

|

|

|
| |
	::: data :::>	
	<:: data ====	
<-- Data (Peer A)----		
- ChannelBind Req -->		
(Peer A to 0x4001)		
<- ChannelBind Resp -		
-- [0x4001] data --->		
	::: data :::>	
	<:: data ====	
<- [0x4001] data --->		
--- Send (Peer B)--->		
=== data :::::::::::::::::>		
	<:: data ::::::::::::::::::l	
<-- Data (Peer B)----		

Figure 3

The figure above shows the channel mechanism in use. The client begins
by allocating a relayed transport address, and then uses that address
to exchange data with Peer A. After a bit, the client decides to bind a
channel to Peer A. To do this, it sends a ChannelBind request to the
server, specifying the transport address of Peer A and a channel number
(0x4001). After that, the client can send application data encapsulated
inside ChannelData messages to Peer A: this is shown as "[0x4001] data"
where 0x4001 is the channel number.

Note that ChannelData messages can only be used for peers to which the
client has bound a channel. In the example above, Peer A has been bound
to a channel, but Peer B has not, so application data to and from Peer
B uses Send and Data indications.

Channel bindings are always initiated by the client.

2.5. Permissions TOC

To ease concerns amongst enterprise IT administrators that TURN could
be used to bypass corporate firewall security, TURN includes the notion
of permissions. TURN permissions mimic the address-restricted filtering
mechanism of NATs that comply with [RFC4787] (Audet, F. and C.
Jennings, “Network Address Translation (NAT) Behavioral Requirements
for Unicast UDP,” January 2007.).

The client can install a permission by sending data to a peer (or by
doing certain other things). Once a permission is installed, any peer
with the same IP address (the ports numbers can differ) is permitted to
send data to the client. After 5 minutes, the permission times out and
the server drops any UDP datagrams arriving at the relayed transport
from that IP address. Note that permissions are within the context of
an allocation, so adding or expiring a permission in one allocation
does not affect other allocations.

Data received from the peer DOES NOT refresh the permission.

2.6. Preserving vs. Non-Preserving Allocations TOC

Some applications that use TURN are quite tolerant of the different
possible ways a TURN server could set the Diff-Serv, ECN, TTL / Hop
Limit, and Flow Label fields in the IP header of the outgoing packet.
Other applications require that the TURN server set these fields in a
specific way, and also require that the TURN server relay ICMP error
packets. Applications in the second class typically wish to do Path MTU
Discovery or end-to-end QOS.

Unfortunately, reading and manipulating fields in the IP header and
relaying ICMP messages usually requires the server to have special
permissions (e.g., access to RAW sockets or be loaded into the kernel),
something that the person setting up the server may be unwilling or
unable to grant. This is especially true when the server is part of a
larger application, for example a peer-to-peer application. It is also
significantly more difficult to implement this type of server than just
relaying at the UDP layer.

To allow TURN to cater to both usage scenarios, TURN defines the
concept of Preserving vs. Non-Preserving allocations. A Preserving
allocation sets the fields in the outgoing IP header correctly, and
also relays ICMP messages, while a Non-Preserving allocation may not
relay correctly in every case. The relaying rules for a Preserving are
designed to guarantee the following:

*Path MTU Discovery works end-to-end (i.e. client-to-peer), using
either the old algorithm ([RFC1191] (Mogqul, J. and S. Deering,
“Path MTU discovery,” November 1990.) and [RFC1981] (McCann, J.,
Deering, S., and J. Mogul, “Path MTU Discovery for IP version 6,”

August 1996.)) or the new one ([RFC4821] (Mathis, M. and J.
Heffner, “Packetization Layer Path MTU Discovery,” March 2007.));

*ECN and Diff-Serv works end-to-end;

*Loops are prevented by copying and decrementing the TTL/Hop Count
field.

If the client knows its application or usage scenario requires a
Preserving allocation, then it can request one in its Allocate request.
If the server is unable to grant this request, then it rejects the
Allocate request.

Note that a Preserving allocation only makes sense when the transport
protocol to the client is UDP; when the transport is TCP or TLS, the
allocation is always Non-Preserving.

3. Terminology TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

Readers are expected to be familar with [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.) and the terms defined there.
The following terms are used in this document:

TURN: A protocol spoken between a TURN client and a TURN server. It

is an extension to the STUN protocol [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session
Traversal Utilities for (NAT) (STUN),” July 2008.). The protocol
allows a client to allocate and use a relayed transport address.

TURN client: A STUN client that implements this specification.

TURN server: A STUN server that implements this specification. It
relays data between a TURN client and its peer(s).

Peer: A host with which the TURN client wishes to communicate. The
TURN server relays traffic between the TURN client and its
peer(s). The peer does not interact with the TURN server using
the protocol defined in this document; rather, the peer receives
data sent by the TURN server and the peer sends data towards the
TURN server.

Host Transport Address: A transport address allocated on a host.

Server-Reflexive Transport Address:
A transport address on the
"public side" of a NAT. This address is allocated by the NAT to
correspond to a specific host transport address.

Relayed Transport Address: A transport address that exists on a
TURN server. If a permission exists, packets that arrive at this
address are relayed towards the TURN client.

Allocation: The relayed transport address granted to a client
through an Allocate request, along with related state, such as
permissions and expiration timers.

5-tuple: The combination (client IP address and port, server IP
address and port, and transport protocol (UDP or TCP)) used to
communicate between the client and the server . The 5-tuple
uniquely identifies this communication stream. The 5-tuple also
uniquely identifies the Allocation on the server.

Permission: The IP address and transport protocol (but not the
port) of a peer that is permitted to send traffic to the TURN
server and have that traffic relayed to the TURN client. The TURN
server will only forward traffic to its client from peers that
match an existing permission.

Preserving Allocation An allocation that sets the the fields in the
IP header in a specific manner when relaying application data,
and which also relays ICMP messages. An allocation that may not
do this in some cases is called a Non-Preserving allocation.

4. General Behavior TOC

This section contains general TURN processing rules that apply to all
TURN messages.

TURN is an extension to STUN. All TURN messages, with the exception of
the ChannelData message, are STUN-formatted messages. All the base
processing rules described in [I-D.ietf-behave-rfc3489bis] (Rosenberg,
J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal Utilities
for (NAT) (STUN),” July 2008.) apply to STUN-formatted messages. This
means that all the message-forming and -processing descriptions in this
document are implicitly prefixed with the rules of
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.).

In addition, the server SHOULD require that all TURN requests use the
Long-Term Credential mechanism described in

LI 2

[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.), and the client MUST be prepared to authenticate requests
if required. The server's administrator MUST choose a realm value that
will uniquely identify the username and password combination that the
client must use, even if the client uses multiple servers under
different administrations. The server's administrator MAY choose to
allocate a unique username to each client, or MAY choose to allocate
the same username to more than one client (for example, to all clients
from the same department or company).

The client and/or the server MAY include the FINGERPRINT attribute in
any of the methods defined in this document. The client and server
SHOULD include the SOFTWARE-TYPE attribute in all requests and
responses, but SHOULD NOT include it in Send and Data indications. TURN
does not use the backwards-compatibility mechanism described in
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.).

By default, TURN runs on the same port as STUN. However, either the SRV
procedures or the ALTERNATE-SERVER procedures described in Section 6
(Creating an Allocation) may be used to run TURN on a different port.

5. Allocations TOC

All TURN operations revolve around allocations, and all TURN messages

are associated with an allocation. An allocation conceptually consists
of the following state data:

*the relayed transport address

*The 5-tuple: client IP address, client port, server IP address,
server port, transport protocol

*the username

*the transaction ID of the Allocate request

*the time-to-expiry

*A list of permissions

*A list of channel to peer bindings

*A flag indicating whether or not the allocation is Preserving

The relayed transport address is the transport address allocated by the
server for communicating with peers, while the 5-tuple describes the

communication path between the client and the server. Both of these
MUST be unique across all allocations, so either one can be used to
uniquely identify the allocation.

When a TURN message arrives at the server from the client, the server
uses the 5-tuple in the message to identify the associated allocation.
For all TURN messages (including ChannelData) EXCEPT an Allocate
request, if the 5-tuple does not identify an existing allocation, then
the message MUST either be rejected with a 437 Allocation Mismatch
error (if it is a request), or silently ignored (if it is an indication
or a ChannelData message). A client receiving a 437 error response to a
request other than Allocate MUST assume the allocation no longer
exists.

The username and password of the allocation is the username and
password of the authenticated Allocate request that creates the
allocation. Subsequent requests on an allocation use the same username
as that used to create the allocation, to prevent attackers from
hijacking the client's allocation. Specifically, if the server requires
the use of the Long-Term Credential mechanism, and if a non-Allocate
request passes authentication under this mechanism, and if the 5-tuple
identifies an existing allocation, but the request does not use the
same username as used to create the allocation, then the request MUST
be rejected with a 441 (Wrong Credentials) error.

The transaction ID of the allocation is the transaction ID used in the
Allocate request. This is used to detect retransmissions of the
Allocate request over UDP (see Section 6.2 (Receiving an Allocate
Request) for details).

The time-to-expiry is the time in seconds left until the allocation
expires. Each Allocate or Refresh transaction sets this timer, which
then ticks down towards 0. By default, each Allocate or Refresh
transaction resets this timer to 600 seconds (10 minutes), but the
client can request a different value in the Allocate and Refresh
request. Allocations can only be refreshed using the Refresh request;
sending data to a peer does not refresh an allocation. When an
allocation expires, the state data associated with the allocation can
be freed. However the server MUST ensure that neither the relayed
transport address nor the client reflexive transport address from the
5-tuple are re-used in other allocations until 2 minutes after the
allocation expires; this ensures that any messages that are in transit
when the allocation expires are gone before either of these transport
addresses are re-used.

The list of permissions is described in Section 8 (Permissions) and the
list of channels is described in Section 10 (Channels).

The differences between a Preserving and a Non-Preserving allocation
are described in Section 11 (IP and ICMP).

T0C

6. Creating an Allocation

An allocation on the server is created using an Allocate transaction.

6.1. Sending an Allocate Request TOC

The client forms an Allocate request as follows.

The client first needs to pick a host transport address that the server
does not think is currently in use, or was recently in use. The client
SHOULD pick a currently-unused transport address on the client's host
(typically by allowing its 0S to pick a currently-unused port for a new
socket).

The client needs to pick a transport protocol to use between the client
and the server. The transport protocol MUST be one of UDP, TCP, or TLS
over TCP. Since this specification only allows UDP between the server
and the peers, it is RECOMMENDED that the client pick UDP unless it has
a reason to use a different transport. One reason to pick a different
transport would be that the client believes, either through
configuration or by experiment, that it is unable to contact any TURN
server using UDP. See Section 2.1 (Transports) for more discussion.

The client must also pick a server transport address. Typically, this
is done by the client learning (perhaps through configuration) one or
more domain names for TURN servers. In this case, the client uses the
DNS procedures described in [I-D.ietf-behave-rfc3489bis] (Rosenberag,
J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal Utilities
for (NAT) (STUN),” July 2008.), but using an SRV service name of "turn"
(or "turns" for TURN over TLS) instead of "stun" (or "stuns"). For
example, to find servers in the example.com domain, the client performs
a lookup for '_turn._udp.example.com', '_turn._tcp.example.com', and
'_turns._tcp.example.com' if the client wants to communicate with the
server using UDP, TCP, or TLS over TCP, respectively.

The client MUST include a REQUESTED-TRANSPORT attribute in the request.
This attribute specifies the transport protocol between the server and
the peers (note that this is NOT the transport protocol that appears in
the 5-tuple). In this specification, the REQUESTED-TRANSPORT type is
always UDP. This attribute is included to allow future extensions
specify other protocols (e.g., [I-D.ietf-behave-turn-tcp] (Perreault,
S. and J. Rosenberg, “Traversal Using Relays around NAT (TURN)
Extensions for TCP Allocations,” March 2010.)).

If the client wishes the server to initialize the time-to-expire field
of the allocation to some value other the default lifetime, then it MAY
include a LIFETIME attribute specifying its desired value. This is just
a request, and the server may elect to use a different value. Note that
the server will ignore requests to initialize the field to less than
the default value.

If the client required the allocation to satisfy certain properties,
then the client includes the REQUESTED-PROPS attribute. This attribute
is optional, and can be omitted if no special properties are required.
Using the E and R bits in the REQUESTED-PROPS attribute, the client can
request:

*(E=1, R=0) That the server allocate a relayed transport address
with an even port number; OR

*(E=1, R=1) That the server reserve a pair of relayed transport
addresses with adjacent port numbers N and N+1, where N is even
and N+1 is odd, and then use port N for the current allocation.
In this case, the server returns a RESERVATION-TOKEN attribute in
the response which the client can then include in a subsequent
Allocate request to create an allocation with port number N+1.

Note that the client cannot request a pair of adjacent ports unless it
also requests that the lower numbered port be even. Thus the
combination (E=0, R=1) is not allowed.

Similarly, by setting the P bit to 1 in the REQUESTED-PROPS attribute,
the client can request that the server allocate a Preserving
allocation.

For all the various REQUESTED-PROPS flags, if the server cannot satisfy
the request, the Allocate request is rejected.

The client MAY also include a RESERVATION-TOKEN attribute in the
request to ask the server to use a previously reserved port for the
allocation. If the RESERVATION-TOKEN attribute is included, then the
client MUST either omit the REQUESTED-PROPS attribute or set E=0 and
R=0, since doing otherwise would make no sense.

Once constructed, the client sends the Allocate request on the 5-tuple.

6.2. Receiving an Allocate Request TOC

When the server receives an Allocate request, it performs the following
checks:

1. The server checks the credentials of the request, as per the
Long-Term Credential mechanism of [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session
Traversal Utilities for (NAT) (STUN),” July 2008.).

2. The server checks if the 5-tuple is currently in use by an
existing allocation, or was it in use by another allocation

within the last 2 minutes. If yes, then there are two sub-
cases:

*If the transport protocol in the 5-tuple is UDP, and if the
5-tuple is currently in use by an existing allocation, and
if the transaction id of the request matches the transaction
id stored with the allocation, then the request is a
retransmission of the original request. The server replies
either with a stored copy of the original response, or with
a response rebuilt from the stored state data. If the server
chooses to rebuild the response, then (a) it need not parse
the request further, but can immediately start building a
success response, (b) the value of the LIFETIME attribute
can be set to the current value of the time-to-expire timer,
and (c) the server may need to include an extra field in the
allocation to store the token returned in a RESERVATION-
TOKEN attribute.

*Otherwise, the server rejects the request with a 437
(Allocation Mismatch) error.

NOTE: If the request includes credentials that are acceptable
to server, but the 5-tuple is already in use, then it is
important that the server reject the request with a 437
(Allocation Mismatch) error rather than a 401 (Unauthorized)
error. This ensures that the client knows that the problem is
with the 5-tuple, rather than (wrongly) believing that the
problem lies with its credentials.

The server checks if the request contain a REQUESTED-TRANPORT
attribute. If the REQUESTED-TRANSPORT attribute is not included
or is malformed, the server rejects the request with a 400 (Bad
Request) error. Otherwise, if the attribute is included but
specifies a protocol other that UDP, the server rejects the
request with a 422 (Unsupported Transport Protocol) error.

The server checks if the request contains a REQUESTED-PROPS
attribute. If yes, then the server checks that it understands
and can satisfy all the flags that are set to 1. If a flag is
not understood, or if the server cannot satisfy the request,
then the server rejects the request with a 508 (Insufficient
Port Capacity) error. The server includes in its error response
a REQUESTED-PROPS attribute with all the flags the server
understands set to 1 and all others set to 0. Note that the
combination (E=0, R=1) MUST be treated as unsupported.

The server checks if the request contains a RESERVATION-TOKEN
attribute. If yes, and the request also contains a REQUESTED-
PROPS attribute with the E and R flags set to any combination

other than E=0 and R=0, then the server rejectes the request
with a 400 (Bad Request) error. Otherwise it checks to see if
the token is valid (i.e., the token is in range and has not
expired, and the corresponding relayed transport address is
still available). If the token is not valid for some reason,
the server rejects the request with a 508 (Insufficient Port
Capacity) error.

6. At any point, the server MAY also choose to reject the request
with a 486 (Allocation Quota Reached) error if it feels the
client is trying to exceed some locally-defined allocation
guota. The server is free to define this allocation quota any
way it wishes, but SHOULD define it based on the username used
to authenticate the request, and not on the client's transport
address.

If the server rejects the request with one of the error codes 422
(Unsupported Transport Protocol), 486 (Allocation Quota Reached) or 508
(Insufficient Port Capacity), it MAY include an ALTERNATE-SERVER
attribute in the error response redirecting the client to another
server that it believes will accept the request. If the attribute is
included, the address MUST be from the same address family as the
server's transport address. Note that, if the attribute is included,
the client will try this alternate server before trying the other
servers given by the SRV procedures.

NOTE: When UDP transport is used between the client and the server,
the client will restransmit an Allocate request if it does not
receive a response within a certain timeout period
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.). Because of this, the server may receive two (or more)
Allocate requests with the same 5-tuple and same transaction id.
Check #2 (above) handles the case where the first Allocate request
is accepted and generates a success response, but it does not handle
the case where the first request is rejected but the second request
is accepted (because conditions on the server have changed in the
brief intervening time period). If the client receives the first
(failure) response, it will ignore the second (success) response and
believe that an allocation was not created. An allocation created in
this matter will eventually timeout, since the client will not
refresh it. Furthermore, if the client later retries with the same
5-tuple but different transaction id, it will receive a 437
(Allocation Mismatch), which should cause it to retry with a
different 5-tuple.

Server implementors MAY elect to prevent this second case by
remembering recent failure responses and returning the saved failure
response when receiving a retransmitted Allocate request. This

optional behavior may be appropriate when the server implements some
sort of charging mechanism or a per-user quota. Alternatively,
servers may use a smaller maximum lifetime value to mimize the
lifetime of this "orphaned" allocation (see below).

Server implementors debating whether to implement this optional
feature should be aware that there are other scenarios in TURN that
lead to such "orphaned" allocations.

If all the checks pass, the server creates the allocation. The 5-tuple
is set to the 5-tuple from the Allocate request, while the list of
permissions and the list of channels are initially empty.

When allocating a relayed transport address for the allocation, the
server MUST allocate an IP address from the same family (e.g, IPv4 vs.
IPv6) as that on which the request was received (i.e., the server's IP
address in the 5-tuple for the allocation).

NOTE: An extension to TURN to allow an address from a different
address family is currently in progress [I-D.ietf-behave-turn-ipv6]
(Camarillo, G., Novo, 0., and S. Perreault, “Traversal Using Relays
around NAT (TURN) Extension for IPv6,” March 2010.).

In addition, the server SHOULD only allocate ports from the range 49152
- 65535 (the Dynamic and/or Private Port range [Port-Numbers] (, “TANA
Port Numbers Registry,” .)), unless the TURN server application knows,
through some means not specified here, that other applications running
on the same host as the TURN server application will not be impacted by
allocating ports outside this range. This condition can often be
satisfied by running the TURN server application on a dedicated machine
and/or by arranging that any other applications on the machine allocate
ports before the TURN server application starts. In any case, the TURN
server SHOULD NOT allocate ports in the range 0 - 1023 (the Well-Known
Port range) to discourage clients from using TURN to run standard
services.

NOTE: The IETF is currently investigating the topic of randomized
port assignments to avoid certain types of attacks (see
[I-D.ietf-tsvwg-port-randomization] (Larsen, M. and F. Gont,
“Transport Protocol Port Randomization Recommendations,”

April 2010.)). It is recommended that a TURN implementor keep
abreast of this topic and, if appropriate, implement a randomized
port assignment algorithm. This is especially applicable to servers
that choose to pre-allocate a number of ports from the underlying 0S
and then later assign them to allocations; for example, a server may
choose this technique to implement the E and R flags in the
REQUESTED-PROPS attribute (see below).

If the request contains a REQUESTED-PROPS attribute with the E flag
set, then the server looks for an even port number to use for the
relayed transport address.

If the request contains a REQUESTED-PROPS attribute with both the E and
R flags set, then the server looks for a pair of port numbers N and N+1
on the same IP address, where N is even. Port N is used in the current
allocation, while the relayed transport address with port N+1 is
assigned a token and reserved for a future allocation. The server MUST
hold this reservation for at least 30 seconds, and MAY choose to hold
longer (e.g. until the allocation with port N expires). The server then
includes the token in a RESERVATION-TOKEN attribute in the success
response.

If the request contains a RESERVATION-TOKEN, the server uses the
previously-reserved transport address corresponding to the included
token (if it is still available).

NOTE: The port N+1 reservation is a global reservation and is not
specific to a particular allocation, since the Allocate request
containing the RESERVATION-TOKEN will use a different 5-tuple and
will create a different allocation. The 5-tuple for the subsequent
Allocate request can be any allowed 5-tuple; the subsequent Allocate
request can use a 5-tuple with a different client IP address and
port, a different transport protocol, and even different server IP
address and port (provided, of course, that the server IP address
and port is one that the server is listening for TURN requests on).

Otherwise (i.e., the E and R flags are not set, and RESERVATION-TOKEN
is not included), the server allocates any port in the range described
above.

The server determines the initial value of the time-to-expire field as
follows. If the request contains a LIFETIME attribute, and the proposed
lifetime value is greater than the default lifetime, and the proposed
lifetime value is otherwise acceptable to the server, then the server
uses that value. Otherwise, the server uses the default lifetime. It is
RECOMMENDED that the server impose a maximum lifetime of no more than
3600 seconds (1 hour). Servers that implement allocation quotas or
charge users for allocations in some way may wish to use a smaller
maximum lifetime (perhaps as small as the default lifetime) to more
quickly remove orphaned allocations (that is, allocations where the
corresponding client has crashed or terminated or the client connection
has been lost for some reason). Also note that the time-to-expire 1is
recomputed with each successful Refresh request, and thus the value
computed here applies only until the first refresh.

Once the allocation is created, the server replies with a success
response. The success response contains:

*A RELAYED-ADDRESS attribute containing the relayed transport
address;

*A LIFETIME attribute containing the current value of the time-to-
expire timer;

*A RESERVATION-TOKEN attribute (if a second relayed transport
address was reserved).

*An XOR-MAPPED-ADDRESS attribute containing the client's IP
address and port (from the 5-tuple);

NOTE: The XOR-MAPPED-ADDRESS attribute is included in the response
as a convenience to the client. TURN itself does not make use of
this value, but clients running ICE can often need this value and
can thus avoid having to do an extra Binding transaction with some
STUN server to learn it.

The response (either success or error) is sent back to the client on
the 5-tuple.

6.3. Receiving an Allocate Response TOC

If the client receives a success response, then it MUST check that the
relayed transport address is in an address family that the client
understands and is prepared to deal with. This specification only
covers the case where the relayed transport address is of the same
address family as the client's transport address. If the relayed
transport address is not in an address family that the client is
prepared to deal with, then the client MUST delete the allocation
(Section 7 (Refreshing an Allocation)) and MUST NOT attempt to create
another allocation on that server until it believes the mismatch has
been fixed.

The IETF is currently considering mechanisms for transitioning
between IPv4 and IPv6 that could result in a client originating an
Allocate request over IPv4, but the request would arrive at the
server over IPv6, or vica-versa. Hence the importance of this check.

Otherwise, the client creates its own copy of the allocation data
structure to track what is happening on the server. In particular, the
client needs to remember the actual lifetime received back from the
server, rather than the value sent to the server in the request. The
client must also remember the 5-tuple used for the request and the
username and password it used to authenticate the request to ensure
that it reuses them for subsequent messages. The client also needs to
track the channels and permissions it establishes on the server.

The client will probably wish to send the relayed transport address to
peers (using some method not specified here) so the peers can
communicate with it. The client may also wish to use the server-

reflexive address it receives in the XOR-MAPPED-ADDRESS attribute in
its ICE processing.

If the client receives an error response, then the processing depends
on the actual error code returned:

*(Request timed out): There is either a problem with the server,
or a problem reaching the server with the chosen transport. The
client MAY choose to try again using a different transport (e.g.,
TCP instead of UDP), or the client MAY try a different server.

*400 (Bad Request): The server believes the client's request is
malformed for some reason. The client MAY notify the user or
operator and SHOULD NOT retry the same request with this server
until it believes the problem has been fixed. The client MAY try
a different server.

*401 (Unauthorized): If the client has followed the procedures of
the Long-Term Credential mechanism and still gets this error,
then the server is not accepting the client's credentials. The
client SHOULD notify the user or operator and SHOULD NOT send any
further requests to this server until it believes the problem has
been fixed. The client MAY try a different server.

*437 (Allocation Mismatch): This indicates that the client has
picked a 5-tuple which the server sees as already in use or which
was recently in use. One way this could happen is if an
intervening NAT assigned a mapped transport address that was
recently used by another allocation. The client SHOULD pick
another client transport address and retry the Allocate request
(using a different transaction id). The client SHOULD try three
different client transport addresses before giving up on this
server. Once the client gives up on the server, it SHOULD NOT try
to create another allocation on the server for 2 minutes.

*441 (Wrong Credentials): The client should not receive this error
in response to a Allocate request. The client MAY notify the user
or operator and SHOULD NOT retry the same request with this
server until it believes the problem has been fixed. The client
MAY try a different server.

*442 (Unsupported Transport Address): The client should not
receive this error in response to a request for a UDP allocation.
The client MAY notify the user or operator and SHOULD NOT retry
the same request with this server until it believes the problem
has been fixed. The client MAY try a different server.

*486 (Allocation Quota Reached): The server is currently unable to
create any more allocations with this username. The client SHOULD

wait at least 1 minute before trying to create any more
allocations on the server. The client MAY try a different server.

*508 (Insufficient Port Capacity): The server has no more relayed
transport addresses avaiable, or has none with the requested
properties, or the one that was reserved is no longer available.
If the client is using either the REQUESTED-PROPS or the
RESERVATION-TOKEN attribute, then the client MAY choose to remove
or modify this attribute and try again immediately. Otherwise,
the client SHOULD wait at least 1 minute before trying to create
any more allocations on this server. The client MAY try a
different server.

If the error response contains an ALTERNATE-SERVER attribute, and the
client elects to try a different server, the the client SHOULD try the
alternate server specified in that attribute (while obeying the rules
in [I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.) for avoiding redirection loops) before trying any other
servers found using the SRV procedures of [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.).

7. Refreshing an Allocation TOC

A Refresh transaction can be used to either (a) refresh an existing
allocation and update its time-to-expire, or (b) delete an existing
allocation.

If a client wishes to continue using an allocation, then the client
MUST refresh it before it expires. It is suggested that the client
refresh the allocation roughly 1 minute before it expires. If a client
no longer wishes to use an allocation, then it SHOULD explicitly delete
the allocation. A client MAY also change the time-to-expire of an
allocation at any time for other reasons.

7.1. Sending a Refresh Request TOC

If the client wishes to immediately delete an existing allocation, it
includes a LIFETIME attribute with a value of @. All other forms of the
request refresh the allocation.

The Refresh transaction updates the time-to-expire timer of an
allocation. If the client wishes the server to set the time-to-expire
timer to something other than the default lifetime, it includes a
LIFETIME attribute with the requested value. The server then computes a

new time-to-expire value in the same way as it does for an Allocate
transaction, with the exception that a requested lifetime of O causes
the server to immediately delete the allocation.

The Refresh transaction is sent on the 5-tuple for the allocation.

7.2.

Receiving a Refresh Request TOC

When the server receives a Refresh request, it processes it as follows:

1.

The server checks the credentials of the request, as per the
Long-Term Credential mechanism of [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session
Traversal Utilities for (NAT) (STUN),” July 2008.).

The server computes a value called the "desired lifetime" as
follows: If the request contains a LIFETIME attribute and the
attribute value is 0, then the desired lifetime is 0.
Otherwise, if the request contains a LIFETIME attribute and the
attribute value is greater than the default lifetime, and if
the attribute value is otherwise acceptable to the server, then
the the desired lifetime is the attribute value. Otherwise the
desired lifetime is the default value.

The processing then depends on whether or not the 5-tuple
corresponds to an existing allocation:

*If there is no existing allocation and the desired lifetime
is 0, then the request suceeeds (as it is OK to delete a
non-existent allocation).

*If there is no existing allocation and the desired lifetime
is non-zero, then the server rejects the request with a 437
Allocation Mismatch error.

*If there is an existing allocation and the desired lifetime
is 0, then the request succeeds and the allocation is
deleted.

*If there is an existing allocation and the desired lifetime
is non-zero, then the request succeeds and the allocation's
time-to-expiry is set to the desired lifetime

If the request succeeds, then server sends a success response
containing:

*A LIFETIME attribute containing the current value of the
time-to-expire timer.

If the Refresh request is carried over UDP, then it is possible that it
can be retransmitted. The server need not do anything special to handle
this case since it is OK to delete a non-existent allocation and it is

also OK to refresh an existing allocation twice in rapid succession.

7.3. Receiving a Refresh Response TOC

If the client receives a success response to its Refresh request, it
updates its copy of the allocation data structure with the time-to-
expire value contained in the response.

If the client receives an 437 (Allocation Mismatch) error response to
its Refresh request, then it must consider the allocation as having
expired, as described in Section 4 (General Behavior). All other errors
indicate a software error on the part of either the client or the
server.

8. Permissions TOC

For each allocation, the server keeps a list of zero or more
permissions. Each permission consists of an IP address which uniquely
identifies the permission, and an associated time-to-expiry. The IP
address describes a peer that is allowed to send data to the client,
and the time-to-expiry is the number of seconds until the permission
expires.

Various events, as described in subsequent sections, can cause a
permission for a given IP address to be installed or refreshed. This
causes one of two things to happen:

*If no permission for that IP address exists, then a permission is
created with the given IP address and a time-to-expiry equal to
the default permission lifetime.

*If a permission for that IP address already exists, then the
lifetime for that permission is reset to the default permission
lifetime.

The default permission lifetime MUST be 300 seconds (= 5 minutes).

Each permission’s time-to-expire decreases down once per second until
it reaches 0, at which point the permission expires and is deleted.
When a UDP datagram arrives at the relayed transport address for the
allocation, the server checks the list of permissions for that
allocation. If there is a permission with an IP address that is equal
to the source IP address of the UDP datagram, then the UDP datagram can
be relayed to the client. Otherwise, the UDP datagram is silently

discarded. Note that only IP addresses are compared; port numbers are
irrelevant.

The permissions for one allocation are totally unrelated to the
permissions for a different allocation. If an allocation expires, all
its permissions expire with it.

NOTE: Though TURN permissions expire after 5 minutes, many NATs
deployed at the time of publication expire their UDP bindings
considerably faster. Thus an application using TURN will probably
wish to send some sort of keep-alive traffic at a much faster rate.
Applications using ICE should follow the keep-alive guidelines of
ICE [I-D.ietf-mmusic-ice] (Rosenberg, J., “Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)

Traversal for Offer/Answer Protocols,” October 2007.), and
applications not using ICE are advised to do something similar.

9. Send and Data Indications TOC

TURN supports two ways to send and receive data from peers. This
section describes the use of Send and Data indications, while
Section 10 (Channels) describes the use of the Channel Mechanism.

9.1. Sending a Send Indication TOC

A client can use a Send indication to pass data to the server for
relaying to a peer. A client can also use a Send indication without a
DATA attribute to install or refresh a permission for the specified IP
address. A client may use a Send indication to send data to a peer even
if a channel is bound to that peer.

When forming a Send indication, the client MUST include a PEER-ADDRESS
attribute and MAY include a DATA attribute. If the DATA attribute is
included, then the DATA attribute contains the actual application data
to be sent to the peer, and the PEER-ADDRESS attribute contains the
transport address of the peer to which the data is to be sent. If the
DATA attribute is not present, then the PEER-ADDRESS attribute contains
the IP address for which a permission is to be installed or refreshed;
in this case the port specified in the attribute is ignored.

Note that no authentication attributes are included, since indications
cannot be authenticated using the Long-Term Credential mechanism.

The Send indication MUST be sent using the same 5-tuple used for the
original allocation.

9.2. Receiving a Send Indication TOC

When the server receives a Send indication, it processes it as follows.
If the received Send indication contains a DATA attribute, then it
forms a UDP datagram as follows:

*the source transport address is the relayed transport address of
the allocation, where the allocation is determined by the 5-tuple
on which the Send indication arrived;

*the destination transport address is taken from the PEER-ADDRESS
attribute;

*the data following the UDP header is the contents of the value
field of the DATA attribute.

The resulting UDP datagram is then sent to the peer. If any errors are
detected during this process (e.g., the Send indication does not
contain a PEER-ADDRESS attribute), the received indication is silently
discarded and no UDP datagram is sent.

Clients are not allowed to use Send indications to send ICMP messages
to peers. Thus the server MUST silently ignore a Send indication
containing the ICMP attribute.

When the server receives a valid Send indication, either with or
without a DATA attribute, it also installs or refreshes a permission
for the IP address contained in the PEER-ADDRESS attribute (see
Section 8 (Permissions)).

9.3. Receiving a UDP Datagram TOC

When the server receives a UDP datagram at a currently allocated
relayed transport address, the server looks up the allocation
associated with the relayed transport address. It then checks to see if
relaying is permitted, as described in Section 8 (Permissions).

If relaying is permitted, then the server checks if there is a channel
bound to the peer that sent the UDP datagram (see Section 10
(Channels)). If a channel is bound, then processing proceeds as
described in Section 10.7 (Relaying Data from the Peer).

If relaying is permitted but no channel is bound to the peer, then the
server forms and sends a Data indication. The Data indication MUST
contain both a PEER-ADDRESS and a DATA attribute and MUST NOT contain
an ICMP attribute. The DATA attribute is set to the value of the ’‘data
octets’ field from the datagram, and the PEER-ADDRESS attribute is set
to the source transport address of the received UDP datagram. The Data
indication is then sent on the 5-tuple associated with the allocation.

9.4. Receiving a Data Indication TOC

When the client receives a Data indication, it checks that the Data
indication contains both a PEER-ADDRESS and a DATA attribute, and
discards the indication if it does not.

The client then checks for the presence of the ICMP attribute. If it is
present, the Data indication contains an ICMP message as described in
Section 11 (IP and ICMP).

If the Data indication does not contain an ICMP attribute, the client
delivers the data octets inside the DATA attribute to the application,
along with an indication that they were received from the peer whose
transport address is given by the PEER-ADDRESS attribute.

10. Channels TOC

Channels provide a way for the client and server to send application
data using ChannelData messages, which have less overhead than Send and
Data indications.

Channel bindings are always initiated by the client. The client can
bind a channel to a peer at any time during the lifetime of the
allocation. The client may bind a channel to a peer before exchanging
data with it, or after exchanging data with it (using Send and Data
indications) for some time, or may choose never to bind a channel it.
The client can also bind channels to some peers while not binding
channels to other peers.

Channel bindings are specific to an allocation, so that a binding in
one allocation has no relationship to a binding in any other
allocation. If an allocation expires, all its channel bindings expire
with it.

A channel binding consists of:

*A channel number;
*A transport address (of the peer);
*A time-to-expiry timer.

wWithin the context of an allocation, a channel binding is uniquely
identified either by the channel number or by the transport address.
Thus the same channel cannot be bound to two different transport
addresses, nor can the same transport address be bound to two different
channels.

A channel binding lasts for 10 minutes unless refreshed. Refreshing the
binding (by the server receiving either a ChannelBind request rebinding
the channel to the same peer, or by the server receiving a ChannelData

message on that channel) resets the time-to-expire timer back to 10
minutes. When the channel binding expires, the channel becomes unbound
and available for binding to a different transport address.

When binding a channel to a peer, the client SHOULD be prepared to
receive ChannelData messages on the channel from the server as soon as
it has sent the ChannelBind request. Over UDP, it is possible for the
client to receive ChannelData messages from the server before it
receives a ChannelBind success response.

In the other direction, the client MAY elect to send ChannelData
messages before receiving the ChannelBind success response. Doing so,
however, runs the risk of having the ChannelData messages dropped by
the server if the ChannelBind request does not succeed for some reason
(e.g., packet lost if the request is sent over UDP, or the server being
unable to fulfill the request). A client that wishes to be safe should
either queue the data, or use Send indications until the channel
binding is confirmed.

10.1. Sending a ChannelBind Request TOC

A channel binding is created using a ChannelBind transaction. A channel
binding can also be refreshed using a ChannelBind transaction.

To initiate the ChannelBind transaction, the client forms a ChannelBind
request. The channel to be bound is specified in a CHANNEL-NUMBER
attribute, and the peer's transport address is specified in a PEER-
ADDRESS attribute. Section 10.2 (Receiving a ChannelBind Request)
describes the restrictions on these attributes.

Note that rebinding a channel to the same transport address that it is
already bound to provides a way to refresh a channel binding without
sending data to the peer.

Once formed, the ChannelBind request is sent using the 5-tuple for the
allocation.

10.2. Receiving a ChannelBind Request TOC

When the server receives a ChannelBind request, it checks the
following:

*The request contains both a CHANNEL-NUMBER and a PEER-ADDRESS
attribute;

*The channel number is in the range 0x4000 to OXFFFE (inclusive);

*The channel number is not currently bound to a different
transport address (same transport address is OK);

*The transport address is not currently bound to a different
channel number.

If any of these tests fail, the server replies with an error response
with error code 400 "Bad Request". Otherwise, the ChannelBind request
is valid and the server replies with a ChannelBind success response.
There are no required attributes in a ChannelBind response.

If ChannelBind request is valid, then the server creates or refreshes
the channel binding using the channel number in the CHANNEL-ADDRESS
attribute and the transport address in the PEER-ADDRESS attribute. The
server also installs or refreshes a permission for the IP address in
the PEER-ADDRESS attribute.

10.3. Receiving a ChannelBind Response TOC

When the client receives a successful ChannelBind response, it updates
its data structures to record that the channel binding is now active.

10.4. The ChannelData Message TOC

The ChannelData message is used to carry application data between the
client and the server. It has the following format:

0] 1 2 3
©1234567890123456789012345678901
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| Channel Number | Length |
totot-t-t-tot-t-t-t-t-t-t-t-F-t-t-t-t-t-t-F-t-t-t-F-F-t-F-F-+-+-+

I I
/ Application Data /
/ /
| I
[S +
I

o m e oo o o e oooo---o- +

The Channel Number field specifies the number of the channel on which
the data is traveling, and thus the address of the peer that is sending
or is to receive the data. The channel number MUST be in the range
0x4000 - OXFFFF, with channel number OXFFFF being reserved for possible
future extensions.

Channel numbers 0x0000 - Ox3FFF cannot be used because bits 0 and 1 are
used to distinguish ChannelData messages from STUN-formatted messages
(i.e., Allocate, Send, Data, ChannelBind, etc). STUN-formatted messages

always have bits 0 and 1 as “00”, while ChannelData messages use
combinations “©1”, “10”, and “11".

The Length field specifies the length in bytes of the application data
field (i.e., it does not include the size of the ChannelData header).
Note that @ is a valid length.

The Application Data field carries the data the client is trying to
send to the peer, or that the peer is sending to the client.

10.5. Sending a ChannelData Message TOC

Once a client has bound a channel to a peer, then when the client has
data to send to that peer it may use either a ChannelData message or a
Send indication; that is, the client is not obligated to use the
channel when it exists and may freely intermix the two message types
when sending data to the peer. The server, on the other hand, MUST use
the ChannelData message if a channel has been bound to the peer.

The fields of the ChannelData message are filled in as described in
Section 10.4 (The ChannelData Message).

Over stream transports, the ChannelData message MUST be padded to a
multiple of four bytes in order to ensure the alignment of subsequent
messages. The padding is not reflected in the length field of the
ChannelData message, so the actual size of a ChannelData message
(including padding) is (4 + Length) rounded up to the nearest multiple
of 4. Over UDP, the padding is not required but MAY be included.

The ChannelData message is then sent on the 5-tuple associated with the
allocation.

10.6. Receiving a ChannelData Message TOC

The receiver of the ChannelData message uses bits 0 and 1 to
distinguish it from STUN-formatted messages, as described in

Section 10.4 (The ChannelData Message).

If the ChannelData message is received in a UDP datagram, and if the
UDP datagram is too short to contain the claimed length of the
ChannelData message (i.e., the UDP header length field value is less
than the ChannelData header length field value + 4 + 8), then the
message is silently discarded.

If the ChannelData message is received over TCP or over TLS over TCP,
then the actual length of the ChannelData message is as described in
Section 10.5 (Sending a ChannelData Message).

If the ChannelData message is received on a channel which is not bound
to any peer, then the message is silently discarded.

If no errors are detected, the server relays the application data to
the peer by forming a UDP datagram as follows:

*the source transport address is the relayed transport address of
the allocation, where the allocation is determined by the 5-tuple
on which the ChannelData message arrived;

*the destination transport address is the transport address to
which the channel is bound;

*the data following the UDP header is the contents of the data
field of the ChannelData message.

The resulting UDP datagram is then sent to the peer. Note that if the
Length field in the ChannelData message is 0, then there will be no
data in the UDP datagram, but the UDP datagram is still formed and
sent.

If the ChannelData message is valid, then the server refreshes the
channel binding, and also installs or refreshes a permission for the IP
address part of the transport address to which the UDP datagram is sent
(see Section 8 (Permissions)).

10.7. Relaying Data from the Peer TOC

When the server receives a UDP datagram on the relayed transport
address associated with an allocation, the server processes it as
described in Section 9.3 (Receiving a UDP Datagram). If that section
indicates that a ChannelData message should be sent (because there is a
channel bound to the peer that sent to UDP datagram), then the server
forms and sends a ChannelData message as described in Section 10.5
(Sending a ChannelData Message).

11. IP and ICMP T0C

This section describes how the server sets various fields in the IP
header when relaying between the client and the peer or vica-versa. It
also describes how the server relays ICMP messages. The descriptions in
this section apply: (a) when the server receives a Send indication or
ChannelData message from the client and sends a UDP datagram to the
peer, (b) when the server receives a UDP datagram on the relayed-
transport address and sends a Data indication or ChannelData message to
the client, or (c) when the server receives an ICMP message. This
section does not apply when the server sends TURN control messages.

The descriptions below have two parts: a preferred behavior and an
alternate behavior. A Preserving allocation MUST implement the
preferred behavior. A non-preserving allocation with UDP transport to
the client SHOULD implement the preferred behavior, but if that is not
possible for a particular field, then it SHOULD implement the
alternative behavior. A non-preserving allocation with TCP or TLS
transport to client SHOULD implement the alternate behavior, except
where this conflicts with standard TCP or TLS behavior.

11.1. 1IP TOC

This section describes the preferred and alternate behavior for various
fields in the IP header.
Time to Live (IPv4) or Hop Count (IPv6)

Preferred Behavior: If the incoming value is O, then send an ICMP
Time Exceeded message back to the sender. Otherwise set the outgoing
Time to Live/Hop Count to one less than the incoming value.

Alternate Behavior: Set the outgoing value to the default for
outgoing packets.

Diff-Serv Code Point

Preferred Behavior: Set the outgoing value to the incoming value,
unless the server includes a differentiated services classifier and
marker [RFC2474] (Nichols, K., Blake, S., Baker, F., and D. Black,
“Definition of the Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers,” December 1998.).

Alternate Behavior: Set the outgoing value to a fixed value, which
by default is Best Effort unless configured otherwise.

In both cases, if the server is immediately adjacent to a
differentiated services classifier and marker, then DSCP MAY be set
to any arbitrary value in the direction towards the classifier.

ECN

Preferred Behavior: Set the outgoing value to the incoming value,
UNLESS the server is doing Active Queue Management, the incoming ECN
field is 01 or 10, and the server wishes to indicate that congestion
has been experienced, in which case set the outgoing value to 11.

Alternate Behavior: Set the outgoing value to 00 (ECN not supported)

Flow Label
Preferred Behavior: Set the outgoing flow label to O.

Alternate Behavior: Same as the Preferred behavior.

IPv4 Fragmentation
Preferred Behavior:

If the outgoing packet size does not exceed the outgoing link's
MTU, then send the outgoing packet unfragmented. Set the DF bit
in the outgoing packet to the value of the DF bit in the incoming
packet, and set the other fragmentation fields (Identification,
MF, Fragment Offset) as appropriate for a packet originating from
the server.

Otherwise, if the outgoing link's MTU is exceeded and the
incoming DF bit is 0O, then fragment the packet before sending.
Set the outgoing DF to 0, and set the other fragmentation fields
as appropriate for fragments originated from the server.

Otherwise [link MTU exceeded and incoming DF set], drop the
outgoing packet and send an ICMP message of type 3 code 4
("fragmentation needed and DF set") to the sender of the incoming
packet.

Alternate Behavior: As described in the Preferred Behavior, except
always assume the incoming DF bit is 0.

IPv6 Fragmentation
Preferred Behavior:

If the incoming packet did not include a Fragmentation header and
the outgoing packet size does not exceed the outgoing link's MTU,
then send the outgoing packet without a Fragmentation header.

If the incoming packet included a Fragment header and if the
outgoing packet size (with a Fragmentation header included) does
not exceed the outgoing link's MTU, then send the outgoing packet

with a Fragmentation header. Set the fields of the Fragmentation
header as appropriate for a packet originating from the server.

If the incoming packet did not include a Fragmentation header and
the outgoing packet size exceeds the outgoing link's MTU , then
drop the outgoing packet and send an ICMP message of type 2 code
0 ("Packet too big") to the sender of the incoming packet. If the
packet is being sent to the peer, then reduce the MTU reported in
the ICMP message by 48 bytes to allow room for the overhead of a
Data indication.

Otherwise, if the link's MTU is exceeded and the incoming packet
contained a Fragmentation header, then fragment the outgoing
packet into fragments of no more than 1280 bytes. Set the fields
of the Fragmentation header as appropriate for a packet
originating from the server.

Alternate Behavior: As described in the Preferred Behavior, except
always assume incoming packet has a Fragmentation header.

IPv4 Options

Preferred Behavior: The outgoing packet is sent without any IPv4
options.

Alternate Behavior: Same as preferred.

IPv6 Extention Headers

Preferred Behavior: The outgoing packet is sent without any IPv6
extension headers, with the exception of the Fragmentation header as
described above

Alternate Behavior: Same as preferred.

11.2. ICMP TOC

This sub-section describes the preferred behavior of ICMP relaying. The
corresponding alternate behavior is to not relay ICMP messages.

When an ICMP message arrives at the server, the copy of the original IP
packet present inside the ICMP message is examined. The server first
checks that the original IP packet header is immediately followed by a
UDP protocol header, such that the original source transport address

was X and the original destination transport address was Y. The server
also checks that the type and code values in the ICMP header are one of
those relayed (see below). Other ICMP messages are either ignored, or
used by the server internally in an unspecified manner.

The server then checks if one of the following two cases applies:

Case 1: X is a relayed-transport-address currently assigned to an
active allocation on the server, and there exists a permission for the
IP address of Y in the allocation.

In this case, the original IP packet was traveling from the server to a
peer, so the the server relays the ICMP message back to the client. The
server creates a Data indication where the PEER-ADDRESS attribute
contains Y, and the ICMP attribute contains the type and code from the
incoming ICMP message, and the DATA attribute contains application data
from the original IP packet starting AFTER the UDP header. The server
SHOULD include as much application data as possible consistent with not
exceeding a total IP packet size of either 576 bytes (for IPv4) or 1280
bytes (for IPv6).

Note that there is no point in including the original IP or UDP
header in the DATA attribute because those headers were generated by
the server, not the client.

Case 2: There is an active allocation where X is the server transport
address, Y is the client transport address, and UDP is used as
transport between the client and the server. Furthermore, the packet
after the UDP header is either (a) a ChannelData header which contains
an active channel number in the allocation, or (b) a Data indication
whose PEER-ADDRESS attribute contains an IP address for which there
exists a permission in the allocation.

In this case, the original IP packet was traveling from the server to
the client, so the server creates and sends an ICMP message to the
peer. The outgoing ICMP message contains the type and code fields from
the incoming ICMP message and then contains an approximation to the
original IP packet sent from the peer to the server (the one the server
was trying to relay to the client inside the ChannelData or Data
indication). This approximation contains a synthesized IP header, a
synthesized UDP header, and some application data. The synthesis is
done as follows:

*The destination transport address is the relayed-transport-
address of the allocation;

*The source transport address is the peer's transport address
determined from either (a) the channel number or (b) the PEER-
ADDRESS attribute;

*The application data is taken from either (a) the ChannelData
message or (b) the DATA attribute. The server SHOULD include as

much application data as possible consistent with not exceeding
either 576 bytes (for IPv4) or 1280 bytes (for IPv6).

The remaining fields in the IP and UDP headers are simply set to
sensible values, since for most of them there is no way to reconstruct
the original values.

The server SHOULD relay all ICMP type/code combinations and MUST relay
at least the following combinations. For IPv4:

Type 3, code 4: Fragmentation needed and DF set
For IPvG6:
Type 2, code <any>: Packet too big
Note that the ICMP attribute appears only in Data indications; the

client cannot use the ICMP attribute in a Send indication to send ICMP
messages to the peer.

12. New STUN Methods TOC
This section lists the codepoints for the new STUN methods defined in
this specification. See elsewhere in this document for the semantics of

these new methods.

Request/Response Transactions

0x003 : Allocate
0x004 : Refresh
0x009 : ChannelBind
Indications
Ox006 : Send
Ox007 : Data
13. New STUN Attributes TOC

This STUN extension defines the following new attributes:

Ox000C: CHANNEL-NUMBER

Ox0060D: LIFETIME

0x0010: Reserved (was BANDWIDTH)
0x0012: PEER-ADDRESS

0x0013: DATA

Ox0016: RELAYED-ADDRESS

0x0018: REQUESTED-PROPS

0x0019: REQUESTED-TRANSPORT
0x0022: RESERVATION-TOKEN
Ox0030: ICMP

13.1. CHANNEL-NUMBER TOC

The CHANNEL-NUMBER attribute contains the number of the channel. It is
a 16-bit unsigned integer, followed by a two-octet RFFU (Reserved For
Future Use) field which MUST be set to ©® on transmission and MUST be
ignored on reception.

0 1 2 3
©1234567890123456789012345678901
B e e ek T e S ks o T TP S S S S S S
| Channel Number | RFFU = 0 |
totodtottototot-t-tot-F-+-+

13.2. LIFETIME TOC

The lifetime attribute represents the duration for which the server
will maintain an allocation in the absence of a refresh. It is a 32-bit
unsigned integral value representing the number of seconds remaining
until expiration.

13.3. PEER-ADDRESS TOC

The PEER-ADDRESS specifies the address and port of the peer as seen
from the TURN server. It is encoded in the same way as XOR-MAPPED-
ADDRESS.

13.4. DATA TOC

The DATA attribute is present in all Data indications and most Send
indications. The contents of DATA attribute is the application data
(that is, the data that would immediately follow the UDP header if the
data was been sent directly between the client and the peer).

13.5. RELAYED-ADDRESS TOC

The RELAYED-ADDRESS is present in Allocate responses. It specifies the
address and port that the server allocated to the client. It is encoded
in the same way as XOR-MAPPED-ADDRESS.

13.6. REQUESTED-PROPS TOC

This attribute allows the client to request that the allocation have
certain properties, and by the server to indicate which properties are
supported. The attribute is 32 bits long. Its format is:

0 1 2 3
012345678901 234567890123456789601
S s T S S S L S S S
|EIR|P| MUST be © |
T e T e R st SPEE S S S Sy Sy S ks ol S S U Sy S S

The first part of the attribute value contains a number of one-bit
flags. These are:

E: If 1, the port number for the relayed-transport-address must be
even. If 0, the port number can be even or odd.

R: If 1, the server must reserve the next highest port for a
subsequent allocation. If @, no such reservation is requested. If
the client sets the R bit to 1, it MUST also set the E bit to 1
(however, the E bit may be 1 when the R bit is 0).

P: If 1, the allocation must be a Preserving allocation. If O, the
allocation can be either Preserving or Non-Preserving.

All these flags have the property that if the bit is 1, and the server
cannot create an allocation that satisfies the request, then the
Allocate request is rejected. To allow future TURN extensions to define
new flags that also have this property, the client MUST set the rest of

the attribute to zero, and the server MUST fail the Allocate request if
any bits which the server does not support are set to 1. By doing this,
any new flags that are not recognized by the server will cause the
Allocate request to fail.

13.7. REQUESTED-TRANSPORT _TOC

This attribute is used by the client to request a specific transport
protocol for the allocated transport address. It has the following
format:

0 1 2 3
©1234567890123456789012345678901
B e e ek T e S ks o T TP S S S S S S
| Protocol | RFFU |
ottt ot-t-tot-F-+-+

The Protocol field specifies the desired protocol. The codepoints used
in this field are taken from those allowed in the Protocol field in the
IPv4 header and the NextHeader field in the IPv6 header
[Protocol-Numbers] (, “IANA Protocol Numbers Registry,” 2005.). This
specification only allows the use of codepoint 17 (User Datagram
Protocol).

The RFFU field MUST be set to zero on transmission and MUST be ignored
on reception. It is reserved for future uses.

13.8. RESERVATION-TOKEN TOC

The RESERVATION-TOKEN attribute contains a token that uniquely
identifies a relayed transport address being held in reserve by the
server. The server includes this attribute in a success response to
tell the client about the token, and the client includes this attribute
in a subsequent Allocate request to request the server use that relayed
transport address for the allocation.

The attribute value is a 64-bit-long field containing the token value.

13.9. ICMP T0C

This attribute is included by the server in a Data indication to
indicate that the Data indication contains information from an ICMP

message that was received by the server. The attribute has the
following format:

0 1 2 3
©01234567890123456789012345678901
Bk e e S R I ik o R e e R T R R R R ik et (T T S P S
| Type | Code | MUST be 0 |
+-t-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

The Type and Code fields of the attribute are taken from the Type and
Code fields in the ICMP message received by the server.

14. New STUN Error Response Codes TOC
This document defines the following new error response codes:

437 (Allocation Mismatch): A request was received by the server
that requires an allocation to be in place, but there is none, or
a request was received which requires no allocation, but there is
one.

441 (Wrong Credentials): The credentials in the (non-Allocate)
request, though otherwise acceptable to the server, do not match
those used to create the allocation.

442 (Unsupported Transport Protocol): The Allocate request asked
the server to use a transport protocol between the server and the
peer that the server does not support. NOTE: This does NOT refer
to the transport protocol used in the 5-tuple.

486 (Allocation Quota Reached): No more allocations using this
username can be created at the present time.

508 (Insufficient Port Capacity): The server has no more relayed
transport addresses available right now, or has none with the
requested properties, or the one that corresponds to the
specified token is not available.

15. Security Considerations TOC

TBD: Update this section to match changes to the TURN protocol.
TURN servers allocate resources to clients, in contrast to the Binding
method defined in [I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy,

R., Matthews, P., and D. Wing, “Session Traversal Utilities for (NAT)
(STUN),” July 2008.). Therefore, a TURN server may require the
authentication and authorization of STUN requests. This authentication
is provided by mechanisms defined in the STUN specification itself, in
particular digest authentication.

Because TURN servers allocate resources, they can be susceptible to
denial-of-service attacks. All Allocate transactions are authenticated,
so that an unknown attacker cannot launch an attack. An authenticated
attacker can generate multiple Allocate requests, however. To prevent a
single malicious user from allocating all of the resources on the
server, it is RECOMMENDED that a server implement a per user limit on
the number of allocations that can active at one time. Such a mechanism
does not prevent a large number of malicious users from each requesting
a small number of allocations. Attacks such as these are possible using
botnets, and are difficult to detect and prevent. Implementors of TURN
should keep up with best practices around detection of anomalous botnet
attacks.

A client will use the transport address learned from the RELAYED-
ADDRESS attribute of the Allocate response to tell other users how to
reach them. Therefore, a client needs to be certain that this address
is valid, and will actually route to them. Such validation occurs
through the message integrity checks provided in the Allocate response.
They can guarantee the authenticity and integrity of the allocated
addresses. Note that TURN is not susceptible to the attacks described
in Section 12.2.3, 12.2.4, 12.2.5 or 12.2.6 of
[I-D.ietf-behave-rfc3489bis] (Rosenberg, J., Mahy, R., Matthews, P.,
and D. Wing, “Session Traversal Utilities for (NAT) (STUN),”

July 2008.) [[TODO: Update section number references to 3489bis]].
These attacks are based on the fact that a STUN server mirrors the
source IP address, which cannot be authenticated. STUN does not use the
source address of the Allocate request in providing the RELAYED-
ADDRESS, and therefore, those attacks do not apply.

TURN attempts to adhere as closely as possible to common firewall
policies, consistent with allowing data to flow. TURN has fairly
limited applicability, requiring a user to explicitly authorize
permission to receive data from a peer, one IP address at a time. Thus,
it does not provide a general technique for externalizing sockets.
Rather, it has similar security properties to the placement of an
address-restricted NAT in the network, allowing messaging in from a
peer only if the internal client has sent a packet out towards the IP
address of that peer. This limitation means that TURN cannot be used to
run, for example, SIP servers, NTP servers, FTP servers or other
network servers that service a large number of clients. Rather, it
facilitates rendezvous of NATted clients that use some other protocol,
such as SIP, to communicate IP addresses and ports for communications.
Confidentiality of the transport addresses learned through Allocate
transactions does not appear to be that important. If required, it can
be provided by running TURN over TLS.

TURN does not and cannot guarantee that UDP data is delivered in
sequence or to the correct address. As most TURN clients will only
communicate with a single peer, the use of a single channel number will
be very common. Consider an enterprise where Alice and Bob are involved
in separate calls through the enterprise NAT to their corporate TURN
server. If the corporate NAT reboots, it is possible that Bob will
obtain the exact NAT binding originally used by Alice. If Alice and Bob
were using identical channel numbers, Bob will receive unencapsulated
data intended for Alice and will send data accidentally to Alice's
peer. This is not a problem with TURN. This is precisely what would
happen if there was no TURN server and Bob and Alice instead provided a
(STUN) reflexive transport address to their peers. If detecting this
misdelivery is a problem, the client and its peer need to use message
integrity on their data.

Relay servers are useful even for users not behind a NAT. They can
provide a way for truly anonymous communications. A user can cause a
call to have its media routed through a TURN server, so that the user's
IP addresses are never revealed.

Any relay addresses learned through an Allocate request will not
operate properly with IPSec Authentication Header (AH) (Kent, S., “IP
Authentication Header,” December 2005.) [RFC4302] in transport or
tunnel mode. However, tunnel-mode IPSec ESP (Kent, S., “IP
Encapsulating Security Payload (ESP),” December 2005.) [RFC4303] should
still operate.

16. IANA Considerations TOC

Since TURN is an extension to STUN [I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” July 2008.), the methods, attributes and
error codes defined in this specification are new method, attributes,
and error codes for STUN. This section directs IANA to add these new
protocol elements to the IANA registry of STUN protocol elements.

The codepoints for the new STUN methods defined in this specification
are listed in Section 12 (New STUN Methods).

The codepoints for the new STUN attributes defined in this
specification are listed in Section 13 (New STUN Attributes).

The codepoints for the new STUN error codes defined in this
specification are listed in Section 14 (New STUN Error Response Codes).
Extensions to TURN can be made through IETF consensus.

T0C

17. IAB Considerations

The IAB has studied the problem of "Unilateral Self Address Fixing",
which is the general process by which a client attempts to determine
its address in another realm on the other side of a NAT through a
collaborative protocol reflection mechanism [RFC3424] (Daigle, L. and
IAB, “IAB Considerations for UNilateral Self-Address Fixing (UNSAF)
Across Network Address Translation,” November 2002.). The TURN
extension is an example of a protocol that performs this type of
function. The IAB has mandated that any protocols developed for this
purpose document a specific set of considerations.

TURN is an extension of the STUN protocol. As such, the specific usages
of STUN that use the TURN extensions need to specifically address these
considerations. Currently the only STUN usage that uses TURN is ICE
(Rosenberg, J., “Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traversal for Offer/
Answer Protocols,” October 2007.) [I-D.ietf-mmusic-ice].

18. Example TOC
TBD
19. Open Issues TOC

This section lists the known issues in this version of the
specification.

1. Detecting in-use channels. Do we need a way for a client to
determine if a channel is currently bound? Right now, the only
way is to try to bind it to an address.

2. Public TURN servers. The spec currently hints (but does not say
anything solid) that the way to run a publicly-accessable TURN
server is to not require authentication. But perhaps a better
way is to require authentication but have some unspecified
method to allow any user to create an account on the server.

3. IPv6. Currently, TURN supports IPv4-to-IPv4 relaying, and IPv6-
to-IPv6 relaying, but does not support IPv4-to-IPv6 relaying.
To ensure this, a server requires that the family of the
relayed address match that of the 5-tuple as seen by the
server. However, some people would like to see a different
rule.

4. ALTERNATE-SERVER and Anycast. The details of ALTERNATE-SERVER
support are still under discussion. In particular, some people
would like to use ALTERNATE-SERVER to support anycast discovery
of a TURN server.

5. Authenticated Permission Refresh. Currently, permissions can be
refreshed by unauthenticated Send indications and ChannelData
messages. Some have suggested that this is a security issue.

6. PMTUD for non-preserving allocations. Some people would like a
way to do PMTUD even if the allocation is non-preserving, and
have suggested that a way for the client to indicate to the
server (in a Send indication) that the DF bit should be set
when sending to the peer might allow this.

7. Security. The security consideration section is out-of-date
with the changes to the rest of the draft, and it has been
suggested that TURN might require TLS to provide proper
security. Updating the security consideration section will
answer this question.

20. Changes from Previous Versions TOC

Note to RFC Editor: Please remove this section prior to publication of
this document as an RFC.

This section lists the changes between the various versions of this
specification.

20.1. Changes from -068 to -09 TOC

*Added text to properly define the ICMP attribute. This attribute
was introduced in TURN-08, but not fully defined due to an
oversight. Clarified that the attribute can appear in a Data
indication, but not a Send indication. Added text to the section
on receiving a Data indication that points out that this
attribute may be present.

*Changed the wording around the handling of the DSCP field to
allow the server to set the DSCP to an arbitrary value if the
next hop is a Diff-Serv classifier and marker.

*When the server generates a 508 response due to an unsupported
flag in the REQUESTED-PROPS attribute, the server now includes

the REQUESTED-PROPS attribute in the response with all the flags
it supports set to 1. This allows the client to see if the server
does not understand one of its flags. Similarly, the client is
now allowed to immediately retry the request if it modifies the
included REQUESTED-PROPS attribute.

*Clarified that the REQUESTED-PROPS attribute can be used in
conjunction with the RESERVATION-TOKEN attribute as long as both
the E and R bits are 0. The spec previously contradicted itself
on this point.

*Clarified that when the server receives a ChannelData message
with a length field of O, it sends a UDP Datagram to the peer
that contains no application data.

*Rewrote some text around relaying incoming UDP Datagrams to avoid
duplication of text in the Data indication and Channel sections.

*Added a note that points out that the on-going work on
randomizing port allocations [I-D.ietf-tsvwg-port-randomization]
(Larsen, M. and F. Gont, “Transport Protocol Port Randomization
Recommendations,” April 2010.) may be applicable to TURN.

*Clarified that the Allocate request containing a RESERVATION-
TOKEN attribute can use any 5-tuple, and that 5-tuple need not
have any specific relationship to the 5-tuple of the Allocate
request that created the reservation.

*Added a note that discusses retransmitted Allocate requests over
UDP where the first request receives a failure response, but the
second receives a success response. The server may elect to
remember transmitted failure responses to avoid this situation.

*Added text about the usage of the SOFTWARE-TYPE attribute
(formerly known as the SERVER attribute) in TURN messages.

*Rewrote the text in the Overview that motivates why TURN supports
TCP and TLS between the client and the server. The previous text
had been identified by various readers as inadequate and
misleading.

*Rewrote the section how a server handles a Refresh request to
clarify processing in various error conditions. The new text
makes it clear that it is OK to delete a non-existent allocation.
It also clarifies how to handle retransmissions of Refresh
requests over UDP.

*Renamed the "RELAY-ADDRESS" attribute to "RELAYED-ADDRESS", since
the text consistently uses the term "relayed transport address"
for the concept and ICE uses the term "relayed candidate".

*Changed the codepoint assigned to the error code "Wrong
Credentials" from 438 to 441 to avoid a conflict with the "Stale
Nonce" error code of STUN.

*Changed the text to consistently use non-capitalized "request",
"response" and "indication", except in headings, error code
names, etc.

*Added a note mentioning that TURN packets can be demuxed from
other packets arriving on the same socket by looking at the 5-

tuple of the arriving packet.

*Clarified that there are no required attributes is a ChannelBind
success response.

20.2. Changes from -07 to -08 TOC

*Removed the BANDWIDTH attribute and all associated text
(including error code 507 "Insufficient Bandwidth Capacity"), as
the requirements for this feature were not clear and it was felt
the feature could be easily added later.

*Changed the format of the REQUESTED-PROPS attribute from a one-
byte field to a set of bit flags. Changed the semantics of the
unused portion of the value from RFFU to "MUST be 0" to give a
more desirable behavior when new flags are defined.

*Introduced the concept of Preserving vs. Non-Preserving
allocations. As a result, completely revamped the rules for how
to set the fields in the IP header, and added rules for relaying
ICMP messages when the allocation is Preserving.

20.3. Changes from -06 to -07 TOC

*Rewrote the General Behavior section, making various changes in
the process.

*Changed the usage of authentication from MUST to SHOULD.

*Changed the requirement that subsequent requests use the same
username and password from MUST to SHOULD to allow for the
possibility of changing the credentials using some unspecified
mechanism.

*Introduced a 438 (Wrong Credentials) error which is used when a
non-Allocate request authenticates but does not use the same
username and password as the Allocate request. Having a separate
error code for this case avoids the client being confused over
what the error actually is.

*The server must now prevent the relayed transport address and the
5-tuple from being reused in different allocations for 2 minutes
after the allocation expires.

*Changed the usage of FINGERPRINT from MUST NOT to MAY, to allow
for the possible multiplexing of TURN with some other protocol.

*Rewrote much of the section on Allocations, splitting it into
three new sections (one on allocations in general, one on
creating an allocation, and one on refreshing an allocation).

*Replaced the mechanism for requesting relayed transport addresses
with specific properties. The new mechanism is less powerful: a
client can request an even port, or a pair of ports, but cannot
request a single odd port or a specific port as was possible
under the old mechanism. Nor can the client request a specific IP
address.

*Changed the rules for handling ALTERNATE-SERVER, removing the
requirement that the referring server have "positive knowledge"
about the state of the alternate server. The new rules instead
rely on text in STUN to prevent referral loops.

*Changed the rules for allocation lifetimes. Allocations lifetimes
are now a minimum of 10 minutes; the client can ask for longer
values, but requests for shorter values are ignored. The text now
recommends that the client refresh an allocation one minute
before it expires.

*Put in temporary procedures for handling the BANDWIDTH attribute,
modelled on the LIFETIME attribute. These procedures are mostly
placeholders and likely to change in the next revision.

*Added a detailed description of how a client reacts to the
various errors it can receive in reply to an Allocate request.
This replaces the various descriptions that were previously
scattered throughout the document, which were inconsistent and
sometimes contradictory.

*Added a new section that gives the normative rules for
permissions.

*Changed the rules around permission lifetimes. The text used to
recommend a value of one minute; it MUST now be 5 minutes.

*Removed the errors "Channel Missing or Invalid", "Peer Address
Missing or Invalid" and "Lifetime Malformed or Invalid" and used
400 "Bad Request" instead.

*Rewrote portions of the section on Send and Data indications and
the section on Channels to try to make the client vs. server
behavior clearer.

*Channel bindings now expire after 10 minutes, and must be
refreshed to keep them alive.

*Binding a channel now installs or refreshes a permission for the
IP address of corresponding peer.

*Changed the wording describing the situation when the client
sends a ChannelData message before receiving the ChannelBind
success response. -06 said that client SHOULD NOT do this; -07
now says that a client MAY, but describes the consequences of
doing it.

*Added a section discussing the setting of fields in the IP
header.

*Replaced the REQUESTED-PORT-PROPS attribute with the REQUESTED-
PROPS attribute that has a different format and semantics, but
reuses the same code point.

*Replaced the REQUESTED-IP attribute with the RESERVATION-TOKEN
attribute, which has a different format and semantics, but reuses
the same code point.

*Removed error codes 443 and 444, and replaced them with 508
(Insufficient Port Capacity). Also changed the error text for
code 507 from "Insufficient Capacity" to "Insufficient Bandwidth
Capacity".

20.4. Changes from -05 to -06 TOC

*Changed the mechanism for allocating channels to the one proposed
by Eric Rescorla at the Dec 2007 IETF meeting.

*Removed the framing mechanism (which was used to frame all
messages) and replaced it with the ChannelData message. As part
of this change, noted that the demux of ChannelData messages from
TURN messages can be done using the first two bits of the
message.

*Rewrote the sections on transmitted and receiving data as a
result of the above to changes, splitting it into a section on
Send and Data indications and a separate section on channels.

*Clarified the handling of Allocate request messages. In
particular, subsequent Allocate request messages over UDP with
the same transaction id are not an error but a retransmission.

*Restricted the range of ports available for allocation to the
Dynamic and/or Private Port range, and noted when ports outside
this range can be used.

*Changed the format of the REQUESTED-TRANSPORT attribute. The
previous version used 00 for UDP and 01 for TCP; the new version
uses protocol numbers from the IANA protocol number registry. The
format of the attribute also changed.

*Made a large number of changes to the non-normative portion of
the document to reflect technical changes and improve the

presentation.

*Added the Issues section.

20.5. Changes from -04 to -05 TOC

*Removed the ability to allocate addresses for TCP relaying. This
is now covered in a separate document. However, communication
between the client and the server can still run over TCP or TLS/
TCP. This resulted in the removal of the Connect method and the
TIMER-VAL and CONNECT-STAT attributes.

*Added the concept of channels. All communication between the
client and the server flows on a channel. Channels are numbered
0..65535. Channel 0 is used for TURN messages, while the
remaining channels are used for sending unencapsulated data to/
from a remote peer. This concept adds a new Channel Confirmation
method and a new CHANNEL-NUMBER attribute. The new attribute is
also used in the Send and Data methods.

*The framing mechanism formally used just for stream-oriented
transports is now also used for UDP, and the former Type and
Reserved fields in the header have been replaced by a Channel
Number field. The length field is zero when running over UDP.

*TURN now runs on its own port, rather than using the STUN port.
The use of channels requires this.

*Removed the SetActiveDestination concept. This has been replaced
by the concept of channels.

*Changed the allocation refresh mechanism. The new mechanism uses
a new Refresh method, rather than repeating the Allocation
transaction.

*Changed the syntax of SRV requests for secure transport. The new
syntax is "_turns._tcp" rather than the old "_turn._tls". This
change mirrors the corresponding change in STUN SRV syntax.

*Renamed the old REMOTE-ADDRESS attribute to PEER-ADDRESS, and
changed it to use the XOR-MAPPED-ADDRESS format.

*Changed the RELAY-ADDRESS attribute to use the XOR-MAPPED-ADDRESS
format (instead of the MAPPED-ADDRESS format)).

*Renamed the 437 error code from "No Binding" to "Allocation
Mismatch".

*Added a discussion of what happens if a client's public binding
on its outermost NAT changes.

*The document now consistently uses the term "peer" as the name of
a remote endpoint with which the client wishes to communicate.

*Rewrote much of the document to describe the new concepts. At the
same time, tried to make the presentation clearer and less
repetitive.

21. Open Issues T0C

NOTE to RFC Editor: Please remove this section prior to publication of
this document as an RFC.

Bandwidth: How should bandwidth be specified? What are the right rules
around bandwidth?

Alternate Server: Do we still want this mechanism? Is the current
proposal acceptable? Note that the usage of the ALTERNATE-SERVER
attribute in this document is inconsistent with its usage in STUN. In
STUN, if the ALTERNATE-SERVER attribute is used, then the error that
the server would otherwise generate is replaced by a 300 (Try
Alternate) code. In this document, the 300 error code is not used, and
the server returns an appropriate error code and then includes the
ALTERNATE-SERVER attribute in the response. In this way, the client can
see the actual error code, rather than always seeing error code 300,

and can thus make a more intelligent decision on whether it wishes to
try the alternate server.

Public TURN servers: The text currently says that a server "SHOULD" use
the Long-Term Credential mechanism, with the unstated idea that a
public TURN server would not use it. But this really weakens the
security of TURN. Is there a better way to allow public servers? Or
should we just drop the notion of a public server entirely?

22. Acknowledgements TOC

The authors would like to thank the various participants in the BEHAVE
working group for their many comments on this draft. Marc Petit-
Huguenin, Remi Denis-Courmont, Derek MacDonald, Cullen Jennings, Lars
Eggert, Magnus Westerlund, and Eric Rescorla have been particularly
helpful, with Eric also suggesting the channel allocation mechanisnm,
and Cullen suggesting the REQUESTED-PROPS mechanism. Christian Huitema
was an early contributor to this document and was a co-author on the
first few drafts. Finally, the authors would like to thank Dan Wing for
both his contributions to the text and his huge help in restarting
progress on this draft after work had stalled.

23. References TOC

23.1. Normative References

TOC
[I-D.ietf- Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
behave- “Session Traversal Utilities for (NAT) (STUN),”
rfc3489bis] draft-ietf-behave-rfc3489bis-18 (work in progress),
July 2008 (TXT).
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate

Reguirement Levels,” BCP 14, RFC 2119, March 1997
(IXT, HTML, XML).

[RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
“Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers,” RFC 2474,
December 1998 (TXT, HTML, XML).

[RFC3697] Rajahalme, J., Conta, A., Carpenter, B., and S.
Deering, “IPv6 Flow Label Specification,” RFC 3697,
March 2004 (TXT).

http://www.ietf.org/internet-drafts/draft-ietf-behave-rfc3489bis-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-rfc3489bis-18.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:kmn@cisco.com
mailto:slblake@torrentnet.com
mailto:fred@cisco.com
mailto:black_david@emc.com
http://tools.ietf.org/html/rfc2474
http://tools.ietf.org/html/rfc2474
http://www.rfc-editor.org/rfc/rfc2474.txt
http://xml.resource.org/public/rfc/html/rfc2474.html
http://xml.resource.org/public/rfc/xml/rfc2474.xml
http://tools.ietf.org/html/rfc3697
http://www.rfc-editor.org/rfc/rfc3697.txt

23.2. Informative References TOC

[RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D.,
Groot, G., and E. Lear, “Address Allocation for
Private Internets,” BCP 5, RFC 1918,
February 1996 (TXT).

[RFC1981] McCann, J., Deering, S., and J. Moqul, “Path MTU
Discovery for IP version 6,” RFC 1981,
August 1996 (TXT).

[RFC3264] Rosenberg, J. and H. Schulzrinne, “An Offer/
Answer Model with Session Description Protocol
(SDP),"” RFC 3264, June 2002 (TXT).

[RFC4302] Kent, S., “IP Authentication Header,” RFC 4302,
December 2005 (TXT).

[RFC4303] Kent, S., “IP Encapsulating Security Payload
(ESP),"” RFC 4303, December 2005 (TXT).

[RFC3424] Daigle, L. and IAB, “IAB Considerations for

UNilateral Self-Address Fixing (UNSAF) Across
Network Address Translation,” RFC 3424,
November 2002 (TXT).

[I-D.ietf-mmusic- Rosenberg, J., “Interactive Connectivity

ice] Establishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal for Offer/
Answer Protocols,” draft-ietf-mmusic-ice-19 (work
in progress), October 2007 (TXT).

[RFC4787] Audet, F. and C. Jennings, “Network Address
Translation (NAT) Behavioral Requirements for
Unicast UDP,” BCP 127, RFC 4787, January 2007

(TXT).
[I-D.ietf-behave- Perreault, S. and J. Rosenberg, “Traversal Using
turn-tcp] Relays around NAT (TURN) Extensions for TCP

Allocations,” draft-ietf-behave-turn-tcp-06 (work
in progress), March 2010 (TXT).
[I-D.ietf-behave- Camarillo, G., Novo, 0., and S. Perreault,
turn-ipvé6] “Traversal Using Relays around NAT (TURN)
Extension for IPv6,” draft-ietf-behave-turn-
ipv6-09 (work in progress), March 2010 (TXT).
[I-D.ietf-tsvwg- Eggert, L. and G. Fairhurst, “Unicast UDP Usage
udp-guidelines] Guidelines for Application Designers,” draft-
ietf-tsvwg-udp-guidelines-11 (work in progress),
October 2008 (TXT).

[I-D.ietf-tsvwg- Larsen, M. and F. Gont, “Transport Protocol Port
port- Randomization Recommendations,” draft-ietf-tsvwg-
randomization] port-randomization-07 (work in progress),

April 2010 (TXT).
[RFC1191] Mogul, J. and S. Deering, “Path MTU discovery,”

RFC 1191, November 1990 (TXT).

mailto:yakov@cisco.com
mailto:rgm3@is.chrysler.com
mailto:Daniel.Karrenberg@ripe.net
mailto:GeertJan.deGroot@ripe.net
mailto:lear@sgi.com
http://tools.ietf.org/html/rfc1918
http://tools.ietf.org/html/rfc1918
http://www.rfc-editor.org/rfc/rfc1918.txt
mailto:mccann@zk3.dec.com
mailto:deering@parc.xerox.com
mailto:mogul@pa.dec.com
http://tools.ietf.org/html/rfc1981
http://tools.ietf.org/html/rfc1981
http://www.rfc-editor.org/rfc/rfc1981.txt
http://tools.ietf.org/html/rfc3264
http://tools.ietf.org/html/rfc3264
http://tools.ietf.org/html/rfc3264
http://www.rfc-editor.org/rfc/rfc3264.txt
http://tools.ietf.org/html/rfc4302
http://www.rfc-editor.org/rfc/rfc4302.txt
http://tools.ietf.org/html/rfc4303
http://tools.ietf.org/html/rfc4303
http://www.rfc-editor.org/rfc/rfc4303.txt
http://tools.ietf.org/html/rfc3424
http://tools.ietf.org/html/rfc3424
http://tools.ietf.org/html/rfc3424
http://www.rfc-editor.org/rfc/rfc3424.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://tools.ietf.org/html/rfc4787
http://tools.ietf.org/html/rfc4787
http://tools.ietf.org/html/rfc4787
http://www.rfc-editor.org/rfc/rfc4787.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-tcp-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-tcp-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-tcp-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-tcp-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-ipv6-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-ipv6-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-ipv6-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-udp-guidelines-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-udp-guidelines-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-udp-guidelines-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-port-randomization-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-port-randomization-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-port-randomization-07.txt
mailto:mogul@decwrl.dec.com
mailto:deering@xerox.com
http://tools.ietf.org/html/rfc1191
http://www.rfc-editor.org/rfc/rfc1191.txt

[RFC4821] Mathis, M. and J. Heffner, “Packetization Layer
Path MTU Discovery,” RFC 4821, March 2007 (IXT).

[RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas,
D., and L. Jones, “SOCKS Protocol Version 5,”
RFC 1928, March 1996 (TXT).

[Port-Numbers] “IANA Port Numbers Registry.”

[Protocol-

Numbers]

“IANA Protocol Numbers Registry,” 2005.

Authors' Addresses

_T0C
Jonathan Rosenberg
Cisco Systems, Inc.
Edison, NJ
USA
Email: jdrosen@cisco.com
URI: http://www.jdrosen.net
Rohan Mahy
Plantronics, Inc.
Email: rohan@ekabal.com
Philip Matthews
(Unaffiliated)
Fax:
Email: philip matthews@magma.ca
URI:
Full Copyright Statement
_T0C

Copyright © The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

This document and the information contained herein are provided on an
“AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

http://tools.ietf.org/html/rfc4821
http://tools.ietf.org/html/rfc4821
http://www.rfc-editor.org/rfc/rfc4821.txt
mailto:mleech@bnr.ca
http://tools.ietf.org/html/rfc1928
http://www.rfc-editor.org/rfc/rfc1928.txt
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/protocol-numbers
mailto:jdrosen@cisco.com
http://www.jdrosen.net
mailto:rohan@ekabal.com
mailto:philip_matthews@magma.ca

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made
any independent effort to identify any such rights. Information on the
procedures with respect to rights in RFC documents can be found in

BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at http://
www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at ietf-

ipr@ietf.org.

http://www.ietf.org/ipr
http://www.ietf.org/ipr
mailto:ietf-ipr@ietf.org
mailto:ietf-ipr@ietf.org

	Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)draft-ietf-behave-turn-09
	Status of this Memo
	Abstract
	Table of Contents
	1. Introduction
	2. Overview of Operation
	2.1. Transports
	2.2. Allocations
	2.3. Exchanging Data with Peers
	2.4. Channels
	2.5. Permissions
	2.6. Preserving vs. Non-Preserving Allocations
	3. Terminology
	4. General Behavior
	5. Allocations
	6. Creating an Allocation
	6.1. Sending an Allocate Request
	6.2. Receiving an Allocate Request
	6.3. Receiving an Allocate Response
	7. Refreshing an Allocation
	7.1. Sending a Refresh Request
	7.2. Receiving a Refresh Request
	7.3. Receiving a Refresh Response
	8. Permissions
	9. Send and Data Indications
	9.1. Sending a Send Indication
	9.2. Receiving a Send Indication
	9.3. Receiving a UDP Datagram
	9.4. Receiving a Data Indication
	10. Channels
	10.1. Sending a ChannelBind Request
	10.2. Receiving a ChannelBind Request
	10.3. Receiving a ChannelBind Response
	10.4. The ChannelData Message
	10.5. Sending a ChannelData Message
	10.6. Receiving a ChannelData Message
	10.7. Relaying Data from the Peer
	11. IP and ICMP
	11.1. IP
	11.2. ICMP
	12. New STUN Methods
	13. New STUN Attributes
	13.1. CHANNEL-NUMBER
	13.2. LIFETIME
	13.3. PEER-ADDRESS
	13.4. DATA
	13.5. RELAYED-ADDRESS
	13.6. REQUESTED-PROPS
	13.7. REQUESTED-TRANSPORT
	13.8. RESERVATION-TOKEN
	13.9. ICMP
	14. New STUN Error Response Codes
	15. Security Considerations
	16. IANA Considerations
	17. IAB Considerations
	18. Example
	19. Open Issues
	20. Changes from Previous Versions
	20.1. Changes from -08 to -09
	20.2. Changes from -07 to -08
	20.3. Changes from -06 to -07
	20.4. Changes from -05 to -06
	20.5. Changes from -04 to -05
	21. Open Issues
	22. Acknowledgements
	23. References
	23.1. Normative References
	23.2. Informative References
	Authors' Addresses
	Full Copyright Statement
	Intellectual Property

