
Behave WG B. Huang
Internet-Draft H. Deng
Obsoletes: 3338, 2767 China Mobile
(if approved) T. Savolainen
Intended status: Standards Track Nokia
Expires: July 19, 2012 January 16, 2012

Dual Stack Hosts Using "Bump-in-the-Host" (BIH)
draft-ietf-behave-v4v6-bih-09

Abstract

 Bump-In-the-Host (BIH) is a host-based IPv4 to IPv6 protocol
 translation mechanism that allows a class of IPv4-only applications
 that work through NATs to communicate with IPv6-only peers. The host
 on which applications are running may be connected to IPv6-only or
 dual-stack access networks. BIH hides IPv6 and makes the IPv4-only
 applications think they are talking with IPv4 peers by local
 synthesis of IPv4 addresses. This document obsoletes RFC 2767 and

RFC 3338.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 19, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Huang, et al. Expires July 19, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3338
https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc3338
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft BIH January 2012

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Huang, et al. Expires July 19, 2012 [Page 2]

Internet-Draft BIH January 2012

Table of Contents

1. Introduction . 4
1.1. Terminology . 5
1.2. Acknowledgement of previous work 5

2. Components of the Bump-in-the-Host 6
2.1. Function Mapper . 8
2.2. Protocol translator 8
2.3. Extension Name Resolver 8
2.3.1. Special exclusion sets for A and AAAA records 9
2.3.2. DNSSEC support . 10
2.3.3. Reverse DNS lookup 10
2.3.4. DNS caches and synthetic IPv4 addresses 10

2.4. Address Mapper . 11
3. Behavior and Network Examples 12
4. Considerations . 16
4.1. Socket API Conversion 16
4.2. Socket bindings . 16
4.3. ICMP Message Handling 16
4.4. IPv4 Address Pool and Mapping Table 16
4.5. Multi-interface . 17
4.6. Multicast . 18

5. Application-Level Gateway requirements considerations 19
6. IANA Considerations . 20
7. Security Considerations 21
7.1. Implications on End-to-End Security 21
7.2. Filtering . 21
7.3. Attacks on BIH . 21
7.4. DNS considerations . 22

8. Changes since RFC2767 and RFC3338 23
9. Acknowledgments . 24
10. References . 25
10.1. Normative References 25
10.2. Informative References 25

Appendix A. API list intercepted by BIH 27
 Authors' Addresses . 29

https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc3338

Huang, et al. Expires July 19, 2012 [Page 3]

Internet-Draft BIH January 2012

1. Introduction

 This document describes Bump-in-the-Host (BIH), a successor and
 combination of the Bump-in-the-Stack (BIS)[RFC2767] and Bump-in-the-
 API (BIA) [RFC3338] technologies, which enable IPv4-only legacy
 applications to communicate with IPv6-only servers by synthesizing
 IPv4 addresses from AAAA records. Section 8 describes the reasons
 for making RFC2767 and RFC3338 obsolete.

 The supported class of applications includes those that use DNS for
 IP address resolution and that do not embed IP address literals in
 application-protocol payloads. This includes legacy client-server
 applications using the DNS that are agnostic to the IP address family
 used by the destination and that are able to do NAT traversal. The
 synthetic IPv4 addresses shown to applications are taken from the

RFC1918 private address pool in order to ensure that possible NAT
 traversal techniques will be initiated.

 IETF recommends using dual-stack or tunneling based solutions for
 IPv6 transition and specifically recommends against deployments
 utilizing double protocol translation. Use of BIH together with a
 NAT64 is NOT RECOMMENDED [RFC6180].

 BIH includes two major implementation alternatives: a protocol
 translator between the IPv4 and the IPv6 stacks of a host, or an API
 translator between the IPv4 socket API module and the TCP/IP module.
 Essentially, IPv4 is translated into IPv6 at the socket API layer or
 at the IP layer, former of which is the recommended implementation
 alternative.

 When BIH is implemented at the socket API layer, the translator
 intercepts IPv4 socket API function calls and invokes corresponding
 IPv6 socket API function calls to communicate with IPv6 hosts.

 When BIH is implemented at the network layer the IPv4 packets are
 intercepted and converted to IPv6 using the IP conversion mechanism
 defined in Stateless IP/ICMP Translation Algorithm (SIIT) [RFC6145].
 The protocol translation has the same benefits and drawbacks as SIIT.

 The location of the BIH refers to the location of the protocol
 translation function. The location of the IPv4 address and DNS A
 record synthesis function is orthogonal to the location of the
 protocol translation, and may or may not happen at the same location.

 BIH can be used whenever an IPv4-only application needs to
 communicate with an IPv6-only server, independently of the address
 families supported by the access network. Hence the access network
 can be IPv6-only or dual-stack capable.

https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc3338
https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc3338
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc6180
https://datatracker.ietf.org/doc/html/rfc6145

Huang, et al. Expires July 19, 2012 [Page 4]

Internet-Draft BIH January 2012

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119] .

 This document uses terms defined in [RFC2460] and [RFC4213].

1.1. Terminology

 DNS synthesis

 DNS, A record, synthesis is a process where A type of DNS record
 is created by Extension Name Resolver to contain synthetic IPv4
 address.

 Real IPv4 address

 An IPv4 address of a remote node a host has learned, for example,
 from DNS response to an A query.

 Real IPv6 address

 An IPv6 address of a remote node a host has learned, for example,
 from DNS response to an AAAA query.

 Synthetic IPv4 address

 An IPv4 address that has meaning only inside a host and that is
 used to provide IPv4 representation of remote node's real IPv6
 address.

1.2. Acknowledgement of previous work

 This document is a direct derivative from Kazuaki TSHUCHIYA,
 Hidemitsu HIGUCHI, and Yoshifumi ATARASHI's Bump-in-the-Stack
 [RFC2767] and from Seungyun Lee, Myung-Ki Shin, Yong-Jin Kim, Alain
 Durand, and Erik Nordmark's Bump-in-the-API [RFC3338], which
 similarly provides IPv4-only applications on dual-stack hosts the
 means to operate over IPv6. Section 8 covers the changes since those
 documents.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc3338

Huang, et al. Expires July 19, 2012 [Page 5]

Internet-Draft BIH January 2012

2. Components of the Bump-in-the-Host

 Figure 1 shows the architecture of a host in which BIH is implemented
 as a socket API layer translator, i.e., as a "Bump-in-the-API".

 +--+
 | +--+ |
 | | | |
 | | IPv4 applications | |
 | | | |
 | +--+ |
 | +--+ |
 | | Socket API (IPv4, IPv6) | |
 | +--+ |
 | +-[API translator]------------------------+ |
 | | +-----------+ +---------+ +------------+ | | | | | | | |
 | | | Ext. Name | | Address | | Function | | |
 | | | Resolver | | Mapper | | Mapper | | |
 | | +-----------+ +---------+ +------------+ | |
 | +--+ |
 | +--------------------+ +-------------------+ |
 | | | | | |
 | | TCP(UDP)/IPv4 | | TCP(UDP)/IPv6 | |
 | | | | | |
 | +--------------------+ +-------------------+ |
 +--+

 Figure 1: Architecture of a dual stack host using protocol
 translation at socket layer

 Figure 2 shows the architecture of a host in which BIH is implemented
 as a network layer translator, i.e., a "Bump-in-the-Stack".

Huang, et al. Expires July 19, 2012 [Page 6]

Internet-Draft BIH January 2012

 +--+
 | +--+ |
 | | IPv4 applications | |
 | | Host's main DNS resolver | |
 | +--+ |
 | +--+ |
 | | TCP/UDP | |
 | +--+ |
 | +--+ +---------+ |
 | | IPv4 | | | | | |
 | +--+ | Address | |
 | +------------------+ +---------------------+ | Mapper | |
 | | Protocol | | Extension Name | | | |
 | | Translator | | Resolver | | | |
 | +------------------+ +---------------------+ | | |
 | +--+ | | |
 | | IPv4 / IPv6 | | | |
 | +--+ +---------+ |
 +--+

 Figure 2: Architecture of a dual-stack host using protocol
 translation at the network layer

 Dual stack hosts defined in RFC 4213 [RFC4213] need applications,
 TCP/IP modules and addresses for both IPv4 and IPv6. The proposed
 hosts in this document have an API or network-layer translator to
 allow legacy IPv4 applications to communicate with IPv6-only peers.
 The BIH architecture consists of an Extension Name Resolver, an
 Address Mapper, and depending on implementation either a Function
 Mapper or a Protocol Translator. It is worth noting that the
 Extension Name Resolver's placement is orthogonal to the placement of
 protocol translation. For example, the Extension Name Resolver may
 reside in the socket API while protocol translation takes place at
 the network layer.

 The choice between the socket API and the network layer architectures
 varies case by case. While the socket API architecture alternative
 is the recommended one, it may not always be possible to choose.
 This may be the case, for example, when the used operating system
 does not allow modifications to be done for API implementations, but
 does allow addition of virtual network interfaces and related
 software modules. On the other hand, sometimes it may not be
 possible to introduce protocol translators inside the operating
 system, but it may be easy to modify implementations behind the API
 provided for applications. The choice of architecture also depends
 on who is creating implementation of BIH. For example, an
 application framework provider, an operating system provider, and a
 device vendor may all choose different approaches due their different

https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4213

Huang, et al. Expires July 19, 2012 [Page 7]

Internet-Draft BIH January 2012

 positions.

2.1. Function Mapper

 The function mapper translates an IPv4 socket API function into an
 IPv6 socket API function.

 When detecting IPv4 socket API function calls from IPv4 applications,
 the function mapper MUST intercept the function calls and invoke IPv6
 socket API functions that correspond to the IPv4 socket API
 functions.

 The function mapper MUST NOT perform function mapping when the
 application is initiating communications to the address range used by
 local synthesis and the address mapping table does not have an entry
 mathching the address.

 See Appendix A for an informational list of functions that would be
 appropriate to intercept by the function mapper.

2.2. Protocol translator

 The protocol translator translates IPv4 into IPv6 and vice versa
 using the IP conversion mechanism defined in SIIT [RFC6145]. To
 avoid unnecessary fragmentation, the host's IPv4 module SHOULD be
 configured with a small enough MTU (MTU of the IPv6 enabled link - 20
 bytes).

 Protocol translation cannot be performed for IPv4 packets sent to the
 IPv4 address range used by local synthesis and for which a mapping
 table entry does not exist. The implementation SHOULD attempt to
 route such packets via IPv4 interfaces instead.

2.3. Extension Name Resolver

 The Extension Name Resolver (ENR) returns an answer in response to
 the IPv4 application's name resolution request.

 In the case of the socket API layer implementation alternative, when
 an IPv4 application tries to do a forward lookup to resolve names via
 the resolver library (e.g., gethostbyname()), BIH intercepts the
 function call and instead calls the IPv6 equivalent functions (e.g.,
 getaddrinfo()) that will resolve both A and AAAA records. This
 implementation alternative is name resolution protocol agnostic, and
 hence supports techniques such as "hosts-file", NetBIOS, mDNS, and
 anything else the underlying operating system uses.

 In the case of the network layer implementation alternative, the ENR

https://datatracker.ietf.org/doc/html/rfc6145

Huang, et al. Expires July 19, 2012 [Page 8]

Internet-Draft BIH January 2012

 intercepts the A query and creates an additional AAAA query with
 similar content. The ENR will then collect replies to both A and
 AAAA queries and, depending on results, either return an A reply
 unmodified or synthesize a new A reply. If no reply for A query is
 received after ENR implementation specific timeout, after reception
 of positive AAAA response, the ENR MAY choose to proceed as if there
 were only AAAA record available for the destination.

 The network layer implementation alternative will only be able to
 catch applications' name resolution requests that result in actual
 DNS queries, hence is more limited when compared to the socket API
 layer implementation alternative. Hence the socket API layer
 alternative is RECOMMENDED.

 In either implementation alternative, if DNS A record reply contains
 non-excluded real IPv4 addresses the ENR MUST NOT synthesize IPv4
 addresses.

 The ENR asks the address mapper to assign a synthetic IPv4 address
 corresponding to each received IPv6 address if the A record query
 resulted in negative response, all received real IPv4 addresses were
 excluded, or the A query timed out. The timeout value is
 implementation specific and may be short in order to provide good
 user experience.

 In the case of the API layer implementation alternative, the ENR will
 simply make the API (e.g. gethostbyname) return the synthetic IPv4
 address. In the case of the network-layer implementation
 alternative, the ENR synthesizes an A record for the assigned
 synthetic IPv4 address, and delivers it up the stack. If the
 response contains a CNAME or a DNAME record, then the CNAME or DNAME
 chain is followed until the first terminating A or AAAA record is
 reached.

 Application | Network | ENR behavior
 query | response |
 ---------------+-----------------------+----------------------------
 IPv4 address(es) | IPv4 address(es) | return real IPv4 address(es)
 IPv4 address(es) | IPv6 address(es) | synthesize IPv4 address(es)
 IPv4 address(es) | IPv4/IPv6 address(es) | return real IPv4 address(es)

 Figure 3: ENR behavior illustration

2.3.1. Special exclusion sets for A and AAAA records

 An ENR implementation SHOULD by default exclude certain real IPv4 and
 IPv6 addresses seen on received A and AAAA records. The addresses to
 be excluded by default MAY include addresses such as those that

Huang, et al. Expires July 19, 2012 [Page 9]

Internet-Draft BIH January 2012

 should not appear in the DNS or on the wire (see [RFC6147] section
5.1.4 and [RFC5735]). Additional addresses MAY be excluded based on

 possibly configurable local policies.

2.3.2. DNSSEC support

 When the ENR is implemented at the network layer, the A record
 synthesis can cause similar issues as are described in [RFC6147]
 section 3. While running BIH, the main resolver of the host SHOULD
 NOT perform validation of A records as synthetic A records created by
 ENR would fail in validation. While not running BIH, host's resolver
 can use DNSSEC in the same way that any other resolver can. The ENR
 MAY support DNSSEC, in which case the (stub) resolver on a host can
 be configured to trust validations done by the ENR located at the
 network layer. In some cases the host's validating stub resolver can
 implement the ENR by itself.

 When the ENR is implemented at the socket API level, there are no
 issues with DNSSEC use, as the ENR itself uses socket APIs for DNS
 resolution. This approach is RECOMMENDED.

2.3.3. Reverse DNS lookup

 When an application requests a reverse lookup (PTR query) for an IPv4
 address, the ENR MUST check whether the queried IPv4 address can be
 found in the Address Mapper's mapping table and is a synthetic IPv4
 address. If an entry is found and the queried IPv4 address is
 synthetic, the ENR MUST initiate a corresponding reverse lookup for
 the real IPv6 address. In the case where the application requested a
 reverse lookup for an address not part of the synthetic IPv4 address
 pool, e.g., a global address, the request MUST be passed on
 unmodified.

 For example, when an application requests a reverse lookup for a
 synthetic IPv4 address, the ENR needs to intercept that query. The
 ENR asks the address mapper for the real IPv6 address that
 corresponds to the synthetic IPv4 address. The ENR shall perform a
 reverse lookup procedure for the destination's IPv6 address and
 return the name received as a response to the application that
 initiated the IPv4 query.

2.3.4. DNS caches and synthetic IPv4 addresses

 When BIH shuts down or address mapping table entries are cleared for
 any reason, DNS cache entries for synthetic IPv4 addresses MUST be
 flushed. There may be a DNS cache in the network-layer ENR itself,
 but also at the host's stub resolver.

https://datatracker.ietf.org/doc/html/rfc6147
https://datatracker.ietf.org/doc/html/rfc5735
https://datatracker.ietf.org/doc/html/rfc6147#section-3
https://datatracker.ietf.org/doc/html/rfc6147#section-3

Huang, et al. Expires July 19, 2012 [Page 10]

Internet-Draft BIH January 2012

2.4. Address Mapper

 The address mapper maintains an IPv4 address pool that can be used
 for IPv4 address synthesis. The pool consists of [RFC1918] IPv4
 addresses as per section 4.4. Also, the address mapper maintains a
 table consisting of pairs of synthetic IPv4 addresses and
 destinations' real IPv6 addresses.

 When the extension name resolver, translator, or the function mapper
 requests the address mapper to assign a synthetic IPv4 address
 corresponding to an IPv6 address, the address mapper selects and
 returns an IPv4 address out of the local pool, and registers a new
 entry into the table. The registration occurs in the following three
 cases:

 (1) When the extension name resolver gets only IPv6 addresses for the
 target host name and there is no existing mapping entry for the IPv6
 addresses. One or more synthetic IPv4 addresses will be returned to
 the application and mappings for synthetic IPv4 addresses to real
 IPv6 addresses are created.

 (2) When the extension name resolver gets both real IPv4 and IPv6
 addresses, but the real IPv4 addresses contain only excluded IPv4
 addresses (e.g., 127.0.0.1). The behavior will follow case (1).

 (3) When the function mapper is triggered by a received IPv6 packet
 and there is no existing mapping entry for the IPv6 source address
 (for example, the client sent a UDP request to an anycast address but
 a response was received from a unicast address).

 Other possible combinations are outside of BIH and BIH is not
 involved in those.

https://datatracker.ietf.org/doc/html/rfc1918

Huang, et al. Expires July 19, 2012 [Page 11]

Internet-Draft BIH January 2012

3. Behavior and Network Examples

 Figure 4 illustrates a very basic network scenario. An IPv4-only
 application is running on a host attached to the IPv6-only Internet
 and is talking to an IPv6-only server. Communication is made
 possible by Bump-In-the-Host.

 +----+ +-------------+
 | H1 |----------- IPv6 Internet -------- | IPv6 server |
 +----+ +-------------+
 v4 only
 application

 Figure 4: Network Scenario #1

 Figure 5 illustrates a possible network scenario where an IPv4-only
 application is running on a host attached to a dual-stack network,
 but the destination server is running on a private site that is
 numbered with public IPv6 addresses and not globally reachable IPv4
 addresses, such as [RFC1918] addresses, without port forwarding set
 up on the NAT44. The only means to contact the server is to use
 IPv6.

 +----------------------+ +------------------------------+
 | Dual Stack Internet | | IPv4 Private site (Net 10) |
 | | | IPv6 routed site |
 | +---------+ +----------+ |
 | +-| NAT44 |-------------+ | | | | |
 | +----+ | +---------+ | | |
 | | H1 |---------+ | | | Server | |
 | +----+ | +-----------+ | | |
 | v4 only +-|IPv6 Router|-----------+ | |
 | application +-----------+ +----------+ |
 | | | Dual Stack |
 | | | 10.1.1.1 |
 | | | 2001:DB8::1 |
 +----------------------+ +------------------------------+

 Figure 5: Network Scenario #2

 Illustrations of host behavior in both implementation alternatives
 are given here. Figure 6 illustrates a setup where BIH (including
 the ENR) is implemented at the sockets API layer, and Figure 7
 illustrates a setup where BIH (including the ENR) is implemented at
 the network layer.

https://datatracker.ietf.org/doc/html/rfc1918

Huang, et al. Expires July 19, 2012 [Page 12]

Internet-Draft BIH January 2012

"dual stack" "host6"
IPv4 Socket | [API Translator] | TCP(UDP)/IP Name
appli- API | ENR Address Function| (v6/v4) Server
cation | Mapper Mapper |
 | | | | | | | |
<<Resolve IPv4 addresses for "host6".>> | | |
------->	------->	Query IPv4 addresses for host6.				
		--->				
		Query 'A' and 'AAAA' records for host6				
		<---				
		Reply with the 'AAAA' record.				
		<<The 'AAAA' record is resolved.>>				
		+++++++>	Request synthetic IPv4 address			
			corresponding to the IPv6 address.			
			<<Assign one synthetic IPv4 address.>>			
		<+++++++	Reply with the synthetic IPv4 address.			
<-------	<-------	Reply with the IPv4 address				
<<Call IPv4 Socket API function >>						
=======>	=========================>	An IPv4 Socket API action				
			<+++++++	Request IPv6 addresses		
				corresponding to the		
				synthetic IPv4 addresses.		
			+++++++>	Reply with the IPv6 addresses.		
				<<Translate IPv4 into IPv6.>>		
An IPv6 Socket API action	=======================>					
				<<IPv6 data received		
				from network.>>		
An IPv6 Socket API action	<=======================					
				<<Translate IPv6 into IPv4.>>		

Huang, et al. Expires July 19, 2012 [Page 13]

Internet-Draft BIH January 2012

 | | | |<+++++++| Request synthetic IPv4 addresses
				corresponding to the	
				IPv6 addresses.	
			+++++++>	Reply with the IPv4 addresses.	
<=======	<=========================	An IPv4 Socket API action			

 Figure 6: Example of BIH as API addition

 "dual stack" "host6"
 IPv4 stub TCP/ ENR address translator IPv6
 app res. IPv4 mapper
 | | | | | | | |
 <<Resolve an IPv4 address for "host6".>> | |
 |-->| | | | | | |
 | |----------->| Query 'A' records for "host6". | Name
 | | | | | | | | Server
 | | | |--->|
 | | | | Query 'A' and 'AAAA' records for "host6"
 | | | | | | | | |
 | | | |<---|
 | | | | Reply only with 'AAAA' record. |
 | | | | | | | |
 | | | |<<Only 'AAAA' record is resolved.>> |
 | | | | | | | |
 | | | |-------->| Request synthetic IPv4 address
 | | | | | corresponding to each IPv6 address.
 | | | | | | | |
 | | | | |<<Assign synthetic IPv4 addresses.>>
 | | | | | | | |
 | | | |<--------| Reply with the synthetic IPv4 address.
 | | | | | | | |
 | | | |<<Create 'A' record for the IPv4 address.>>
 | | | | | | | |
 | |<-----------| Reply with the 'A' record. | |
 | | | | | | | |
 |<--|<<Reply with the IPv4 address | | |
 | | | | | | | |
 <<Send an IPv4 packet to "host6".>>| | |
 | | | | | | | |
 |=======>|========================>| An IPv4 packet. |
 | | | | | | | |
 | | | | |<++++++| Request IPv6 addresses
 | | | | | | corresponding to the
 | | | | | | synthetic IPv4 addresses.

Huang, et al. Expires July 19, 2012 [Page 14]

Internet-Draft BIH January 2012

 | | | | | | | |
 | | | | |++++++>| Reply with the IPv6|
 | | | | | | addresses. |
 | | | | | | | |
 | | | | | |<<Translate IPv4 into IPv6.>>
 | | | | | | | |
 | | | |An IPv6 packet. |==========>|========>|
 | | | | | | | |
 | | | | | <<Reply with an IPv6 packet.>>
 | | | | | | | |
 | | | |An IPv6 packet. |<==========|<========|
 | | | | | | | |
 | | | | | |<<Translate IPv6 into IPv4.>>
 | | | | | | | |
 | | | | |<++++++| Request synthetic IPv4
 | | | | | | addresses corresponding
 | | | | | | to the IPv6 addresses.
 | | | | | | | |
 | | | | |++++++>| Reply with the IPv4 addresses.
 | | | | | | | |
 |<=======|=========================| An IPv4 packet. |
 | | | | | | | |

 Figure 7: Example of BIH at the network layer

Huang, et al. Expires July 19, 2012 [Page 15]

Internet-Draft BIH January 2012

4. Considerations

4.1. Socket API Conversion

 IPv4 socket API functions are translated into IPv6 socket API
 functions that are semantically as identical as possible and vice
 versa. See Appendix B for the API list intercepted by BIH. However,
 some IPv4 socket API functions are not fully compatible with IPv6
 since IPv4 supports features that are not present in IPv6, such as
 SO_BROADCAST.

4.2. Socket bindings

 BIH SHOULD select a source address for a socket from the recommended
 source address pool if a socket used for communications has not been
 explicitly bound to any IPv4 address.

 The binding of an explicitly bound socket MUST NOT be changed by the
 BIH.

4.3. ICMP Message Handling

 ICMPv4 and ICMPv6 messages MUST be translated as defined by SIIT
 [RFC6145]. In the network layer implementation alternative, protocol
 translator MUST translate ICMPv6 packets to ICMPv4 and vice versa,
 and in the socket API implementation alternative, the socket API MUST
 handle conversions in similar fashion.

4.4. IPv4 Address Pool and Mapping Table

 The address pool consists of the [RFC1918] private IPv4 addresses.
 This pool can be implemented at different granularities in the node,
 e.g., a single pool per node, or at some finer granularity such as
 per-user or per-process. In the case of a large number of IPv4
 applications communicating with a large number of IPv6 servers, the
 available address space may be exhausted if the granularity is not
 fine enough. This should be a rare event and chances will decrease
 as IPv6 support increases. The applications may use IPv4 addresses
 they learn for a much longer period than DNS time-to-live indicates.
 Therefore, the mapping table entries should be kept active for a long
 period of time. For example, a web browser may initiate one DNS
 query and then create multiple TCP sessions over time to the address
 it learns. When address mapping table clean-up is required, the BIH
 may utilize techniques used by network address translators, such as
 described in [RFC2663], [RFC5382], and [RFC5508].

 The RFC1918 address space was chosen because generally legacy
 applications understand it as a private address space. A new

https://datatracker.ietf.org/doc/html/rfc6145
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/rfc5508
https://datatracker.ietf.org/doc/html/rfc1918

Huang, et al. Expires July 19, 2012 [Page 16]

Internet-Draft BIH January 2012

 dedicated address space would run a risk of not being understood by
 applications as private. 127/8 and 169.254/16 are rejected due to
 possible assumptions applications may make when seeing those.

 The RFC1918 addresses used by the BIH have a risk of conflicting with
 addresses used in the host's possible IPv4 interfaces and
 corresponding local networks. The conflicts can be mitigated, but
 not fully avoided, by using less commonly used portions of the

RFC1918 address space. Addresses from 172.16/12 are thought to be
 less likely to be in conflict than addresses from 10/8 or 192.168/16
 spaces. A source address can usually be selected in a non-
 conflicting manner, but a small possibility exists for synthesized
 destination addresses being in conflict with real addresses used in
 attached IPv4 networks.

 The RECOMMENDED IPv4 addresses are following:

 Primary source addresses: 172.21.112.0/20. Source addresses have to
 be allocated because applications use getsockname() calls and in the
 network layer mode an IP address of the IPv4 interface has to be
 shown (e.g., by 'ifconfig'). More than one address is allocated to
 allow implementation flexibility, e.g., for cases where a host has
 multiple IPv6 interfaces. The source addresses are from different
 subnets than destination addresses to ensure applications would not
 make on-link assumptions and would instead enable NAT traversal
 functions.

 Secondary source addresses: 10.170.224.0/20. These addresses are
 recommended if a host has a conflict with primary source addresses.

 Primary destination addresses: 10.170.160.0/20. The address mapper
 will select destination addresses primarily out of this pool.

 Secondary destination addresses: 172.21.80.0/20. The address mapper
 will select destination addresses out of this pool if the node has a
 dual-stack connection conflicting with primary destination addresses.

4.5. Multi-interface

 In the case of dual-stack destinations BIH MUST NOT do protocol
 translation from IPv4 to IPv6 when the host has any IPv4 interfaces,
 native or tunneled, available for use.

 It is possible that an IPv4 interface is activated during BIH
 operation, for example if a node moves to a coverage area of an IPv4-
 enabled network. In such an event, BIH MUST stop initiating protocol
 translation sessions for new connections and BIH MAY disconnect
 active sessions. The choice of disconnection is left for

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918

Huang, et al. Expires July 19, 2012 [Page 17]

Internet-Draft BIH January 2012

 implementations and it may depend on whether IPv4 address conflict
 occurs between addresses used by BIH and addresses used by the new
 IPv4 interface.

4.6. Multicast

 Protocol translation for multicast is not supported.

Huang, et al. Expires July 19, 2012 [Page 18]

Internet-Draft BIH January 2012

5. Application-Level Gateway requirements considerations

 No Application-Level Gateway (ALG) functionality is specified herein
 as ALG design is generally not encouraged for host-based translation
 and as BIH is intended for applications that do not include IP
 addresses in protocol payloads.

Huang, et al. Expires July 19, 2012 [Page 19]

Internet-Draft BIH January 2012

6. IANA Considerations

 There are no actions for IANA.

Huang, et al. Expires July 19, 2012 [Page 20]

Internet-Draft BIH January 2012

7. Security Considerations

 The security considerations of BIH follows closely, but not
 completely, those of NAT64 [RFC6146] and DNS64 [RFC6147]. The
 following sections are copied from RFC6146 and RFC6147 and modified
 for BIH scenario.

7.1. Implications on End-to-End Security

 Any protocols that protect IP header information are essentially
 incompatible with BIH. This implies that end-to-end IPsec
 verification will fail when the Authentication Header (AH) is used
 (both transport and tunnel mode) and when ESP is used in transport
 mode. This is inherent in any network-layer translation mechanism.
 End-to-end IPsec protection can be restored, using UDP encapsulation
 as described in [RFC3948]. The actual extensions to support IPsec
 are out of the scope of this document.

7.2. Filtering

 BIH creates binding state using packets flowing from the IPv4 side to
 the IPv6 side. In accordance with the procedures defined in this
 document following the guidelines defined in [RFC4787], a BIH
 implementation MUST offer "Endpoint-Independent Mapping".

 Implementations MAY also provide support for "Address-Dependent
 Mapping" following the guidelines defined in [RFC4787].

 The security properties, however, are determined by which packets the
 BIH allows in and which it does not. The security properties are
 determined by the filtering behavior and by the possible filtering
 configuration in the filtering portions of the BIH, not by the
 address mapping behavior.

7.3. Attacks on BIH

 The BIH implementation itself is a potential victim of different
 types of attacks. In particular, the BIH can be a victim of DoS
 attacks. The BIH implementation has a limited number of resources
 that can be consumed by attackers creating a DoS attack. The BIH has
 a limited number of IPv4 addresses that it uses to create the
 bindings. Even though the BIH performs address translation, it is
 possible for an attacker to consume the synthetic IPv4 address pool
 by triggering a host to issue DNS queries for names that cause ENR to
 synthesise A records. DoS attacks can also affect other limited
 resources available in the host running BIH such as memory or link
 capacity. For instance, it is possible for an attacker to launch a
 DoS attack on the memory of the BIH running device by sending

https://datatracker.ietf.org/doc/html/rfc6146
https://datatracker.ietf.org/doc/html/rfc6147
https://datatracker.ietf.org/doc/html/rfc6146
https://datatracker.ietf.org/doc/html/rfc6147
https://datatracker.ietf.org/doc/html/rfc3948
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4787

Huang, et al. Expires July 19, 2012 [Page 21]

Internet-Draft BIH January 2012

 fragments that the BIH will store for a given period. If the number
 of fragments is large enough, the memory of the host could be
 exhausted. BIH implementations MUST implement proper protection
 against such attacks, for instance, allocating a limited amount of
 memory for fragmented packet storage.

 Another consideration related to BIH resource depletion refers to the
 preservation of binding state. Attackers may try to keep a binding
 state alive forever by sending periodic packets that refresh the
 state. In order to allow the BIH to defend against such attacks, the
 BIH implementation MAY choose not to extend the session entry
 lifetime for a specific entry upon the reception of packets for that
 entry through the external interface. However, such an action would
 not allow one-way communication sessions to stay alive.

7.4. DNS considerations

 BIH operates in combination with the DNS, and is therefore subject to
 whatever security considerations are appropriate to the DNS mode in
 which the BIH is operating (i.e. recursive or stub-resolver mode).

 BIH has the potential to interfere with the functioning of DNSSEC,
 because BIH modifies DNS answers, and DNSSEC is designed to detect
 such modifications and to treat modified answers as bogus.

Huang, et al. Expires July 19, 2012 [Page 22]

Internet-Draft BIH January 2012

8. Changes since RFC2767 and RFC3338

 This document combines and obsoletes both [RFC2767] and [RFC3338].

 The changes in this document mainly reflect the following:

 1. RFC1918 addresses used used for synthesis

 The RFC3338 used unassigned IPv4 addresses (e.g., 0.0.0.1 -
 0.0.0.255) for synthetic IPv4 addresses. Those addresses should
 not have been used and that may cause problems with applications.
 It is preferable to use RFC1918 defined addresses instead, as
 described in Section 4.4.

 2. Support for reverse (PTR) DNS queries

 Neither RFC2767 or RFC3338 included support for reverse (PTR) DNS
 queries. This document adds the support at Section 2.3.3.

 3. DNSSEC support

RFC2767 did not include DNSSEC considerations, which are now
 included in Section 2.3.2

 4. Architectural recommendation

 This document recommends socket API layer implementation option
 over network layer translation, i.e. recommends approach
 introduced in RFC2767 over the approach of RFC3338.

 5. Standards track document

RFC2767 is classified as Informational RFC and RFC3338 as
 Experimental RFC. It was discussed and decided in the IETF that
 this technology should be on the standards track.

 6. Set of other extensions and improvements

 Set of lesser extensions, improvements, and clarifications have
 been introduced. These include but are not limited to: IPv4 and
 IPv6 address exclusion sets at Section 2.3.1, host's DNS cache
 considerations, ENR behaviour updates, updated security
 considerations, example updates, and deployment scenario updates.

https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc3338
https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc3338
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc3338
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc3338
https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc3338
https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc3338

Huang, et al. Expires July 19, 2012 [Page 23]

Internet-Draft BIH January 2012

9. Acknowledgments

 The authors thank the discussion from Gang Chen, Dapeng Liu, Bo Zhou,
 Hong Liu, Tao Sun, Zhen Cao, Feng Cao et al. in the development of
 this document.

 The efforts of Mohamed Boucadair, Dean Cheng, Lorenzo Colitti, Paco
 Cortes, Ralph Droms, Stephen Farrell, Fernando Gont, Marnix Goossens,
 Wassim Haddad, Ala Hamarsheh, Dave Harrington, Ed Jankiewizh, Suresh
 Krishnan, Julien Laganier, Yiu L. Lee, Jan M. Melen, Qibo Niu,
 Pierrick Seite, Christian Vogt, Magnus Westerlund, Dan Wing, and
 James Woodyatt in reviewing this document are gratefully
 acknowledged.

 Special acknowledgements go to Dave Thaler for his extensive review
 and support.

 The authors of RFC2767 acknowledged WIDE Project, Kazuhiko YAMAMOTO,
 Jun MURAI, Munechika SUMIKAWA, Ken WATANABE, and Takahisa MIYAMOTO.
 The authors of RFC3338 acknowledged implementation contributions by
 Wanjik Lee (wjlee@arang.miryang.ac.kr) and i2soft Corporation
 (www.i2soft.net).

 The authors of Bump-in-the-Wire (BIW) (draft-ietf-biw-00.txt, October
 2006), P. Moster, L. Chin, and D. Green, are acknowledged. Some
 ideas and clarifications from BIW have been adapted to this document.

https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc3338
https://datatracker.ietf.org/doc/html/draft-ietf-biw-00.txt

Huang, et al. Expires July 19, 2012 [Page 24]

Internet-Draft BIH January 2012

10. References

10.1. Normative References

 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
 E. Lear, "Address Allocation for Private Internets",

BCP 5, RFC 1918, February 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213, October 2005.

 [RFC4787] Audet, F. and C. Jennings, "Network Address Translation
 (NAT) Behavioral Requirements for Unicast UDP", BCP 127,

RFC 4787, January 2007.

 [RFC6145] Li, X., Bao, C., and F. Baker, "IP/ICMP Translation
 Algorithm", RFC 6145, April 2011.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, April 2011.

 [RFC6147] Bagnulo, M., Sullivan, A., Matthews, P., and I. van
 Beijnum, "DNS64: DNS Extensions for Network Address
 Translation from IPv6 Clients to IPv4 Servers", RFC 6147,
 April 2011.

10.2. Informative References

 [RFC2663] Srisuresh, P. and M. Holdrege, "IP Network Address
 Translator (NAT) Terminology and Considerations",

RFC 2663, August 1999.

 [RFC2767] Tsuchiya, K., HIGUCHI, H., and Y. Atarashi, "Dual Stack
 Hosts using the "Bump-In-the-Stack" Technique (BIS)",

RFC 2767, February 2000.

 [RFC3338] Lee, S., Shin, M-K., Kim, Y-J., Nordmark, E., and A.
 Durand, "Dual Stack Hosts Using "Bump-in-the-API" (BIA)",

RFC 3338, October 2002.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.

https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc6145
https://datatracker.ietf.org/doc/html/rfc6146
https://datatracker.ietf.org/doc/html/rfc6147
https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc3338

Huang, et al. Expires July 19, 2012 [Page 25]

Internet-Draft BIH January 2012

 Stevens, "Basic Socket Interface Extensions for IPv6",
RFC 3493, February 2003.

 [RFC3948] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
 Stenberg, "UDP Encapsulation of IPsec ESP Packets",

RFC 3948, January 2005.

 [RFC5382] Guha, S., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,

RFC 5382, October 2008.

 [RFC5508] Srisuresh, P., Ford, B., Sivakumar, S., and S. Guha, "NAT
 Behavioral Requirements for ICMP", BCP 148, RFC 5508,
 April 2009.

 [RFC5735] Cotton, M. and L. Vegoda, "Special Use IPv4 Addresses",
BCP 153, RFC 5735, January 2010.

 [RFC6180] Arkko, J. and F. Baker, "Guidelines for Using IPv6
 Transition Mechanisms during IPv6 Deployment", RFC 6180,
 May 2011.

https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3948
https://datatracker.ietf.org/doc/html/bcp142
https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/bcp148
https://datatracker.ietf.org/doc/html/rfc5508
https://datatracker.ietf.org/doc/html/bcp153
https://datatracker.ietf.org/doc/html/rfc5735
https://datatracker.ietf.org/doc/html/rfc6180

Huang, et al. Expires July 19, 2012 [Page 26]

Internet-Draft BIH January 2012

Appendix A. API list intercepted by BIH

 The following informational list includes some of the API functions
 that would be appropriate to intercept by BIH module when implemented
 at the socket API layer. Please note that this list is not fully
 exhaustive, as the function names and services that are available on
 different APIs vary significantly.

 The functions that the application uses to pass addresses into the
 system are:

 bind()

 connect()

 sendmsg()

 sendto()

 gethostbyaddr()

 getnameinfo()

 The functions that return an address from the system to an
 application are:

 accept()

 recvfrom()

 recvmsg()

 getpeername()

 getsockname()

 gethostbyname()

 getaddrinfo()

 The functions that are related to socket options are:

 getsocketopt()

 setsocketopt()

 As well, raw sockets for IPv4 and IPv6 may be intercepted.

Huang, et al. Expires July 19, 2012 [Page 27]

Internet-Draft BIH January 2012

 Most of the socket functions require a pointer to the socket address
 structure as an argument. Each IPv4 argument is mapped into
 corresponding an IPv6 argument, and vice versa.

 According to [RFC3493], the following new IPv6 basic APIs and
 structures are required.

 IPv4 new IPv6
 --
 AF_INET AF_INET6
 sockaddr_in sockaddr_in6
 gethostbyname() getaddrinfo()
 gethostbyaddr() getnameinfo()
 inet_ntoa()/inet_addr() inet_pton()/inet_ntop()
 INADDR_ANY in6addr_any

 Figure 8

 BIH may intercept inet_ntoa() and inet_addr() and use the address
 mapper for those. Doing that enables BIH to support literal IP
 addresses. However, IPv4 address literals can only be used after a
 mapping entry between the IPv4 address and corresponding IPv6 address
 has been created.

 The gethostbyname() and getaddrinfo() calls return a list of
 addresses. When the name resolver function invokes getaddrinfo() and
 getaddrinfo() returns multiple IP addresses, whether IPv4 or IPv6,
 they should all be represented in the addresses returned by
 gethostbyname(). Thus if getaddrinfo() returns multiple IPv6
 addresses, this implies that multiple address mappings will be
 created; one for each IPv6 address.

https://datatracker.ietf.org/doc/html/rfc3493

Huang, et al. Expires July 19, 2012 [Page 28]

Internet-Draft BIH January 2012

Authors' Addresses

 Bill Huang
 China Mobile
 53A,Xibianmennei Ave.,
 Xuanwu District,
 Beijing 100053
 China

 Email: bill.huang@chinamobile.com

 Hui Deng
 China Mobile
 53A,Xibianmennei Ave.,
 Xuanwu District,
 Beijing 100053
 China

 Email: denghui02@gmail.com

 Teemu Savolainen
 Nokia
 Hermiankatu 12 D
 FI-33720 TAMPERE
 Finland

 Email: teemu.savolainen@nokia.com

Huang, et al. Expires July 19, 2012 [Page 29]

