
behave X. Li
Internet-Draft C. Bao
Obsoletes: 2765 (if approved) CERNET Center/Tsinghua University
Intended status: Standards Track F. Baker
Expires: August 15, 2010 Cisco Systems
 February 11, 2010

IP/ICMP Translation Algorithm
draft-ietf-behave-v6v4-xlate-09

Abstract

 This document specifies an update to the Stateless IP/ICMP
 Translation Algorithm (SIIT) described in RFC 2765. The algorithm
 translates between IPv4 and IPv6 packet headers (including ICMP
 headers) for both stateless and stateful modes.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 15, 2010.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Li, et al. Expires August 15, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft IPv4/IPv6 Translation February 2010

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

http://trustee.ietf.org/license-info

Li, et al. Expires August 15, 2010 [Page 2]

Internet-Draft IPv4/IPv6 Translation February 2010

Table of Contents

1. Introduction and Motivation 4
1.1. IPv4-IPv6 Translation Model 4
1.2. Applicability and Limitations 5
1.3. Stateless vs. Stateful Mode 6
1.4. Path MTU Discovery and Fragmentation 6

2. Conventions . 7
3. Translating from IPv4 to IPv6 7
3.1. Translating IPv4 Headers into IPv6 Headers 8
3.2. Translating ICMPv4 Headers into ICMPv6 Headers 11
3.3. Translating ICMPv4 Error Messages into ICMPv6 14
3.4. Translator Sending ICMPv4 Error Message 15
3.5. Transport-layer Header Translation 15
3.6. Knowing when to Translate 16

4. Translating from IPv6 to IPv4 16
4.1. Translating IPv6 Headers into IPv4 Headers 18
4.2. Translating ICMPv6 Headers into ICMPv4 Headers 20
4.3. Translating ICMPv6 Error Messages into ICMPv4 23
4.4. Translator Sending ICMPv6 Error Message 24
4.5. Transport-layer Header Translation 24
4.6. Knowing when to Translate 24

5. IANA Considerations . 24
6. Security Considerations 24
7. Acknowledgements . 25
8. Appendix: Stateless translation workflow example 25
8.1. H6 establishes communication with H4 26
8.2. H4 establishes communication with H6 27

9. References . 29
9.1. Normative References 29
9.2. Informative References 30

 Authors' Addresses . 31

Li, et al. Expires August 15, 2010 [Page 3]

Internet-Draft IPv4/IPv6 Translation February 2010

1. Introduction and Motivation

 This document is a product of the 2008-2010 effort to define a
 replacement for NAT-PT [RFC2766]. It is an update to and directly
 derivative from Erik Nordmark's [RFC2765], which similarly provides
 both stateless and stateful translation between IPv4 [RFC0791] and
 IPv6 [RFC2460], and between ICMPv4 [RFC0792] and ICMPv6 [RFC4443].
 The original document was a product of the NGTRANS working group.

 The transition mechanisms specified in [RFC4213] handle the case of
 dual IPv4/IPv6 hosts interoperating with both dual IPv4/IPv6 hosts
 and IPv4-only hosts, which is needed early in the transition to IPv6.
 The dual IPv4/IPv6 hosts are assigned both one or more IPv4 and one
 or more IPv6 addresses. The number of available globally unique IPv4
 addresses is becoming smaller and smaller as the Internet grows; we
 expect that there will be a desire to take advantage of the large
 IPv6 address space and not require that every new Internet node have
 a permanently and full assigned IPv4 address. Indeed, due to the
 IPv4 address depletion problem, it is desirable that a single IPv4
 address needs to be shared via transport port multiplexing for
 different IPv6 nodes when they communicate with other IPv4 hosts.

 SIIT [RFC2765] was designed for the case of small networks (e.g., a
 single subnet) and for a site that has IPv6-only hosts in a dual
 IPv4/IPv6 network. This use case assumes a mechanism for IPv6 nodes
 to acquire a temporary address from the pool of IPv4 addresses.
 However, SIIT is not useful in the case when the IPv6 nodes need to
 acquire temporary IPv4 addresses from a "distant" SIIT box operated
 by a different administration, or require that the IPv6 Internet
 contain routes for IPv4-mapped addresses (the latter is considered to
 be a very bad idea due to the size of the IPv4 routing table that
 would potentially be injected into IPv6 routing in the form of IPv4-
 mapped addresses.)

 Furthermore, in SIIT [RFC2765], an IPv6-only node that works through
 SIIT translators needs some modifications beyond a normal IPv6-only
 node. These modifications are not required in this document, since
 normal IPv6 addresses can be used in the IPv6 end nodes.

 A detailed discussion of translation scenarios is presented in
 [I-D.ietf-behave-v6v4-framework], while the technical specification
 of the translation algorithm itself is covered in this document.

1.1. IPv4-IPv6 Translation Model

 The translation model is consists of two or more network domains
 connected by one or more IP/ICMP translators (XLATEs) as shown in
 Figure 1. One of those networks either routes IPv4 but not IPv6, or

https://datatracker.ietf.org/doc/html/rfc2766
https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc0792
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc2765

Li, et al. Expires August 15, 2010 [Page 4]

Internet-Draft IPv4/IPv6 Translation February 2010

 contains some hosts that only implement IPv4 or have IPv4-only
 applications (even if the host and the network support IPv6). The
 other network either routes IPv6 but not IPv4, or contains some hosts
 that only implement IPv6 or has IPv6-only applications. Both
 networks contain clients, servers, and peers. A network domain may
 also consist of a single host. DNS servers include DNS64 and DNS46,
 while DNS64 translates A record to AAAA record and DNS46 translates
 AAAA record to A record.

 -------- --------
 // IPv4 \\ // IPv6 \\
 / Domain \ / Domain \
 / +-----+ +--+ \
 | |XLATE| |S2| | Sn: Servers
 | +--+ +-----+ +--+ | Hn: Clients
 | |S1| +-----+ |
 | +--+ | DNS | +--+ | XLATE: IPv4/IPv6 Translator
 \ +--+ +-----+ |H2| / DNS: DNS64/DNS46
 \ |H1| / \ +--+ /
 \\ +--+ // \\ //
 -------- --------

 Figure 1: IPv4-IPv6 Translation Model

 The general IPv4/IPv6 translation framework is described in
 [I-D.ietf-behave-v6v4-framework]. This document specifies the
 translation algorithms between IPv4 packets and IPv6 packets. The
 mapping algorithms between IPv4 addresses and IPv6 addresses in the
 packet headers are specified in [I-D.ietf-behave-address-format].

1.2. Applicability and Limitations

 The use of this translation algorithm assumes that the IPv6 network
 is somehow well-connected i.e., when an IPv6 node wants to
 communicate with another IPv6 node there is an IPv6 path between
 them. The IPv4 network is also assumed to be well-connected.
 Various tunneling schemes exist that can provide such paths, but
 those mechanisms and their use is outside the scope of this document
 and [RFC2765].

 As with [RFC2765], the translating function specified in this
 document does not translate any IPv4 options and it does not
 translate IPv6 routing headers, hop-by-hop extension headers,
 destination options headers or source routing headers.

 The issues and algorithms in the translation of datagrams containing
 TCP segments are described in [RFC5382]. The considerations of that
 document are applicable in this case as well.

https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc5382

Li, et al. Expires August 15, 2010 [Page 5]

Internet-Draft IPv4/IPv6 Translation February 2010

 Fragmented IPv4 UDP packets that do not contain a UDP checksum (i.e.,
 the UDP checksum field is zero) are not of significant use in the
 Internet [Miller][Dongjin] and will not be translated by the IP/ICMP
 translator.

 IPv4 multicast addresses [RFC3171] cannot be mapped to IPv6 multicast
 addresses [RFC3307] based on the unicast mapping rule. However, if
 multicast address mapping rule is defined, the IP/ICMP header
 translation aspect of this document works.

1.3. Stateless vs. Stateful Mode

 An IP/ICMP translator has two possible modes of operation: stateless
 and stateful [I-D.ietf-behave-v6v4-framework]. In both cases, we
 assume that a system (a node or an application) that has an IPv4
 address but not an IPv6 address is communicating with a system that
 has an IPv6 address but no IPv4 address, or that the two systems do
 not have contiguous routing connectivity and hence are forced to have
 their communications translated.

 In the stateless mode, a specific IPv6 address range will represent
 IPv4 systems (IPv4-converted addresses), and the IPv6 systems have
 addresses (IPv4-translatable addresses) that can be algorithmically
 mapped to a subset of the service provider's IPv4 addresses. In
 general, there is no need to concern oneself with translation tables,
 as the IPv4 and IPv6 counterparts are algorithmically related.

 In the stateful mode, a specific IPv6 address range will represent
 IPv4 systems (IPv4-converted addresses), but the IPv6 systems may use
 any [RFC4291] addresses except in that range. In this case, a
 translation table is required to bind the IPv6 systems' addresses to
 the IPv4 addresses maintained in the translator.

 The address translation mechanisms for the stateless and the stateful
 translations are defined in [I-D.ietf-behave-address-format].

1.4. Path MTU Discovery and Fragmentation

 Due to the different sizes of the IPv4 and IPv6 header, which are 20+
 octets and 40 octets respectively, handling the maximum packet size
 is critical for the operation of the IPv4/IPv6 translator. There are
 three mechanisms to handle this issue: path MTU discovery (PMTUD),
 fragmentation, and transport-layer negotiation such as the TCP MSS
 option [RFC0879]. Note that the translator MUST behave as a router,
 i.e. the translator MUST send a "Packet Too Big" error message or
 fragment the packet when the packet size exceeds the MTU of the next
 hop interface.

https://datatracker.ietf.org/doc/html/rfc3171
https://datatracker.ietf.org/doc/html/rfc3307
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc0879

Li, et al. Expires August 15, 2010 [Page 6]

Internet-Draft IPv4/IPv6 Translation February 2010

 "Don't Fragment", ICMP "Packet Too Big", and packet fragmentation are
 discussed in sections 3 and 4 of this document. The reassembling of
 fragmented packets in the stateful translator is discussed in
 [I-D.ietf-behave-v6v4-xlate-stateful], since it requires state
 maintenance in the translator.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Translating from IPv4 to IPv6

 When an IP/ICMP translator receives an IPv4 datagram addressed to a
 destination towards the IPv6 domain, it translates the IPv4 header of
 that packet into an IPv6 header. The original IPv4 header on the
 packet is removed and replaced by an IPv6 header. Since the ICMPv6
 [RFC4443], TCP [RFC0793] and UDP [RFC0768] headers contain checksums
 that cover IP header information, if the address mapping algorithm is
 not checksum-neutral, the ICMPv6 and transport-layer headers MUST be
 updated. The data portion of the packet is left unchanged. The IP/
 ICMP translator then forwards the packet based on the IPv6
 destination address.

 +-------------+ +-------------+
 | IPv4 | | IPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | Transport | | Fragment |
 | Layer | ===> | Header |
 | Header | | (if needed) |
 +-------------+ +-------------+
 | | | Transport |
 ~ Data ~ | Layer |
 | | | Header |
 +-------------+ +-------------+
 | |
 ~ Data ~
 | |
 +-------------+

 Figure 2: IPv4-to-IPv6 Translation

 One of the differences between IPv4 and IPv6, is that in IPv6, path
 MTU discovery is mandatory but it is optional in IPv4. This implies

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0768

Li, et al. Expires August 15, 2010 [Page 7]

Internet-Draft IPv4/IPv6 Translation February 2010

 that IPv6 routers will never fragment a packet - only the sender can
 do fragmentation.

 When IPv4 node performs path MTU discovery (by setting the Don't
 Fragment (DF) bit in the header), path MTU discovery can operate end-
 to-end, i.e., across the translator. In this case either IPv4 or
 IPv6 routers (including the translator) might send back ICMP "Packet
 Too Big" messages to the sender. When the IPv6 routers send these
 ICMPv6 errors they will pass through a translator that will translate
 the ICMPv6 error to a form that the IPv4 sender can understand. As a
 result, an IPv6 fragment header is only included if the IPv4 packet
 is already fragmented.

 However, when the IPv4 sender does not set the Don't Fragment (DF)
 bit, the translator has to ensure that the packet does not exceed the
 path MTU on the IPv6 side. This is done by fragmenting the IPv4
 packet so that it fits in 1280-byte IPv6 packets, since that is the
 minimum IPv6 MTU. Also, when the IPv4 sender does not set the DF bit
 the translator MUST always include an IPv6 fragment header to
 indicate that the sender allows fragmentation.

 The rules in section 3.1 ensure that when packets are fragmented,
 either by the sender or by IPv4 routers, the low-order 16 bits of the
 fragment identification are carried end-to-end, ensuring that packets
 are correctly reassembled. In addition, the rules in section 3.1 use
 the presence of an IPv6 fragment header to indicate that the sender
 might not be using path MTU discovery (i.e., the packet should not
 have the DF flag set should it later be translated back to IPv4).

 Other than the special rules for handling fragments and path MTU
 discovery, the actual translation of the packet header consists of a
 simple mapping as defined below. Note that ICMPv4 packets require
 special handling in order to translate the content of ICMPv4 error
 messages and also to add the ICMPv6 pseudo-header checksum.

3.1. Translating IPv4 Headers into IPv6 Headers

 If the DF flag is not set and the IPv4 packet will result in an IPv6
 packet larger than 1280 bytes, the packet MUST be fragmented so the
 resulting IPv6 packet (with Fragment header added to each fragment)
 will be less than or equal to 1280 bytes. For example, if the packet
 is fragmented prior to the translation, the IPv4 packets must be
 fragmented so that their length, excluding the IPv4 header, is at
 most 1232 bytes (1280 minus 40 for the IPv6 header and 8 for the
 Fragment header). The resulting fragments are then translated
 independently using the logic described below.

 If the DF bit is set and the MTU of the next-hop interface is less

Li, et al. Expires August 15, 2010 [Page 8]

Internet-Draft IPv4/IPv6 Translation February 2010

 than the total length value of the IPv4 packet plus 20, the
 translator MUST send an ICMPv4 "Fragmentation Needed" error message
 to the IPv4 source address.

 If the DF bit is set and the packet is not a fragment (i.e., the MF
 flag is not set and the Fragment Offset is equal to zero) then the
 translator SHOULD NOT add a Fragment header to the resulting packet.
 The IPv6 header fields are set as follows:

 Version: 6

 Traffic Class: By default, copied from IP Type Of Service (TOS)
 octet. According to [RFC2474] the semantics of the bits are
 identical in IPv4 and IPv6. However, in some IPv4 environments
 these fields might be used with the old semantics of "Type Of
 Service and Precedence". An implementation of a translator SHOULD
 provide the ability to ignore the IPv4 TOS and always set the IPv6
 traffic class (TC) to zero. In addition, if the translator is at
 an administrative boundary, the filtering and update
 considerations of [RFC2475] may be applicable.

 Flow Label: 0 (all zero bits)

 Payload Length: Total length value from IPv4 header, minus the size
 of the IPv4 header and IPv4 options, if present.

 Next Header: For ICMPv4 (1) changed to ICMPv6 (58), otherwise
 protocol field copied from IPv4 header.

 Hop Limit: The hop limit is derived from the TTL value in the IPv4
 header. Since the translator is a router, as part of forwarding
 the packet it needs to decrement either the IPv4 TTL (before the
 translation) or the IPv6 Hop Limit (after the translation). As
 part of decrementing the TTL or Hop Limit the translator (as any
 router) needs to check for zero and send the ICMPv4 "TTL Exceeded"
 or ICMPv6 "Hop Limit Exceeded" error.

 Source Address: The IPv4-converted address derived from the IPv4
 source address per [I-D.ietf-behave-address-format] section 2.1.

 If the translator gets an illegal source address (e.g. 0.0.0.0,
 127.0.0.1, etc.), the translator SHOULD silently drop the packet
 (as discussed in Section 5.3.7 of [RFC1812]).

https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc1812#section-5.3.7

Li, et al. Expires August 15, 2010 [Page 9]

Internet-Draft IPv4/IPv6 Translation February 2010

 Destination Address: In the stateless mode, which is to say that if
 the IPv4 destination address is within a range of configured IPv4
 stateless translation prefix, the IPv6 destination address is the
 IPv4-translatable address derived from the IPv4 destination
 address per [I-D.ietf-behave-address-format] section 2.1. A
 workflow example of stateless translation is shown in Appendix of
 this document.

 In the stateful mode, which is to say that if the IPv4 destination
 address is not within the range of any configured IPv4 stateless
 translation prefix, the IPv6 destination address and corresponding
 transport-layer destination port are derived from the Binding
 Information Bases (BIBs) reflecting current session state in the
 translator as described in [I-D.ietf-behave-v6v4-xlate-stateful].

 If any IPv4 options are present in the IPv4 packet, the IPv4 options
 MUST be ignored (i.e., there is no attempt to translate the options)
 and the packet translated normally. However, if an unexpired source
 route option is present then the packet MUST instead be discarded,
 and an ICMPv4 "Destination Unreachable/Source Route Failed" (Type
 3/Code 5) error message SHOULD be returned to the sender.

 If there is a need to add a Fragment header (the DF bit is not set or
 the packet is a fragment) the header fields are set as above with the
 following exceptions:

 IPv6 fields:

 Payload Length: Total length value from IPv4 header, plus 8 for
 the fragment header, minus the size of the IPv4 header and IPv4
 options, if present.

 Next Header: Fragment header (44).

 Fragment header fields:

 Next Header: For ICMPv4 (1) changed to ICMPv6 (58), otherwise
 protocol field copied from IPv4 header.

 Fragment Offset: Fragment Offset copied from the IPv4 header.

 M flag: More Fragments bit copied from the IPv4 header.

 Identification: The low-order 16 bits copied from the
 Identification field in the IPv4 header. The high-order 16
 bits set to zero.

Li, et al. Expires August 15, 2010 [Page 10]

Internet-Draft IPv4/IPv6 Translation February 2010

3.2. Translating ICMPv4 Headers into ICMPv6 Headers

 All ICMPv4 messages that are to be translated require that the ICMPv6
 checksum field be calculated as part of the translation since ICMPv6,
 unlike ICMPv4, has a pseudo-header checksum just like UDP and TCP.

 In addition, all ICMPv4 packets need to have the Type value
 translated and, for ICMPv4 error messages, the included IP header
 also needs translation.

 The actions needed to translate various ICMPv4 messages are as
 follows:

 ICMPv4 query messages:

 Echo and Echo Reply (Type 8 and Type 0): Adjust the Type values
 to 128 and 129, respectively, and adjust the ICMP checksum both
 to take the type change into account and to include the ICMPv6
 pseudo-header.

 Information Request/Reply (Type 15 and Type 16): Obsoleted in
 ICMPv6. Silently drop.

 Timestamp and Timestamp Reply (Type 13 and Type 14): Obsoleted in
 ICMPv6. Silently drop.

 Address Mask Request/Reply (Type 17 and Type 18): Obsoleted in
 ICMPv6. Silently drop.

 ICMP Router Advertisement (Type 9): Single hop message. Silently
 drop.

 ICMP Router Solicitation (Type 10): Single hop message. Silently
 drop.

 Unknown ICMPv4 types: Silently drop.

 IGMP messages: While the MLD messages [RFC2710][RFC3590][RFC3810]
 are the logical IPv6 counterparts for the IPv4 IGMP messages
 all the "normal" IGMP messages are single-hop messages and
 should be silently dropped by the translator. Other IGMP
 messages might be used by multicast routing protocols and,
 since it would be a configuration error to try to have router
 adjacencies across IP/ICMP translators those packets should
 also be silently dropped.

https://datatracker.ietf.org/doc/html/rfc2710
https://datatracker.ietf.org/doc/html/rfc3810

Li, et al. Expires August 15, 2010 [Page 11]

Internet-Draft IPv4/IPv6 Translation February 2010

 ICMPv4 error messages:

 Destination Unreachable (Type 3): For all codes that are not
 explicitly listed below, set the Type field to 1, and adjust
 the ICMP checksum both to take the type change into account
 and to include the ICMPv6 pseudo-header.

 Translate the Code field as follows:

 Code 0, 1 (Net, host unreachable): Set Code value to 0 (no
 route to destination).

 Code 2 (Protocol unreachable): Translate to an ICMPv6
 Parameter Problem (Type 4, Code value 1) and make the
 Pointer point to the IPv6 Next Header field.

 Code 3 (Port unreachable): Set Code value to 4 (port
 unreachable).

 Code 4 (Fragmentation needed and DF set): Translate to an
 ICMPv6 Packet Too Big message (Type 2) with Code value
 set to 0. The MTU field needs to be adjusted for the
 difference between the IPv4 and IPv6 header sizes, i.e.
 minimum(advertised MTU+20, MTU_of_IPv6_nexthop,
 (MTU_of_IPv4_nexthop)+20). Note that if the IPv4 router
 did not set the MTU field (zero), i.e., the router does
 not implement [RFC1191], then the translator MUST use the
 plateau values specified in [RFC1191] to determine a
 likely path MTU and include that path MTU in the ICMPv6
 packet. (Use the greatest plateau value that is less
 than the returned Total Length field.)

 Code 5 (Source route failed): Set Code value to 0 (No route
 to destination). Note that this error is unlikely since
 source routes are not translated.

 Code 6,7: Set Code value to 0 (No route to destination).

 Code 8: Set Code value to 0 (No route to destination).

 Code 9, 10 (Communication with destination host
 administratively prohibited): Set Code value to 1
 (Communication with destination administratively
 prohibited)

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1191

Li, et al. Expires August 15, 2010 [Page 12]

Internet-Draft IPv4/IPv6 Translation February 2010

 Code 11, 12: Set Code value to 0 (no route to destination).

 Code 13 (Communication Administratively Prohibited): Set
 Code value to 1 (Communication with destination
 administratively prohibited).

 Code 14 (Host Precedence Violation): Silently drop.

 Code 15 (Precedence cutoff in effect): Set Code value to 1
 (Communication with destination administratively
 prohibited).

 Redirect (Type 5): Single hop message. Silently drop.

 Alternative Host Address (Type 6): Silently drop.

 Source Quench (Type 4): Obsoleted in ICMPv6. Silently drop.

 Time Exceeded (Type 11): Set the Type field to 3, and adjust
 the ICMP checksum both to take the type change into account
 and to include the ICMPv6 pseudo-header. The Code field is
 unchanged.

 Parameter Problem (Type 12): Set the Type field to 4, and
 adjust the ICMP checksum both to take the type change into
 account and to include the ICMPv6 pseudo-header. Translate
 the Code field as follows:

 Code 0 (Pointer indicates the error): Set the Code value to
 0 (Erroneous header field encountered) and update the
 pointer as defined in Figure 3 (If the Original IPv4
 Pointer Value is not listed or the Translated IPv6
 Pointer Value is listed as "n/a", silently drop the
 packet).

 Code 1 (Missing a required option): Silently drop

 Code 2 (Bad length): Set the Code value to 0 (Erroneous
 header field encountered) and update the pointer as
 defined in Figure 3 (If the Original IPv4 Pointer Value
 is not listed or the Translated IPv6 Pointer Value is
 listed as "n/a", silently drop the packet).

 Other Code values: Silently drop

Li, et al. Expires August 15, 2010 [Page 13]

Internet-Draft IPv4/IPv6 Translation February 2010

 Unknown ICMPv4 types: Silently drop.

 | Original IPv4 Pointer Value | Translated IPv6 Pointer Value |
 +--------------------------------+--------------------------------+
 | 0 | Version/IHL | 0 | Version/Traffic Class |
 | 1 | Type Of Service | 1 | Traffic Class/Flow Label |
 | 2,3 | Total Length | 4 | Payload Length |
 | 4,5 | Identification | n/a | |
 | 6 | Flags/Fragment Offset | n/a | |
 | 7 | Fragment Offset | n/a | |
 | 8 | Time to Live | 7 | Hop Limit |
 | 9 | Protocol | 6 | Next Header |
 |10,11| Header Checksum | n/a | |
 |12-15| Source Address | 8 | Source Address |
 |16-19| Destination Address | 24 | Destination Address |
 +--------------------------------+--------------------------------+

 Figure 3: Pointer value for translating from IPv4 to IPv6

 ICMP Error Payload: If the received ICMPv4 packet contains an
 ICMPv4 Extension [RFC4884], the translation of the ICMPv4
 packet will cause the ICMPv6 packet to change length. When
 this occurs, the ICMPv6 Extension length attribute MUST be
 adjusted accordingly (e.g., longer due to the translation
 from IPv4 to IPv6). If the ICMPv4 Extension exceeds the
 maximum size of an ICMPv6 message on the outgoing interface,
 the ICMPv4 extension should be simply truncated. For
 extensions not defined in [RFC4884], the translator passes
 the extensions as opaque bit strings and those containing
 IPv4 address literals will not have those addresses
 translated to IPv6 address literals; this may cause problems
 with processing of those ICMP extensions.

3.3. Translating ICMPv4 Error Messages into ICMPv6

 There are some differences between the ICMPv4 and the ICMPv6 error
 message formats as detailed above. In addition, the ICMP error
 messages contain for the packet in error, which needs to be
 translated just like a normal IP packet. The translation of this
 "packet in error" is likely to change the length of the datagram.
 Thus the Payload Length field in the outer IPv6 header might need to
 be updated.

https://datatracker.ietf.org/doc/html/rfc4884
https://datatracker.ietf.org/doc/html/rfc4884

Li, et al. Expires August 15, 2010 [Page 14]

Internet-Draft IPv4/IPv6 Translation February 2010

 +-------------+ +-------------+
 | IPv4 | | IPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | ICMPv4 | | ICMPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | IPv4 | ===> | IPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | Partial | | Partial |
 | Transport | | Transport |
 | Layer | | Layer |
 | Header | | Header |
 +-------------+ +-------------+

 Figure 4: IPv4-to-IPv6 ICMP Error Translation

 The translation of the inner IP header can be done by invoking the
 function that translated the outer IP headers. This process SHOULD
 stop at first embedded header and drop the packet if it contains
 more.

3.4. Translator Sending ICMPv4 Error Message

 If the IPv4 packet is discarded, then the translator SHOULD be able
 to send back an ICMPv4 error message to the original sender of the
 packet, unless the discarded packet is itself an ICMPv4 message. The
 ICMPv4 message, if sent, has a Type value of 3 (Destination
 Unreachable) and a Code value of 13 (Communication Administratively
 Prohibited), unless otherwise specified in this document or in
 [I-D.ietf-behave-v6v4-xlate-stateful]. The translator SHOULD allow
 an administrator to configure whether the ICMPv4 error messages are
 sent, rate-limited, or not sent.

3.5. Transport-layer Header Translation

 If the address translation algorithm is not checksum neutral, the
 recalculation and updating of the transport-layer headers MUST be
 performed.

 When a translator receives an unfragmented UDP IPv4 packet and the
 checksum field is zero, the translator SHOULD compute the missing UDP
 checksum as part of translating the packet. Also, the translator
 SHOULD maintain a counter of how many UDP checksums are generated in
 this manner.

 When a stateless translator receives the first fragment of a

Li, et al. Expires August 15, 2010 [Page 15]

Internet-Draft IPv4/IPv6 Translation February 2010

 fragmented UDP IPv4 packet and the checksum field is zero, the
 translator SHOULD drop the packet and generate a system management
 event specifying at least the IP addresses and port numbers in the
 packet. When it receives fragments other than the first, it SHOULD
 silently drop the packet, since there is no port information to log.

 For stateful translator, the handling of fragmented UDP IPv4 packets
 with a zero checksum is discussed in
 [I-D.ietf-behave-v6v4-xlate-stateful] section 3.1.

3.6. Knowing when to Translate

 If the IP/ICMP translator also provides normal forwarding function,
 and the destination IPv4 address is reachable by a more specific
 route without translation, the translator MUST forward it without
 translating it. Otherwise, when an IP/ICMP translator receives an
 IPv4 datagram addressed to an IPv4 destination representing a host in
 the IPv6 domain, the packet MUST be translated to IPv6.

4. Translating from IPv6 to IPv4

 When an IP/ICMP translator receives an IPv6 datagram addressed to a
 destination towards the IPv4 domain, it translates the IPv6 header of
 the received IPv6 packet into an IPv4 header. The original IPv6
 header on the packet is removed and replaced by an IPv4 header.
 Since the ICMPv6 [RFC4443], TCP [RFC0793], and UDP [RFC0768] headers
 contain checksums that cover the IP header, if the address mapping
 algorithm is not checksum-neutral, the ICMP and transport-layer
 headers MUST be updated. The data portion of the packet is left
 unchanged. The IP/ICMP translator then forwards the packet based on
 the IPv4 destination address.

https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0768

Li, et al. Expires August 15, 2010 [Page 16]

Internet-Draft IPv4/IPv6 Translation February 2010

 +-------------+ +-------------+
 | IPv6 | | IPv4 |
 | Header | | Header |
 +-------------+ +-------------+
 | Fragment | | Transport |
 | Header | ===> | Layer |
 |(if present) | | Header |
 +-------------+ +-------------+
 | Transport | | |
 | Layer | ~ Data ~
 | Header | | |
 +-------------+ +-------------+
 | |
 ~ Data ~
 | |
 +-------------+

 Figure 5: IPv6-to-IPv4 Translation

 There are some differences between IPv6 and IPv4 in the area of
 fragmentation and the minimum link MTU that affect the translation.
 An IPv6 link has to have an MTU of 1280 bytes or greater. The
 corresponding limit for IPv4 is 68 bytes. Thus, unless there were
 special measures, it would not be possible to do end-to-end path MTU
 discovery when the path includes a translator, since the IPv6 node
 might receive ICMPv6 "Packet Too Big" messages originated by an IPv4
 router that report an MTU less than 1280. However, [RFC2460] section

5 requires that IPv6 nodes handle such an ICMPv6 "Packet Too Big"
 message by reducing the path MTU to 1280 and including an IPv6
 fragment header with each packet. In this case, the translator
 SHOULD set DF to 0 and take the identification value from the IPv6
 fragment header when a fragmentation header with (MF=0; Offset=0) is
 present or set DF to 1 otherwise. This allows end-to-end path MTU
 discovery across the translator as long as the path MTU is 1280 bytes
 or greater. When the path MTU drops below the 1280 limit, the IPv6
 sender will originate 1280-byte packets that will be fragmented by
 IPv4 routers along the path after being translated to IPv4.

 The drawback with this scheme is that it is not possible to use PMTU
 discovery to do optimal UDP fragmentation (as opposed to completely
 avoiding fragmentation) at the sender, since the presence of an IPv6
 Fragment header is interpreted that it is okay to fragment the packet
 on the IPv4 side. Thus if a UDP application wants to send large
 packets independent of the PMTU, the sender will only be able to
 determine the path MTU on the IPv6 side of the translator. If the
 path MTU on the IPv4 side of the translator is smaller, then the IPv6
 sender will not receive any ICMPv6 "Too Big" errors and cannot adjust
 the size fragments it is sending.

https://datatracker.ietf.org/doc/html/rfc2460

Li, et al. Expires August 15, 2010 [Page 17]

Internet-Draft IPv4/IPv6 Translation February 2010

 On the other hand, the recent study indicates that only 43.46% of
 IPv6-capable web servers include an IPv6 fragmentation header in
 their respond packets after they were sent an ICMPv6 "Packet Too Big"
 message specifying an MTU<1280 bytes [Stasiewicz]. A workaround to
 this problem (ICMPv6 "Packet Too Big" message with MTU<1280) is that
 if there is no fragmentation header in the IPv6 packet, the
 translator SHOULD set DF to 0 for the packets equal to or smaller
 than 1280 bytes and set DF to 1 for packets larger than 1280 bytes.
 In addition, the translator SHOULD take the identification value from
 the IPv6 fragmentation header if presents or generate the
 identification value otherwise. This avoids the introduction of the
 path MTU discovery black hole. The header translation defined in the
 next section uses this method.

 Other than the special rules for handling fragments and path MTU
 discovery, the actual translation of the packet header consists of a
 simple mapping as defined below. Note that ICMPv6 packets require
 special handling in order to translate the contents of ICMPv6 error
 messages and also to remove the ICMPv6 pseudo-header checksum.

4.1. Translating IPv6 Headers into IPv4 Headers

 If there is no IPv6 Fragment header, the IPv4 header fields are set
 as follows:

 Version: 4

 Internet Header Length: 5 (no IPv4 options)

 Type of Service (TOS) Octet: By default, copied from the IPv6
 Traffic Class (all 8 bits). According to [RFC2474] the semantics
 of the bits are identical in IPv4 and IPv6. However, in some IPv4
 environments, these bits might be used with the old semantics of
 "Type Of Service and Precedence". An implementation of a
 translator SHOULD provide the ability to ignore the IPv6 traffic
 class and always set the IPv4 TOS Octet to a specified value. In
 addition, if the translator is at an administrative boundary, the
 filtering and update considerations of [RFC2475] may be
 applicable.

 Total Length: Payload length value from IPv6 header, plus the size
 of the IPv4 header.

 Identification: If the packet size is equal to or smaller than 1280
 bytes, generate the identification value. If the packet size is
 greater than 1280 bytes, set Identification All zeros.

https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2475

Li, et al. Expires August 15, 2010 [Page 18]

Internet-Draft IPv4/IPv6 Translation February 2010

 Flags: The More Fragments (MF) flag is set to zero. If the packet
 size is equal to or smaller than 1280 bytes, the Don't Fragments
 (DF) flag is set to zero. If the packet size is greater than 1280
 bytes, the Don't Fragments (DF) flag is set to one.

 Fragment Offset: All zeros.

 Time to Live: Time to Live is derived from Hop Limit value in IPv6
 header. Since the translator is a router, as part of forwarding
 the packet it needs to decrement either the IPv6 Hop Limit (before
 the translation) or the IPv4 TTL (after the translation). As part
 of decrementing the TTL or Hop Limit the translator (as any
 router) needs to check for zero and send the ICMPv4 "TTL Exceeded"
 or ICMPv6 "Hop Limit Exceeded" error.

 Protocol: For ICMPv6 (58) changed to ICMPv4 (1), otherwise Next
 Header field copied from IPv6 header.

 Header Checksum: Computed once the IPv4 header has been created.

 Source Address: In the stateless mode, which is to say that if the
 IPv6 source address is within the range of a configured IPv6
 translation prefix, the IPv4 source address is derived from the
 IPv6 source address per [I-D.ietf-behave-address-format] section

2.1. Note that the original IPv6 source address is an IPv4-
 translatable address. A workflow example of stateless translation
 is shown in Appendix of this document. If the translator only
 supports stateless mode and if the IPv6 source address is not
 within the range of configured IPv6 prefix(es), the translator
 SHOULD drop the packet and respond with an ICMPv6 Type=1, Code=5
 (Destination Unreachable, Source address failed ingress/egress
 policy).

 In the stateful mode, which is to say that if the IPv6 source
 address is not within the range of any configured IPv6 stateless
 translation prefix, the IPv4 source address and transport-layer
 source port corresponding to the IPv4-related IPv6 source address
 and source port are derived from the Binding Information Bases
 (BIBs) as described in [I-D.ietf-behave-v6v4-xlate-stateful].

 In stateless and stateful modes, if the translator gets an illegal
 source address (e.g. ::1, etc.), the translator SHOULD silently
 drop the packet.

 Destination Address: The IPv4 destination address is derived from
 the IPv6 destination address of the datagram being translated per
 [I-D.ietf-behave-address-format] section 2.1. Note that the
 original IPv6 destination address is an IPv4-converted address.

Li, et al. Expires August 15, 2010 [Page 19]

Internet-Draft IPv4/IPv6 Translation February 2010

 If any of an IPv6 Hop-by-Hop Options header, Destination Options
 header, or Routing header with the Segments Left field equal to zero
 are present in the IPv6 packet, those IPv6 extension headers MUST be
 ignored (i.e., there is no attempt to translate the extension
 headers) and the packet translated normally. However, the Total
 Length field and the Protocol field is adjusted to "skip" these
 extension headers.

 If a Routing header with a non-zero Segments Left field is present
 then the packet MUST NOT be translated, and an ICMPv6 "parameter
 problem/erroneous header field encountered" (Type 4/Code 0) error
 message, with the Pointer field indicating the first byte of the
 Segments Left field, SHOULD be returned to the sender.

 If the IPv6 packet contains a Fragment header, the header fields are
 set as above with the following exceptions:

 Total Length: Payload length value from IPv6 header, minus 8 for the
 Fragment header, plus the size of the IPv4 header.

 Identification: Copied from the low-order 16-bits in the
 Identification field in the Fragment header.

 Flags: The More Fragments (MF) flag is copied from the M flag in the
 Fragment header. The Don't Fragments (DF) flag is set to zero
 allowing this packet to be fragmented if required by IPv4 routers.

 Fragment Offset: Copied from the Fragment Offset field in the
 Fragment header.

 Protocol: For ICMPv6 (58) changed to ICMPv4 (1), otherwise Next
 Header field copied from Fragment header.

4.2. Translating ICMPv6 Headers into ICMPv4 Headers

 All ICMPv6 messages that are to be translated require that the ICMPv4
 checksum field be updated as part of the translation since ICMPv6
 (unlike ICMPv4) includes a pseudo-header in the checksum just like
 UDP and TCP.

 In addition all ICMP packets need to have the Type value translated
 and, for ICMP error messages, the included IP header also needs
 translation. Note that the IPv6 addresses in the IPv6 header may not
 be IPv4-translatable addresses and there will be no corresponding
 IPv4 addresses represented of this IPv6 address. In this case, the
 translator can ether do stateful translation or map them to an IPv4
 address block as a holder for all non IPv4-translatable IPv6
 addresses in a stateless manner.

Li, et al. Expires August 15, 2010 [Page 20]

Internet-Draft IPv4/IPv6 Translation February 2010

 The actions needed to translate various ICMPv6 messages are:

 ICMPv6 informational messages:

 Echo Request and Echo Reply (Type 128 and 129): Adjust the Type
 values to 8 and 0, respectively, and adjust the ICMP checksum
 both to take the type change into account and to exclude the
 ICMPv6 pseudo-header.

 MLD Multicast Listener Query/Report/Done (Type 130, 131, 132):
 Single hop message. Silently drop.

 Neighbor Discover messages (Type 133 through 137): Single hop
 message. Silently drop.

 Unknown informational messages: Silently drop.

 ICMPv6 error messages:

 Destination Unreachable (Type 1) Set the Type field to 3, and
 adjust the ICMP checksum both to take the type change into
 account and to exclude the ICMPv6 pseudo-header. Translate the
 Code field as follows:

 Code 0 (no route to destination): Set Code value to 1 (Host
 unreachable).

 Code 1 (Communication with destination administratively
 prohibited): Set Code value to 10 (Communication with
 destination host administratively prohibited).

 Code 2 (Beyond scope of source address): Set Code value to 1
 (Host unreachable). Note that this error is very unlikely
 since an IPv4-translatable source address is typically
 considered to have global scope.

 Code 3 (Address unreachable): Set Code value to 1 (Host
 unreachable).

 Code 4 (Port unreachable): Set Code value to 3 (Port
 unreachable).

 Other Code values: Silently drop.

Li, et al. Expires August 15, 2010 [Page 21]

Internet-Draft IPv4/IPv6 Translation February 2010

 Packet Too Big (Type 2): Translate to an ICMPv4 Destination
 Unreachable (Type 3) with Code value equal to 4, and adjust the
 ICMPv4 checksum both to take the type change into account and
 to exclude the ICMPv6 pseudo-header. The MTU field needs to be
 adjusted for the difference between the IPv4 and IPv6 header
 sizes taking into account whether or not the packet in error
 includes a Fragment header, i.e. minimum(advertised MTU-20,
 MTU_of_IPv4_nexthop, (MTU_of_IPv6_nexthop)-20)

 Time Exceeded (Type 3): Set the Type value to 11, and adjust the
 ICMPv4 checksum both to take the type change into account and
 to exclude the ICMPv6 pseudo-header. The Code field is
 unchanged.

 Parameter Problem (Type 4): Translate the Type and Code field as
 follows, and adjust the ICMPv4 checksum both to take the type
 change into account and to exclude the ICMPv6 pseudo-header.

 Code 0 (Erroneous header field encountered): Set Type 12, Code
 0 and update the pointer as defined in Figure 6 (If the
 Original IPv6 Pointer Value is not listed or the Translated
 IPv4 Pointer Value is listed as "n/a", silently drop the
 packet).

 Code 1 (Unrecognized Next Header type encountered): Translate
 this to an ICMPv4 protocol unreachable (Type 3, Code 2).

 Code 2 (Unrecognized IPv6 option encountered): Silently drop.

 Unknown error messages: Silently drop.

 | Original IPv6 Pointer Value | Translated IPv4 Pointer Value |
 +--------------------------------+--------------------------------+
 | 0 | Version/Traffic Class | 0 | Version/IHL, Type Of Ser |
 | 1 | Traffic Class/Flow Label | 1 | Type Of Service |
 | 2,3 | Flow Label | n/a | |
 | 4,5 | Payload Length | 2 | Total Length |
 | 6 | Next Header | 9 | Protocol |
 | 7 | Hop Limit | 8 | Time to Live |
 | 8-23| Source Address | 12 | Source Address |
 |24-39| Destination Address | 16 | Destination Address |
 +--------------------------------+--------------------------------+

 Figure 6: Pointer Value for translating from IPv6 to IPv4

Li, et al. Expires August 15, 2010 [Page 22]

Internet-Draft IPv4/IPv6 Translation February 2010

 ICMP Error Payload: If the received ICMPv6 packet contains an
 ICMPv6 Extension [RFC4884], the translation of the ICMPv6
 packet will cause the ICMPv4 packet to change length. When
 this occurs, the ICMPv6 Extension length attribute MUST be
 adjusted accordingly (e.g., shorter due to the translation from
 IPv6 to IPv4). For extensions not defined in [RFC4884], the
 translator passes the extensions as opaque bit strings and
 those containing IPv6 address literals will not have those
 addresses translated to IPv4 address literals; this may cause
 problems with processing of those ICMP extensions.

4.3. Translating ICMPv6 Error Messages into ICMPv4

 There are some differences between the ICMPv4 and the ICMPv6 error
 message formats as detailed above. In addition, the ICMP error
 messages contain for the packet in error, which needs to be
 translated just like a normal IP packet. The translation of this
 "packet in error" is likely to change the length of the datagram thus
 the Total Length field in the outer IPv4 header might need to be
 updated.

 +-------------+ +-------------+
 | IPv6 | | IPv4 |
 | Header | | Header |
 +-------------+ +-------------+
 | ICMPv6 | | ICMPv4 |
 | Header | | Header |
 +-------------+ +-------------+
 | IPv6 | ===> | IPv4 |
 | Header | | Header |
 +-------------+ +-------------+
 | Partial | | Partial |
 | Transport | | Transport |
 | Layer | | Layer |
 | Header | | Header |
 +-------------+ +-------------+

 Figure 7: IPv6-to-IPv4 ICMP Error Translation

 The translation of the inner IP header can be done by invoking the
 function that translated the outer IP headers. This process SHOULD
 stop at first embedded header and drop the packet if it contains
 more. Note that the IPv6 addresses in the IPv6 header may not be
 IPv4-translatable addresses and there will be no corresponding IPv4
 addresses. In this case, the translator can ether do stateful
 translation or map them to an IPv4 address block as a holder for all
 non IPv4-translatable IPv6 addresses.

https://datatracker.ietf.org/doc/html/rfc4884
https://datatracker.ietf.org/doc/html/rfc4884

Li, et al. Expires August 15, 2010 [Page 23]

Internet-Draft IPv4/IPv6 Translation February 2010

4.4. Translator Sending ICMPv6 Error Message

 If the IPv6 packet is discarded, then the translator SHOULD be able
 to send back an ICMPv6 error message to the original sender of the
 packet, unless the discarded packet is itself an ICMPv6 message.

 If the reason of sending ICMPv6 is due to that the IPv6 source
 address is not an IPv4-translatable address and the translator is
 stateless, the ICMPv6 message, if sent, has a Type value 1 and Code
 value 5 (Source address failed ingress/egress policy). In other
 cases, the ICMPv6 message has a Type value of 1 (Destination
 Unreachable) and a Code value of 1 (Communication with destination
 administratively prohibited), unless otherwise specified in this
 document or [I-D.ietf-behave-v6v4-xlate-stateful]. The translator
 SHOULD allow an administrator to configure whether the ICMPv6 error
 messages are sent, rate-limited, or not sent.

4.5. Transport-layer Header Translation

 If the address translation algorithm is not checksum neutral, the
 recalculation and updating of the transport-layer headers MUST be
 performed.

4.6. Knowing when to Translate

 If the IP/ICMP translator also provides normal forwarding function,
 and the destination address is reachable by a more specific route
 without translation, the router MUST forward it without translating
 it. When an IP/ICMP translator receives an IPv6 datagram addressed
 to an IPv6 address representing an host in IPv4 domain, the IPv6
 packet MUST be translated to IPv4.

5. IANA Considerations

 This memo adds no new IANA considerations.

 Note to RFC Editor: This section will have served its purpose if it
 correctly tells IANA that no new assignments or registries are
 required, or if those assignments or registries are created during
 the RFC publication process. From the author's perspective, it may
 therefore be removed upon publication as an RFC at the RFC Editor's
 discretion.

6. Security Considerations

 The use of stateless IP/ICMP translators does not introduce any new

Li, et al. Expires August 15, 2010 [Page 24]

Internet-Draft IPv4/IPv6 Translation February 2010

 security issues beyond the security issues that are already present
 in the IPv4 and IPv6 protocols and in the routing protocols that are
 used to make the packets reach the translator.

 There are potential issues that might arise by deriving an IPv4
 address from an IPv6 address - particularly addresses like broadcast
 or loopback addresses and the non IPv4-translatable IPv6 addresses,
 etc. The [I-D.ietf-behave-address-format] addresses these issues.

 As the Authentication Header [RFC4302] is specified to include the
 IPv4 Identification field and the translating function is not able to
 always preserve the Identification field, it is not possible for an
 IPv6 endpoint to verify the AH on received packets that have been
 translated from IPv4 packets. Thus AH does not work through a
 translator.

 Packets with ESP can be translated since ESP does not depend on
 header fields prior to the ESP header. Note that ESP transport mode
 is easier to handle than ESP tunnel mode; in order to use ESP tunnel
 mode, the IPv6 node needs to be able to generate an inner IPv4 header
 when transmitting packets and remove such an IPv4 header when
 receiving packets.

7. Acknowledgements

 This is under development by a large group of people. Those who have
 posted to the list during the discussion include Andrew Sullivan,
 Andrew Yourtchenko, Brian Carpenter, Dan Wing, Dave Thaler, Ed
 Jankiewicz, Hiroshi Miyata, Iljitsch van Beijnum, Jari Arkko, Jerry
 Huang, John Schnizlein, Jouni Korhonen, Kentaro Ebisawa, Kevin Yin,
 Magnus Westerlund, Marcelo Bagnulo Braun, Margaret Wasserman,
 Masahito Endo, Phil Roberts, Philip Matthews, Remi Denis-Courmont,
 Remi Despres, Senthil Sivakumar, Simon Perreault and Zen Cao.

8. Appendix: Stateless translation workflow example

 A stateless translation workflow example is depicted in the following
 figure:

https://datatracker.ietf.org/doc/html/rfc4302

Li, et al. Expires August 15, 2010 [Page 25]

Internet-Draft IPv4/IPv6 Translation February 2010

 +--------------+ +--------------+
 | IPv4 network | | IPv6 network | | | | |
 | | +-------+ | |
 | +----+ |-----| XLATE |---- | +----+ |
 | | H4 |-----| +-------+ |--| H6 | |
 | +----+ | | +----+ |
 +--------------+ +--------------+

 Figure 8

 A translator (XLATE) connects the IPv6 network to the IPv4 network.
 This XLATE uses the Network Specific Prefix (NSP) 2001:DB8:100::/40
 defined in [I-D.ietf-behave-address-format] to represent IPv4
 addresses in the IPv6 address space (IPv4-converted addresses) and to
 represent IPv6 addresses (IPv4-translatable addresses) in the IPv4
 address space. In this example, 192.0.2.0/24 is the IPv4 block of
 the corresponding IPv4-translatable addresses.

 Based on the address mapping rule, the IPv6 node H6 has an IPv4-
 translatable IPv6 address 2001:DB8:1C0:2:21:: (address mapping from
 192.0.2.33). The IPv4 node H4 has IPv4 address 166.111.1.2.

 The IPv6 routing is configured in such a way that the IPv6 packets
 addressed to a destination address in 2001:DB8:100::/40 are routed to
 the IPv6 interface of the XLATE.

 The IPv4 routing is configured in such a way that the IPv4 packets
 addressed to a destination address in 192.0.2.0/24 are routed to the
 IPv4 interface of the XLATE.

8.1. H6 establishes communication with H4

 The steps by which H6 establishes communication with H4 are:

 1. H6 performs the destination address mapping, so the IPv4-
 converted address 2001:DB8:1a6:6f01:200:: is formed from
 166.111.1.2 based on the address mapping algorithm
 [I-D.ietf-behave-address-format].

 2. H6 sends a packet to H4. The packet is sent from a source
 address 2001:DB8:1C0:2:21:: to a destination address 2001:DB8:
 1a6:6f01:200::.

 3. The packet is routed to the IPv6 interface of the XLATE (since
 IPv6 routing is configured that way).

Li, et al. Expires August 15, 2010 [Page 26]

Internet-Draft IPv4/IPv6 Translation February 2010

 4. The XLATE receives the packet and performs the following actions:

 * The XLATE translates the IPv6 header into an IPv4 header using
 the IP/ICMP Translation Algorithm defined in this document.

 * The XLATE includes 192.0.2.33 as source address in the packet
 and 166.111.1.2 as destination address in the packet. Note
 that 192.0.2.33 and 166.111.1.2 are extracted directly from
 the source IPv6 address 2001:DB8:1C0:2:21:: (IPv4-translatable
 address) and destination IPv6 address 2001:DB8:1a6:6f01:200::
 (IPv4-converted address) of the received IPv6 packet that is
 being translated.

 5. The XLATE sends the translated packet out its IPv4 interface and
 the packet arrives at H4.

 6. H4 node responds by sending a packet with destination address
 192.0.2.33 and source address 166.111.1.2.

 7. The packet is routed to the IPv4 interface of the XLATE (since
 IPv4 routing is configured that way). The XLATE performs the
 following operations:

 * The XLATE translates the IPv4 header into an IPv6 header using
 the IP/ICMP Translation Algorithm defined in this document.

 * The XLATE includes 2001:DB8:1C0:2:21:: as destination address
 in the packet and 2001:DB8:1a6:6f01:200:: as source address in
 the packet. Note that 2001:DB8:1C0:2:21:: and 2001:DB8:1a6:
 6f01:200:: are formed directly from the destination IPv4
 address 192.0.2.33 and source IPv4 address 166.111.1.2 of the
 received IPv4 packet that is being translated.

 8. The translated packet is sent out the IPv6 interface to H6.

 The packet exchange between H6 and H4 continues until the session is
 finished.

8.2. H4 establishes communication with H6

 The steps by which H4 establishes communication with H6 are:

 1. H4 performs the destination address mapping, so 192.0.2.33 is
 formed from IPv4-translatable address 2001:DB8:1C0:2:21:: based
 on the address mapping algorithm
 [I-D.ietf-behave-address-format].

Li, et al. Expires August 15, 2010 [Page 27]

Internet-Draft IPv4/IPv6 Translation February 2010

 2. H4 sends a packet to H6. The packet is sent from a source
 address 166.111.1.2 to a destination address 192.0.2.33.

 3. The packet is routed to the IPv6 interface of the XLATE (since
 IPv6 routing is configured that way).

 4. The XLATE receives the packet and performs the following actions:

 * The XLATE translates the IPv4 header into an IPv6 header using
 the IP/ICMP Translation Algorithm defined in this document.

 * The XLATE includes 2001:DB8:1a6:6f01:200:: as source address
 in the packet and 2001:DB8:1C0:2:21:: as destination address
 in the packet. Note that 2001:DB8:1a6:6f01:200:: (IPv4-
 converted address) and 2001:DB8:1C0:2:21:: (IPv4-translatable
 address) are obtained directly from the source IPv4 address
 166.111.1.2 and destination IPv4 address 192.0.2.33 of the
 received IPv4 packet that is being translated.

 5. The XLATE sends the translated packet out its IPv6 interface and
 the packet arrives at H6.

 6. H6 node responds by sending a packet with destination address
 2001:DB8:1a6:6f01:200:: and source address 2001:DB8:1C0:2:21::.

 7. The packet is routed to the IPv6 interface of the XLATE (since
 IPv6 routing is configured that way). The XLATE performs the
 following operations:

 * The XLATE translates the IPv6 header into an IPv4 header using
 the IP/ICMP Translation Algorithm defined in this document.

 * The XLATE includes 166.111.1.2 as destination address in the
 packet and 192.0.2.33 as source address in the packet. Note
 that 166.111.1.2 and 192.0.2.33 are formed directly from the
 destination IPv6 address 2001:DB8:1a6:6f01:200:: and source
 IPv6 address 2001:DB8:1C0:2:21:: of the received IPv6 packet
 that is being translated.

 8. The translated packet is sent out the IPv4 interface to H4.

 The packet exchange between H4 and H6 continues until the session
 finished.

9. References

Li, et al. Expires August 15, 2010 [Page 28]

Internet-Draft IPv4/IPv6 Translation February 2010

9.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
RFC 792, September 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC0879] Postel, J., "TCP maximum segment size and related topics",
RFC 879, November 1983.

 [RFC1812] Baker, F., "Requirements for IP Version 4 Routers",
RFC 1812, June 1995.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2765] Nordmark, E., "Stateless IP/ICMP Translation Algorithm
 (SIIT)", RFC 2765, February 2000.

 [RFC2766] Tsirtsis, G. and P. Srisuresh, "Network Address
 Translation - Protocol Translation (NAT-PT)", RFC 2766,
 February 2000.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC4884] Bonica, R., Gan, D., Tappan, D., and C. Pignataro,
 "Extended ICMP to Support Multi-Part Messages", RFC 4884,
 April 2007.

 [RFC5382] Guha, S., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,

RFC 5382, October 2008.

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc879
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc2766
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4884
https://datatracker.ietf.org/doc/html/bcp142
https://datatracker.ietf.org/doc/html/rfc5382

Li, et al. Expires August 15, 2010 [Page 29]

Internet-Draft IPv4/IPv6 Translation February 2010

9.2. Informative References

 [Dongjin] Lee, D., "Email to the behave mailing list (http://
www.ietf.org/mail-archive/web/behave/current/

 msg06856.html)", Sept 2009.

 [I-D.ietf-behave-address-format]
 Huitema, C., Bao, C., Bagnulo, M., Boucadair, M., and X.
 Li, "IPv6 Addressing of IPv4/IPv6 Translators",

draft-ietf-behave-address-format-04 (work in progress),
 January 2010.

 [I-D.ietf-behave-v6v4-framework]
 Baker, F., Li, X., Bao, C., and K. Yin, "Framework for
 IPv4/IPv6 Translation",

draft-ietf-behave-v6v4-framework-06 (work in progress),
 February 2010.

 [I-D.ietf-behave-v6v4-xlate-stateful]
 Bagnulo, M., Matthews, P., and I. Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers",

draft-ietf-behave-v6v4-xlate-stateful-08 (work in
 progress), January 2010.

 [Miller] Miller, G., "Email to the ngtrans mailing list
 (http://www.mail-archive.com/ipv6@ietf.org/

msg10159.html)", March 1999.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 December 1998.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, December 1998.

 [RFC2710] Deering, S., Fenner, W., and B. Haberman, "Multicast
 Listener Discovery (MLD) for IPv6", RFC 2710,
 October 1999.

 [RFC3171] Albanna, Z., Almeroth, K., Meyer, D., and M. Schipper,
 "IANA Guidelines for IPv4 Multicast Address Assignments",

BCP 51, RFC 3171, August 2001.

http://www.ietf.org/mail-archive/web/behave/current/
http://www.ietf.org/mail-archive/web/behave/current/
https://datatracker.ietf.org/doc/html/draft-ietf-behave-address-format-04
https://datatracker.ietf.org/doc/html/draft-ietf-behave-v6v4-framework-06
https://datatracker.ietf.org/doc/html/draft-ietf-behave-v6v4-xlate-stateful-08
http://www.mail-archive.com/ipv6@ietf.org/msg10159.html
http://www.mail-archive.com/ipv6@ietf.org/msg10159.html
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc2710
https://datatracker.ietf.org/doc/html/bcp51
https://datatracker.ietf.org/doc/html/rfc3171

Li, et al. Expires August 15, 2010 [Page 30]

Internet-Draft IPv4/IPv6 Translation February 2010

 [RFC3307] Haberman, B., "Allocation Guidelines for IPv6 Multicast
 Addresses", RFC 3307, August 2002.

 [RFC3590] Haberman, B., "Source Address Selection for the Multicast
 Listener Discovery (MLD) Protocol", RFC 3590,
 September 2003.

 [RFC3810] Vida, R. and L. Costa, "Multicast Listener Discovery
 Version 2 (MLDv2) for IPv6", RFC 3810, June 2004.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213, October 2005.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 December 2005.

 [Stasiewicz]
 Stasiewicz, B., "Email to the behave mailing list (http://

www.ietf.org/mail-archive/web/behave/current/
 msg08093.html)", Feb 2010.

Authors' Addresses

 Xing Li
 CERNET Center/Tsinghua University
 Room 225, Main Building, Tsinghua University
 Beijing, 100084
 China

 Phone: +86 10-62785983
 Email: xing@cernet.edu.cn

 Congxiao Bao
 CERNET Center/Tsinghua University
 Room 225, Main Building, Tsinghua University
 Beijing, 100084
 China

 Phone: +86 10-62785983
 Email: congxiao@cernet.edu.cn

https://datatracker.ietf.org/doc/html/rfc3307
https://datatracker.ietf.org/doc/html/rfc3590
https://datatracker.ietf.org/doc/html/rfc3810
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4302
http://www.ietf.org/mail-archive/web/behave/current/
http://www.ietf.org/mail-archive/web/behave/current/

Li, et al. Expires August 15, 2010 [Page 31]

Internet-Draft IPv4/IPv6 Translation February 2010

 Fred Baker
 Cisco Systems
 Santa Barbara, California 93117
 USA

 Phone: +1-408-526-4257
 Email: fred@cisco.com

Li, et al. Expires August 15, 2010 [Page 32]

