
BEHAVE WG M. Bagnulo
Internet-Draft UC3M
Intended status: Standards Track P. Matthews
Expires: January 12, 2010 Alcatel-Lucent
 I. van Beijnum
 IMDEA Networks
 July 11, 2009

NAT64: Network Address and Protocol Translation from IPv6 Clients to
IPv4 Servers

draft-ietf-behave-v6v4-xlate-stateful-01

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79. This document may contain material
 from IETF Documents or IETF Contributions published or made publicly
 available before November 10, 2008. The person(s) controlling the
 copyright in some of this material may not have granted the IETF
 Trust the right to allow modifications of such material outside the
 IETF Standards Process. Without obtaining an adequate license from
 the person(s) controlling the copyright in such materials, this
 document may not be modified outside the IETF Standards Process, and
 derivative works of it may not be created outside the IETF Standards
 Process, except to format it for publication as an RFC or to
 translate it into languages other than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 12, 2010.

Copyright Notice

Bagnulo, et al. Expires January 12, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft NAT64 July 2009

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 NAT64 is a mechanism for translating IPv6 packets to IPv4 packets and
 vice-versa. DNS64 is a mechanism for synthesizing AAAA records from
 A records. These two mechanisms together enable client-server
 communication between an IPv6-only client and an IPv4-only server,
 without requiring any changes to either the IPv6 or the IPv4 node,
 for the class of applications that work through NATs. They also
 enable peer-to-peer communication between an IPv4 and an IPv6 node,
 where the communication can be initiated by either end using
 existing, NAT-traversing, peer-to-peer communication techniques.
 This document specifies NAT64, and gives suggestions on how they
 should be deployed.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bagnulo, et al. Expires January 12, 2010 [Page 2]

Internet-Draft NAT64 July 2009

Table of Contents

1. Introduction . 4
1.1. Features of NAT64 . 5
1.2. Overview . 5
1.2.1. NAT64 solution elements 6
1.2.2. Walkthrough . 7
1.2.3. Filtering . 10

2. Terminology . 10
3. NAT64 Normative Specification 11
3.1. Determining the Incoming 5-tuple 13
3.2. Filtering and Updating Binding and Session Information . . 14
3.2.1. UDP Session Handling 14
3.2.2. TCP Session Handling 16
3.2.3. Rules for allocation of IPv4 transport addresses . . . 20

 3.2.4. Generation of the IPv6 representations of IPv4
 addresses . 21

4. Computing the Outgoing 5-Tuple 22
5. Translating the Packet . 23
6. Handling Hairpinning . 24
7. Path MTU discovery and fragmentation 24
7.1. Translating whole packets and PMTUD 25
7.1.1. IPv6-to-IPv4 translation 25
7.1.2. IPv4-to-IPv6 . 26

7.2. Fragmentation . 26
7.2.1. IPv4-to-IPv6 . 27
7.2.2. IPv6-to-IPv4 . 28

7.3. TCP MSS option . 28
8. Application scenarios . 29
8.1. Enterprise IPv6 only network 29
8.2. Reaching servers in private IPv4 space 29

9. Security Considerations 30
10. IANA Considerations . 32
11. Changes from Previous Draft Versions 32
12. Contributors . 32
13. Acknowledgements . 32
14. References . 33
14.1. Normative References 33
14.2. Informative References 34

 Authors' Addresses . 34

Bagnulo, et al. Expires January 12, 2010 [Page 3]

Internet-Draft NAT64 July 2009

1. Introduction

 This document specifies NAT64, a mechanism for IPv6-IPv4 transition
 and co-existence. Together with DNS64 [I-D.ietf-behave-dns64], these
 two mechanisms allow a IPv6-only client to initiate communications to
 an IPv4-only server, and also allow peer-to-peer communication
 between IPv6-only and IPv4-only hosts.

 NAT64 is a mechanism for translating IPv6 packets to IPv4 packets.
 The translation is done by translating the packet headers according
 to SIIT [RFC2765], translating the IPv4 server address by adding or
 removing an IPv6 prefix, and translating the IPv6 client address by
 installing mappings in the normal NAT manner.

 DNS64 is a mechanism for synthesizing AAAA resource records (RR) from
 A RR. The synthesis is done by adding a IPv6 prefix to the IPv4
 address to create an IPv6 address, where the IPv6 prefix is assigned
 to a NAT64 device.

 Together, these two mechanisms allow a IPv6-only client to initiate
 communications to an IPv4-only server.

 These mechanisms are expected to play a critical role in the IPv4-
 IPv6 transition and co-existence. Due to IPv4 address depletion,
 it's likely that in the future, a lot of IPv6-only clients will want
 to connect to IPv4-only servers. The NAT64 and DNS64 mechanisms are
 easily deployable, since they require no changes to either the IPv6
 client nor the IPv4 server. For basic functionality, the approach
 only requires the deployment of NAT64 function in the devices
 connecting an IPv6-only network to the IPv4-only network, along with
 the deployment of a few DNS64-enabled name servers in the IPv6-only
 network. However, some advanced features such as support for DNSSEC
 validating stub resolvers or support for some IPsec modes, require
 software updates to the IPv6-only hosts.

 The NAT64 and DNS64 mechanisms are related to the NAT-PT mechanism
 defined in [RFC2766], but significant differences exist. First,
 NAT64 does not define the NATPT mechanisms used to support IPv6 only
 servers to be contacted by IPv4 only clients, but only defines the
 mechanisms for IPv6 clients to contact IPv4 servers and its potential
 reuse to support peer to peer communications through standard NAT
 traversal techniques. Second, NAT64 includes a set of features that
 overcomes many of the reasons the original NAT-PT specification was
 moved to historic status [RFC4966].

https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc2766
https://datatracker.ietf.org/doc/html/rfc4966

Bagnulo, et al. Expires January 12, 2010 [Page 4]

Internet-Draft NAT64 July 2009

1.1. Features of NAT64

 The features of NAT64 and DNS64 are:

 o It enables IPv6-only nodes to initiate a client-server connection
 with an IPv4-only server, without needing any changes on either
 IPv4 or IPv6 nodes. This works for roughly the same class of
 applications that work through IPv4-to-IPv4 NATs.

 o It supports peer-to-peer communication between IPv4 and IPv6
 nodes, including the ability for IPv4 nodes to initiate
 communication with IPv6 nodes using peer-to-peer techniques (i.e.,
 using a rendezvous server and ICE). To this end, NAT64 is
 compliant with the recommendations for how NATs should handle UDP
 [RFC4787], TCP [RFC4787], and ICMP [RFC5508].

 o Compatible with ICE.

 o Supports additional features with some changes on nodes. These
 features include:

 * Support for DNSSEC

 * Some forms of IPsec support

1.2. Overview

 This section provides a non-normative introduction to the mechanisms
 of NAT64.

 NAT64 mechanism is implemented in an NAT64 box which has two
 interfaces, an IPv4 interface connected to the the IPv4 network, and
 an IPv6 interface connected to the IPv6 network. Packets generated
 in the IPv6 network for a receiver located in the IPv4 network will
 be routed within the IPv6 network towards the NAT64 box. The NAT64
 box will translate them and forward them as IPv4 packets through the
 IPv4 network to the IPv4 receiver. The reverse takes place for
 packets generated in the IPv4 network for an IPv6 receiver. NAT64,
 however, is not symmetric. In order to be able to perform IPv6 -
 IPv4 translation NAT64 requires state, binding an IPv6 address and
 port (hereafter called an IPv6 transport address) to an IPv4 address
 and port (hereafter called an IPv4 transport address).

 Such binding state is created when the first packet flowing from the
 IPv6 network to the IPv4 network is translated. After the binding
 state has been created, packets flowing in either direction on that
 particular flow are translated. The result is that NAT64 only
 supports communications initiated by the IPv6-only node towards an

https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc5508

Bagnulo, et al. Expires January 12, 2010 [Page 5]

Internet-Draft NAT64 July 2009

 IPv4-only node. Some additional mechanisms, like ICE, can be used in
 combination with NAT64 to provide support for communications
 initiated by the IPv4-only node to the IPv6-only node. The
 specification of such mechanisms, however, is out of the scope of
 this document.

1.2.1. NAT64 solution elements

 In this section we describe the different elements involved in the
 NAT64 approach.

 The main component of the proposed solution is the translator itself.
 The translator has essentially two main parts, the address
 translation mechanism and the protocol translation mechanism.

 Protocol translation from IPv4 packet header to IPv6 packet header
 and vice-versa is performed according to SIIT [RFC2765].

 Address translation maps IPv6 transport addresses to IPv4 transport
 addresses and vice-versa. In order to create these mappings the
 NAT64 box has two pools of addresses i.e. an IPv6 address pool (to
 represent IPv4 addresses in the IPv6 network) and an IPv4 address
 pool (to represent IPv6 addresses in the IPv4 network). Since there
 is enough IPv6 address space, it is possible to map every IPv4
 address into a different IPv6 address.

 NAT64 creates the required mappings by using as the IPv6 address pool
 an IPv6 IPv6 prefix (hereafter called Pref64::/96). This allows each
 IPv4 address to be mapped into a different IPv6 address by simply
 concatenating the /96 prefix assigned as the IPv6 address pool of the
 NAT64, with the IPv4 address being mapped (i.e. an IPv4 address X is
 mapped into the IPv6 address Pref64:X). The NAT64 prefix Pref64::/96
 is assigned by the administrator of the NAT64 box from the global
 unicast IPv6 address block assigned to the site.

 The IPv4 address pool is a set of IPv4 addresses, normally a small
 prefix assigned by the local administrator. Since IPv4 address space
 is a scarce resource, the IPv4 address pool is small and typically
 not sufficient to establish permanent one-to-one mappings with IPv6
 addresses. So, mappings using the IPv4 address pool will be created
 and released dynamically. Moreover, because of the IPv4 address
 scarcity, the usual practice for NAT64 is likely to be the mapping of
 IPv6 transport addresses into IPv4 transport addresses, instead of
 IPv6 addresses into IPv4 addresses directly, which enable a higher
 utilization of the limited IPv4 address pool.

 Because of the dynamic nature of the IPv6 to IPv4 address mapping and
 the static nature of the IPv4 to IPv6 address mapping, it is easy to

https://datatracker.ietf.org/doc/html/rfc2765

Bagnulo, et al. Expires January 12, 2010 [Page 6]

Internet-Draft NAT64 July 2009

 understand that it is far simpler to allow communication initiated
 from the IPv6 side toward an IPv4 node, which address is permanently
 mapped into an IPv6 address, than communications initiated from IPv4-
 only nodes to an IPv6 node in which case IPv4 address needs to be
 associated with it dynamically. For this reason NAT64 supports only
 communications initiated from the IPv6 side.

 An IPv6 initiator can know or derive in advance the IPv6 address
 representing the IPv4 target and send packets to that address. The
 packets are intercepted by the NAT64 device, which associates an IPv4
 transport address of its IPv4 pool to the IPv6 transport address of
 the initiator, creating binding state, so that reply packets can be
 translated and forwarded back to the initiator. The binding state is
 kept while packets are flowing. Once the flow stops, and based on a
 timer, the IPv4 transport address is returned to the IPv4 address
 pool so that it can be reused for other communications.

 To allow an IPv6 initiator to do the standard DNS lookup to learn the
 address of the responder, DNS64 [I-D.ietf-behave-dns64] is used to
 synthesize an AAAA RR from the A RR (containing the real IPv4 address
 of the responder). DNS64 receives the DNS queries generated by the
 IPv6 initiator. If there is no AAAA record available for the target
 node (which is the normal case when the target node is an IPv4-only
 node), DNS64 performs a query for the A record. If an A record is
 discovered, DNS64 creates a synthetic AAAA RR by adding the
 Pref64::/96 of a NAT64 to the responder's IPv4 address (i.e. if the
 IPv4 node has IPv4 address X, then the synthetic AAAA RR will contain
 the IPv6 address formed as Pref64:X). The synthetic AAAA RR is
 passed back to the IPv6 initiator, which will initiate an IPv6
 communication with the IPv6 address associated to the IPv4 receiver.
 The packet will be routed to the NAT64 device, which will create the
 IPv6 to IPv4 address mapping as described before.

1.2.2. Walkthrough

 In this example, we consider an IPv6 node located in a IPv6-only site
 that initiates a communication to a IPv4 node located in the IPv4
 network.

 The notation used is the following: upper case letters are IPv4
 addresses; upper case letters with a prime(') are IPv6 addresses;
 lower case letters are ports; prefixes are indicated by "P::X", which
 is a IPv6 address built from an IPv4 address X by adding the prefix
 P, mappings are indicated as "(X,x) <--> (Y',y)".

 The scenario for this case is depicted in the following figure:

Bagnulo, et al. Expires January 12, 2010 [Page 7]

Internet-Draft NAT64 July 2009

 +---------------------------------------+ +---------------+
 |IPv6 network +-------------+ | | | | | | | |
 | +----+ | Name server | +-------+ | IPv4 |
 | | H1 | | with DNS64 | | NAT64 |----| Network |
 | +----+ +-------------+ +-------+ | |
 | |IP addr: Y' | | | | IP addr: X |
 | --------------------------------- | | +----+ |
 +---------------------------------------+ | | H2 | |
 | +----+ |
 +---------------+

 The figure shows a IPv6 node H1 which has an IPv6 address Y' and an
 IPv4 node H2 with IPv4 address X.

 A NAT64 connects the IPv6 network to the IPv4 network. This NAT64
 has a /96 prefix (called Pref64::/96) that it uses to represent IPv4
 addresses in the IPv6 address space and an IPv4 address T assigned to
 its IPv4 interface. the routing is configured in such a way, that the
 IPv6 packets addressed to a destination address containing
 Pref64::/96 are routed to the IPv6 interface of the NAT64 box.

 Also shown is a local name server with DNS64 functionality. The
 local name server needs to know the /96 prefix assigned to the local
 NAT64 (Pref64::/96). For the purpose of this example, we assume it
 learns this through manual configuration.

 For this example, assume the typical DNS situation where IPv6 hosts
 have only stub resolvers and the local name server does the recursive
 lookups.

 The steps by which H1 establishes communication with H2 are:

 1. H1 performs a DNS query for FQDN(H2) and receives the synthetic
 AAAA RR from the local name server that implements the DNS64
 functionality. The AAAA record contains an IPv6 address formed
 by the PRefix64::/96 associated to the NAT64 box and the IPv4
 address of H2 in the lower 32 bits.

 2. H1 sends a packet to H2. The packet is sent from a source
 transport address of (Y',y) to a destination transport address of
 (Pref64:X,x), where y and x are ports set by H1.

 3. The packet is routed to the IPv6 interface of the NAT64 (since
 the IPv6 routing is configured that way).

 4. The NAT64 receives the packet and performs the following actions:

Bagnulo, et al. Expires January 12, 2010 [Page 8]

Internet-Draft NAT64 July 2009

 * The NAT64 selects an unused port t on its IPv4 address T and
 creates the mapping entry (Y',y) <--> (T,t)

 * The NAT64 translates the IPv6 header into an IPv4 header using
 SIIT.

 * The NAT64 includes (T,t) as source transport address in the
 packet and (X,x) as destination transport address in the
 packet. Note that X is extracted directly from the lower 32
 bits of the destination IPv6 address of the received IPv6
 packet that is being translated.

 5. The NAT64 sends the translated packet out its IPv4 interface and
 the packet arrives at H2.

 6. H2 node responds by sending a packet with destination transport
 address (T,t) and source transport address (X,x).

 7. The packet is routed to the NAT64 box, which will look for an
 existing mapping containing (T,t). Since the mapping (Y',y) <-->
 (T,t) exists, the NAT64 performs the following operations:

 * The NAT64 translates the IPv4 header into an IPv6 header using
 SIIT.

 * The NAT64 includes (Y',y) as destination transport address in
 the packet and (Pref64:X,x) as source transport address in the
 packet. Note that X is extracted directly from the source
 IPv4 address of the received IPv4 packet that is being
 translated.

 8. The translated packet is sent out the IPv6 interface to H1.

 The packet exchange between H1 and H2 continues and packets are
 translated in the different directions as previously described.

 It is important to note that the translation still works if the IPv6
 initiator H1 learns the IPv6 representation of H2's IPv4 address
 (i.e. Pref64:X) through some scheme other than a DNS look-up. This
 is because the DNS64 processing does NOT result in any state
 installed in the NAT64 box and because the mapping of the IPv4
 address into an IPv6 address is the result of concatenating the
 prefix defined within the site for this purpose (called Pref64::/96
 in this document) to the original IPv4 address.

Bagnulo, et al. Expires January 12, 2010 [Page 9]

Internet-Draft NAT64 July 2009

1.2.3. Filtering

 A NAT64 box may do filtering, which means that it only allows a
 packet in through an interface if the appropriate permission exists.
 A NAT64 may do no filtering, or it may filter on its IPv4 interface.
 Filtering on the IPv6 interface is not supported, as mappings are
 only created by packets traveling in the IPv6 --> IPv4 direction.

 If a NAT64 performs address-dependent filtering according to RFC4787
 [RFC4787] on its IPv4 interface, then an incoming packet is dropped
 unless a packet has been recently sent out the interface with a
 source transport address equal to the destination transport address
 of the incoming packet and destination IP address equal to the source
 IP address of the incoming packet.

 NAT64 filtering is consistent with the recommendations of RFC 4787
 [RFC4787], and the ones of RFC 5382 [RFC5382]

2. Terminology

 This section provides a definitive reference for all the terms used
 in document.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The following terms are used in this document:

 5-Tuple: The tuple (source IP address, source port, destination IP
 address, destination port, transport protocol). A 5-tuple
 uniquely identifies a session. When a session flows through a
 NAT64, each session has two different 5-tuples: one with IPv4
 addresses and one with IPv6 addresses.

 BIB: Binding Information Base. A table of mappings kept by a NAT64.
 Each NAT64 has two BIBs, one for TCP and one for UDP.

 DNS64: A logical function that synthesizes AAAA Resource Records
 (containing IPv6 addresses) from A Resource Records (containing
 IPv4 addresses).

 Endpoint-Independent Mapping: In NAT64, using the same mapping for
 all the sessions involving a given IPv6 transport address of an
 IPv6 host (irrespectively of the transport address of the IPv4
 host involved in the communication). Endpoint-independent mapping
 is important for peer-to-peer communication. See [RFC4787] for

https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4787

Bagnulo, et al. Expires January 12, 2010 [Page 10]

Internet-Draft NAT64 July 2009

 the definition of the different types of mappings in IPv4-to-IPv4
 NATs.

 Hairpinning: Having a packet do a "U-turn" inside a NAT and come
 back out the same interface as it arrived on. Hairpinning support
 is important for peer-to-peer applications, as there are cases
 when two different hosts on the same side of a NAT can only
 communicate using sessions that hairpin though the NAT.

 Mapping: A mapping between an IPv6 transport address and a IPv4
 transport address. Used to translate the addresses and ports of
 packets flowing between the IPv6 host and the IPv4 host. In
 NAT64, the IPv4 transport address is always a transport address
 assigned to the NAT64 itself, while the IPv6 transport address
 belongs to some IPv6 host.

 NAT64: A device that translates IPv6 packets to IPv4 packets and
 vice-versa, with the provision that the communication must be
 initiated from the IPv6 side. The translation involves not only
 the IP header, but also the transport header (TCP or UDP).

 Session: A TCP or UDP session. In other words, the bi-directional
 flow of packets between two ports on two different hosts. In
 NAT64, typically one host is an IPv4 host, and the other one is an
 IPv6 host.

 Session table: A table of sessions kept by a NAT64. Each NAT64 has
 two session tables, one for TCP and one for UDP.

 Synthetic RR: A DNS Resource Record (RR) that is not contained in
 any zone data file, but has been synthesized from other RRs. An
 example is a synthetic AAAA record created from an A record.

 Transport Address: The combination of an IPv6 or IPv4 address and a
 port. Typically written as (IP address, port); e.g. (192.0.2.15,
 8001).

 For a detailed understanding of this document, the reader should also
 be familiar with DNS terminology [RFC1035] and current NAT
 terminology [RFC4787].

3. NAT64 Normative Specification

 A NAT64 is a device with at least one IPv6 interface and at least one
 IPv4 interface. Each NAT64 device MUST have one unicast /96 IPv6
 prefix assigned to it, denoted Pref64::/96. Each NAT64 box MUST have
 one or more unicast IPv4 addresses assigned to it.

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc4787

Bagnulo, et al. Expires January 12, 2010 [Page 11]

Internet-Draft NAT64 July 2009

 A NAT64 uses the following dynamic data structures:

 o UDP Binding Information Base

 o UDP Session Table

 o TCP Binding Information Base

 o TCP Session Table

 A NAT64 has two Binding Information Bases (BIBs): one for TCP and one
 for UDP. Each BIB entry specifies a mapping between an IPv6
 transport address and an IPv4 transport address:

 (X',x) <--> (T,t)

 where X' is some IPv6 address, T is an IPv4 address, and x and t are
 ports. T will always be one of the IPv4 addresses assigned to the
 NAT64 A given IPv6 or IPv4 transport address can appear in at most
 one entry in a BIB: for example, (2001:db8::17, 4) can appear in at
 most one TCP and at most one UDP BIB entry. TCP and UDP have
 separate BIBs because the port number space for TCP and UDP are
 distinct.

 A NAT64 also has two session tables: one for TCP sessions and one for
 UDP sessions. Each entry keeps information on the state of the
 corresponding session. In particular, the each session table entry
 Each session table entry specifies a mapping between a pair of IPv6
 transport address and a pair of IPv4 transport address:

 (X',x),(Y',y) <--> (T,t),(Z,z)

 where X' and Y' are IPv6 addresses, T and Z are IPv4 addresses, and
 x, y, z and t are ports. T will always be one of the IPv4 addresses
 assigned to the NAT64. Y' is always the IPv6 representation of the
 IPv4 address Z, so Y' is obtained from Z using the algorithm applied
 by the NAT64 to create IPv6 representations of IPv4 addresses. y is
 always equal to z. In addition, each session table entry has a
 lifetime. The NAT64 uses the session state information to determine
 when the session is completed, and also uses session information for
 ingress filtering. A session can be uniquely identified by either an
 incoming 5-tuple or an outgoing 5-tuple.

 For each session, there is a corresponding BIB entry, uniquely
 specified by either the source IPv6 transport address (in the IPv6
 --> IPv4 direction) or the destination IPv4 transport address (in the
 IPv4 --> IPv6 direction). However, a single BIB entry can have
 multiple corresponding sessions. When the last corresponding session

Bagnulo, et al. Expires January 12, 2010 [Page 12]

Internet-Draft NAT64 July 2009

 is deleted, the BIB entry is deleted.

 The processing of an incoming IP packet takes the following steps:

 1. Determining the incoming 5-tuple

 2. Filtering and updating binding and session information

 3. Computing the outgoing 5-tuple

 4. Translating the packet

 5. Handling hairpinning

 The details of these steps are specified in the following
 subsections.

 This breakdown of the NAT64 behavior into processing steps is done
 for ease of presentation. A NAT64 MAY perform the steps in a
 different order, or MAY perform different steps, as long as the
 externally visible outcome is the same.

 TBD: Add support for ICMP Query packets. (ICMP Error packets are
 handled).

3.1. Determining the Incoming 5-tuple

 This step associates a incoming 5-tuple (source IP address, source
 port, destination IP address, destination port, transport protocol)
 with every incoming IP packet for use in subsequent steps.

 If the incoming IP packet contains a complete (un-fragmented) UDP or
 TCP protocol packet, then the 5-tuple is computed by extracting the
 appropriate fields from the packet.

 If the incoming IP packet contains a complete (un-fragmented) ICMP
 error message, then the 5-tuple is computed by extracting the
 appropriate fields from the IP packet embedded inside the ICMP error
 message. However, the role of source and destination is swapped when
 doing this: the embedded source IP address becomes the destination IP
 address in the 5-tuple, the embedded source port becomes the
 destination port in the 5-tuple, etc. If it is not possible to
 determine the 5-tuple (perhaps because not enough of the embedded
 packet is reproduced inside the ICMP message), then the incoming IP
 packet is silently discarded.

Bagnulo, et al. Expires January 12, 2010 [Page 13]

Internet-Draft NAT64 July 2009

 NOTE: The transport protocol is always one of TCP or UDP, even if
 the IP packet contains an ICMP message.

 If the incoming IP packet contains a fragment, then more processing
 may be needed. This specification leaves open the exact details of
 how a NAT64 handles incoming IP packets containing fragments, and
 simply requires that a NAT64 handle fragments arriving out-of-order.
 A NAT64 MAY elect to queue the fragments as they arrive and translate
 all fragments at the same time. Alternatively, a NAT64 MAY translate
 the fragments as they arrive, by storing information that allows it
 to compute the 5-tuple for fragments other than the first. In the
 latter case, the NAT64 will still need to handle the situation where
 subsequent fragments arrive before the first.

 Implementors of NAT64 should be aware that there are a number of
 well-known attacks against IP fragmentation; see [RFC1858] and
 [RFC3128].

 Assuming it otherwise has sufficient resources, a NAT64 MUST allow
 the fragments to arrive over a time interval of at least 10 seconds.
 A NAT64 MAY require that the UDP, TCP, or ICMP header be completely
 contained within the first fragment.

3.2. Filtering and Updating Binding and Session Information

 This step updates the per-session information stored in the
 appropriate session table. This affects the lifetime of the session,
 which in turn affects the lifetime of the corresponding BIB entry.
 This step may also filter incoming packets, if desired.

 The details of this step depend on the transport protocol (UDP or
 TCP).

3.2.1. UDP Session Handling

 The state information stored for a UDP session in the UDP session
 table includes a timer that tracks the remaining lifetime of the UDP
 session. The NAT64 decrements this timer at regular intervals. When
 the timer expires, the UDP session is deleted. If all the UDP
 sessions corresponding to a UDP BIB entry are deleted, then the UDP
 BIB entry is also deleted.

 An IPv6 incoming packet is processed as follows:

 The NAT64 searches for a UDP BIB entry that matches the IPv6
 source transport address. If such entry does not exists, a new
 entry is created. As IPv6 address, the source IPv6 transport
 address of the packet is included and an IPv4 transport address

https://datatracker.ietf.org/doc/html/rfc1858
https://datatracker.ietf.org/doc/html/rfc3128

Bagnulo, et al. Expires January 12, 2010 [Page 14]

Internet-Draft NAT64 July 2009

 allocated using the rules defined in Section 3.2.3 is included as
 IPv4 address.

 The NAT64 searches for the session table entry corresponding to
 the incoming 5-tuple. If no such entry is found, a new entry is
 created. The information included in the session table is as
 follows: the IPv6 transport source and destination addresses
 contained in the received IPv6 packet, the IPv4 transport source
 address is extracted from the corresponding UDP BIB entry and the
 IPv4 transport destination address contains the same port as the
 IPv6 destination transport address and the IPv4 address that is
 algorithmically generated from the IPv6 destination address using
 the reverse algorithm as specified in Section 3.2.4.

 The NAT64 sets or resets the timer in the session table entry to
 maximum session lifetime. By default, the maximum session
 lifetime is 5 minutes, but for specific destination ports in the
 Well-Known port range (0..1023), the NAT64 MAY use a smaller
 maximum lifetime. The packet is translated and forwarded as
 described in the following sections.

 An IPv4 incoming packet is processed as follows:

 The NAT64 searches for a UDP BIB entry that matches the IPv4
 destination transport address. If such entry does not exists, the
 packet is dropped. An ICMP message MAY be sent to the original
 sender of the packet, unless the discarded packet is itself an
 ICMP message. The ICMP message, if sent, has a type of 3
 (Destination Unreachable).

 If the NAT64 filters on its IPv4 interface, then the NAT64 checks
 to see if the incoming packet is allowed according to the address-
 dependent filtering rule. To do this, it searches for a session
 table entry with a source IPv4 transport address equal to the
 destination IPv4 transport address in the incoming 5-tuple and
 destination IPv4 address (in the session table entry) equal to the
 source IPv4 address in the incoming 5-tuple. If such an entry is
 found (there may be more than one), packet processing continues.
 Otherwise, the packet is discarded. If the packet is discarded,
 then an ICMP message MAY be sent to the original sender of the
 packet, unless the discarded packet is itself an ICMP message.
 The ICMP message, if sent, has a type of 3 (Destination
 Unreachable) and a code of 13 (Communication Administratively
 Prohibited).

 The NAT64 searches for the session table entry corresponding to
 the incoming 5-tuple. If no such entry is found, a new entry is
 created. The UDP session table entry contains the transport

Bagnulo, et al. Expires January 12, 2010 [Page 15]

Internet-Draft NAT64 July 2009

 source and destination address contained in the IPv4 packet and
 the source IPv6 transport address (in the IPv6 --> IPv4 direction)
 contained in the existing TCP BIB entry. The destination IPv6
 transport address contains the same port than the destination IPv4
 transport address and the IPv6 representation of the IPv4 address
 of the destination IPv4 transport address, generated using the
 algorithm described in Section 3.2.4.

 The NAT64 sets or resets the timer in the session table entry to
 maximum session lifetime. By default, the maximum session
 lifetime is 5 minutes, but for specific destination ports in the
 Well-Known port range (0..1023), the NAT64 MAY use a smaller
 maximum lifetime.

3.2.2. TCP Session Handling

 The state information stored for a TCP session:

 Binding:(X',x),(Y',y) <--> (T,t),(Z,z)

 Lifetime: is a timer that tracks the remaining lifetime of the UDP
 session. The NAT64 decrements this timer at regular intervals.
 When the timer expires, the TCP session is deleted. If all the
 TCP sessions corresponding to a TCP BIB entry are deleted, then
 the TCP BIB entry is also deleted.

 TCP sessions are expensive, because their inactivity lifetime is set
 to 2 hours and 4 min (as per [RFC5382]), so it is important that each
 TCP session table entry corresponds to an existent TCP session. In
 order to do that, the NAT64 tracks the TCP connection procedure. In
 this section we describe how the NAT64 does that tracking by
 describing the state machine.

 Temporarily the NAT64 TCP tracking state machine is depicted in
 http:/www.it.uc3m.es/~marcelo/nat64_state_machine.pdf. Once it is
 stable, we will include in the draft in ASCII art format.

 The states are the following ones:

 CLOSED

 V4 SYN RCV

 V6 SYN RCV

 ESTABLISHED

https://datatracker.ietf.org/doc/html/rfc5382

Bagnulo, et al. Expires January 12, 2010 [Page 16]

Internet-Draft NAT64 July 2009

 V4 FIN RCV

 V6 FIN RCV

 V6 FIN + V4 FIN RCV

 After bootstrapping of the NAT64 device, all TCP session are in
 CLOSED state. We next describe the state information and the
 transitions.

 A TCP segment with the SYN flag set that is received through the IPv6
 interface is called a V6 SYN, similarly, V4 SYN, V4 FIN, V6 FIN, V6
 FIN + V4 FIN.

 *** CLOSED ***

 If a V6 SYN is received, the processing is as follows:

 The state of the session is moved to V6 SYN RCV.

 The NAT64 searches for a TCP BIB entry that matches the IPv6
 source transport address.

 If such entry does not exists, a new entry is created. As IPv6
 address, the source IPv6 transport address of the packet is
 included and an IPv4 transport address allocated using the
 rules defined in Section 3.2.3 is included as the IPv4
 transport address.

 Then a new TCP session entry is created in the TCP session table.
 The information included in the session table is as follows:

 NOTE: this text needs to be improved

 The IPv6 transport source and destination addresses contained
 in the received V6 SYN packet,

 the IPv4 transport source address is extracted from the
 corresponding TCP BIB entry and,

 the IPv4 transport destination address contains the same port
 as the IPv6 destination transport address and the IPv4 address
 that is algorithmically generated from the IPv6 destination
 address using the reverse algorithm as specified in

Section 3.2.4.

 The lifetime of the TCP session table entry is set to 4 min
 (the transitory connection idle timeout as defined in

Bagnulo, et al. Expires January 12, 2010 [Page 17]

Internet-Draft NAT64 July 2009

 [RFC5382]).

 The packet is translated and forwarded.

 If a V4 SYN packet is received, the processing is as follows:

 If the security policy requires silently dropping externally
 initiated TCP connections, then the packet is silently discarded,
 else,

 If the destination transport address contained in the incoming V4
 SYN is not in use in the TCP BIB, then the packet is discarded and
 an ICMP Port Unreachable error (Type 3, Code 3) is sent back to
 the source of the v4 SYN. The state remains unchanged in CLOSED

 If the destination transport is contained in the incoming V4 SYN
 is in use in the TCP BIB, then

 The state is moved to V4 SYN RCV.

 A new session table entry is created in the TCP session table,
 containing the following information:

 NOTE: this text needs to be improved

 The transport source and destination address contained in
 the V4 SYN and,

 the source IPv6 transport address (in the IPv6 --> IPv4
 direction) contained in the existing TCP BIB entry.

 [NOTE: FILTERING IS MISSING].

 The destination IPv6 transport address contains the same
 port than the destination IPv4 transport address and the
 IPv6 representation of the IPv4 address of the destination
 IPv4 transport address, generated using the algorithm
 described in Section 3.2.4.

 The lifetime of the entry is set to 6 seconds as per
 [RFC5382].

 The packet is discarded.

 All other packets are silently discarded.

 *** V4 SYN RCV ***

https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/rfc5382

Bagnulo, et al. Expires January 12, 2010 [Page 18]

Internet-Draft NAT64 July 2009

 If a V6 SYN is received, then the state is moved to ESTABLISHED. The
 lifetime of the corresponding TCP session table entry is updated to 2
 hours 4 min (the established connection idle timeout as defined in
 [RFC5382]). The packet is translated and forwarded.

 If the lifetime expires, an ICMP Port Unreachable error (Type 3, Code
 3) is sent back to the source of the v4 SYN, the session table entry
 is deleted and, the state is moved to CLOSED.

 All other packets are silently discarded.

 *** V6 SYN RCV ***

 If a V4 SYN is received (with or without the ACK flag set), then the
 state is moved to ESTABLISHED. The timer is updated to 2 hours 4 min
 (the established connection idle timeout as defined in [RFC5382]).
 The packet is translated and forwarded.

 If the lifetime expires, the session table entry is deleted and the
 state is moved to CLOSED.

 All other packets are silently discarded.

 *** ESTABLISHED ***

 If a V6 RST packet is received, or if the lifetime expires, the
 session table entry is deleted and the state is moved to CLOSED.

 If a V4 FIN packet is received, the packet is translated and
 forwarded. The state is moved to V4 FIN RCV.

 If a V6 FIN packet is received, the packet is translated and
 forwarded. The state is moved to V6 FIN RCV.

 If a packet is received, the packet is translated and forwarded. The
 lifetime is set to 2 hours and 4 min. The state remains unchanged as
 ESTABLISHED.

 If the lifetime expires, the session table entry is deleted and the
 state is moved to CLOSED.

 *** V4 FIN RCV ***

 If a packet is received, the packet is translated and forwarded. The
 lifetime is set to 2 hours and 4 min. The state remains unchanged as
 V4 FIN RCV.

 If a V6 FIN packet is received, the packet is translated and

https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/rfc5382

Bagnulo, et al. Expires January 12, 2010 [Page 19]

Internet-Draft NAT64 July 2009

 forwarded. The lifetime is set to 4 min. The state is moved to V6
 FIN + V4 FIN RCV.

 If the lifetime expires, the session table entry is deleted and the
 state is moved to CLOSED.

 *** V6 FIN RCV ***

 If a packet is received, the packet is translated and forwarded. The
 lifetime is set to 2 hours and 4 min. The state remains unchanged as
 V6 FIN RCV.

 If a V4 FIN packet is received, the packet is translated and
 forwarded. The lifetime is set to 4 min. The state is moved to V6
 FIN + V4 FIN RCV.

 If the lifetime expires, the session table entry is deleted and the
 state is moved to CLOSED.

 *** V6 FIN + V4 FIN RCV ***

 All packets are translated and forwarded.

 If the lifetime expires, the session table entry is deleted and the
 state is moved to CLOSED.

3.2.3. Rules for allocation of IPv4 transport addresses

 NOTE: Would these apply to TCP as well? RFC5382 does not require
 this...

 If the rules specify that a new BIB entry is created for a source
 transport address of (S',s), then the NAT64 allocates an IPv4
 transport address for this BIB entry as follows:

 If there exists some other BIB entry containing S' as the IPv6
 address and mapping it to some IPv4 address T, then use T as the
 IPv4 address. Otherwise, use any IPv4 address assigned to the
 IPv4 interface.

 If the port s is in the Well-Known port range 0..1023, then
 allocate a port t from this same range. Otherwise, if the port s
 is in the range 1024..65535, then allocate a port t from this
 range. Furthermore, if port s is even, then t must be even, and
 if port s is odd, then t must be odd.

 In all cases, the allocated IPv4 transport address (T,t) MUST NOT
 be in use in another entry in the same BIB, but MAY be in use in

https://datatracker.ietf.org/doc/html/rfc5382

Bagnulo, et al. Expires January 12, 2010 [Page 20]

Internet-Draft NAT64 July 2009

 the other BIB.

 If it is not possible to allocate an appropriate IPv4 transport
 address or create a BIB entry for some reason, then the packet is
 discarded.

3.2.4. Generation of the IPv6 representations of IPv4 addresses

 NAT64 support multiple algorithms for the generation of the IPv6
 representation of an IPv4 address. The constraints imposed to the
 generation algorithms are the following:

 The same algorithm to create an IPv6 address from an IPv4 address
 MUST be used by:

 The DNS64 to create the IPv6 address to be returned in the
 synthetic AAAA RR from the IPv4 address contained in original A
 RR, and,

 The NAT64 to create the IPv6 address to be included in the
 destination address field of the outgoing IPv6 packets from the
 IPv4 address included in the destination address field of the
 incoming IPv4 packet.

 The algorithm MUST be reversible, i.e. it MUST be possible to
 extract the original IPv4 address from the IPv6 representation.

 The input for the algorithm MUST be limited to the IPv4 address,
 the IPv6 prefix (denoted Pref64::/n) used in the IPv6
 representations and optionally a set of stable parameters that are
 configured in the NAT64 (such as fixed string to be used as a
 suffix).

 If we note n the length of the prefix Pref64::/n, then n MUST
 the less or equal than 96. If a Pref64::/n is configured
 through any means in the DNS64 (such as manually configured, or
 other automatic mean not specified in this document), the
 default algorithm MUST use this prefix. If no prefix is
 available, the algorithm MUST use the Well-Known prefix
 (include here the prefix to be assigned by IANA) defined in
 [I-D.thaler-behave-translator-addressing]

 NAT64 MUST support the following algorithms for generating IPv6
 representations of IPv4 addresses defined in
 [I-D.thaler-behave-translator-addressing]:

 Zero-Pad And Embed, defined in section 3.2.3 of
 [I-D.thaler-behave-translator-addressing]

Bagnulo, et al. Expires January 12, 2010 [Page 21]

Internet-Draft NAT64 July 2009

 Compensation-Pad And Embed, defined in section of 3.2.4 of
 [I-D.thaler-behave-translator-addressing]

 Embed And Zero-Pad, defined in section of 3.2.5 of
 [I-D.thaler-behave-translator-addressing]

 Preconfigured Mapping Table, defined in section of 3.2.6 of
 [I-D.thaler-behave-translator-addressing]

 The default algorithm used by NAT64 must be Embed and Zero-Pad.
 While the normative description of the algorithms is provided in
 [I-D.thaler-behave-translator-addressing].

4. Computing the Outgoing 5-Tuple

 This step computes the outgoing 5-tuple by translating the addresses
 and ports in the incoming 5-tuple. The transport protocol in the
 outgoing 5-tuple is always the same as that in the incoming 5-tuple.

 In the text below, a reference to the the "BIB" means either the TCP
 BIB or the UDP BIB as appropriate, as determined by the transport
 protocol in the 5-tuple.

 NOTE: Not all addresses are translated using the BIB. BIB entries
 are used to translate IPv6 source transport addresses to IPv4
 source transport addresses, and IPv4 destination transport
 addresses to IPv6 destination transport addresses. They are NOT
 used to translate IPv6 destination transport addresses to IPv4
 destination transport addresses, nor to translate IPv4 source
 transport addresses to IPv6 source transport addresses. The
 latter cases are handled by adding or removing the /96 prefix.
 This distinction is important; without it, hairpinning doesn't
 work correctly.

 When translating in the IPv6 --> IPv4 direction, let the incoming
 source and destination transport addresses in the 5-tuple be (S',s)
 and (D',d) respectively. The outgoing source transport address is
 computed as follows: the BIB contains a entry (S',s) <--> (T,t), then
 the outgoing source transport address is (T,t).

 The outgoing destination address is computed as follows: If D' is
 composed of the NAT64's prefix followed by an IPv4 address D, then
 the outgoing destination transport address is (D,d).

 When translating in the IPv4 --> IPv6 direction, let the incoming
 source and destination transport addresses in the 5-tuple be (S,s)
 and (D,d) respectively. The outgoing source transport address is

Bagnulo, et al. Expires January 12, 2010 [Page 22]

Internet-Draft NAT64 July 2009

 computed as follows:

 The outgoing source transport address is (Pref64::S,s).

 The outgoing destination transport address is computed as follows:

 If the BIB contains an entry (X',x) <--> (D,d), then the outgoing
 destination transport address is (X',x).

 Otherwise, discard the packet.

 If the rules specify that the packet is discarded, then the NAT64 MAY
 send an ICMP reply to the original sender, unless the packet being
 translated contains an ICMP message. The type should be 3
 (Destination Unreachable) and the code should be 0 (Network
 Unreachable in IPv4, and No Route to Destination in IPv6).

5. Translating the Packet

 This step translates the packet from IPv6 to IPv4 or vice-versa.

 The translation of the packet is as specified in section 3 and
section 4 of SIIT [RFC2765], with the following modifications:

 o When translating an IP header (sections 3.1 and 4.1), the source
 and destination IP address fields are set to the source and
 destination IP addresses from the outgoing 5-tuple.

 o When the protocol following the IP header is TCP or UDP, then the
 source and destination ports are modified to the source and
 destination ports from the outgoing 5-tuple. In addition, the TCP
 or UDP checksum must also be updated to reflect the translated
 addresses and ports; note that the TCP and UDP checksum covers the
 pseudo-header which contains the source and destination IP
 addresses. An algorithm for efficiently updating these checksums
 is described in [RFC3022].

 o When the protocol following the IP header is ICMP (sections 3.4
 and 4.4) and it is an ICMP error message, the source and
 destination transport addresses in the embedded packet are set to
 the destination and source transport addresses from the outgoing
 5-tuple (note the swap of source and destination).

https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc3022

Bagnulo, et al. Expires January 12, 2010 [Page 23]

Internet-Draft NAT64 July 2009

6. Handling Hairpinning

 This step handles hairpinning if necessary.

 If the destination IP address is an address assigned to the NAT64
 itself (i.e., is one of the IPv4 addresses assigned to the IPv4
 interface, or is covered by the /96 prefix assigned to the IPv6
 interface), then the packet is a hairpin packet. The outgoing
 5-tuple becomes the incoming 5-tuple, and the packet is treated as if
 it was received on the outgoing interface. Processing of the packet
 continues at step 2.

 [R/T] The reference to step 2 here was a little confusing to us. Are
 you referring to Filtering and Updating Session Information (Section

3.2)? MB> I am not sure about this anymore. I mean what if the
 packet that is being hairpinned is an ICMP error msge, I mean don't
 we still need step 1?

 TBD: Is there such a thing as a hairpin loop (likely not naturally,
 but perhaps through a special-crafted attack packet with a spoofed
 source address)? If so, need to drop packets that hairpin more than
 once.

7. Path MTU discovery and fragmentation

 It's the job of the network layer to adapt to different maximum
 packet sizes as packets move through the network. There are three
 mechanisms that handle this: transport layer negotiations such as the
 TCP MSS option, path MTU discovery and fragmentation. The difference
 between the IPv4 and IPv6 header sizes requires some handling in a
 NAT64 translator, and there are complications because of the
 differences between how IPv4 and IPv6 handle fragmentation, as well
 as the issue of how to demultiplex fragmented IPv4 packets.

 The vast majority of both IPv4 and IPv6 hosts use path MTU discovery
 [RFC1191] [RFC1981]. With IPv4, PMTUD can be enabled on a per-packet
 basis by setting the DF bit to 1. With IPv6, there is no need for
 PMTUD for packets up to 1280 bytes because all IPv6 hosts are
 required to be able to receive 1280-byte packets without
 fragmentation. When sending larger packets, IPv6 hosts implicitly
 use PMTUD.

 The fragmentation behavior specified in [RFC2765] is that upon the
 reception of an ICMPv6 "packet too big" message with an indicated
 packet size of less than 1280 octets, IPv6 hosts will transmit 1280-
 octet packets, but include a fragment header in those packets. In a
 stateful translator, the identification value in this fragment header

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2765

Bagnulo, et al. Expires January 12, 2010 [Page 24]

Internet-Draft NAT64 July 2009

 can't be used, so the fragment header itself serves no purpose.
 Additionally, the presence or absense of the fragment header isn't
 enough to determine whether to set the DF bit in packets translated
 to IPv4 to 0 (fragment header present) or 1 (no fragment header
 present). The reason for this is that operators may decide to forego
 path MTU discovery by configuring an MTU of 1280 and filtering
 incoming "too big" messages. The behavior specified below is meant
 to avoid PMTUD black holes in this situation

7.1. Translating whole packets and PMTUD

 This section specifies the values in the fragmentation-related fields
 in the IPv4 header when no fragmentation occurs, and how path MTU
 discovery is handled.

7.1.1. IPv6-to-IPv4 translation

 If the NAT64 has the same MTUs on its IPv6 and IPv4 interfaces, it
 will never have to generate "packet too big" messages for incoming
 IPv6 packets because the translation from IPv6 to IPv4 reduces the
 packet size by 20 bytes, more if the IPv6 packet has extension
 headers that are removed during the translation, such as the fragment
 header. If the MTU on the IPv6 side is larger than 1280 bytes and
 more than 20 bytes smaller than the MTU on the IPv4 side, the NAT64
 MUST generate the appropriate "packet too big" messages on the IPv6
 side.

 To support PMTUD, for translated packets that are larger than 1260
 bytes on the IPv4 side (1280 bytes IPv6 packets with 20 byte size
 reduction through the translation), the DF bit is set to 1 in the
 resulting IPv4 packet.

 IPv4 routers may generate "packet too big" messages indicating a
 supported MTU size smaller than 1280 bytes. In those cases, the IPv6
 hosts will continue to send packets larger than what the IPv4 path
 MTU can support. To allow packets to be delivered successfully in
 this case, the DF bit is set to 0 in all translated packets smaller
 than or equal to 1260 bytes, to allow these packets to be fragmented
 in the IPv4 network.

 Note: it is highly recommended for IPv4 hosts running services that
 may be used by IPv6 clients through a NAT64 translator to use an MTU
 size of at least 1260 bytes and to properly generate "packet too big"
 messages.

 When a NAT64 translates "packet too big" messages from IPv6 to IPv4,
 it adjusts the advertised MTU to the minimum of the original
 advertised MTU + 20, the NAT64's MTU on the IPv6 side + 20 and the

Bagnulo, et al. Expires January 12, 2010 [Page 25]

Internet-Draft NAT64 July 2009

 NAT64's MTU on the IPv4 side.

 The identification field in the IPv4 header MUST be filled with a
 value generated by the NAT64 translator, similar to the way that
 identification values are created for locally generated packets. It
 is RECOMMENDED that a NAT64 translator keep an identification counter
 for every combination of remote IPv4 destination and protocol.

 In theory, IPv4 packets with DF set to 1 don't need a unique
 identification value. However, it is not unheard of for operators to
 configure equipment to clear the DF bit, at which time an
 identification value with good uniqueness becomes necessary. As
 such, it is recommended that translators include a unique
 identification value in all packets, including those with DF set to
 1. However, since more packets will be sent with DF set to 1, this
 will use up identification values faster. Implementations may choose
 to segment the identification space and assign values from non-
 overlapping pools to packets with DF set to 0 and DF set to 1 to
 provide a longer period of uniqueness to fragmentable packets.

7.1.2. IPv4-to-IPv6

 Because it may be necessary to include a fragmentation header or
 other extension header, the NAT64 MUST be prepared to generate
 "packet too big" messages for packets with the DF bit set to 1
 received from the IPv4 side, regardless of the MTU sizes on the IPv4
 and IPv6 interfaces. If the packet with DF = 1 is larger than can be
 transmitted on the IPv6 side after translation, the NAT64 returns a
 "packet too big" message indicating the maximum IPv4 packet size that
 would be supported using the same translation as the current packet.
 This can be calculated as IPv4-packet-size - 20.

 When a NAT64 translates "packet too big" messages from IPv4 to IPv6,
 it adjusts the advertised MTU to the minimum of the original
 advertised MTU - 20, the NAT64's MTU on the IPv6 side and the NAT64's
 MTU on the IPv4 side - 20. However, if the advertised MTU in "packet
 too big" messages is smaller than 1260 bytes, the value put into the
 translated "packet too big" message is 1280. This makes sure that
 the IPv6 host will limit its packet sizes to 1280 bytes, so its
 packets are subsequently translated into IPv4 packets with DF set to
 0. (This deviates from [RFC2765].)

7.2. Fragmentation

 Because NAT deviates from normal router behavior, the limitation that
 IPv6 packets or IPv4 packets with DF set to 1 are not fragmented by
 routers doesn't apply to a NAT64 translator. Where appropriate,
 these packets are fragmented after translation as described below.

https://datatracker.ietf.org/doc/html/rfc2765

Bagnulo, et al. Expires January 12, 2010 [Page 26]

Internet-Draft NAT64 July 2009

7.2.1. IPv4-to-IPv6

 Because packets coming in on the IPv4 side may be larger than 1280
 bytes after translation, a NAT64 MUST implement PMTUD on the IPv6
 side. In other words, it must react to "packet too big" messages for
 any IPv6 destination that it communicates with by limiting the size
 of the packets that it sends to the advertised maximum.

 In the case where, after translation from IPv4 to IPv6, a packet is
 larger than a destination's PMTU, the NAT64 returns a "packet too
 big" as outlined earlier in the case that the DF bit was set to 1 in
 the IPv4 packet. If the DF bit was set to 0, the translator first
 translates the IPv4 packet, and then fragments the resulting IPv6
 packets using normal IPv6 fragmentation rules. The lower 16 bits of
 the IPv6 identification field are copied from the IPv4 identification
 field. The upper 16 bits of the IPv6 identification field are set to
 0.

 Because NAT64 provides a stateful many-to-one (perhaps even many-to-
 many) translation, it is necessary to recognize which session a given
 packet belongs to. In the IPv4-to-IPv6 direction, the TCP or UDP
 port numbers must be known to accomplish this, but the port numbers
 only occur in the first fragment of a fragmented packet. There are
 two possible ways to deal with this:

 1. Reassemble the packet before translating it.

 2. Create translation state for the fragments belonging to the same
 packet so each packet can be translated.

 Strategy 2 is attractive in large installations because it requires
 less storage and processing. However, it may still be necessary to
 buffer fragments for some time, as the fragment containing the first
 part of the packet (and with that, the port numbers) may not be the
 first one to arrive.

 Note: based on the assumptions that hosts generate fragments in-order
 and that reordering must happen through parallel network links and
 that the path between these parallel links and a NAT64 supports
 speeds of at least 10 Mbps, there is a very high probability that two
 out-of-order fragments making up a packet will arrive at the NAT64
 within 50 to 100 milliseconds. Further assuming that fragmented
 traffic makes up less than 10% of all traffic, this only requires a
 buffer of 6 to 12,500 fragments (50 ms at 10 Mbps to 100 ms at 10
 Gbps).

 In some cases, there may only be a single session matching the
 fragment's source and destination addresses and protocol number. In

Bagnulo, et al. Expires January 12, 2010 [Page 27]

Internet-Draft NAT64 July 2009

 these cases, it would be possible to translate the fragments out-of-
 order. A NAT64 translator MAY do this for TCP, however, it MUST NOT
 translate UDP packets before the first fragment is available. The
 reason for this is that the fragment could be part of a packet
 setting up a new session. However, with TCP session establishment
 packets don't carry data, so it's extremely unlikely that they are
 fragmented. This is not the case with UDP, and in the IPv4-to-IPv6
 direction, a UDP packet may have a zero checksum, which must be
 recalculated when translating to IPv6, for which the entire packet
 must be available.

7.2.2. IPv6-to-IPv4

 For all IPv4 packets that the NAT64 creates through translation, the
 translator generates an ID value. This applies to all packets,
 regardless of their size or the value of the DF field. A NAT64
 translator MAY employ strategies to avoid reusing an ID value for a
 certain source, destination, protocol tuple as long as possible. If
 the IPv4 packets are fragments of an IPv6 packet, then state is
 created that makes it possible for all the fragments to have the same
 ID value on the IPv4 side.

 [RFC2765] specifies copying the lower bits from the IPv6 ID field in
 a fragment header (if present) to the IPv4 ID field, but this runs
 the risk of two IPv6 hosts talking to the same IPv4 destination
 through the NAT64 using the same ID value.

 Otherwise, when translating IPv6 packets with a fragmentation header,
 the fragments are translated as per [RFC2765].

 In the IPv6-to-IPv4 direction, there is no need to map a fragment to
 the session it belongs to in order to translate the fragment.
 However, it is necessary that all the fragments have the same
 identification value, so fragments may be translated individually,
 but state must be kept to be able to translate subsequent fragments
 of the same packet using the same identification value on the IPv4
 side.

7.3. TCP MSS option

 It is not recommended that NAT64 translators rewrite the TCP MSS
 option [RFC0793]. As such, assuming the common case of all 1500-
 octet MTUs, an IPv6 host will advertise a 1440-octet MSS, triggering
 the IPv4 host to generate 1480-octet packets that are translated to
 1500-octet IPv6 packets. IPv4 hosts will advertise a 1460-octet MSS,
 which would be 1520-octet IPv6 packets. However, ethernet-connected
 IPv6 hosts can only send 1500-octet packets, so in the all-ethernet
 case, there is no dependency on path MTU discovery.

https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc0793

Bagnulo, et al. Expires January 12, 2010 [Page 28]

Internet-Draft NAT64 July 2009

8. Application scenarios

 In this section, we describe how to apply NAT64/DNS64 to the suitable
 scenarios described in draft-arkko-townsley-coexistence.

8.1. Enterprise IPv6 only network

 The Enterprise IPv6 only network basically has IPv6 hosts (those that
 are currently available) and because of different reasons including
 operational simplicity, wants to run those hosts in IPv6 only mode,
 while still providing access to the IPv4 Internet. The scenario is
 depicted in the picture below.

 +----+ +-------------+
 | +------------------+IPv6 Internet+
 | | +-------------+
 IPv6 host-----------------+ GW |
 | | +-------------+
 | +------------------+IPv4 Internet+
 +----+ +-------------+

 |-------------------------public v6-----------------------------|
 |-------public v6---------|NAT|----------public v4--------------|

 The proposed NAT64/DNS64 is perfectly suitable for this particular
 scenario. The deployment of the NAT64/DNS64 would be as follows: The
 NAT64 function should be located in the GW device that connects the
 IPv6 site to the IPv4 Internet. The DNS64 functionality can be
 placed either in the local recursive DNS server or in the local
 resolver in the hosts.

 The proposed NAT64/DNS64 approach satisfies the requirements of this
 scenario, in particular because it doesn't require any changes to
 current IPv6 hosts in the site to obtain basic functionality.

8.2. Reaching servers in private IPv4 space

 The scenario of servers using IPv4 private addresses and being
 reached from the IPv6 Internet basically includes the cases that for
 whatever reason the servers cannot be upgraded to IPv6 and they don't
 have public IPv4 addresses and it would be useful to allow IPv6 nodes
 in the IPv6 Internet to reach those servers. This scenario is
 depicted in the figure below.

https://datatracker.ietf.org/doc/html/draft-arkko-townsley-coexistence

Bagnulo, et al. Expires January 12, 2010 [Page 29]

Internet-Draft NAT64 July 2009

 +----+
 IPv6 Host(s)-------(Internet)-----+ GW +------Private IPv4 Servers
 +----+

 |---------public v6---------------|NAT|------private v4----------|

 This scenario can again be perfectly served by the NAT64 approach.
 In this case the NAT64 functionality is placed in the GW device
 connecting the IPv6 Internet to the server's site. In this case, the
 DNS64 functionality is not required in general since real (i.e. non
 synthetic) AAAA RRs for the IPv4 servers containing the IPv6
 representation of the IPv4 address of the servers can be created.
 See more discussion about this in [I-D.ietf-behave-dns64]

 Again, this scenario is satisfied by the NAT64 since it supports the
 required functionality without requiring changes in the IPv4 servers
 nor in the IPv6 clients.

9. Security Considerations

 Implications on end-to-end security.

 Any protocol that protect IP header information are essentially
 incompatible with NAT64. So, this implies that end to end IPSec
 verification will fail when AH is used (both transport and tunnel
 mode) and when ESP is used in transport mode. This is inherent to
 any network layer translation mechanism. End-to-end IPsec protection
 can be restored, using UDP encapsulation as described in [RFC3948].

 Filtering.

 NAT64 creates binding state using packets flowing from the IPv6 side
 to the IPv4 side. In accordance with the procedures defined in this
 document following the guidelines defined in RFC 4787 [RFC4787] a
 NAT64 must offer "enpoint independent filtering". This means:

 for any IPv6 side packet with source (S'1,s1) and destination
 (Pref64::D1,d1) that creates an external mapping to (S1,s1),
 (D1,d1),

 for any subsequent external connection to from S'1 to (D2,d2)
 within a given binding timer window,

 (S1,s1) = (S2,s2) for all values of D2,d2

 Implementations may also provide support for "Address-Dependent
 Mapping" and "Address and Port-Dependent Mapping", as also defined in

https://datatracker.ietf.org/doc/html/rfc3948
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4787

Bagnulo, et al. Expires January 12, 2010 [Page 30]

Internet-Draft NAT64 July 2009

 this document and following the guidelines defined in RFC 4787
 [RFC4787].

 The security properties however are determined by which packets the
 NAT64 filter allows in and which it does not. The security
 properties are determined by the filtering behavior and filtering
 configuration in the filtering portions of the NAT64, not by the
 address mapping behavior. For example,

 Without filtering - When "endpoint independent filtering" is used
 in NAT64, once a binding is created in the IPv6 ---> IPv4
 direction, packets from any node on the IPv4 side destined to the
 IPv6 transport address will traverse the NAT64 gateway and be
 forwarded to the IPv6 transport address that created the binding.
 However,

 With filtering - When "endpoint independent filtering" is used in
 NAT64, once a binding is created in the IPv6 ---> IPv4 direction,
 packets from any node on the IPv4 side destined to the IPv6
 transport address will first be processed against the filtering
 rules. If the source IPv4 address is permitted, the packets will
 be forwarded to the IPv6 transport address. If the source IPv4
 address is explicitly denied -- or the default policy is to deny
 all addresses not explicitly permitted -- then the packet will
 discarded. A dynamic filter may be employed where by the filter
 will only allow packets from the IPv4 address to which the
 original packet that created the binding was sent. This means
 that only the D IPv4 addresses to which the IPv6 host has
 initiated connections will be able to reach the IPv6 transport
 address, and no others. This essentially narrows the effective
 operation of the NAT64 device to a "Address Dependent" behavior,
 though not by its mapping behavior, but instead by its filtering
 behavior.

 Attacks to NAT64.

 The NAT64 device itself is a potential victim of different type of
 attacks. In particular, the NAT64 can be a victim of DoS attacks.
 The NAT64 box has a limited number of resources that can be consumed
 by attackers creating a DoS attack. The NAT64 has a limited number
 of IPv4 addresses that it uses to create the bindings. Even though
 the NAT64 performs address and port translation, it is possible for
 an attacker to consume all the IPv4 transport addresses by sending
 IPv6 packets with different source IPv6 transport addresses. It
 should be noted that this attack can only be launched from the IPv6
 side, since IPv4 packets are not used to create binding state. DoS
 attacks can also affect other limited resources available in the
 NAT64 such as memory or link capacity. For instance, it is possible

https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4787

Bagnulo, et al. Expires January 12, 2010 [Page 31]

Internet-Draft NAT64 July 2009

 for an attacker to launch a DoS attack to the memory of the NAT64
 device by sending fragments that the NAT64 will store for a given
 period. If the number of fragments is high enough, the memory of the
 NAT64 could be exhausted. NAT64 devices should implement proper
 protection against such attacks, for instance allocating a limited
 amount of memory for fragmented packet storage.

10. IANA Considerations

11. Changes from Previous Draft Versions

 Note to RFC Editor: Please remove this section prior to publication
 of this document as an RFC.

 [[This section lists the changes between the various versions of this
 draft.]]

12. Contributors

 George Tsirtsis

 Qualcomm

 tsirtsis@googlemail.com

 Greg Lebovitz

 Juniper

 gregory.ietf@gmail.com

13. Acknowledgements

 Dave Thaler, Dan Wing, Alberto Garcia-Martinez, Reinaldo Penno and
 Joao Damas reviewed the document and provided useful comments to
 improve it.

 The content of the draft was improved thanks to discussions with Fred
 Baker and Jari Arkko.

 Marcelo Bagnulo and Iljitsch van Beijnum are partly funded by
 Trilogy, a research project supported by the European Commission
 under its Seventh Framework Program.

Bagnulo, et al. Expires January 12, 2010 [Page 32]

Internet-Draft NAT64 July 2009

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)",
RFC 2671, August 1999.

 [RFC2765] Nordmark, E., "Stateless IP/ICMP Translation Algorithm
 (SIIT)", RFC 2765, February 2000.

 [RFC4787] Audet, F. and C. Jennings, "Network Address Translation
 (NAT) Behavioral Requirements for Unicast UDP", BCP 127,

RFC 4787, January 2007.

 [RFC3484] Draves, R., "Default Address Selection for Internet
 Protocol version 6 (IPv6)", RFC 3484, February 2003.

 [RFC3948] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
 Stenberg, "UDP Encapsulation of IPsec ESP Packets",

RFC 3948, January 2005.

 [RFC5382] Guha, S., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,

RFC 5382, October 2008.

 [RFC5508] Srisuresh, P., Ford, B., Sivakumar, S., and S. Guha, "NAT
 Behavioral Requirements for ICMP", BCP 148, RFC 5508,
 April 2009.

 [I-D.ietf-behave-dns64]
 Bagnulo, M., Sullivan, A., Matthews, P., and I. Beijnum,
 "DNS64: DNS extensions for Network Address Translation
 from IPv6 Clients to IPv4 Servers",

draft-ietf-behave-dns64-00 (work in progress), July 2009.

 [I-D.thaler-behave-translator-addressing]
 Thaler, D., "IPv6 Addressing of IPv6/IPv4 Translators",

draft-thaler-behave-translator-addressing-00 (work in
 progress), July 2009.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc3484
https://datatracker.ietf.org/doc/html/rfc3948
https://datatracker.ietf.org/doc/html/bcp142
https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/bcp148
https://datatracker.ietf.org/doc/html/rfc5508
https://datatracker.ietf.org/doc/html/draft-ietf-behave-dns64-00
https://datatracker.ietf.org/doc/html/draft-thaler-behave-translator-addressing-00

Bagnulo, et al. Expires January 12, 2010 [Page 33]

Internet-Draft NAT64 July 2009

14.2. Informative References

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC2766] Tsirtsis, G. and P. Srisuresh, "Network Address
 Translation - Protocol Translation (NAT-PT)", RFC 2766,
 February 2000.

 [RFC1858] Ziemba, G., Reed, D., and P. Traina, "Security
 Considerations for IP Fragment Filtering", RFC 1858,
 October 1995.

 [RFC3128] Miller, I., "Protection Against a Variant of the Tiny
 Fragment Attack (RFC 1858)", RFC 3128, June 2001.

 [RFC3022] Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022,
 January 2001.

 [RFC4966] Aoun, C. and E. Davies, "Reasons to Move the Network
 Address Translator - Protocol Translator (NAT-PT) to
 Historic Status", RFC 4966, July 2007.

 [I-D.ietf-mmusic-ice]
 Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols",

draft-ietf-mmusic-ice-19 (work in progress), October 2007.

 [RFC3498] Kuhfeld, J., Johnson, J., and M. Thatcher, "Definitions of
 Managed Objects for Synchronous Optical Network (SONET)
 Linear Automatic Protection Switching (APS)
 Architectures", RFC 3498, March 2003.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2766
https://datatracker.ietf.org/doc/html/rfc1858
https://datatracker.ietf.org/doc/html/rfc1858
https://datatracker.ietf.org/doc/html/rfc3128
https://datatracker.ietf.org/doc/html/rfc3022
https://datatracker.ietf.org/doc/html/rfc4966
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-19
https://datatracker.ietf.org/doc/html/rfc3498

Bagnulo, et al. Expires January 12, 2010 [Page 34]

Internet-Draft NAT64 July 2009

Authors' Addresses

 Marcelo Bagnulo
 UC3M
 Av. Universidad 30
 Leganes, Madrid 28911
 Spain

 Phone: +34-91-6249500
 Fax:
 Email: marcelo@it.uc3m.es
 URI: http://www.it.uc3m.es/marcelo

 Philip Matthews
 Alcatel-Lucent
 600 March Road
 Ottawa, Ontario
 Canada

 Phone: +1 613-592-4343 x224
 Fax:
 Email: philip_matthews@magma.ca
 URI:

 Iljitsch van Beijnum
 IMDEA Networks
 Avda. del Mar Mediterraneo, 22
 Leganes, Madrid 28918
 Spain

 Email: iljitsch@muada.com

http://www.it.uc3m.es/marcelo

Bagnulo, et al. Expires January 12, 2010 [Page 35]

