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Abstract

   NAT64 is a mechanism for translating IPv6 packets to IPv4 packets and
   vice-versa.  DNS64 is a mechanism for synthesizing AAAA records from
   A records.  These two mechanisms together enable client-server
   communication between an IPv6-only client and an IPv4-only server,
   without requiring any changes to either the IPv6 or the IPv4 node,
   for the class of applications that work through NATs.  They also
   enable peer-to-peer communication between an IPv4 and an IPv6 node,
   where the communication can be initiated by either end using
   existing, NAT-traversing, peer-to-peer communication techniques.
   This document specifies NAT64, and gives suggestions on how they
   should be deployed.
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1.  Introduction

   This document specifies NAT64, a mechanism for IPv6-IPv4 transition
   and co-existence.  Together with DNS64 [I-D.ietf-behave-dns64], these
   two mechanisms allow a IPv6-only client to initiate communications to
   an IPv4-only server, and also allow peer-to-peer communication
   between IPv6-only and IPv4-only hosts.

   NAT64 is a mechanism for translating IPv6 packets to IPv4 packets.
   The translation is done by translating the packet headers according
   to SIIT [RFC2765], translating the IPv4 server address by adding or
   removing an IPv6 prefix, and translating the IPv6 client address by
   installing mappings in the normal NAT manner.

   DNS64 is a mechanism for synthesizing AAAA resource records (RR) from
   A RR.  The synthesis is done by adding a IPv6 prefix to the IPv4
   address to create an IPv6 address, where the IPv6 prefix is assigned
   to a NAT64 device.

   Together, these two mechanisms allow a IPv6-only client to initiate
   communications to an IPv4-only server.

   These mechanisms are expected to play a critical role in the IPv4-
   IPv6 transition and co-existence.  Due to IPv4 address depletion,
   it's likely that in the future, a lot of IPv6-only clients will want
   to connect to IPv4-only servers.  The NAT64 and DNS64 mechanisms are
   easily deployable, since they require no changes to either the IPv6
   client nor the IPv4 server.  For basic functionality, the approach
   only requires the deployment of NAT64 function in the devices
   connecting an IPv6-only network to the IPv4-only network, along with
   the deployment of a few DNS64-enabled name servers in the IPv6-only
   network.  However, some advanced features such as support for DNSSEC
   validating stub resolvers or support for some IPsec modes, require
   software updates to the IPv6-only hosts.

   The NAT64 and DNS64 mechanisms are related to the NAT-PT mechanism
   defined in [RFC2766], but significant differences exist.  First,
   NAT64 does not define the NATPT mechanisms used to support IPv6 only
   servers to be contacted by IPv4 only clients, but only defines the
   mechanisms for IPv6 clients to contact IPv4 servers and its potential
   reuse to support peer to peer communications through standard NAT
   traversal techniques.  Second, NAT64 includes a set of features that
   overcomes many of the reasons the original NAT-PT specification was
   moved to historic status [RFC4966].

https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc2766
https://datatracker.ietf.org/doc/html/rfc4966
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1.1.  Features of NAT64

   The features of NAT64 and DNS64 are:

   o  It enables IPv6-only nodes to initiate a client-server connection
      with an IPv4-only server, without needing any changes on either
      IPv4 or IPv6 nodes.  This works for roughly the same class of
      applications that work through IPv4-to-IPv4 NATs.

   o  It supports peer-to-peer communication between IPv4 and IPv6
      nodes, including the ability for IPv4 nodes to initiate
      communication with IPv6 nodes using peer-to-peer techniques (i.e.,
      using a rendezvous server and ICE).  To this end, NAT64 is
      compliant with the recommendations for how NATs should handle UDP
      [RFC4787], TCP [RFC4787], and ICMP [RFC5508].

   o  Compatible with ICE.

   o  Supports additional features with some changes on nodes.  These
      features include:

      *  Support for DNSSEC

      *  Some forms of IPsec support

1.2.  Overview

   This section provides a non-normative introduction to the mechanisms
   of NAT64.

   NAT64 mechanism is implemented in an NAT64 box which has two
   interfaces, an IPv4 interface connected to the the IPv4 network, and
   an IPv6 interface connected to the IPv6 network.  Packets generated
   in the IPv6 network for a receiver located in the IPv4 network will
   be routed within the IPv6 network towards the NAT64 box.  The NAT64
   box will translate them and forward them as IPv4 packets through the
   IPv4 network to the IPv4 receiver.  The reverse takes place for
   packets generated in the IPv4 network for an IPv6 receiver.  NAT64,
   however, is not symmetric.  In order to be able to perform IPv6 -
   IPv4 translation NAT64 requires state, binding an IPv6 address and
   port (hereafter called an IPv6 transport address) to an IPv4 address
   and port (hereafter called an IPv4 transport address).

   Such binding state is created when the first packet flowing from the
   IPv6 network to the IPv4 network is translated.  After the binding
   state has been created, packets flowing in either direction on that
   particular flow are translated.  The result is that NAT64 only
   supports communications initiated by the IPv6-only node towards an

https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc5508
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   IPv4-only node.  Some additional mechanisms, like ICE, can be used in
   combination with NAT64 to provide support for communications
   initiated by the IPv4-only node to the IPv6-only node.  The
   specification of such mechanisms, however, is out of the scope of
   this document.

1.2.1.  NAT64 solution elements

   In this section we describe the different elements involved in the
   NAT64 approach.

   The main component of the proposed solution is the translator itself.
   The translator has essentially two main parts, the address
   translation mechanism and the protocol translation mechanism.

   Protocol translation from IPv4 packet header to IPv6 packet header
   and vice-versa is performed according to SIIT [RFC2765].

   Address translation maps IPv6 transport addresses to IPv4 transport
   addresses and vice-versa.  In order to create these mappings the
   NAT64 box has two pools of addresses i.e. an IPv6 address pool (to
   represent IPv4 addresses in the IPv6 network) and an IPv4 address
   pool (to represent IPv6 addresses in the IPv4 network).  Since there
   is enough IPv6 address space, it is possible to map every IPv4
   address into a different IPv6 address.

   NAT64 creates the required mappings by using as the IPv6 address pool
   an IPv6 IPv6 prefix (hereafter called Pref64::/96).  This allows each
   IPv4 address to be mapped into a different IPv6 address by simply
   concatenating the /96 prefix assigned as the IPv6 address pool of the
   NAT64, with the IPv4 address being mapped (i.e. an IPv4 address X is
   mapped into the IPv6 address Pref64:X).  The NAT64 prefix Pref64::/96
   is assigned by the administrator of the NAT64 box from the global
   unicast IPv6 address block assigned to the site.

   The IPv4 address pool is a set of IPv4 addresses, normally a small
   prefix assigned by the local administrator.  Since IPv4 address space
   is a scarce resource, the IPv4 address pool is small and typically
   not sufficient to establish permanent one-to-one mappings with IPv6
   addresses.  So, mappings using the IPv4 address pool will be created
   and released dynamically.  Moreover, because of the IPv4 address
   scarcity, the usual practice for NAT64 is likely to be the mapping of
   IPv6 transport addresses into IPv4 transport addresses, instead of
   IPv6 addresses into IPv4 addresses directly, which enable a higher
   utilization of the limited IPv4 address pool.

   Because of the dynamic nature of the IPv6 to IPv4 address mapping and
   the static nature of the IPv4 to IPv6 address mapping, it is easy to

https://datatracker.ietf.org/doc/html/rfc2765
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   understand that it is far simpler to allow communication initiated
   from the IPv6 side toward an IPv4 node, which address is permanently
   mapped into an IPv6 address, than communications initiated from IPv4-
   only nodes to an IPv6 node in which case IPv4 address needs to be
   associated with it dynamically.  For this reason NAT64 supports only
   communications initiated from the IPv6 side.

   An IPv6 initiator can know or derive in advance the IPv6 address
   representing the IPv4 target and send packets to that address.  The
   packets are intercepted by the NAT64 device, which associates an IPv4
   transport address of its IPv4 pool to the IPv6 transport address of
   the initiator, creating binding state, so that reply packets can be
   translated and forwarded back to the initiator.  The binding state is
   kept while packets are flowing.  Once the flow stops, and based on a
   timer, the IPv4 transport address is returned to the IPv4 address
   pool so that it can be reused for other communications.

   To allow an IPv6 initiator to do the standard DNS lookup to learn the
   address of the responder, DNS64 [I-D.ietf-behave-dns64] is used to
   synthesize an AAAA RR from the A RR (containing the real IPv4 address
   of the responder).  DNS64 receives the DNS queries generated by the
   IPv6 initiator.  If there is no AAAA record available for the target
   node (which is the normal case when the target node is an IPv4-only
   node), DNS64 performs a query for the A record.  If an A record is
   discovered, DNS64 creates a synthetic AAAA RR by adding the
   Pref64::/96 of a NAT64 to the responder's IPv4 address (i.e. if the
   IPv4 node has IPv4 address X, then the synthetic AAAA RR will contain
   the IPv6 address formed as Pref64:X).  The synthetic AAAA RR is
   passed back to the IPv6 initiator, which will initiate an IPv6
   communication with the IPv6 address associated to the IPv4 receiver.
   The packet will be routed to the NAT64 device, which will create the
   IPv6 to IPv4 address mapping as described before.

1.2.2.  Walkthrough

   In this example, we consider an IPv6 node located in a IPv6-only site
   that initiates a communication to a IPv4 node located in the IPv4
   network.

   The notation used is the following: upper case letters are IPv4
   addresses; upper case letters with a prime(') are IPv6 addresses;
   lower case letters are ports; prefixes are indicated by "P::X", which
   is a IPv6 address built from an IPv4 address X by adding the prefix
   P, mappings are indicated as "(X,x) <--> (Y',y)".

   The scenario for this case is depicted in the following figure:
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     +---------------------------------------+       +---------------+
     |IPv6 network    +-------------+        |       |               |
     |  +----+        | Name server |   +-------+    |   IPv4        |
     |  | H1 |        | with DNS64  |   | NAT64 |----| Network       |
     |  +----+        +-------------+   +-------+    |               |
     |    |IP addr: Y'     |              |  |       |  IP addr: X   |
     |    ---------------------------------  |       |  +----+       |
     +---------------------------------------+       |  | H2 |       |
                                                    |  +----+       |
                                                    +---------------+

   The figure shows a IPv6 node H1 which has an IPv6 address Y' and an
   IPv4 node H2 with IPv4 address X.

   A NAT64 connects the IPv6 network to the IPv4 network.  This NAT64
   has a /96 prefix (called Pref64::/96) that it uses to represent IPv4
   addresses in the IPv6 address space and an IPv4 address T assigned to
   its IPv4 interface. the routing is configured in such a way, that the
   IPv6 packets addressed to a destination address containing
   Pref64::/96 are routed to the IPv6 interface of the NAT64 box.

   Also shown is a local name server with DNS64 functionality.  The
   local name server needs to know the /96 prefix assigned to the local
   NAT64 (Pref64::/96).  For the purpose of this example, we assume it
   learns this through manual configuration.

   For this example, assume the typical DNS situation where IPv6 hosts
   have only stub resolvers and the local name server does the recursive
   lookups.

   The steps by which H1 establishes communication with H2 are:

   1.  H1 performs a DNS query for FQDN(H2) and receives the synthetic
       AAAA RR from the local name server that implements the DNS64
       functionality.  The AAAA record contains an IPv6 address formed
       by the PRefix64::/96 associated to the NAT64 box and the IPv4
       address of H2 in the lower 32 bits.

   2.  H1 sends a packet to H2.  The packet is sent from a source
       transport address of (Y',y) to a destination transport address of
       (Pref64:X,x), where y and x are ports set by H1.

   3.  The packet is routed to the IPv6 interface of the NAT64 (since
       the IPv6 routing is configured that way).

   4.  The NAT64 receives the packet and performs the following actions:
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       *  The NAT64 selects an unused port t on its IPv4 address T and
          creates the mapping entry (Y',y) <--> (T,t)

       *  The NAT64 translates the IPv6 header into an IPv4 header using
          SIIT.

       *  The NAT64 includes (T,t) as source transport address in the
          packet and (X,x) as destination transport address in the
          packet.  Note that X is extracted directly from the lower 32
          bits of the destination IPv6 address of the received IPv6
          packet that is being translated.

   5.  The NAT64 sends the translated packet out its IPv4 interface and
       the packet arrives at H2.

   6.  H2 node responds by sending a packet with destination transport
       address (T,t) and source transport address (X,x).

   7.  The packet is routed to the NAT64 box, which will look for an
       existing mapping containing (T,t).  Since the mapping (Y',y) <-->
       (T,t) exists, the NAT64 performs the following operations:

       *  The NAT64 translates the IPv4 header into an IPv6 header using
          SIIT.

       *  The NAT64 includes (Y',y) as destination transport address in
          the packet and (Pref64:X,x) as source transport address in the
          packet.  Note that X is extracted directly from the source
          IPv4 address of the received IPv4 packet that is being
          translated.

   8.  The translated packet is sent out the IPv6 interface to H1.

   The packet exchange between H1 and H2 continues and packets are
   translated in the different directions as previously described.

   It is important to note that the translation still works if the IPv6
   initiator H1 learns the IPv6 representation of H2's IPv4 address
   (i.e.  Pref64:X) through some scheme other than a DNS look-up.  This
   is because the DNS64 processing does NOT result in any state
   installed in the NAT64 box and because the mapping of the IPv4
   address into an IPv6 address is the result of concatenating the
   prefix defined within the site for this purpose (called Pref64::/96
   in this document) to the original IPv4 address.
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1.2.3.  Filtering

   A NAT64 box may do filtering, which means that it only allows a
   packet in through an interface if the appropriate permission exists.
   A NAT64 may do no filtering, or it may filter on its IPv4 interface.
   Filtering on the IPv6 interface is not supported, as mappings are
   only created by packets traveling in the IPv6 --> IPv4 direction.

   If a NAT64 performs address-dependent filtering according to RFC4787
   [RFC4787] on its IPv4 interface, then an incoming packet is dropped
   unless a packet has been recently sent out the interface with a
   source transport address equal to the destination transport address
   of the incoming packet and destination IP address equal to the source
   IP address of the incoming packet.

   NAT64 filtering is consistent with the recommendations of RFC 4787
   [RFC4787], and the ones of RFC 5382 [RFC5382]

2.  Terminology

   This section provides a definitive reference for all the terms used
   in document.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

   The following terms are used in this document:

   5-Tuple:  The tuple (source IP address, source port, destination IP
      address, destination port, transport protocol).  A 5-tuple
      uniquely identifies a session.  When a session flows through a
      NAT64, each session has two different 5-tuples: one with IPv4
      addresses and one with IPv6 addresses.

   BIB:  Binding Information Base.  A table of mappings kept by a NAT64.
      Each NAT64 has two BIBs, one for TCP and one for UDP.

   DNS64:  A logical function that synthesizes AAAA Resource Records
      (containing IPv6 addresses) from A Resource Records (containing
      IPv4 addresses).

   Endpoint-Independent Mapping:  In NAT64, using the same mapping for
      all the sessions involving a given IPv6 transport address of an
      IPv6 host (irrespectively of the transport address of the IPv4
      host involved in the communication).  Endpoint-independent mapping
      is important for peer-to-peer communication.  See [RFC4787] for

https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4787
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      the definition of the different types of mappings in IPv4-to-IPv4
      NATs.

   Hairpinning:  Having a packet do a "U-turn" inside a NAT and come
      back out the same interface as it arrived on.  Hairpinning support
      is important for peer-to-peer applications, as there are cases
      when two different hosts on the same side of a NAT can only
      communicate using sessions that hairpin though the NAT.

   Mapping:  A mapping between an IPv6 transport address and a IPv4
      transport address.  Used to translate the addresses and ports of
      packets flowing between the IPv6 host and the IPv4 host.  In
      NAT64, the IPv4 transport address is always a transport address
      assigned to the NAT64 itself, while the IPv6 transport address
      belongs to some IPv6 host.

   NAT64:  A device that translates IPv6 packets to IPv4 packets and
      vice-versa, with the provision that the communication must be
      initiated from the IPv6 side.  The translation involves not only
      the IP header, but also the transport header (TCP or UDP).

   Session:  A TCP or UDP session.  In other words, the bi-directional
      flow of packets between two ports on two different hosts.  In
      NAT64, typically one host is an IPv4 host, and the other one is an
      IPv6 host.

   Session table:  A table of sessions kept by a NAT64.  Each NAT64 has
      two session tables, one for TCP and one for UDP.

   Synthetic RR:  A DNS Resource Record (RR) that is not contained in
      any zone data file, but has been synthesized from other RRs.  An
      example is a synthetic AAAA record created from an A record.

   Transport Address:  The combination of an IPv6 or IPv4 address and a
      port.  Typically written as (IP address, port); e.g. (192.0.2.15,
      8001).

   For a detailed understanding of this document, the reader should also
   be familiar with DNS terminology [RFC1035] and current NAT
   terminology [RFC4787].

3.  NAT64 Normative Specification

   A NAT64 is a device with at least one IPv6 interface and at least one
   IPv4 interface.  Each NAT64 device MUST have one unicast /96 IPv6
   prefix assigned to it, denoted Pref64::/96.  Each NAT64 box MUST have
   one or more unicast IPv4 addresses assigned to it.

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc4787
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   A NAT64 uses the following dynamic data structures:

   o  UDP Binding Information Base

   o  UDP Session Table

   o  TCP Binding Information Base

   o  TCP Session Table

   A NAT64 has two Binding Information Bases (BIBs): one for TCP and one
   for UDP.  Each BIB entry specifies a mapping between an IPv6
   transport address and an IPv4 transport address:

      (X',x) <--> (T,t)

   where X' is some IPv6 address, T is an IPv4 address, and x and t are
   ports.  T will always be one of the IPv4 addresses assigned to the
   NAT64 A given IPv6 or IPv4 transport address can appear in at most
   one entry in a BIB: for example, (2001:db8::17, 4) can appear in at
   most one TCP and at most one UDP BIB entry.  TCP and UDP have
   separate BIBs because the port number space for TCP and UDP are
   distinct.

   A NAT64 also has two session tables: one for TCP sessions and one for
   UDP sessions.  Each entry keeps information on the state of the
   corresponding session.  In particular, the each session table entry
   Each session table entry specifies a mapping between a pair of IPv6
   transport address and a pair of IPv4 transport address:

      (X',x),(Y',y) <--> (T,t),(Z,z)

   where X' and Y' are IPv6 addresses, T and Z are IPv4 addresses, and
   x, y, z and t are ports.  T will always be one of the IPv4 addresses
   assigned to the NAT64.  Y' is always the IPv6 representation of the
   IPv4 address Z, so Y' is obtained from Z using the algorithm applied
   by the NAT64 to create IPv6 representations of IPv4 addresses. y is
   always equal to z.  In addition, each session table entry has a
   lifetime.  The NAT64 uses the session state information to determine
   when the session is completed, and also uses session information for
   ingress filtering.  A session can be uniquely identified by either an
   incoming 5-tuple or an outgoing 5-tuple.

   For each session, there is a corresponding BIB entry, uniquely
   specified by either the source IPv6 transport address (in the IPv6
   --> IPv4 direction) or the destination IPv4 transport address (in the
   IPv4 --> IPv6 direction).  However, a single BIB entry can have
   multiple corresponding sessions.  When the last corresponding session
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   is deleted, the BIB entry is deleted.

   The processing of an incoming IP packet takes the following steps:

   1.  Determining the incoming 5-tuple

   2.  Filtering and updating binding and session information

   3.  Computing the outgoing 5-tuple

   4.  Translating the packet

   5.  Handling hairpinning

   The details of these steps are specified in the following
   subsections.

   This breakdown of the NAT64 behavior into processing steps is done
   for ease of presentation.  A NAT64 MAY perform the steps in a
   different order, or MAY perform different steps, as long as the
   externally visible outcome is the same.

   TBD: Add support for ICMP Query packets.  (ICMP Error packets are
   handled).

3.1.  Determining the Incoming 5-tuple

   This step associates a incoming 5-tuple (source IP address, source
   port, destination IP address, destination port, transport protocol)
   with every incoming IP packet for use in subsequent steps.

   If the incoming IP packet contains a complete (un-fragmented) UDP or
   TCP protocol packet, then the 5-tuple is computed by extracting the
   appropriate fields from the packet.

   If the incoming IP packet contains a complete (un-fragmented) ICMP
   error message, then the 5-tuple is computed by extracting the
   appropriate fields from the IP packet embedded inside the ICMP error
   message.  However, the role of source and destination is swapped when
   doing this: the embedded source IP address becomes the destination IP
   address in the 5-tuple, the embedded source port becomes the
   destination port in the 5-tuple, etc.  If it is not possible to
   determine the 5-tuple (perhaps because not enough of the embedded
   packet is reproduced inside the ICMP message), then the incoming IP
   packet is silently discarded.
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      NOTE: The transport protocol is always one of TCP or UDP, even if
      the IP packet contains an ICMP message.

   If the incoming IP packet contains a fragment, then more processing
   may be needed.  This specification leaves open the exact details of
   how a NAT64 handles incoming IP packets containing fragments, and
   simply requires that a NAT64 handle fragments arriving out-of-order.
   A NAT64 MAY elect to queue the fragments as they arrive and translate
   all fragments at the same time.  Alternatively, a NAT64 MAY translate
   the fragments as they arrive, by storing information that allows it
   to compute the 5-tuple for fragments other than the first.  In the
   latter case, the NAT64 will still need to handle the situation where
   subsequent fragments arrive before the first.

   Implementors of NAT64 should be aware that there are a number of
   well-known attacks against IP fragmentation; see [RFC1858] and
   [RFC3128].

   Assuming it otherwise has sufficient resources, a NAT64 MUST allow
   the fragments to arrive over a time interval of at least 10 seconds.
   A NAT64 MAY require that the UDP, TCP, or ICMP header be completely
   contained within the first fragment.

3.2.  Filtering and Updating Binding and Session Information

   This step updates the per-session information stored in the
   appropriate session table.  This affects the lifetime of the session,
   which in turn affects the lifetime of the corresponding BIB entry.
   This step may also filter incoming packets, if desired.

   The details of this step depend on the transport protocol (UDP or
   TCP).

3.2.1.  UDP Session Handling

   The state information stored for a UDP session in the UDP session
   table includes a timer that tracks the remaining lifetime of the UDP
   session.  The NAT64 decrements this timer at regular intervals.  When
   the timer expires, the UDP session is deleted.  If all the UDP
   sessions corresponding to a UDP BIB entry are deleted, then the UDP
   BIB entry is also deleted.

   An IPv6 incoming packet is processed as follows:

      The NAT64 searches for a UDP BIB entry that matches the IPv6
      source transport address.  If such entry does not exists, a new
      entry is created.  As IPv6 address, the source IPv6 transport
      address of the packet is included and an IPv4 transport address

https://datatracker.ietf.org/doc/html/rfc1858
https://datatracker.ietf.org/doc/html/rfc3128
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      allocated using the rules defined in Section 3.2.3 is included as
      IPv4 address.

      The NAT64 searches for the session table entry corresponding to
      the incoming 5-tuple.  If no such entry is found, a new entry is
      created.  The information included in the session table is as
      follows: the IPv6 transport source and destination addresses
      contained in the received IPv6 packet, the IPv4 transport source
      address is extracted from the corresponding UDP BIB entry and the
      IPv4 transport destination address contains the same port as the
      IPv6 destination transport address and the IPv4 address that is
      algorithmically generated from the IPv6 destination address using
      the reverse algorithm as specified in Section 3.2.4.

      The NAT64 sets or resets the timer in the session table entry to
      maximum session lifetime.  By default, the maximum session
      lifetime is 5 minutes, but for specific destination ports in the
      Well-Known port range (0..1023), the NAT64 MAY use a smaller
      maximum lifetime.  The packet is translated and forwarded as
      described in the following sections.

   An IPv4 incoming packet is processed as follows:

      The NAT64 searches for a UDP BIB entry that matches the IPv4
      destination transport address.  If such entry does not exists, the
      packet is dropped.  An ICMP message MAY be sent to the original
      sender of the packet, unless the discarded packet is itself an
      ICMP message.  The ICMP message, if sent, has a type of 3
      (Destination Unreachable).

      If the NAT64 filters on its IPv4 interface, then the NAT64 checks
      to see if the incoming packet is allowed according to the address-
      dependent filtering rule.  To do this, it searches for a session
      table entry with a source IPv4 transport address equal to the
      destination IPv4 transport address in the incoming 5-tuple and
      destination IPv4 address (in the session table entry) equal to the
      source IPv4 address in the incoming 5-tuple.  If such an entry is
      found (there may be more than one), packet processing continues.
      Otherwise, the packet is discarded.  If the packet is discarded,
      then an ICMP message MAY be sent to the original sender of the
      packet, unless the discarded packet is itself an ICMP message.
      The ICMP message, if sent, has a type of 3 (Destination
      Unreachable) and a code of 13 (Communication Administratively
      Prohibited).

      The NAT64 searches for the session table entry corresponding to
      the incoming 5-tuple.  If no such entry is found, a new entry is
      created.  The UDP session table entry contains the transport
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      source and destination address contained in the IPv4 packet and
      the source IPv6 transport address (in the IPv6 --> IPv4 direction)
      contained in the existing TCP BIB entry.  The destination IPv6
      transport address contains the same port than the destination IPv4
      transport address and the IPv6 representation of the IPv4 address
      of the destination IPv4 transport address, generated using the
      algorithm described in Section 3.2.4.

      The NAT64 sets or resets the timer in the session table entry to
      maximum session lifetime.  By default, the maximum session
      lifetime is 5 minutes, but for specific destination ports in the
      Well-Known port range (0..1023), the NAT64 MAY use a smaller
      maximum lifetime.

3.2.2.  TCP Session Handling

   The state information stored for a TCP session:

      Binding:(X',x),(Y',y) <--> (T,t),(Z,z)

      Lifetime: is a timer that tracks the remaining lifetime of the UDP
      session.  The NAT64 decrements this timer at regular intervals.
      When the timer expires, the TCP session is deleted.  If all the
      TCP sessions corresponding to a TCP BIB entry are deleted, then
      the TCP BIB entry is also deleted.

   TCP sessions are expensive, because their inactivity lifetime is set
   to 2 hours and 4 min (as per [RFC5382]), so it is important that each
   TCP session table entry corresponds to an existent TCP session.  In
   order to do that, the NAT64 tracks the TCP connection procedure.  In
   this section we describe how the NAT64 does that tracking by
   describing the state machine.

   Temporarily the NAT64 TCP tracking state machine is depicted in
   http:/www.it.uc3m.es/~marcelo/nat64_state_machine.pdf.  Once it is
   stable, we will include in the draft in ASCII art format.

   The states are the following ones:

      CLOSED

      V4 SYN RCV

      V6 SYN RCV

      ESTABLISHED

https://datatracker.ietf.org/doc/html/rfc5382
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      V4 FIN RCV

      V6 FIN RCV

      V6 FIN + V4 FIN RCV

   After bootstrapping of the NAT64 device, all TCP session are in
   CLOSED state.  We next describe the state information and the
   transitions.

   A TCP segment with the SYN flag set that is received through the IPv6
   interface is called a V6 SYN, similarly, V4 SYN, V4 FIN, V6 FIN, V6
   FIN + V4 FIN.

   *** CLOSED ***

   If a V6 SYN is received, the processing is as follows:

      The state of the session is moved to V6 SYN RCV.

      The NAT64 searches for a TCP BIB entry that matches the IPv6
      source transport address.

         If such entry does not exists, a new entry is created.  As IPv6
         address, the source IPv6 transport address of the packet is
         included and an IPv4 transport address allocated using the
         rules defined in Section 3.2.3 is included as the IPv4
         transport address.

      Then a new TCP session entry is created in the TCP session table.
      The information included in the session table is as follows:

         NOTE: this text needs to be improved

         The IPv6 transport source and destination addresses contained
         in the received V6 SYN packet,

         the IPv4 transport source address is extracted from the
         corresponding TCP BIB entry and,

         the IPv4 transport destination address contains the same port
         as the IPv6 destination transport address and the IPv4 address
         that is algorithmically generated from the IPv6 destination
         address using the reverse algorithm as specified in

Section 3.2.4.

         The lifetime of the TCP session table entry is set to 4 min
         (the transitory connection idle timeout as defined in
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         [RFC5382]).

      The packet is translated and forwarded.

   If a V4 SYN packet is received, the processing is as follows:

      If the security policy requires silently dropping externally
      initiated TCP connections, then the packet is silently discarded,
      else,

      If the destination transport address contained in the incoming V4
      SYN is not in use in the TCP BIB, then the packet is discarded and
      an ICMP Port Unreachable error (Type 3, Code 3) is sent back to
      the source of the v4 SYN.  The state remains unchanged in CLOSED

      If the destination transport is contained in the incoming V4 SYN
      is in use in the TCP BIB, then

         The state is moved to V4 SYN RCV.

         A new session table entry is created in the TCP session table,
         containing the following information:

            NOTE: this text needs to be improved

            The transport source and destination address contained in
            the V4 SYN and,

            the source IPv6 transport address (in the IPv6 --> IPv4
            direction) contained in the existing TCP BIB entry.

            [NOTE: FILTERING IS MISSING].

            The destination IPv6 transport address contains the same
            port than the destination IPv4 transport address and the
            IPv6 representation of the IPv4 address of the destination
            IPv4 transport address, generated using the algorithm
            described in Section 3.2.4.

            The lifetime of the entry is set to 6 seconds as per
            [RFC5382].

         The packet is discarded.

   All other packets are silently discarded.

   *** V4 SYN RCV ***

https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/rfc5382
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   If a V6 SYN is received, then the state is moved to ESTABLISHED.  The
   lifetime of the corresponding TCP session table entry is updated to 2
   hours 4 min (the established connection idle timeout as defined in
   [RFC5382]).  The packet is translated and forwarded.

   If the lifetime expires, an ICMP Port Unreachable error (Type 3, Code
   3) is sent back to the source of the v4 SYN, the session table entry
   is deleted and, the state is moved to CLOSED.

   All other packets are silently discarded.

   *** V6 SYN RCV ***

   If a V4 SYN is received (with or without the ACK flag set), then the
   state is moved to ESTABLISHED.  The timer is updated to 2 hours 4 min
   (the established connection idle timeout as defined in [RFC5382]).
   The packet is translated and forwarded.

   If the lifetime expires, the session table entry is deleted and the
   state is moved to CLOSED.

   All other packets are silently discarded.

   *** ESTABLISHED ***

   If a V6 RST packet is received, or if the lifetime expires, the
   session table entry is deleted and the state is moved to CLOSED.

   If a V4 FIN packet is received, the packet is translated and
   forwarded.  The state is moved to V4 FIN RCV.

   If a V6 FIN packet is received, the packet is translated and
   forwarded.  The state is moved to V6 FIN RCV.

   If a packet is received, the packet is translated and forwarded.  The
   lifetime is set to 2 hours and 4 min.  The state remains unchanged as
   ESTABLISHED.

   If the lifetime expires, the session table entry is deleted and the
   state is moved to CLOSED.

   *** V4 FIN RCV ***

   If a packet is received, the packet is translated and forwarded.  The
   lifetime is set to 2 hours and 4 min.  The state remains unchanged as
   V4 FIN RCV.

   If a V6 FIN packet is received, the packet is translated and

https://datatracker.ietf.org/doc/html/rfc5382
https://datatracker.ietf.org/doc/html/rfc5382
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   forwarded.  The lifetime is set to 4 min.  The state is moved to V6
   FIN + V4 FIN RCV.

   If the lifetime expires, the session table entry is deleted and the
   state is moved to CLOSED.

   *** V6 FIN RCV ***

   If a packet is received, the packet is translated and forwarded.  The
   lifetime is set to 2 hours and 4 min.  The state remains unchanged as
   V6 FIN RCV.

   If a V4 FIN packet is received, the packet is translated and
   forwarded.  The lifetime is set to 4 min.  The state is moved to V6
   FIN + V4 FIN RCV.

   If the lifetime expires, the session table entry is deleted and the
   state is moved to CLOSED.

   *** V6 FIN + V4 FIN RCV ***

   All packets are translated and forwarded.

   If the lifetime expires, the session table entry is deleted and the
   state is moved to CLOSED.

3.2.3.  Rules for allocation of IPv4 transport addresses

   NOTE: Would these apply to TCP as well?  RFC5382 does not require
   this...

   If the rules specify that a new BIB entry is created for a source
   transport address of (S',s), then the NAT64 allocates an IPv4
   transport address for this BIB entry as follows:

      If there exists some other BIB entry containing S' as the IPv6
      address and mapping it to some IPv4 address T, then use T as the
      IPv4 address.  Otherwise, use any IPv4 address assigned to the
      IPv4 interface.

      If the port s is in the Well-Known port range 0..1023, then
      allocate a port t from this same range.  Otherwise, if the port s
      is in the range 1024..65535, then allocate a port t from this
      range.  Furthermore, if port s is even, then t must be even, and
      if port s is odd, then t must be odd.

      In all cases, the allocated IPv4 transport address (T,t) MUST NOT
      be in use in another entry in the same BIB, but MAY be in use in

https://datatracker.ietf.org/doc/html/rfc5382
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      the other BIB.

   If it is not possible to allocate an appropriate IPv4 transport
   address or create a BIB entry for some reason, then the packet is
   discarded.

3.2.4.  Generation of the IPv6 representations of IPv4 addresses

   NAT64 support multiple algorithms for the generation of the IPv6
   representation of an IPv4 address.  The constraints imposed to the
   generation algorithms are the following:

      The same algorithm to create an IPv6 address from an IPv4 address
      MUST be used by:

         The DNS64 to create the IPv6 address to be returned in the
         synthetic AAAA RR from the IPv4 address contained in original A
         RR, and,

         The NAT64 to create the IPv6 address to be included in the
         destination address field of the outgoing IPv6 packets from the
         IPv4 address included in the destination address field of the
         incoming IPv4 packet.

      The algorithm MUST be reversible, i.e. it MUST be possible to
      extract the original IPv4 address from the IPv6 representation.

      The input for the algorithm MUST be limited to the IPv4 address,
      the IPv6 prefix (denoted Pref64::/n) used in the IPv6
      representations and optionally a set of stable parameters that are
      configured in the NAT64 (such as fixed string to be used as a
      suffix).

         If we note n the length of the prefix Pref64::/n, then n MUST
         the less or equal than 96.  If a Pref64::/n is configured
         through any means in the DNS64 (such as manually configured, or
         other automatic mean not specified in this document), the
         default algorithm MUST use this prefix.  If no prefix is
         available, the algorithm MUST use the Well-Known prefix
         (include here the prefix to be assigned by IANA) defined in
         [I-D.thaler-behave-translator-addressing]

   NAT64 MUST support the following algorithms for generating IPv6
   representations of IPv4 addresses defined in
   [I-D.thaler-behave-translator-addressing]:

      Zero-Pad And Embed, defined in section 3.2.3 of
      [I-D.thaler-behave-translator-addressing]
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      Compensation-Pad And Embed, defined in section of 3.2.4 of
      [I-D.thaler-behave-translator-addressing]

      Embed And Zero-Pad, defined in section of 3.2.5 of
      [I-D.thaler-behave-translator-addressing]

      Preconfigured Mapping Table, defined in section of 3.2.6 of
      [I-D.thaler-behave-translator-addressing]

   The default algorithm used by NAT64 must be Embed and Zero-Pad.
   While the normative description of the algorithms is provided in
   [I-D.thaler-behave-translator-addressing].

4.  Computing the Outgoing 5-Tuple

   This step computes the outgoing 5-tuple by translating the addresses
   and ports in the incoming 5-tuple.  The transport protocol in the
   outgoing 5-tuple is always the same as that in the incoming 5-tuple.

   In the text below, a reference to the the "BIB" means either the TCP
   BIB or the UDP BIB as appropriate, as determined by the transport
   protocol in the 5-tuple.

      NOTE: Not all addresses are translated using the BIB.  BIB entries
      are used to translate IPv6 source transport addresses to IPv4
      source transport addresses, and IPv4 destination transport
      addresses to IPv6 destination transport addresses.  They are NOT
      used to translate IPv6 destination transport addresses to IPv4
      destination transport addresses, nor to translate IPv4 source
      transport addresses to IPv6 source transport addresses.  The
      latter cases are handled by adding or removing the /96 prefix.
      This distinction is important; without it, hairpinning doesn't
      work correctly.

   When translating in the IPv6 --> IPv4 direction, let the incoming
   source and destination transport addresses in the 5-tuple be (S',s)
   and (D',d) respectively.  The outgoing source transport address is
   computed as follows: the BIB contains a entry (S',s) <--> (T,t), then
   the outgoing source transport address is (T,t).

   The outgoing destination address is computed as follows: If D' is
   composed of the NAT64's prefix followed by an IPv4 address D, then
   the outgoing destination transport address is (D,d).

   When translating in the IPv4 --> IPv6 direction, let the incoming
   source and destination transport addresses in the 5-tuple be (S,s)
   and (D,d) respectively.  The outgoing source transport address is
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   computed as follows:

      The outgoing source transport address is (Pref64::S,s).

   The outgoing destination transport address is computed as follows:

      If the BIB contains an entry (X',x) <--> (D,d), then the outgoing
      destination transport address is (X',x).

      Otherwise, discard the packet.

   If the rules specify that the packet is discarded, then the NAT64 MAY
   send an ICMP reply to the original sender, unless the packet being
   translated contains an ICMP message.  The type should be 3
   (Destination Unreachable) and the code should be 0 (Network
   Unreachable in IPv4, and No Route to Destination in IPv6).

5.  Translating the Packet

   This step translates the packet from IPv6 to IPv4 or vice-versa.

   The translation of the packet is as specified in section 3 and
section 4 of SIIT [RFC2765], with the following modifications:

   o  When translating an IP header (sections 3.1 and 4.1), the source
      and destination IP address fields are set to the source and
      destination IP addresses from the outgoing 5-tuple.

   o  When the protocol following the IP header is TCP or UDP, then the
      source and destination ports are modified to the source and
      destination ports from the outgoing 5-tuple.  In addition, the TCP
      or UDP checksum must also be updated to reflect the translated
      addresses and ports; note that the TCP and UDP checksum covers the
      pseudo-header which contains the source and destination IP
      addresses.  An algorithm for efficiently updating these checksums
      is described in [RFC3022].

   o  When the protocol following the IP header is ICMP (sections 3.4
      and 4.4) and it is an ICMP error message, the source and
      destination transport addresses in the embedded packet are set to
      the destination and source transport addresses from the outgoing
      5-tuple (note the swap of source and destination).

https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc3022
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6.  Handling Hairpinning

   This step handles hairpinning if necessary.

   If the destination IP address is an address assigned to the NAT64
   itself (i.e., is one of the IPv4 addresses assigned to the IPv4
   interface, or is covered by the /96 prefix assigned to the IPv6
   interface), then the packet is a hairpin packet.  The outgoing
   5-tuple becomes the incoming 5-tuple, and the packet is treated as if
   it was received on the outgoing interface.  Processing of the packet
   continues at step 2.

   [R/T] The reference to step 2 here was a little confusing to us.  Are
   you referring to Filtering and Updating Session Information (Section

3.2)?  MB> I am not sure about this anymore.  I mean what if the
   packet that is being hairpinned is an ICMP error msge, I mean don't
   we still need step 1?

   TBD: Is there such a thing as a hairpin loop (likely not naturally,
   but perhaps through a special-crafted attack packet with a spoofed
   source address)?  If so, need to drop packets that hairpin more than
   once.

7.  Path MTU discovery and fragmentation

   It's the job of the network layer to adapt to different maximum
   packet sizes as packets move through the network.  There are three
   mechanisms that handle this: transport layer negotiations such as the
   TCP MSS option, path MTU discovery and fragmentation.  The difference
   between the IPv4 and IPv6 header sizes requires some handling in a
   NAT64 translator, and there are complications because of the
   differences between how IPv4 and IPv6 handle fragmentation, as well
   as the issue of how to demultiplex fragmented IPv4 packets.

   The vast majority of both IPv4 and IPv6 hosts use path MTU discovery
   [RFC1191] [RFC1981].  With IPv4, PMTUD can be enabled on a per-packet
   basis by setting the DF bit to 1.  With IPv6, there is no need for
   PMTUD for packets up to 1280 bytes because all IPv6 hosts are
   required to be able to receive 1280-byte packets without
   fragmentation.  When sending larger packets, IPv6 hosts implicitly
   use PMTUD.

   The fragmentation behavior specified in [RFC2765] is that upon the
   reception of an ICMPv6 "packet too big" message with an indicated
   packet size of less than 1280 octets, IPv6 hosts will transmit 1280-
   octet packets, but include a fragment header in those packets.  In a
   stateful translator, the identification value in this fragment header

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2765
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   can't be used, so the fragment header itself serves no purpose.
   Additionally, the presence or absense of the fragment header isn't
   enough to determine whether to set the DF bit in packets translated
   to IPv4 to 0 (fragment header present) or 1 (no fragment header
   present).  The reason for this is that operators may decide to forego
   path MTU discovery by configuring an MTU of 1280 and filtering
   incoming "too big" messages.  The behavior specified below is meant
   to avoid PMTUD black holes in this situation

7.1.  Translating whole packets and PMTUD

   This section specifies the values in the fragmentation-related fields
   in the IPv4 header when no fragmentation occurs, and how path MTU
   discovery is handled.

7.1.1.  IPv6-to-IPv4 translation

   If the NAT64 has the same MTUs on its IPv6 and IPv4 interfaces, it
   will never have to generate "packet too big" messages for incoming
   IPv6 packets because the translation from IPv6 to IPv4 reduces the
   packet size by 20 bytes, more if the IPv6 packet has extension
   headers that are removed during the translation, such as the fragment
   header.  If the MTU on the IPv6 side is larger than 1280 bytes and
   more than 20 bytes smaller than the MTU on the IPv4 side, the NAT64
   MUST generate the appropriate "packet too big" messages on the IPv6
   side.

   To support PMTUD, for translated packets that are larger than 1260
   bytes on the IPv4 side (1280 bytes IPv6 packets with 20 byte size
   reduction through the translation), the DF bit is set to 1 in the
   resulting IPv4 packet.

   IPv4 routers may generate "packet too big" messages indicating a
   supported MTU size smaller than 1280 bytes.  In those cases, the IPv6
   hosts will continue to send packets larger than what the IPv4 path
   MTU can support.  To allow packets to be delivered successfully in
   this case, the DF bit is set to 0 in all translated packets smaller
   than or equal to 1260 bytes, to allow these packets to be fragmented
   in the IPv4 network.

   Note: it is highly recommended for IPv4 hosts running services that
   may be used by IPv6 clients through a NAT64 translator to use an MTU
   size of at least 1260 bytes and to properly generate "packet too big"
   messages.

   When a NAT64 translates "packet too big" messages from IPv6 to IPv4,
   it adjusts the advertised MTU to the minimum of the original
   advertised MTU + 20, the NAT64's MTU on the IPv6 side + 20 and the



Bagnulo, et al.         Expires January 12, 2010               [Page 25]



Internet-Draft                    NAT64                        July 2009

   NAT64's MTU on the IPv4 side.

   The identification field in the IPv4 header MUST be filled with a
   value generated by the NAT64 translator, similar to the way that
   identification values are created for locally generated packets.  It
   is RECOMMENDED that a NAT64 translator keep an identification counter
   for every combination of remote IPv4 destination and protocol.

   In theory, IPv4 packets with DF set to 1 don't need a unique
   identification value.  However, it is not unheard of for operators to
   configure equipment to clear the DF bit, at which time an
   identification value with good uniqueness becomes necessary.  As
   such, it is recommended that translators include a unique
   identification value in all packets, including those with DF set to
   1.  However, since more packets will be sent with DF set to 1, this
   will use up identification values faster.  Implementations may choose
   to segment the identification space and assign values from non-
   overlapping pools to packets with DF set to 0 and DF set to 1 to
   provide a longer period of uniqueness to fragmentable packets.

7.1.2.  IPv4-to-IPv6

   Because it may be necessary to include a fragmentation header or
   other extension header, the NAT64 MUST be prepared to generate
   "packet too big" messages for packets with the DF bit set to 1
   received from the IPv4 side, regardless of the MTU sizes on the IPv4
   and IPv6 interfaces.  If the packet with DF = 1 is larger than can be
   transmitted on the IPv6 side after translation, the NAT64 returns a
   "packet too big" message indicating the maximum IPv4 packet size that
   would be supported using the same translation as the current packet.
   This can be calculated as IPv4-packet-size - 20.

   When a NAT64 translates "packet too big" messages from IPv4 to IPv6,
   it adjusts the advertised MTU to the minimum of the original
   advertised MTU - 20, the NAT64's MTU on the IPv6 side and the NAT64's
   MTU on the IPv4 side - 20.  However, if the advertised MTU in "packet
   too big" messages is smaller than 1260 bytes, the value put into the
   translated "packet too big" message is 1280.  This makes sure that
   the IPv6 host will limit its packet sizes to 1280 bytes, so its
   packets are subsequently translated into IPv4 packets with DF set to
   0.  (This deviates from [RFC2765].)

7.2.  Fragmentation

   Because NAT deviates from normal router behavior, the limitation that
   IPv6 packets or IPv4 packets with DF set to 1 are not fragmented by
   routers doesn't apply to a NAT64 translator.  Where appropriate,
   these packets are fragmented after translation as described below.

https://datatracker.ietf.org/doc/html/rfc2765
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7.2.1.  IPv4-to-IPv6

   Because packets coming in on the IPv4 side may be larger than 1280
   bytes after translation, a NAT64 MUST implement PMTUD on the IPv6
   side.  In other words, it must react to "packet too big" messages for
   any IPv6 destination that it communicates with by limiting the size
   of the packets that it sends to the advertised maximum.

   In the case where, after translation from IPv4 to IPv6, a packet is
   larger than a destination's PMTU, the NAT64 returns a "packet too
   big" as outlined earlier in the case that the DF bit was set to 1 in
   the IPv4 packet.  If the DF bit was set to 0, the translator first
   translates the IPv4 packet, and then fragments the resulting IPv6
   packets using normal IPv6 fragmentation rules.  The lower 16 bits of
   the IPv6 identification field are copied from the IPv4 identification
   field.  The upper 16 bits of the IPv6 identification field are set to
   0.

   Because NAT64 provides a stateful many-to-one (perhaps even many-to-
   many) translation, it is necessary to recognize which session a given
   packet belongs to.  In the IPv4-to-IPv6 direction, the TCP or UDP
   port numbers must be known to accomplish this, but the port numbers
   only occur in the first fragment of a fragmented packet.  There are
   two possible ways to deal with this:

   1.  Reassemble the packet before translating it.

   2.  Create translation state for the fragments belonging to the same
       packet so each packet can be translated.

   Strategy 2 is attractive in large installations because it requires
   less storage and processing.  However, it may still be necessary to
   buffer fragments for some time, as the fragment containing the first
   part of the packet (and with that, the port numbers) may not be the
   first one to arrive.

   Note: based on the assumptions that hosts generate fragments in-order
   and that reordering must happen through parallel network links and
   that the path between these parallel links and a NAT64 supports
   speeds of at least 10 Mbps, there is a very high probability that two
   out-of-order fragments making up a packet will arrive at the NAT64
   within 50 to 100 milliseconds.  Further assuming that fragmented
   traffic makes up less than 10% of all traffic, this only requires a
   buffer of 6 to 12,500 fragments (50 ms at 10 Mbps to 100 ms at 10
   Gbps).

   In some cases, there may only be a single session matching the
   fragment's source and destination addresses and protocol number.  In
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   these cases, it would be possible to translate the fragments out-of-
   order.  A NAT64 translator MAY do this for TCP, however, it MUST NOT
   translate UDP packets before the first fragment is available.  The
   reason for this is that the fragment could be part of a packet
   setting up a new session.  However, with TCP session establishment
   packets don't carry data, so it's extremely unlikely that they are
   fragmented.  This is not the case with UDP, and in the IPv4-to-IPv6
   direction, a UDP packet may have a zero checksum, which must be
   recalculated when translating to IPv6, for which the entire packet
   must be available.

7.2.2.  IPv6-to-IPv4

   For all IPv4 packets that the NAT64 creates through translation, the
   translator generates an ID value.  This applies to all packets,
   regardless of their size or the value of the DF field.  A NAT64
   translator MAY employ strategies to avoid reusing an ID value for a
   certain source, destination, protocol tuple as long as possible.  If
   the IPv4 packets are fragments of an IPv6 packet, then state is
   created that makes it possible for all the fragments to have the same
   ID value on the IPv4 side.

   [RFC2765] specifies copying the lower bits from the IPv6 ID field in
   a fragment header (if present) to the IPv4 ID field, but this runs
   the risk of two IPv6 hosts talking to the same IPv4 destination
   through the NAT64 using the same ID value.

   Otherwise, when translating IPv6 packets with a fragmentation header,
   the fragments are translated as per [RFC2765].

   In the IPv6-to-IPv4 direction, there is no need to map a fragment to
   the session it belongs to in order to translate the fragment.
   However, it is necessary that all the fragments have the same
   identification value, so fragments may be translated individually,
   but state must be kept to be able to translate subsequent fragments
   of the same packet using the same identification value on the IPv4
   side.

7.3.  TCP MSS option

   It is not recommended that NAT64 translators rewrite the TCP MSS
   option [RFC0793].  As such, assuming the common case of all 1500-
   octet MTUs, an IPv6 host will advertise a 1440-octet MSS, triggering
   the IPv4 host to generate 1480-octet packets that are translated to
   1500-octet IPv6 packets.  IPv4 hosts will advertise a 1460-octet MSS,
   which would be 1520-octet IPv6 packets.  However, ethernet-connected
   IPv6 hosts can only send 1500-octet packets, so in the all-ethernet
   case, there is no dependency on path MTU discovery.

https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc0793
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8.  Application scenarios

   In this section, we describe how to apply NAT64/DNS64 to the suitable
   scenarios described in draft-arkko-townsley-coexistence.

8.1.  Enterprise IPv6 only network

   The Enterprise IPv6 only network basically has IPv6 hosts (those that
   are currently available) and because of different reasons including
   operational simplicity, wants to run those hosts in IPv6 only mode,
   while still providing access to the IPv4 Internet.  The scenario is
   depicted in the picture below.

                                +----+                  +-------------+
                               |    +------------------+IPv6 Internet+
                               |    |                  +-------------+
     IPv6 host-----------------+ GW |
                               |    |                  +-------------+
                               |    +------------------+IPv4 Internet+
                               +----+                  +-------------+

     |-------------------------public v6-----------------------------|
     |-------public v6---------|NAT|----------public v4--------------|

   The proposed NAT64/DNS64 is perfectly suitable for this particular
   scenario.  The deployment of the NAT64/DNS64 would be as follows: The
   NAT64 function should be located in the GW device that connects the
   IPv6 site to the IPv4 Internet.  The DNS64 functionality can be
   placed either in the local recursive DNS server or in the local
   resolver in the hosts.

   The proposed NAT64/DNS64 approach satisfies the requirements of this
   scenario, in particular because it doesn't require any changes to
   current IPv6 hosts in the site to obtain basic functionality.

8.2.  Reaching servers in private IPv4 space

   The scenario of servers using IPv4 private addresses and being
   reached from the IPv6 Internet basically includes the cases that for
   whatever reason the servers cannot be upgraded to IPv6 and they don't
   have public IPv4 addresses and it would be useful to allow IPv6 nodes
   in the IPv6 Internet to reach those servers.  This scenario is
   depicted in the figure below.

https://datatracker.ietf.org/doc/html/draft-arkko-townsley-coexistence
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                                     +----+
   IPv6 Host(s)-------(Internet)-----+ GW +------Private IPv4 Servers
                                    +----+

   |---------public v6---------------|NAT|------private v4----------|

   This scenario can again be perfectly served by the NAT64 approach.
   In this case the NAT64 functionality is placed in the GW device
   connecting the IPv6 Internet to the server's site.  In this case, the
   DNS64 functionality is not required in general since real (i.e. non
   synthetic) AAAA RRs for the IPv4 servers containing the IPv6
   representation of the IPv4 address of the servers can be created.
   See more discussion about this in [I-D.ietf-behave-dns64]

   Again, this scenario is satisfied by the NAT64 since it supports the
   required functionality without requiring changes in the IPv4 servers
   nor in the IPv6 clients.

9.  Security Considerations

   Implications on end-to-end security.

   Any protocol that protect IP header information are essentially
   incompatible with NAT64.  So, this implies that end to end IPSec
   verification will fail when AH is used (both transport and tunnel
   mode) and when ESP is used in transport mode.  This is inherent to
   any network layer translation mechanism.  End-to-end IPsec protection
   can be restored, using UDP encapsulation as described in [RFC3948].

   Filtering.

   NAT64 creates binding state using packets flowing from the IPv6 side
   to the IPv4 side.  In accordance with the procedures defined in this
   document following the guidelines defined in RFC 4787 [RFC4787] a
   NAT64 must offer "enpoint independent filtering".  This means:

      for any IPv6 side packet with source (S'1,s1) and destination
      (Pref64::D1,d1) that creates an external mapping to (S1,s1),
      (D1,d1),

      for any subsequent external connection to from S'1 to (D2,d2)
      within a given binding timer window,

      (S1,s1) = (S2,s2) for all values of D2,d2

   Implementations may also provide support for "Address-Dependent
   Mapping" and "Address and Port-Dependent Mapping", as also defined in

https://datatracker.ietf.org/doc/html/rfc3948
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4787
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   this document and following the guidelines defined in RFC 4787
   [RFC4787].

   The security properties however are determined by which packets the
   NAT64 filter allows in and which it does not.  The security
   properties are determined by the filtering behavior and filtering
   configuration in the filtering portions of the NAT64, not by the
   address mapping behavior.  For example,

      Without filtering - When "endpoint independent filtering" is used
      in NAT64, once a binding is created in the IPv6 ---> IPv4
      direction, packets from any node on the IPv4 side destined to the
      IPv6 transport address will traverse the NAT64 gateway and be
      forwarded to the IPv6 transport address that created the binding.
      However,

      With filtering - When "endpoint independent filtering" is used in
      NAT64, once a binding is created in the IPv6 ---> IPv4 direction,
      packets from any node on the IPv4 side destined to the IPv6
      transport address will first be processed against the filtering
      rules.  If the source IPv4 address is permitted, the packets will
      be forwarded to the IPv6 transport address.  If the source IPv4
      address is explicitly denied -- or the default policy is to deny
      all addresses not explicitly permitted -- then the packet will
      discarded.  A dynamic filter may be employed where by the filter
      will only allow packets from the IPv4 address to which the
      original packet that created the binding was sent.  This means
      that only the D IPv4 addresses to which the IPv6 host has
      initiated connections will be able to reach the IPv6 transport
      address, and no others.  This essentially narrows the effective
      operation of the NAT64 device to a "Address Dependent" behavior,
      though not by its mapping behavior, but instead by its filtering
      behavior.

   Attacks to NAT64.

   The NAT64 device itself is a potential victim of different type of
   attacks.  In particular, the NAT64 can be a victim of DoS attacks.
   The NAT64 box has a limited number of resources that can be consumed
   by attackers creating a DoS attack.  The NAT64 has a limited number
   of IPv4 addresses that it uses to create the bindings.  Even though
   the NAT64 performs address and port translation, it is possible for
   an attacker to consume all the IPv4 transport addresses by sending
   IPv6 packets with different source IPv6 transport addresses.  It
   should be noted that this attack can only be launched from the IPv6
   side, since IPv4 packets are not used to create binding state.  DoS
   attacks can also affect other limited resources available in the
   NAT64 such as memory or link capacity.  For instance, it is possible

https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4787
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   for an attacker to launch a DoS attack to the memory of the NAT64
   device by sending fragments that the NAT64 will store for a given
   period.  If the number of fragments is high enough, the memory of the
   NAT64 could be exhausted.  NAT64 devices should implement proper
   protection against such attacks, for instance allocating a limited
   amount of memory for fragmented packet storage.

10.  IANA Considerations

11.  Changes from Previous Draft Versions

   Note to RFC Editor: Please remove this section prior to publication
   of this document as an RFC.

   [[This section lists the changes between the various versions of this
   draft.]]
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