
BFCPbis Working Group G. Camarillo
Internet-Draft Ericsson
Obsoletes: 4582 (if approved) K. Drage
Intended status: Standards Track Alcatel-Lucent
Expires: January 15, 2013 T. Kristensen, Ed.
 Cisco
 J. Ott
 Aalto University
 C. Eckel
 Cisco
 July 14, 2012

The Binary Floor Control Protocol (BFCP)
draft-ietf-bfcpbis-rfc4582bis-04

Abstract

 Floor control is a means to manage joint or exclusive access to
 shared resources in a (multiparty) conferencing environment.
 Thereby, floor control complements other functions -- such as
 conference and media session setup, conference policy manipulation,
 and media control -- that are realized by other protocols.

 This document specifies the Binary Floor Control Protocol (BFCP).
 BFCP is used between floor participants and floor control servers,
 and between floor chairs (i.e., moderators) and floor control
 servers.

 This document obsoletes RFC 4582. Changes from RFC 4582 are
 summarized in section 16.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 15, 2013.

Camarillo, et al. Expires January 15, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4582
https://datatracker.ietf.org/doc/html/rfc4582
https://datatracker.ietf.org/doc/html/rfc4582
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft BFCP July 2012

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Camarillo, et al. Expires January 15, 2013 [Page 2]

Internet-Draft BFCP July 2012

Table of Contents

1. Introduction . 6
2. Terminology . 6
3. Scope . 7
3.1. Floor Creation . 9

 3.2. Obtaining Information to Contact a Floor Control Server . 9
3.3. Obtaining Floor-Resource Associations 9
3.4. Privileges of Floor Control 10

4. Overview of Operation . 10
4.1. Floor Participant to Floor Control Server Interface . . . 10
4.2. Floor Chair to Floor Control Server Interface 15

5. Packet Format . 16
5.1. COMMON-HEADER Format 16
5.2. Attribute Format . 19
5.2.1. BENEFICIARY-ID . 21
5.2.2. FLOOR-ID . 21
5.2.3. FLOOR-REQUEST-ID 21
5.2.4. PRIORITY . 22
5.2.5. REQUEST-STATUS . 23
5.2.6. ERROR-CODE . 23
5.2.6.1. Error-Specific Details for Error Code 4 25

5.2.7. ERROR-INFO . 25
5.2.8. PARTICIPANT-PROVIDED-INFO 26
5.2.9. STATUS-INFO . 27
5.2.10. SUPPORTED-ATTRIBUTES 27
5.2.11. SUPPORTED-PRIMITIVES 28
5.2.12. USER-DISPLAY-NAME 29
5.2.13. USER-URI . 29
5.2.14. BENEFICIARY-INFORMATION 30
5.2.15. FLOOR-REQUEST-INFORMATION 31
5.2.16. REQUESTED-BY-INFORMATION 32
5.2.17. FLOOR-REQUEST-STATUS 32
5.2.18. OVERALL-REQUEST-STATUS 33

5.3. Message Format . 34
5.3.1. FloorRequest . 34
5.3.2. FloorRelease . 34
5.3.3. FloorRequestQuery 34
5.3.4. FloorRequestStatus 35
5.3.5. UserQuery . 35
5.3.6. UserStatus . 35
5.3.7. FloorQuery . 36
5.3.8. FloorStatus . 36
5.3.9. ChairAction . 36
5.3.10. ChairActionAck . 36
5.3.11. Hello . 37
5.3.12. HelloAck . 37
5.3.13. Error . 37

Camarillo, et al. Expires January 15, 2013 [Page 3]

Internet-Draft BFCP July 2012

5.3.14. FloorRequestStatusAck 38
5.3.15. FloorStatusAck . 38
5.3.16. Goodbye . 38
5.3.17. GoodbyeAck . 38

6. Transport . 39
6.1. Reliable Transport . 39
6.2. Unreliable Transport 40
6.2.1. Congestion Control 41
6.2.2. ICMP Error Handling 42

6.3. Large Message Considerations 42
6.3.1. Fragmentation Handling 42
6.3.2. NAT Traversal . 43

7. Lower-Layer Security . 43
8. Protocol Transactions . 44
8.1. Client Behavior . 44
8.2. Server Behavior . 44
8.3. Timers . 45
8.3.1. Request Retransmission Timer, T1 45
8.3.2. Response Retransmission Timer, T2 45
8.3.3. Timer Values . 46

9. Authentication and Authorization 46
9.1. TLS/DTLS Based Mutual Authentication 46

10. Floor Participant Operations 47
10.1. Requesting a Floor . 47
10.1.1. Sending a FloorRequest Message 47
10.1.2. Receiving a Response 48

 10.1.3. Reception of a Subsequent FloorRequestStatus
 Message . 50

10.2. Cancelling a Floor Request and Releasing a Floor 50
10.2.1. Sending a FloorRelease Message 50
10.2.2. Receiving a Response 50

11. Chair Operations . 51
11.1. Sending a ChairAction Message 51
11.2. Receiving a Response 52

12. General Client Operations 53
12.1. Requesting Information about Floors 53
12.1.1. Sending a FloorQuery Message 53
12.1.2. Receiving a Response 54
12.1.3. Reception of a Subsequent FloorStatus Message 54

12.2. Requesting Information about Floor Requests 54
12.2.1. Sending a FloorRequestQuery Message 55
12.2.2. Receiving a Response 55

12.3. Requesting Information about a User 55
12.3.1. Sending a UserQuery Message 56
12.3.2. Receiving a Response 56

12.4. Obtaining the Capabilities of a Floor Control Server . . . 57
12.4.1. Sending a Hello Message 57
12.4.2. Receiving Responses 57

Camarillo, et al. Expires January 15, 2013 [Page 4]

Internet-Draft BFCP July 2012

13. Floor Control Server Operations 57
13.1. Reception of a FloorRequest Message 58
13.1.1. Generating the First FloorRequestStatus Message . . . 58

 13.1.2. Generation of Subsequent FloorRequestStatus
 Messages . 60

13.2. Reception of a FloorRequestQuery Message 61
13.3. Reception of a UserQuery Message 62
13.4. Reception of a FloorRelease Message 64
13.5. Reception of a FloorQuery Message 65
13.5.1. Generation of the First FloorStatus Message 65
13.5.2. Generation of Subsequent FloorStatus Messages 67

13.6. Reception of a ChairAction Message 67
13.7. Reception of a Hello Message 68
13.8. Error Message Generation 69

14. Security Considerations 69
15. IANA Considerations . 70
15.1. Attribute Subregistry 70
15.2. Primitive Subregistry 71
15.3. Request Status Subregistry 72
15.4. Error Code Subregistry 73

16. Changes from RFC 4582 . 74
17. Acknowledgements . 76
18. References . 76
18.1. Normative References 76
18.2. Informational References 77

Appendix A. Example Call Flows for BFCP over Unreliable
 Transport . 78

Appendix B. Motivation for Supporting Unreliable Transport . . . 82
B.1. Motivation . 82
B.1.1. Alternatives Considered 83
B.1.1.1. ICE TCP . 84
B.1.1.2. Teredo . 84
B.1.1.3. GUT . 84
B.1.1.4. UPnP IGD . 85
B.1.1.5. NAT PMP . 85
B.1.1.6. SCTP . 85
B.1.1.7. BFCP over UDP transport 86

 Authors' Addresses . 86

https://datatracker.ietf.org/doc/html/rfc4582

Camarillo, et al. Expires January 15, 2013 [Page 5]

Internet-Draft BFCP July 2012

1. Introduction

 Within a conference, some applications need to manage the access to a
 set of shared resources, such as the right to send media to a
 particular media session. Floor control enables such applications to
 provide users with coordinated (shared or exclusive) access to these
 resources.

 The Requirements for Floor Control Protocol [13] list a set of
 requirements that need to be met by floor control protocols. The
 Binary Floor Control Protocol (BFCP), which is specified in this
 document, meets these requirements.

 In addition, BFCP has been designed so that it can be used in low-
 bandwidth environments. The binary encoding used by BFCP achieves a
 small message size (when message signatures are not used) that keeps
 the time it takes to transmit delay-sensitive BFCP messages to a
 minimum. Delay-sensitive BFCP messages include FloorRequest,
 FloorRelease, FloorRequestStatus, and ChairAction. It is expected
 that future extensions to these messages will not increase the size
 of these messages in a significant way.

 The remainder of this document is organized as follows: Section 2
 defines the terminology used throughout this document, Section 3
 discusses the scope of BFCP (i.e., which tasks fall within the scope
 of BFCP and which ones are performed using different mechanisms),

Section 4 provides a non-normative overview of BFCP operation, and
 subsequent sections provide the normative specification of BFCP.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14, RFC 2119 [1] and indicate requirement levels for compliant
 implementations.

 Media Participant: An entity that has access to the media resources
 of a conference (e.g., it can receive a media stream). In floor-
 controlled conferences, a given media participant is typically
 colocated with a floor participant, but it does not need to be.
 Third-party floor requests consist of having a floor participant
 request a floor for a media participant when they are not colocated.
 The protocol between a floor participant and a media participant
 (that are not colocated) is outside the scope of this document.

 Client: A floor participant or a floor chair that communicates with a

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Camarillo, et al. Expires January 15, 2013 [Page 6]

Internet-Draft BFCP July 2012

 floor control server using BFCP.

 Floor: A temporary permission to access or manipulate a specific
 shared resource or set of resources.

 Floor Chair: A logical entity that manages one floor (grants, denies,
 or revokes a floor). An entity that assumes the logical role of a
 floor chair for a given transaction may assume a different role
 (e.g., floor participant) for a different transaction. The roles of
 floor chair and floor participant are defined on a transaction-by-
 transaction basis. BFCP transactions are defined in Section 8.

 Floor Control: A mechanism that enables applications or users to gain
 safe and mutually exclusive or non-exclusive input access to the
 shared object or resource.

 Floor Control Server: A logical entity that maintains the state of
 the floor(s), including which floors exists, who the floor chairs
 are, who holds a floor, etc. Requests to manipulate a floor are
 directed at the floor control server. The floor control server of a
 conference may perform other logical roles (e.g., floor participant)
 in another conference.

 Floor Participant: A logical entity that requests floors, and
 possibly information about them, from a floor control server. An
 entity that assumes the logical role of a floor participant for a
 given transaction may assume a different role (e.g., a floor chair)
 for a different transaction. The roles of floor participant and
 floor chair are defined on a transaction-by-transaction basis. BFCP
 transactions are defined in Section 8. In floor-controlled
 conferences, a given floor participant is typically colocated with a
 media participant, but it does not need to be. Third-party floor
 requests consist of having a floor participant request a floor for a
 media participant when they are not colocated.

 Participant: An entity that acts as a floor participant, as a media
 participant, or as both.

3. Scope

 As stated earlier, BFCP is a protocol to coordinate access to shared
 resources in a conference following the requirements defined in [13].
 Floor control complements other functions defined in the XCON
 conferencing framework [14]. The floor control protocol BFCP defined
 in this document only specifies a means to arbitrate access to
 floors. The rules and constraints for floor arbitration and the
 results of floor assignments are outside the scope of this document

Camarillo, et al. Expires January 15, 2013 [Page 7]

Internet-Draft BFCP July 2012

 and are defined by other protocols [14].

 Figure 1 shows the tasks that BFCP can perform.

 +---------+
 | Floor |
 | Chair |
 | |
 +---------+
 ^ |
 | |
 Notification | | Decision
 | |
 | |
 Floor | v
 +-------------+ Request +---------+ +-------------+
Floor	----------->	Floor	Notification	Floor
Participant		Control	------------->	Participant
	<-----------	Server		
 +-------------+ Granted or +---------+ +-------------+
 Denied

 Figure 1: Functionality provided by BFCP

 BFCP provides a means:

 o for floor participants to send floor requests to floor control
 servers.

 o for floor control servers to grant or deny requests to access a
 given resource from floor participants.

 o for floor chairs to send floor control servers decisions regarding
 floor requests.

 o for floor control servers to keep floor participants and floor
 chairs informed about the status of a given floor or a given floor
 request.

 Even though tasks that do not belong to the previous list are outside
 the scope of BFCP, some of these out-of-scope tasks relate to floor
 control and are essential for creating floors and establishing BFCP
 connections between different entities. In the following
 subsections, we discuss some of these tasks and mechanisms to perform
 them.

Camarillo, et al. Expires January 15, 2013 [Page 8]

Internet-Draft BFCP July 2012

3.1. Floor Creation

 The association of a given floor with a resource or a set of
 resources (e.g., media streams) is out of the scope of BFCP as
 described in [14]. Floor creation and termination are also outside
 the scope of BFCP; these aspects are handled using the conference
 control protocol for manipulating the conference object.
 Consequently, the floor control server needs to stay up to date on
 changes to the conference object (e.g., when a new floor is created).

3.2. Obtaining Information to Contact a Floor Control Server

 A client needs a set of data in order to establish a BFCP connection
 to a floor control server. These data include the transport address
 of the server, the conference identifier, and a user identifier.

 Clients can obtain this information in different ways. One is to use
 an SDP offer/answer [12] exchange, which is described in [7]. Other
 mechanisms are described in the XCON framework [14] (and other
 related documents).

3.3. Obtaining Floor-Resource Associations

 Floors are associated with resources. For example, a floor that
 controls who talks at a given time has a particular audio session as
 its associated resource. Associations between floors and resources
 are part of the conference object.

 Floor participants and floor chairs need to know which resources are
 associated with which floors. They can obtain this information by
 using different mechanisms, such as an SDP offer/answer [12]
 exchange. How to use an SDP offer/answer exchange to obtain these
 associations is described in [7].

 Note that floor participants perform SDP offer/answer exchanges
 with the conference focus of the conference. So, the conference
 focus needs to obtain information about associations between
 floors and resources in order to be able to provide this
 information to a floor participant in an SDP offer/answer
 exchange.

 Other mechanisms for obtaining this information, including discussion
 of how the information is made available to a (SIP) Focus, are
 described in the XCON framework [14] (and other related documents).

Camarillo, et al. Expires January 15, 2013 [Page 9]

Internet-Draft BFCP July 2012

3.4. Privileges of Floor Control

 A participant whose floor request is granted has the right to use (in
 a certain way) the resource or resources associated with the floor
 that was requested. For example, the participant may have the right
 to send media over a particular audio stream.

 Nevertheless, holding a floor does not imply that others will not be
 able to use its associated resources at the same time, even if they
 do not have the right to do so. Determination of which media
 participants can actually use the resources in the conference is
 discussed in the XCON Framework [14].

4. Overview of Operation

 This section provides a non-normative description of BFCP operations.
Section 4.1 describes the interface between floor participants and

 floor control servers, and Section 4.2 describes the interface
 between floor chairs and floor control servers.

 BFCP messages, which use a TLV (Type-Length-Value) binary encoding,
 consist of a common header followed by a set of attributes. The
 common header contains, among other information, a 32-bit conference
 identifier. Floor participants, media participants, and floor chairs
 are identified by 16-bit user identifiers.

 BFCP supports nested attributes (i.e., attributes that contain
 attributes). These are referred to as grouped attributes.

 There are two types of transaction in BFCP: client-initiated
 transactions and server-initiated transactions. Client-initiated
 transactions consist of a message from a client to the floor control
 server and a response from the floor control server to the client.
 Correspondingly, server-initiated transactions consist of a message
 from the floor control server to a client and the associated
 acknowledgement message from the client to the floor control server.
 Both messages can be related because they carry the same Transaction
 ID value in their common headers.

4.1. Floor Participant to Floor Control Server Interface

 Floor participants request a floor by sending a FloorRequest message
 to the floor control server. BFCP supports third-party floor
 requests. That is, the floor participant sending the floor request
 need not be colocated with the media participant that will get the
 floor once the floor request is granted. FloorRequest messages carry
 the identity of the requester in the User ID field of the common

Camarillo, et al. Expires January 15, 2013 [Page 10]

Internet-Draft BFCP July 2012

 header, and the identity of the beneficiary of the floor (in third-
 party floor requests) in a BENEFICIARY-ID attribute.

 Third-party floor requests can be sent, for example, by floor
 participants that have a BFCP connection to the floor control
 server but that are not media participants (i.e., they do not
 handle any media).

 FloorRequest messages identify the floor or floors being requested by
 carrying their 16-bit floor identifiers in FLOOR-ID attributes. If a
 FloorRequest message carries more than one floor identifier, the
 floor control server treats all the floor requests as an atomic
 package. That is, the floor control server either grants or denies
 all the floors in the FloorRequest message.

 Floor control servers respond to FloorRequest messages with
 FloorRequestStatus messages, which provide information about the
 status of the floor request. The first FloorRequestStatus message is
 the response to the FloorRequest message from the client, and
 therefore has the same Transaction ID as the FloorRequest.

 Additionally, the first FloorRequestStatus message carries the Floor
 Request ID in a FLOOR-REQUEST-INFORMATION attribute. Subsequent
 FloorRequestStatus messages related to the same floor request will
 carry the same Floor Request ID. This way, the floor participant can
 associate them with the appropriate floor request.

 Messages from the floor participant related to a particular floor
 request also use the same Floor Request ID as the first
 FloorRequestStatus Message from the floor control server.

 Figures 2 and 3 below show call flows for two sample BFCP
 interactions when used over reliable transport. Appendix A shows the
 same sample interactions but over an unreliable transport.

 Figure 2 shows how a floor participant requests a floor, obtains it,
 and, at a later time, releases it. This figure illustrates the use,
 among other things, of the Transaction ID and the FLOOR-REQUEST-ID
 attribute.

 Floor Participant Floor Control
 Server
 |(1) FloorRequest |
 |Transaction ID: 123 |
 |User ID: 234 |
 |FLOOR-ID: 543 |

Camarillo, et al. Expires January 15, 2013 [Page 11]

Internet-Draft BFCP July 2012

 |-->|
 | |
 |(2) FloorRequestStatus |
 |Transaction ID: 123 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Pending |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|
 | |
 |(3) FloorRequestStatus |
 |Transaction ID: 0 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 1st |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|
 | |
 |(4) FloorRequestStatus |
 |Transaction ID: 0 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Granted |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|
 | |
 |(5) FloorRelease |
 |Transaction ID: 154 |
 |User ID: 234 |
 |FLOOR-REQUEST-ID: 789 |
 |-->|
 | |
 |(6) FloorRequestStatus |
 |Transaction ID: 154 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |

Camarillo, et al. Expires January 15, 2013 [Page 12]

Internet-Draft BFCP July 2012

 | Request Status: Released |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|

 Figure 2: Requesting and releasing a floor

 Figure 3 shows how a floor participant requests to be informed on the
 status of a floor. The first FloorStatus message from the floor
 control server is the response to the FloorQuery message and, as
 such, has the same Transaction ID as the FloorQuery message.

 Subsequent FloorStatus messages consist of server-initiated
 transactions, and therefore their Transaction ID is 0. FloorStatus
 message (2) indicates that there are currently two floor requests for
 the floor whose Floor ID is 543. FloorStatus message (3) indicates
 that the floor requests with Floor Request ID 764 has been granted,
 and the floor request with Floor Request ID 635 is the first in the
 queue. FloorStatus message (4) indicates that the floor request with
 Floor Request ID 635 has been granted.

 Floor Participant Floor Control
 Server
 |(1) FloorQuery |
 |Transaction ID: 257 |
 |User ID: 234 |
 |FLOOR-ID: 543 |
 |-->|
 | |
 |(2) FloorStatus |
 |Transaction ID: 257 |
 |User ID: 234 |
 |FLOOR-ID:543 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 764 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 1st |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 124 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 635 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |

Camarillo, et al. Expires January 15, 2013 [Page 13]

Internet-Draft BFCP July 2012

 | Queue Position: 2nd |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 154 |
 |<--|
 | |
 |(3) FloorStatus |
 |Transaction ID: 0 |
 |User ID: 234 |
 |FLOOR-ID:543 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 764 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Granted |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 124 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 635 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 1st |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 154 |
 |<--|
 | |
 |(4) FloorStatus |
 |Transaction ID: 0 |
 |User ID: 234 |
 |FLOOR-ID:543 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 635 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Granted |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 154 |
 |<--|

 Figure 3: Obtaining status information about a floor

 FloorStatus messages contain information about the floor requests
 they carry. For example, FloorStatus message (4) indicates that the

Camarillo, et al. Expires January 15, 2013 [Page 14]

Internet-Draft BFCP July 2012

 floor request with Floor Request ID 635 has as the beneficiary (i.e.,
 the participant that holds the floor when a particular floor request
 is granted) the participant whose User ID is 154. The floor request
 applies only to the floor whose Floor ID is 543. That is, this is
 not a multi-floor floor request.

 A multi-floor floor request applies to more than one floor (e.g.,
 a participant wants to be able to speak and write on the
 whiteboard at the same time). The floor control server treats a
 multi-floor floor request as an atomic package. That is, the
 floor control server either grants the request for all floors or
 denies the request for all floors.

4.2. Floor Chair to Floor Control Server Interface

 Figure 4 shows a floor chair instructing a floor control server to
 grant a floor.

 Note, however, that although the floor control server needs to
 take into consideration the instructions received in ChairAction
 messages (e.g., granting a floor), it does not necessarily need to
 perform them exactly as requested by the floor chair. The
 operation that the floor control server performs depends on the
 ChairAction message and on the internal state of the floor control
 server.

 For example, a floor chair may send a ChairAction message granting a
 floor that was requested as part of an atomic floor request operation
 that involved several floors. Even if the chair responsible for one
 of the floors instructs the floor control server to grant the floor,
 the floor control server will not grant it until the chairs
 responsible for the other floors agree to grant them as well. In
 another example, a floor chair may instruct the floor control server
 to grant a floor to a participant. The floor control server needs to
 revoke the floor from its current holder before granting it to the
 new participant.

 So, the floor control server is ultimately responsible for keeping a
 coherent floor state using instructions from floor chairs as input to
 this state.

Camarillo, et al. Expires January 15, 2013 [Page 15]

Internet-Draft BFCP July 2012

 Floor Chair Floor Control
 Server
 |(1) ChairAction |
 |Transaction ID: 769 |
 |User ID: 357 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 635 |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | Request Status: Granted |
 |-->|
 | |
 |(2) ChairActionAck |
 |Transaction ID: 769 |
 |User ID: 357 |
 |<--|

 Figure 4: Chair instructing the floor control server

5. Packet Format

 BFCP packets consist of a 12-octet common header followed by
 attributes. All the protocol values MUST be sent in network byte
 order.

5.1. COMMON-HEADER Format

 The following is the format of the common header.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Ver |R|F| Res | Primitive | Payload Length |
 +-+
 | Conference ID |
 +-+
 | Transaction ID | User ID |
 +-+
 | Fragment Offset (if F is set) | Fragment Length (if F is set) |
 +-+

 Figure 5: COMMON-HEADER format

 Ver: The 3-bit version field MUST be set to 1 when using BFCP over
 reliable transport, i.e. as in [17]. The 3-bit version field MUST be
 set to 2 when using BFCP over unreliable transport, with the

Camarillo, et al. Expires January 15, 2013 [Page 16]

Internet-Draft BFCP July 2012

 extensions specified in this document. If a Floor Control Server
 receives a message with an unsupported version field value, the
 receiving server MAY send an Error message with parameter value 12
 (Unsupported Version) to indicate this.

 R: The Transaction Responder (R) flag-bit has relevance only for use
 of BFCP over unreliable transport. When cleared, it indicates that
 this message is a request initiating a new transaction, and the
 Transaction ID that follows has been generated for this transaction.
 When set, it indicates that this message is a response to a previous
 request, and the Transaction ID that follows is the one associated
 with that request. When BFCP is used over reliable transports, the
 flag has no significance and SHOULD be cleared.

 F: The Fragmentation (F) flag-bit has relevance only for use of BFCP
 over unreliable transport. When cleared, the message is not
 fragmented. When set, it indicates that the message is a fragment of
 a large fragmented BFCP message. (The optional fields Fragment
 Offset and Fragment Length described below are present only if the F
 flag is set). When BFCP is used over reliable transports, the flag
 has no significance and SHOULD be cleared.

 Res: At this point, the 3 bits in the reserved field SHOULD be set to
 zero by the sender of the message and MUST be ignored by the
 receiver.

 Primitive: This 8-bit field identifies the main purpose of the
 message. The following primitive values are defined:

Camarillo, et al. Expires January 15, 2013 [Page 17]

Internet-Draft BFCP July 2012

 +-------+-----------------------+--------------------+
 | Value | Primitive | Direction |
 +-------+-----------------------+--------------------+
 | 1 | FloorRequest | P -> S |
 | 2 | FloorRelease | P -> S |
 | 3 | FloorRequestQuery | P -> S ; Ch -> S |
 | 4 | FloorRequestStatus | P <- S ; Ch <- S |
 | 5 | UserQuery | P -> S ; Ch -> S |
 | 6 | UserStatus | P <- S ; Ch <- S |
 | 7 | FloorQuery | P -> S ; Ch -> S |
 | 8 | FloorStatus | P <- S ; Ch <- S |
 | 9 | ChairAction | Ch -> S |
 | 10 | ChairActionAck | Ch <- S |
 | 11 | Hello | P -> S ; Ch -> S |
 | 12 | HelloAck | P <- S ; Ch <- S |
 | 13 | Error | P <- S ; Ch <- S |
 | 14 | FloorRequestStatusAck | P -> S ; Ch -> S |
 | 15 | FloorStatusAck | P -> S ; Ch -> S |
 | 16 | Goodbye | P -> S ; Ch -> S ; |
 | | | P <- S ; Ch <- S |
 | 17 | GoodbyeAck | P -> S ; Ch -> S ; |
 | | | P <- S ; Ch <- S |
 +-------+-----------------------+--------------------+

 S: Floor Control Server / P: Floor Participant / Ch: Floor Chair

 Table 1: BFCP primitives

 Payload Length: This 16-bit field contains the length of the message
 in 4-octet units, excluding the common header. If a Floor Control
 Server receives a message with an incorrect payload length field
 value, the receiving server MAY send an Error message with parameter
 value 13 (Incorrect Message Length) to indicate this.

 Conference ID: This 32-bit unsigned integer field identifies the
 conference the message belongs to.

 Transaction ID: This field contains a 16-bit value that allows users
 to match a given message with its response (see Section 8).

 User ID: This field contains a 16-bit unsigned integer that uniquely
 identifies a participant within a conference.

 The identity used by a participant in BFCP, which is carried in
 the User ID field, is generally mapped to the identity used by the
 same participant in the session establishment protocol (e.g., in
 SIP). The way this mapping is performed is outside the scope of
 this specification.

Camarillo, et al. Expires January 15, 2013 [Page 18]

Internet-Draft BFCP July 2012

 Fragment Offset: This optional field is present only if the F flag is
 set and contains a 16-bit value that specifies the number of 4-octet
 units contained in previous fragments, excluding the common header.

 Fragment Length: This optional field is present only if the F flag is
 set and contains a 16-bit value that specifies the number of 4-octet
 units contained in this fragment, excluding the common header.

5.2. Attribute Format

 BFCP attributes are encoded in TLV (Type-Length-Value) format.
 Attributes are 32-bit aligned.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type |M| Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 / Attribute Contents /
 / /
 | |
 +-+

 Figure 6: Attribute format

 Type: This 7-bit field contains the type of the attribute. Each
 attribute, identified by its type, has a particular format. The
 attribute formats defined are:

 Unsigned16: The contents of the attribute consist of a 16-bit
 unsigned integer.

 OctetString16: The contents of the attribute consist of 16 bits of
 arbitrary data.

 OctetString: The contents of the attribute consist of arbitrary
 data of variable length.

 Grouped: The contents of the attribute consist of a sequence of
 attributes.

 Note that extension attributes defined in the future may define
 new attribute formats.

 The following attribute types are defined:

Camarillo, et al. Expires January 15, 2013 [Page 19]

Internet-Draft BFCP July 2012

 +------+---------------------------+---------------+
 | Type | Attribute | Format |
 +------+---------------------------+---------------+
 | 1 | BENEFICIARY-ID | Unsigned16 |
 | 2 | FLOOR-ID | Unsigned16 |
 | 3 | FLOOR-REQUEST-ID | Unsigned16 |
 | 4 | PRIORITY | OctetString16 |
 | 5 | REQUEST-STATUS | OctetString16 |
 | 6 | ERROR-CODE | OctetString |
 | 7 | ERROR-INFO | OctetString |
 | 8 | PARTICIPANT-PROVIDED-INFO | OctetString |
 | 9 | STATUS-INFO | OctetString |
 | 10 | SUPPORTED-ATTRIBUTES | OctetString |
 | 11 | SUPPORTED-PRIMITIVES | OctetString |
 | 12 | USER-DISPLAY-NAME | OctetString |
 | 13 | USER-URI | OctetString |
 | 14 | BENEFICIARY-INFORMATION | Grouped |
 | 15 | FLOOR-REQUEST-INFORMATION | Grouped |
 | 16 | REQUESTED-BY-INFORMATION | Grouped |
 | 17 | FLOOR-REQUEST-STATUS | Grouped |
 | 18 | OVERALL-REQUEST-STATUS | Grouped |
 +------+---------------------------+---------------+

 Table 2: BFCP attributes

 M: The 'M' bit, known as the Mandatory bit, indicates whether support
 of the attribute is required. If a Floor Control Server receives an
 unrecognized attribute with the 'M' bit set the server MAY send an
 Error message with parameter value 4 (Unknown Mandatory Attribute) to
 indicate this. The 'M' bit is significant for extension attributes
 defined in other documents only. All attributes specified in this
 document MUST be understood by the receiver so that the setting of
 the 'M' bit is irrelevant for these. In all other cases, the
 unrecognized attribute is ignored but the message is processed.

 Length: This 8-bit field contains the length of the attribute in
 octets, excluding any padding defined for specific attributes. The
 length of attributes that are not grouped includes the Type, 'M' bit,
 and Length fields. The Length in grouped attributes is the length of
 the grouped attribute itself (including Type, 'M' bit, and Length
 fields) plus the total length (including padding) of all the included
 attributes.

 Attribute Contents: The contents of the different attributes are
 defined in the following sections.

Camarillo, et al. Expires January 15, 2013 [Page 20]

Internet-Draft BFCP July 2012

5.2.1. BENEFICIARY-ID

 The following is the format of the BENEFICIARY-ID attribute.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 1|M|0 0 0 0 0 1 0 0| Beneficiary ID |
 +-+

 Figure 7: BENEFICIARY-ID format

 Beneficiary ID: This field contains a 16-bit value that uniquely
 identifies a user within a conference.

 Note that although the formats of the Beneficiary ID and of the
 User ID field in the common header are similar, their semantics
 are different. The Beneficiary ID is used in third-party floor
 requests and to request information about a particular
 participant.

5.2.2. FLOOR-ID

 The following is the format of the FLOOR-ID attribute.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 1 0|M|0 0 0 0 0 1 0 0| Floor ID |
 +-+

 Figure 8: FLOOR-ID format

 Floor ID: This field contains a 16-bit value that uniquely identifies
 a floor within a conference.

5.2.3. FLOOR-REQUEST-ID

 The following is the format of the FLOOR-REQUEST-ID attribute.

Camarillo, et al. Expires January 15, 2013 [Page 21]

Internet-Draft BFCP July 2012

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 1 1|M|0 0 0 0 0 1 0 0| Floor Request ID |
 +-+

 Figure 9: FLOOR-REQUEST-ID format

 Floor Request ID: This field contains a 16-bit value that identifies
 a floor request at the floor control server.

5.2.4. PRIORITY

 The following is the format of the PRIORITY attribute.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 0 0|M|0 0 0 0 0 1 0 0|Prio | Reserved |
 +-+

 Figure 10: PRIORITY format

 Prio: This field contains a 3-bit priority value, as shown in
 Table 3. Senders SHOULD NOT use values higher than 4 in this field.
 Receivers MUST treat values higher than 4 as if the value received
 were 4 (Highest). The default priority value when the PRIORITY
 attribute is missing is 2 (Normal).

 +-------+----------+
 | Value | Priority |
 +-------+----------+
 | 0 | Lowest |
 | 1 | Low |
 | 2 | Normal |
 | 3 | High |
 | 4 | Highest |
 +-------+----------+

 Table 3: Priority values

 Reserved: At this point, the 13 bits in the reserved field SHOULD be
 set to zero by the sender of the message and MUST be ignored by the
 receiver.

Camarillo, et al. Expires January 15, 2013 [Page 22]

Internet-Draft BFCP July 2012

5.2.5. REQUEST-STATUS

 The following is the format of the REQUEST-STATUS attribute.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 0 1|M|0 0 0 0 0 1 0 0|Request Status |Queue Position |
 +-+

 Figure 11: REQUEST-STATUS format

 Request Status: This 8-bit field contains the status of the request,
 as described in the following table.

 +-------+-----------+
 | Value | Status |
 +-------+-----------+
 | 1 | Pending |
 | 2 | Accepted |
 | 3 | Granted |
 | 4 | Denied |
 | 5 | Cancelled |
 | 6 | Released |
 | 7 | Revoked |
 +-------+-----------+

 Table 4: Request Status values

 Queue Position: This 8-bit field contains, when applicable, the
 position of the floor request in the floor request queue at the
 server. If the Request Status value is different from Accepted, if
 the floor control server does not implement a floor request queue, or
 if the floor control server does not want to provide the client with
 this information, all the bits of this field SHOULD be set to zero.

 A floor request is in Pending state if the floor control server needs
 to contact a floor chair in order to accept the floor request, but
 has not done it yet. Once the floor control chair accepts the floor
 request, the floor request is moved to the Accepted state.

5.2.6. ERROR-CODE

 The following is the format of the ERROR-CODE attribute.

Camarillo, et al. Expires January 15, 2013 [Page 23]

Internet-Draft BFCP July 2012

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 1 0|M| Length | Error Code | |
 +-+ |
 | |
 | Error Specific Details |
 / /
 / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Figure 12: ERROR-CODE format

 Error Code: This 8-bit field contains an error code from the
 following table. If an error code is not recognized by the receiver,
 then the receiver MUST assume that an error exists, and therefore
 that the original message that triggered the Error message to be sent
 is processed, but the nature of the error is unclear.

 +-------+---+
 | Value | Meaning |
 +-------+---+
1	Conference does not Exist
2	User does not Exist
3	Unknown Primitive
4	Unknown Mandatory Attribute
5	Unauthorized Operation
6	Invalid Floor ID
7	Floor Request ID Does Not Exist
8	You have Already Reached the Maximum Number of Ongoing
	Floor Requests for this Floor
9	Use TLS
10	Unable to Parse Message
11	Use DTLS
12	Unsupported Version
13	Incorrect Message Length
14	Generic Error
 +-------+---+

 Table 5: Error Code meaning

 Note: The Generic Error error code is intended being used by a
 BFCP entity when an error occurs and the other specific error
 codes do not apply.

 Error Specific Details: Present only for certain Error Codes. In
 this document, only for Error Code 4 (Unknown Mandatory Attribute).

Camarillo, et al. Expires January 15, 2013 [Page 24]

Internet-Draft BFCP July 2012

 See Section 5.2.6.1 for its definition.

 Padding: One, two, or three octets of padding added so that the
 contents of the ERROR-CODE attribute is 32-bit aligned. If the
 attribute is already 32-bit aligned, no padding is needed.

 The Padding bits SHOULD be set to zero by the sender and MUST be
 ignored by the receiver.

5.2.6.1. Error-Specific Details for Error Code 4

 The following is the format of the Error-Specific Details field for
 Error Code 4.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Unknown Type|R| Unknown Type|R| Unknown Type|R| Unknown Type|R|
 +-+
 | |
 / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Unknown Type|R| Unknown Type|R|
 +-+
 | Unknown Type|R| Unknown Type|R|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 13: Unknown attributes format

 Unknown Type: These 7-bit fields contain the Types of the attributes
 (which were present in the message that triggered the Error message)
 that were unknown to the receiver.

 R: At this point, this bit is reserved. It SHOULD be set to zero by
 the sender of the message and MUST be ignored by the receiver.

5.2.7. ERROR-INFO

 The following is the format of the ERROR-INFO attribute.

Camarillo, et al. Expires January 15, 2013 [Page 25]

Internet-Draft BFCP July 2012

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 1 1|M| Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 / Text /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Figure 14: ERROR-INFO format

 Text: This field contains UTF-8 [6] encoded text.

 In some situations, the contents of the Text field may be generated
 by an automaton. If this automaton has information about the
 preferred language of the receiver of a particular ERROR-INFO
 attribute, it MAY use this language to generate the Text field.

 Padding: One, two, or three octets of padding added so that the
 contents of the ERROR-INFO attribute is 32-bit aligned. The Padding
 bits SHOULD be set to zero by the sender and MUST be ignored by the
 receiver. If the attribute is already 32-bit aligned, no padding is
 needed.

5.2.8. PARTICIPANT-PROVIDED-INFO

 The following is the format of the PARTICIPANT-PROVIDED-INFO
 attribute.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 0 0 0|M| Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 / Text /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Figure 15: PARTICIPANT-PROVIDED-INFO format

 Text: This field contains UTF-8 [6] encoded text.

 Padding: One, two, or three octets of padding added so that the

Camarillo, et al. Expires January 15, 2013 [Page 26]

Internet-Draft BFCP July 2012

 contents of the PARTICIPANT-PROVIDED-INFO attribute is 32-bit
 aligned. The Padding bits SHOULD be set to zero by the sender and
 MUST be ignored by the receiver. If the attribute is already 32-bit
 aligned, no padding is needed.

5.2.9. STATUS-INFO

 The following is the format of the STATUS-INFO attribute.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 0 0 1|M| Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 / Text /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Figure 16: STATUS-INFO format

 Text: This field contains UTF-8 [6] encoded text.

 In some situations, the contents of the Text field may be generated
 by an automaton. If this automaton has information about the
 preferred language of the receiver of a particular STATUS-INFO
 attribute, it MAY use this language to generate the Text field.

 Padding: One, two, or three octets of padding added so that the
 contents of the STATUS-INFO attribute is 32-bit aligned. The Padding
 bits SHOULD be set to zero by the sender and MUST be ignored by the
 receiver. If the attribute is already 32-bit aligned, no padding is
 needed.

5.2.10. SUPPORTED-ATTRIBUTES

 The following is the format of the SUPPORTED-ATTRIBUTES attribute.

Camarillo, et al. Expires January 15, 2013 [Page 27]

Internet-Draft BFCP July 2012

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 0 1 0|M| Length | Supp. Attr. |R| Supp. Attr. |R|
 +-+
 | Supp. Attr. |R| Supp. Attr. |R| Supp. Attr. |R| Supp. Attr. |R|
 +-+
 | |
 / /
 / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Figure 17: SUPPORTED-ATTRIBUTES format

 Supp. Attr.: These fields contain the Types of the attributes that
 are supported by the floor control server in the following format:

 R: Reserved: This bit MUST be set to zero upon transmission and MUST
 be ignored upon reception.

 Padding: One, two, or three octets of padding added so that the
 contents of the SUPPORTED-ATTRIBUTES attribute is 32-bit aligned. If
 the attribute is already 32-bit aligned, no padding is needed.

 The Padding bits SHOULD be set to zero by the sender and MUST be
 ignored by the receiver.

5.2.11. SUPPORTED-PRIMITIVES

 The following is the format of the SUPPORTED-PRIMITIVES attribute.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 0 1 1|M| Length | Primitive | Primitive |
 +-+
 | Primitive | Primitive | Primitive | Primitive |
 +-+
 | |
 / /
 / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Figure 18: SUPPORTED-PRIMITIVES format

Camarillo, et al. Expires January 15, 2013 [Page 28]

Internet-Draft BFCP July 2012

 Primitive: These fields contain the types of the BFCP messages that
 are supported by the floor control server. See Table 1 for the list
 of BFCP primitives.

 Padding: One, two, or three octets of padding added so that the
 contents of the SUPPORTED-PRIMITIVES attribute is 32-bit aligned. If
 the attribute is already 32-bit aligned, no padding is needed.

 The Padding bits SHOULD be set to zero by the sender and MUST be
 ignored by the receiver.

5.2.12. USER-DISPLAY-NAME

 The following is the format of the USER-DISPLAY-NAME attribute.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 1 0 0|M| Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 / Text /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Figure 19: USER-DISPLAY-NAME format

 Text: This field contains the UTF-8 encoded name of the user.

 Padding: One, two, or three octets of padding added so that the
 contents of the USER-DISPLAY-NAME attribute is 32-bit aligned. The
 Padding bits SHOULD be set to zero by the sender and MUST be ignored
 by the receiver. If the attribute is already 32-bit aligned, no
 padding is needed.

5.2.13. USER-URI

 The following is the format of the USER-URI attribute.

Camarillo, et al. Expires January 15, 2013 [Page 29]

Internet-Draft BFCP July 2012

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 1 0 1|M| Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 / Text /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Figure 20: USER-URI format

 Text: This field contains the UTF-8 encoded user's contact URI, that
 is, the URI used by the user to set up the resources (e.g., media
 streams) that are controlled by BFCP. For example, in the context of
 a conference set up by SIP, the USER-URI attribute would carry the
 SIP URI of the user.

 Messages containing a user's URI in a USER-URI attribute also
 contain the user's User ID. This way, a client receiving such a
 message can correlate the user's URI (e.g., the SIP URI the user
 used to join a conference) with the user's User ID.

 Padding: One, two, or three octets of padding added so that the
 contents of the USER-URI attribute is 32-bit aligned. The Padding
 bits SHOULD be set to zero by the sender and MUST be ignored by the
 receiver. If the attribute is already 32-bit aligned, no padding is
 needed.

5.2.14. BENEFICIARY-INFORMATION

 The BENEFICIARY-INFORMATION attribute is a grouped attribute that
 consists of a header, which is referred to as BENEFICIARY-
 INFORMATION-HEADER, followed by a sequence of attributes. The
 following is the format of the BENEFICIARY-INFORMATION-HEADER:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 1 1 0|M| Length | Beneficiary ID |
 +-+

 Figure 21: BENEFICIARY-INFORMATION-HEADER format

 Beneficiary ID: This field contains a 16-bit value that uniquely
 identifies a user within a conference.

Camarillo, et al. Expires January 15, 2013 [Page 30]

Internet-Draft BFCP July 2012

 The following is the ABNF (Augmented Backus-Naur Form) [2] of the
 BENEFICIARY-INFORMATION grouped attribute. (EXTENSION-ATTRIBUTE
 refers to extension attributes that may be defined in the future.)

 BENEFICIARY-INFORMATION = (BENEFICIARY-INFORMATION-HEADER)
 [USER-DISPLAY-NAME]
 [USER-URI]
 *(EXTENSION-ATTRIBUTE)

 Figure 22: BENEFICIARY-INFORMATION format

5.2.15. FLOOR-REQUEST-INFORMATION

 The FLOOR-REQUEST-INFORMATION attribute is a grouped attribute that
 consists of a header, which is referred to as FLOOR-REQUEST-
 INFORMATION-HEADER, followed by a sequence of attributes. The
 following is the format of the FLOOR-REQUEST-INFORMATION-HEADER:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1 1 1 1|M| Length | Floor Request ID |
 +-+

 Figure 23: FLOOR-REQUEST-INFORMATION-HEADER format

 Floor Request ID: This field contains a 16-bit value that identifies
 a floor request at the floor control server.

 The following is the ABNF of the FLOOR-REQUEST-INFORMATION grouped
 attribute. (EXTENSION-ATTRIBUTE refers to extension attributes that
 may be defined in the future.)

 FLOOR-REQUEST-INFORMATION = (FLOOR-REQUEST-INFORMATION-HEADER)
 [OVERALL-REQUEST-STATUS]
 1*(FLOOR-REQUEST-STATUS)
 [BENEFICIARY-INFORMATION]
 [REQUESTED-BY-INFORMATION]
 [PRIORITY]
 [PARTICIPANT-PROVIDED-INFO]
 *(EXTENSION-ATTRIBUTE)

 Figure 24: FLOOR-REQUEST-INFORMATION format

Camarillo, et al. Expires January 15, 2013 [Page 31]

Internet-Draft BFCP July 2012

5.2.16. REQUESTED-BY-INFORMATION

 The REQUESTED-BY-INFORMATION attribute is a grouped attribute that
 consists of a header, which is referred to as REQUESTED-BY-
 INFORMATION-HEADER, followed by a sequence of attributes. The
 following is the format of the REQUESTED-BY-INFORMATION-HEADER:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 1 0 0 0 0|M| Length | Requested-by ID |
 +-+

 Figure 25: REQUESTED-BY-INFORMATION-HEADER format

 Requested-by ID: This field contains a 16-bit value that uniquely
 identifies a user within a conference.

 The following is the ABNF of the REQUESTED-BY-INFORMATION grouped
 attribute. (EXTENSION-ATTRIBUTE refers to extension attributes that
 may be defined in the future.)

 REQUESTED-BY-INFORMATION = (REQUESTED-BY-INFORMATION-HEADER)
 [USER-DISPLAY-NAME]
 [USER-URI]
 *(EXTENSION-ATTRIBUTE)

 Figure 26: REQUESTED-BY-INFORMATION format

5.2.17. FLOOR-REQUEST-STATUS

 The FLOOR-REQUEST-STATUS attribute is a grouped attribute that
 consists of a header, which is referred to as FLOOR-REQUEST-STATUS-
 HEADER, followed by a sequence of attributes. The following is the
 format of the FLOOR-REQUEST-STATUS-HEADER:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 1 0 0 0 1|M| Length | Floor ID |
 +-+

 Figure 27: FLOOR-REQUEST-STATUS-HEADER format

 Floor ID: this field contains a 16-bit value that uniquely identifies

Camarillo, et al. Expires January 15, 2013 [Page 32]

Internet-Draft BFCP July 2012

 a floor within a conference.

 The following is the ABNF of the FLOOR-REQUEST-STATUS grouped
 attribute. (EXTENSION-ATTRIBUTE refers to extension attributes that
 may be defined in the future.)

 FLOOR-REQUEST-STATUS = (FLOOR-REQUEST-STATUS-HEADER)
 [REQUEST-STATUS]
 [STATUS-INFO]
 *(EXTENSION-ATTRIBUTE)

 Figure 28: FLOOR-REQUEST-STATUS format

5.2.18. OVERALL-REQUEST-STATUS

 The OVERALL-REQUEST-STATUS attribute is a grouped attribute that
 consists of a header, which is referred to as OVERALL-REQUEST-STATUS-
 HEADER, followed by a sequence of attributes. The following is the
 format of the OVERALL-REQUEST-STATUS-HEADER:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 1 0 0 1 0|M| Length | Floor Request ID |
 +-+

 Figure 29: OVERALL-REQUEST-STATUS-HEADER format

 Floor Request ID: this field contains a 16-bit value that identifies
 a floor request at the floor control server.

 The following is the ABNF of the OVERALL-REQUEST-STATUS grouped
 attribute. (EXTENSION-ATTRIBUTE refers to extension attributes that
 may be defined in the future.)

 OVERALL-REQUEST-STATUS = (OVERALL-REQUEST-STATUS-HEADER)
 [REQUEST-STATUS]
 [STATUS-INFO]
 *(EXTENSION-ATTRIBUTE)

 Figure 30: OVERALL-REQUEST-STATUS format

Camarillo, et al. Expires January 15, 2013 [Page 33]

Internet-Draft BFCP July 2012

5.3. Message Format

 This section contains the normative ABNF (Augmented Backus-Naur Form)
 [2] of the BFCP messages. Extension attributes that may be defined
 in the future are referred to as EXTENSION-ATTRIBUTE in the ABNF.

5.3.1. FloorRequest

 Floor participants request a floor by sending a FloorRequest message
 to the floor control server. The following is the format of the
 FloorRequest message:

 FloorRequest = (COMMON-HEADER)
 1*(FLOOR-ID)
 [BENEFICIARY-ID]
 [PARTICIPANT-PROVIDED-INFO]
 [PRIORITY]
 *(EXTENSION-ATTRIBUTE)

 Figure 31: FloorRequest format

5.3.2. FloorRelease

 Floor participants release a floor by sending a FloorRelease message
 to the floor control server. Floor participants also use the
 FloorRelease message to cancel pending floor requests. The following
 is the format of the FloorRelease message:

 FloorRelease = (COMMON-HEADER)
 (FLOOR-REQUEST-ID)
 *(EXTENSION-ATTRIBUTE)

 Figure 32: FloorRelease format

5.3.3. FloorRequestQuery

 Floor participants and floor chairs request information about a floor
 request by sending a FloorRequestQuery message to the floor control
 server. The following is the format of the FloorRequestQuery
 message:

 FloorRequestQuery = (COMMON-HEADER)
 (FLOOR-REQUEST-ID)
 *(EXTENSION-ATTRIBUTE)

Camarillo, et al. Expires January 15, 2013 [Page 34]

Internet-Draft BFCP July 2012

 Figure 33: FloorRequestQuery format

5.3.4. FloorRequestStatus

 The floor control server informs floor participants and floor chairs
 about the status of their floor requests by sending them
 FloorRequestStatus messages. The following is the format of the
 FloorRequestStatus message:

 FloorRequestStatus = (COMMON-HEADER)
 (FLOOR-REQUEST-INFORMATION)
 *(EXTENSION-ATTRIBUTE)

 Figure 34: FloorRequestStatus format

5.3.5. UserQuery

 Floor participants and floor chairs request information about a
 participant and the floor requests related to this participant by
 sending a UserQuery message to the floor control server. The
 following is the format of the UserQuery message:

 UserQuery = (COMMON-HEADER)
 [BENEFICIARY-ID]
 *(EXTENSION-ATTRIBUTE)

 Figure 35: UserQuery format

5.3.6. UserStatus

 The floor control server provides information about participants and
 their related floor requests to floor participants and floor chairs
 by sending them UserStatus messages. The following is the format of
 the UserStatus message:

 UserStatus = (COMMON-HEADER)
 [BENEFICIARY-INFORMATION]
 *(FLOOR-REQUEST-INFORMATION)
 *(EXTENSION-ATTRIBUTE)

 Figure 36: UserStatus format

Camarillo, et al. Expires January 15, 2013 [Page 35]

Internet-Draft BFCP July 2012

5.3.7. FloorQuery

 Floor participants and floor chairs request information about a floor
 or floors by sending a FloorQuery message to the floor control
 server. The following is the format of the FloorRequest message:

 FloorQuery = (COMMON-HEADER)
 *(FLOOR-ID)
 *(EXTENSION-ATTRIBUTE)

 Figure 37: FloorQuery format

5.3.8. FloorStatus

 The floor control server informs floor participants and floor chairs
 about the status (e.g., the current holder) of a floor by sending
 them FloorStatus messages. The following is the format of the
 FloorStatus message:

 FloorStatus = (COMMON-HEADER)
 [FLOOR-ID]
 *(FLOOR-REQUEST-INFORMATION)
 *(EXTENSION-ATTRIBUTE)

 Figure 38: FloorStatus format

5.3.9. ChairAction

 Floor chairs send instructions to floor control servers by sending
 ChairAction messages. The following is the format of the ChairAction
 message:

 ChairAction = (COMMON-HEADER)
 (FLOOR-REQUEST-INFORMATION)
 *(EXTENSION-ATTRIBUTE)

 Figure 39: ChairAction format

5.3.10. ChairActionAck

 Floor control servers confirm that they have accepted a ChairAction
 message by sending a ChairActionAck message. The following is the
 format of the ChairActionAck message:

Camarillo, et al. Expires January 15, 2013 [Page 36]

Internet-Draft BFCP July 2012

 ChairActionAck = (COMMON-HEADER)
 *(EXTENSION-ATTRIBUTE)

 Figure 40: ChairActionAck format

5.3.11. Hello

 Floor participants and floor chairs check the liveliness of floor
 control servers by sending a Hello message. The following is the
 format of the Hello message:

 Hello = (COMMON-HEADER)
 *(EXTENSION-ATTRIBUTE)

 Figure 41: Hello format

5.3.12. HelloAck

 Floor control servers confirm that they are alive on reception of a
 Hello message by sending a HelloAck message. The following is the
 format of the HelloAck message:

 HelloAck = (COMMON-HEADER)
 (SUPPORTED-PRIMITIVES)
 (SUPPORTED-ATTRIBUTES)
 *(EXTENSION-ATTRIBUTE)

 Figure 42: HelloAck format

5.3.13. Error

 Floor control servers inform floor participants and floor chairs
 about errors processing requests by sending them Error messages. The
 following is the format of the Error message:

 Error = (COMMON-HEADER)
 (ERROR-CODE)
 [ERROR-INFO]
 *(EXTENSION-ATTRIBUTE)

 Figure 43: Error format

Camarillo, et al. Expires January 15, 2013 [Page 37]

Internet-Draft BFCP July 2012

5.3.14. FloorRequestStatusAck

 Floor participants and chairs acknowledge the receipt of a subsequent
 FloorRequestStatus message from the floor control server when
 communicating over unreliable transport. The following is the format
 of the FloorRequestStatusAck message:

 FloorRequestStatusAck = (COMMON-HEADER)
 *(EXTENSION-ATTRIBUTE)

 Figure 44: FloorRequestStatusAck format

5.3.15. FloorStatusAck

 Floor participants and chairs acknowledge the receipt of a subsequent
 FloorStatus message from the floor control server when communicating
 over unreliable transport. The following is the format of the
 FloorStatusAck message:

 FloorStatusAck = (COMMON-HEADER)
 *(EXTENSION-ATTRIBUTE)

 Figure 45: FloorStatusAck format

5.3.16. Goodbye

 BFCP entities communicating over an unreliable transport that wish to
 dissociate themselves from their remote participant do so through the
 transmission of a Goodbye. The following is the format of the
 Goodbye message:

 Goodbye = (COMMON-HEADER)
 *(EXTENSION-ATTRIBUTE)

 Figure 46: Goodbye format

5.3.17. GoodbyeAck

 BFCP entities communicating over an unreliable transport should
 acknowledge the receipt of a Goodbye message from a peer. The
 following is the format of the GoodbyeAck message:

Camarillo, et al. Expires January 15, 2013 [Page 38]

Internet-Draft BFCP July 2012

 GoodbyeAck = (COMMON-HEADER)
 *(EXTENSION-ATTRIBUTE)

 Figure 47: GoodbyeAck format

6. Transport

 The transport over which BFCP entities exchange messages depends on
 how clients obtain information to contact the floor control server
 (e.g. using an SDP offer/answer exchange [7]). Two transports are
 supported: TCP, appropriate where entities can be sure that their
 connectivity is not impeded by NAT devices, media relays or
 firewalls; and UDP for those deployments where TCP may not be
 applicable or appropriate.

6.1. Reliable Transport

 BFCP entities may elect to exchange BFCP messages using TCP
 connections. TCP provides an in-order reliable delivery of a stream
 of bytes. Consequently, message framing is implemented in the
 application layer. BFCP implements application-layer framing using
 TLV-encoded attributes.

 A client MUST NOT use more than one TCP connection to communicate
 with a given floor control server within a conference. Nevertheless,
 if the same physical box handles different clients (e.g. a floor
 chair and a floor participant), which are identified by different
 User IDs, a separate connection per client is allowed.

 If a BFCP entity (a client or a floor control server) receives data
 that cannot be parsed, the entity MUST close the TCP connection, and
 the connection SHOULD be reestablished. Similarly, if a TCP
 connection cannot deliver a BFCP message and times out, the TCP
 connection SHOULD be reestablished.

 The way connection reestablishment is handled depends on how the
 client obtains information to contact the floor control server. Once
 the TCP connection is reestablished, the client MAY resend those
 messages for which it did not get a response from the floor control
 server.

 If a floor control server detects that the TCP connection towards one
 of the floor participants is lost, it is up to the local policy of
 the floor control server what to do with the pending floor requests
 of the floor participant. In any case, it is RECOMMENDED that the
 floor control server keep the floor requests (i.e., that it does not
 cancel them) while the TCP connection is reestablished.

Camarillo, et al. Expires January 15, 2013 [Page 39]

Internet-Draft BFCP July 2012

 If a client wishes to end its BFCP connection with a floor control
 server, the client closes (i.e., a graceful close) the TCP connection
 towards the floor control server. If a floor control server wishes
 to end its BFCP connection with a client (e.g., the Focus of the
 conference informs the floor control server that the client has been
 kicked out from the conference), the floor control server closes
 (i.e., a graceful close) the TCP connection towards the client.

6.2. Unreliable Transport

 BFCP entities may elect to exchange BFCP messages using UDP
 datagrams. UDP is an unreliable transport where neither delivery nor
 ordering is assured. Each BFCP UDP datagram MUST contain exactly one
 BFCP message. In the event the size of a BFCP message exceeds the
 MTU size, the BFCP message will be fragmented at the IP layer.
 Considerations related to fragmentation are covered in Section 6.3.
 The message format for exchange of BFCP in UDP datagrams is the same
 as for a TCP stream above.

 Clients MUST announce their presence to the floor control server by
 transmission of a Hello message. This Hello message MUST be
 responded to with a HelloAck message and only upon receipt of
 HelloAck can the client consider the floor control service as present
 and available.

 As described in Section 8, each request sent by a floor participant
 or chair shall form a client transaction that expects an
 acknowledgement message back from the floor control server within a
 retransmission window. Concordantly, messages sent by the floor
 control server that are not transaction-completing (e.g. FloorStatus
 announcements as part of a FloorQuery subscription) are server-
 initiated transactions that require acknowledgement messages from the
 floor participant and chair entities to which they were sent.

 If a Floor Control Server receives data that cannot be parsed, the
 receiving server MAY send an Error message with parameter value 10
 (Unable to parse message) indicating receipt of a malformed message.
 If the message can be parsed to the extent that it is able to discern
 that it was a response to an outstanding request transaction, the
 client MAY discard the message and await retransmission. BFCP
 entities receiving an Error message with value 10 SHOULD acknowledge
 the error and act accordingly.

 Transaction ID values are non-sequential and entities are at liberty
 to select values at random. Entities MUST only have at most one
 outstanding request transaction at any one time. Implicit
 subscriptions occur for a client-initiated request transaction whose
 acknowledgement is implied by the first server-initiated response for

Camarillo, et al. Expires January 15, 2013 [Page 40]

Internet-Draft BFCP July 2012

 that transaction, followed by zero of more subsequent server-
 initiated messages corresponding to the same transaction. An example
 is a FloorRequest message for which there are potentially multiple
 responses from the floor control server as it processes intermediate
 states until a terminal state (e.g. Granted or Denied) is attained.
 The subsequent changes in state for the request are new transactions
 whose Transaction ID is determined by the floor control server and
 whose receipt by the client participant shall be acknowledged with a
 FloorRequestStatusAck message.

 By restricting entities to having at most one pending transaction
 open in a BFCP connection, both the out-of-order receipt of messages
 as well as the possibility for congestion are mitigated. Additional
 details regarding congestion control are provided in Section 6.2.1.
 A server-initiated request (e.g. a FloorStatus with an update from
 the floor control server) received by a participant before the
 initial FloorRequestStatus message that closes the client-initiated
 transaction that was instigated by the FloorRequest MUST be treated
 as superseding the information conveyed in any delinquent response.
 As the floor control server cannot send a second update to the
 implicit floor status subscription until the first is acknowledged,
 ordinality is maintained.

 If a client wishes to end its BFCP association with a floor control
 server, it is RECOMMENDED that the client send a Goodbye message to
 dissociate itself from any allocated resources. If a floor control
 server wishes to end its BFCP association with a client (e.g. the
 Focus of the conference informs the floor control server that the
 client has been kicked out from the conference), it is RECOMMENDED
 that the floor control server send a Goodbye message towards the
 client.

6.2.1. Congestion Control

 BFCP may be characterized to generate "low data-volume" traffic, per
 the classification in [19]. Nevertheless is it necessary to ensure
 suitable and necessary congestion control mechanisms are used for
 BFCP over UDP. As described in previous paragraph, within the same
 BFCP connection, every entity - client or server - is only allowed to
 send one request at a time, and await the acknowledging response.
 This way at most one datagram is sent per RTT given the message is
 not lost during transmission. In case the message is lost, the
 request retransmission timer T1 specified in Section 8.3.1 will fire
 and the message is retransmitted up to three times, in addition to
 the original transmission of the message. The default initial
 interval is set to 500ms and the interval is doubled after each
 retransmission attempt, this is identical to the specification of the
 T1 timer in SIP as described in Section 17.1.1.2 of [16].

Camarillo, et al. Expires January 15, 2013 [Page 41]

Internet-Draft BFCP July 2012

6.2.2. ICMP Error Handling

 If a BFCP entity receives an ICMP port unreachable message mid-
 conversation, the entity SHOULD treat the conversation as closed
 (e.g. an implicit Goodbye message from the peer). The entity MAY
 attempt to re-establish the conversation afresh. The new connection
 will appear as a wholly new floor participant, chair or floor control
 server with all state previously held about that participant lost.

 Note: This is because the peer entities cannot rely on IP and port
 tuple to uniquely identify the participant, nor would extending Hello
 to include an attribute that advertised what the entity previously
 was assigned as a User ID be acceptable due to session hijacking.

 In deployments where NAT appliances, firewalls or other such devices
 are present and affecting port reachability for each entity, one
 possibility is to utilize the peer connectivity checks, relay use and
 NAT pinhole maintenance mechanisms defined in ICE [15].

6.3. Large Message Considerations

 Large messages become a concern when using BFCP if the overall size
 of a single BFCP message exceeds that representable within the 16-bit
 Payload Length field of the COMMON-HEADER. When using UDP, there is
 the added concern that a single BFCP message can be fragmented at the
 IP layer if its overall size exceeds the MTU threshold of the
 network.

6.3.1. Fragmentation Handling

 When transmitting a BFCP message with size greater than the MTU, the
 sender should fragment the message into a series of N contiguous data
 ranges. The sender should then create N BFCP fragment messages (one
 for each data range) with the same Transaction ID. The size of each
 of these N messages MUST be smaller than the MTU. The F flag in the
 COMMON-HEADER is set to indicate fragmentation of the BFCP message.

 For each of these fragments the Fragment Offset and Fragment Length
 fields are included in the COMMON-HEADER. The Fragment Offset field
 denotes the number of bytes contained in the previous fragments. The
 Fragment Length contains the length of the fragment itself. Note
 that the Payload Length field contains the length of the entire,
 unfragmented message.

 When a BFCP implementation receives a BFCP message fragment, it MUST
 buffer the fragment until it has received the entire BFCP message.
 The state machine should handle the BFCP message only after all the
 fragments for the message have been received.

Camarillo, et al. Expires January 15, 2013 [Page 42]

Internet-Draft BFCP July 2012

 If a fragment of a BFCP message is lost, the sender will not receive
 an ACK for the message. Therefore the sender will retransmit the
 message with same transaction ID as specified in Section 8.3. If the
 ACK sent by the receiver is lost, then the entire message will be
 resent by the sender. The receiver MUST then retransmit the ACK.
 The receiver can discard an incomplete buffer utilizing the Response
 Retransmission Timer, starting the timer after the receipt of the
 first fragment.

6.3.2. NAT Traversal

 One of the key benefits when using UDP for BFCP communication is the
 ability to leverage the existing NAT traversal infrastructure and
 strategies deployed to facilitate transport of the media associated
 with the video conferencing sessions. Depending on the given
 deployment, this infrastructure typically includes some subset of ICE
 [15].

 In order to facilitate the initial establishment of NAT bindings, and
 to maintain those bindings once established, BFCP over UDP entities
 are RECOMMENDED to use STUN [11] for keep-alives, as described for
 SIP [10]. This results in each BFCP entity sending a packet, both to
 open the pinhole and to learn what IP/port the NAT assigned for the
 binding.

 Informational note: Since the version number is set to 2 when BFCP
 is used over unreliable transport, cf. the Ver field in

Section 5.1, it is straight forward to distinguish between STUN
 and BFCP packets even without checking the STUN magic cookie [11].

 In order to facilitate traversal of BFCP packets through NATs, BFCP
 over UDP entities are RECOMMENDED to use symmetric ports for sending
 and receiving BFCP packets, as recommended for RTP/RTCP [9].

7. Lower-Layer Security

 BFCP relies on lower-layer security mechanisms to provide replay and
 integrity protection and confidentiality. BFCP floor control servers
 and clients (which include both floor participants and floor chairs)
 MUST support TLS for transport over TCP [4] and MUST support DTLS [5]
 for transport over UDP. Any BFCP entity MAY support other security
 mechanisms.

 BFCP entities MUST support, at a minimum, the
 TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite [4].

 Which party, the client or the floor control server, acts as the TLS/

Camarillo, et al. Expires January 15, 2013 [Page 43]

Internet-Draft BFCP July 2012

 DTLS server depends on how the underlying TLS/DTLS connection is
 established. For a TCP/TLS connection established using an SDP
 offer/answer exchange [7], the answerer (which may be the client or
 the floor control server) always acts as the TLS server. For a UDP/
 DTLS connection established using the same exchange, either party can
 be the DTLS server depending on the setup attributes exchanged;
 examples can be found in [8].

8. Protocol Transactions

 In BFCP, there are two types of transactions: client-initiated
 transactions and server-initiated transactions (notifications).
 Client-initiated transactions consist of a request from a client to a
 floor control server and a response from the floor control server to
 the client. The request carries a Transaction ID in its common
 header, which the floor control server copies into the response.
 Clients use Transaction ID values to match responses with previously
 issued requests.

 Server-initiated transactions consist of a single message from a
 floor control server to a client. Since they do not trigger any
 response, their Transaction ID is set to 0 when used over reliable
 transports, but must be non-zero and unique in the context of
 outstanding transactions over unreliable transports.

 When using BFCP over unreliable transports, all requests will use
 retransmit timer T1 (see Section 8.3) until the transaction is
 completed.

8.1. Client Behavior

 A client starting a client-initiated transaction MUST set the
 Conference ID in the common header of the message to the Conference
 ID for the conference that the client obtained previously.

 The client MUST set the Transaction ID value in the common header to
 a number that is different from 0 and that MUST NOT be reused in
 another message from the client until a response from the server is
 received for the transaction. The client uses the Transaction ID
 value to match this message with the response from the floor control
 server.

8.2. Server Behavior

 A floor control server sending a response within a client-initiated
 transaction MUST copy the Conference ID, the Transaction ID, and the
 User ID from the request received from the client into the response.

Camarillo, et al. Expires January 15, 2013 [Page 44]

Internet-Draft BFCP July 2012

 Server-initiated transactions MUST contain a Transaction ID equal to
 0 when BFCP is used over reliable transports. Over unreliable
 transport, the Transaction ID shall have the same properties as for
 client-initiated transactions: the server MUST set the Transaction ID
 value in the common header to a number that is different from 0 and
 that MUST NOT be reused in another message from the server until the
 appropriate response from the client is received for the transaction.
 The server uses the Transaction ID value to match this message with
 the response from the floor participant or floor chair.

8.3. Timers

 When BFCP entities are communicating over an unreliable transport,
 two retransmission timers are employed to help mitigate against loss
 of datagrams. Retransmission and response caching are not required
 when BFCP entities communicate over reliable transports.

8.3.1. Request Retransmission Timer, T1

 T1 is a timer that schedules retransmission of a request until an
 appropriate response is received or until the maximum number of
 retransmissions have occurred. The timer doubles on each re-
 transmit, failing after three unacknowledged retransmission attempts.

 If a valid response is not received for a client- or server-initiated
 transaction, the implementation MUST consider the BFCP association as
 failed. Implementations SHOULD follow the reestablishment procedure
 described in section 6 (e.g. initiate a new offer/answer [12]
 exchange). Alternatively, they MAY continue without BFCP and
 therefore not be participant in any floor control actions.

8.3.2. Response Retransmission Timer, T2

 T2 is a timer that, when fires, signals that the BFCP entity can
 release knowledge of the transaction against which it is running. It
 is started upon the first transmission of the response to a request
 and is the only mechanism by which that response is released by the
 BFCP entity. Any subsequent retransmissions of the same request can
 be responded to by replaying the cached response, whilst that value
 is retained until the timer has fired.

 T2 shall be set such that it encompasses all legal retransmissions
 per T1 plus a factor to accommodate network latency between BFCP
 entities.

Camarillo, et al. Expires January 15, 2013 [Page 45]

Internet-Draft BFCP July 2012

8.3.3. Timer Values

 The table below defines the different timers required when BFCP
 entities communicate over an unreliable transport.

 +-------+--------------------------------------+---------+
 | Timer | Description | Value/s |
 +-------+--------------------------------------+---------+
 | T1 | Initial request retransmission timer | 0.5s |
 | T2 | Response retransmission timer | 10s |
 +-------+--------------------------------------+---------+

 Table 6: Timers

 The default value for T1 is 500 ms, this is an estimate of the RTT
 for completing the transaction. T1 MAY be chosen larger, and this is
 RECOMMENDED if it is known in advance that the RTT is larger.
 Regardless of the value of T1, the exponential backoffs on
 retransmissions described in Section 8.3.1 MUST be used.

9. Authentication and Authorization

 BFCP clients SHOULD authenticate the floor control server before
 sending any BFCP message to it or accepting any BFCP message from it.
 Similarly, floor control servers SHOULD authenticate a client before
 accepting any BFCP message from it or sending any BFCP message to it.

 BFCP supports TLS/DTLS mutual authentication between clients and
 floor control servers, as specified in Section 9.1. This is the
 RECOMMENDED authentication mechanism in BFCP.

 Note that future extensions may define additional authentication
 mechanisms.

 In addition to authenticating BFCP messages, floor control servers
 need to authorize them. On receiving an authenticated BFCP message,
 the floor control server checks whether the client sending the
 message is authorized. If the client is not authorized to perform
 the operation being requested, the floor control server generates an
 Error message, as described in Section 13.8, with an Error code with
 a value of 5 (Unauthorized Operation). Messages from a client that
 cannot be authorized MUST NOT be processed further.

9.1. TLS/DTLS Based Mutual Authentication

 BFCP supports TLS/DTLS based mutual authentication between clients
 and floor control servers. BFCP assumes that there is an integrity-

Camarillo, et al. Expires January 15, 2013 [Page 46]

Internet-Draft BFCP July 2012

 protected channel between the client and the floor control server
 that can be used to exchange their self-signed certificates or, more
 commonly, the fingerprints of these certificates. These certificates
 are used at TLS/DTLS establishment time.

 The implementation of such an integrity-protected channel using
 SIP and the SDP offer/answer model is described in [7].

 BFCP messages received over an authenticated TLS/DTLS connection are
 considered authenticated. A floor control server that receives a
 BFCP message over TCP/UDP (no TLS/DTLS) can request the use of TLS/
 DTLS by generating an Error message, as described in Section 13.8,
 with an Error code with a value of 9 (Use TLS) or a value of 11 (Use
 DTLS) respectively. Clients SHOULD simply ignore unauthenticated
 messages.

 Note that future extensions may define additional authentication
 mechanisms that may not require an initial integrity-protected
 channel (e.g., authentication based on certificates signed by a
 certificate authority).

 As described in Section 9, floor control servers need to perform
 authorization before processing any message. In particular, the
 floor control server SHOULD check that messages arriving over a given
 authenticated TLS/DTLS connection use an authorized User ID (i.e., a
 User ID that the user that established the authenticated TLS/DTLS
 connection is allowed to use).

10. Floor Participant Operations

 This section specifies how floor participants can perform different
 operations, such as requesting a floor, using the protocol elements
 described in earlier sections. Section 11 specifies operations that
 are specific to floor chairs, such as instructing the floor control
 server to grant or revoke a floor, and Section 12 specifies
 operations that can be performed by any client (i.e., both floor
 participants and floor chairs).

10.1. Requesting a Floor

 A floor participant that wishes to request one or more floors does so
 by sending a FloorRequest message to the floor control server.

10.1.1. Sending a FloorRequest Message

 The ABNF in Section 5.3.1 describes the attributes that a
 FloorRequest message can contain. In addition, the ABNF specifies

Camarillo, et al. Expires January 15, 2013 [Page 47]

Internet-Draft BFCP July 2012

 normatively which of these attributes are mandatory, and which ones
 are optional.

 The floor participant sets the Conference ID and the Transaction ID
 in the common header following the rules given in Section 8.1.

 The floor participant sets the User ID in the common header to the
 floor participant's identifier. This User ID will be used by the
 floor control server to authenticate and authorize the request. If
 the sender of the FloorRequest message (identified by the User ID) is
 not the participant that would eventually get the floor (i.e., a
 third-party floor request), the sender SHOULD add a BENEFICIARY-ID
 attribute to the message identifying the beneficiary of the floor.

 Note that the name space for both the User ID and the Beneficiary
 ID is the same. That is, a given participant is identified by a
 single 16-bit value that can be used in the User ID in the common
 header and in several attributes: BENEFICIARY-ID, BENEFICIARY-
 INFORMATION, and REQUESTED-BY-INFORMATION.

 The floor participant must insert at least one FLOOR-ID attribute in
 the FloorRequest message. If the client inserts more than one
 FLOOR-ID attribute, the floor control server will treat all the floor
 requests as an atomic package. That is, the floor control server
 will either grant or deny all the floors in the FloorRequest message.

 The floor participant may use a PARTICIPANT-PROVIDED-INFO attribute
 to state the reason why the floor or floors are being requested. The
 Text field in the PARTICIPANT-PROVIDED-INFO attribute is intended for
 human consumption.

 The floor participant may request that the server handle the floor
 request with a certain priority using a PRIORITY attribute.

10.1.2. Receiving a Response

 A message from the floor control server is considered a response to
 the FloorRequest message if the message from the floor control server
 has the same Conference ID, Transaction ID, and User ID as the
 FloorRequest message, as described in Section 8.1. On receiving such
 a response, the floor participant follows the rules in Section 9 that
 relate to floor control server authentication.

 The successful processing of a FloorRequest message at the floor
 control server involves generating one or several FloorRequestStatus
 messages. The floor participant obtains a Floor Request ID in the
 Floor Request ID field of a FLOOR-REQUEST-INFORMATION attribute in
 the first FloorRequestStatus message from the floor control server.

Camarillo, et al. Expires January 15, 2013 [Page 48]

Internet-Draft BFCP July 2012

 Subsequent FloorRequestStatus messages from the floor control server
 regarding the same floor request will carry the same Floor Request ID
 in a FLOOR-REQUEST-INFORMATION attribute as the initial
 FloorRequestStatus message. This way, the floor participant can
 associate subsequent incoming FloorRequestStatus messages with the
 ongoing floor request.

 The floor participant obtains information about the status of the
 floor request in the FLOOR-REQUEST-INFORMATION attribute of each of
 the FloorRequestStatus messages received from the floor control
 server. This attribute is a grouped attribute, and as such it
 includes a number of attributes that provide information about the
 floor request.

 The OVERALL-REQUEST-STATUS attribute provides information about the
 overall status of the floor request. If the Request Status value is
 Granted, all the floors that were requested in the FloorRequest
 message have been granted. If the Request Status value is Denied,
 all the floors that were requested in the FloorRequest message have
 been denied. A floor request is considered to be ongoing while it is
 in the Pending, Accepted, or Granted states. If the floor request
 value is unknown, then the response is still processed. However, no
 meaningful value can be reported to the user.

 The STATUS-INFO attribute, if present, provides extra information
 that the floor participant MAY display to the user.

 The FLOOR-REQUEST-STATUS attributes provide information about the
 status of the floor request as it relates to a particular floor. The
 STATUS-INFO attribute, if present, provides extra information that
 the floor participant MAY display to the user.

 The BENEFICIARY-INFORMATION attribute identifies the beneficiary of
 the floor request in third-party floor requests. The REQUESTED-BY-
 INFORMATION attribute need not be present in FloorRequestStatus
 messages received by the floor participant that requested the floor,
 as this floor participant is already identified by the User ID in the
 common header.

 The PRIORITY attribute, when present, contains the priority that was
 requested by the generator of the FloorRequest message.

 If the response is an Error message, the floor control server could
 not process the FloorRequest message for some reason, which is
 described in the Error message.

Camarillo, et al. Expires January 15, 2013 [Page 49]

Internet-Draft BFCP July 2012

10.1.3. Reception of a Subsequent FloorRequestStatus Message

 When communicating over unreliable transport and upon receiving a
 FloorRequestStatus message from a floor control server, the
 participant MUST respond with a FloorRequestStatusAck message within
 the transaction failure window to complete the transaction.

10.2. Cancelling a Floor Request and Releasing a Floor

 A floor participant that wishes to cancel an ongoing floor request
 does so by sending a FloorRelease message to the floor control
 server. The FloorRelease message is also used by floor participants
 that hold a floor and would like to release it.

10.2.1. Sending a FloorRelease Message

 The ABNF in Section 5.3.2 describes the attributes that a
 FloorRelease message can contain. In addition, the ABNF specifies
 normatively which of these attributes are mandatory, and which ones
 are optional.

 The floor participant sets the Conference ID and the Transaction ID
 in the common header following the rules given in Section 8.1. The
 floor participant sets the User ID in the common header to the floor
 participant's identifier. This User ID will be used by the floor
 control server to authenticate and authorize the request.

 Note that the FloorRelease message is used to release a floor or
 floors that were granted and to cancel ongoing floor requests
 (from the protocol perspective, both are ongoing floor requests).
 Using the same message in both situations helps resolve the race
 condition that occurs when the FloorRelease message and the
 FloorGrant message cross each other on the wire.

 The floor participant uses the FLOOR-REQUEST-ID that was received in
 the response to the FloorRequest message that the FloorRelease
 message is cancelling.

 Note that if the floor participant requested several floors as an
 atomic operation (i.e., in a single FloorRequest message), all the
 floors are released as an atomic operation as well (i.e., all are
 released at the same time).

10.2.2. Receiving a Response

 A message from the floor control server is considered a response to
 the FloorRelease message if the message from the floor control server
 has the same Conference ID, Transaction ID, and User ID as the

Camarillo, et al. Expires January 15, 2013 [Page 50]

Internet-Draft BFCP July 2012

 FloorRequest message, as described in Section 8.1. On receiving such
 a response, the floor participant follows the rules in Section 9 that
 relate to floor control server authentication.

 If the response is a FloorRequestStatus message, the Request Status
 value in the OVERALL-REQUEST-STATUS attribute (within the FLOOR-
 REQUEST-INFORMATION grouped attribute) will be Cancelled or Released.

 If the response is an Error message, the floor control server could
 not process the FloorRequest message for some reason, which is
 described in the Error message.

 It is possible that the FloorRelease message crosses on the wire with
 a FloorRequestStatus message from the server with a Request Status
 different from Cancelled or Released. In any case, such a
 FloorRequestStatus message will not be a response to the FloorRelease
 message, as its Transaction ID will not match that of the
 FloorRelease.

11. Chair Operations

 This section specifies how floor chairs can instruct the floor
 control server to grant or revoke a floor using the protocol elements
 described in earlier sections.

 Floor chairs that wish to send instructions to a floor control server
 do so by sending a ChairAction message.

11.1. Sending a ChairAction Message

 The ABNF in Section 5.3.9 describes the attributes that a ChairAction
 message can contain. In addition, the ABNF specifies normatively
 which of these attributes are mandatory, and which ones are optional.

 The floor chair sets the Conference ID and the Transaction ID in the
 common header following the rules given in Section 8.1. The floor
 chair sets the User ID in the common header to the floor chair's
 identifier. This User ID will be used by the floor control server to
 authenticate and authorize the request.

 The ChairAction message contains instructions that apply to one or
 more floors within a particular floor request. The floor or floors
 are identified by the FLOOR-REQUEST-STATUS attributes and the floor
 request is identified by the FLOOR-REQUEST-INFORMATION-HEADER, which
 are carried in the ChairAction message.

 For example, if a floor request consists of two floors that depend on

Camarillo, et al. Expires January 15, 2013 [Page 51]

Internet-Draft BFCP July 2012

 different floor chairs, each floor chair will grant its floor within
 the floor request. Once both chairs have granted their floor, the
 floor control server will grant the floor request as a whole. On the
 other hand, if one of the floor chairs denies its floor, the floor
 control server will deny the floor request as a whole, regardless of
 the other floor chair's decision.

 The floor chair provides the new status of the floor request as it
 relates to a particular floor using a FLOOR-REQUEST-STATUS attribute.
 If the new status of the floor request is Accepted, the floor chair
 MAY use the Queue Position field to provide a queue position for the
 floor request. If the floor chair does not wish to provide a queue
 position, all the bits of the Queue Position field SHOULD be set to
 zero. The floor chair SHOULD use the Status Revoked to revoke a
 floor that was granted (i.e., Granted status) and SHOULD use the
 Status Denied to reject floor requests in any other status (e.g.,
 Pending and Accepted).

 The floor chair MAY add an OVERALL-REQUEST-STATUS attribute to the
 ChairAction message to provide a new overall status for the floor
 request. If the new overall status of the floor request is Accepted,
 the floor chair MAY use the Queue Position field to provide a queue
 position for the floor request.

 Note that a particular floor control server may implement a
 different queue for each floor containing all the floor requests
 that relate to that particular floor, a general queue for all
 floor requests, or both. Also note that a floor request may
 involve several floors and that a ChairAction message may only
 deal with a subset of these floors (e.g., if a single floor chair
 is not authorized to manage all the floors). In this case, the
 floor control server will combine the instructions received from
 the different floor chairs in FLOOR-REQUEST-STATUS attributes to
 come up with the overall status of the floor request.

 Note that, while the action of a floor chair may communicate
 information in the OVERALL-REQUEST-STATUS attribute, the floor
 control server may override, modify, or ignore this field's
 content.

 The floor chair may use STATUS-INFO attributes to state the reason
 why the floor or floors are being accepted, granted, or revoked. The
 Text in the STATUS-INFO attribute is intended for human consumption.

11.2. Receiving a Response

 A message from the floor control server is considered a response to
 the ChairAction message if the message from the server has the same

Camarillo, et al. Expires January 15, 2013 [Page 52]

Internet-Draft BFCP July 2012

 Conference ID, Transaction ID, and User ID as the ChairAction
 message, as described in Section 8.1. On receiving such a response,
 the floor chair follows the rules in Section 9 that relate to floor
 control server authentication.

 A ChairActionAck message from the floor control server confirms that
 the floor control server has accepted the ChairAction message. An
 Error message indicates that the floor control server could not
 process the ChairAction message for some reason, which is described
 in the Error message.

12. General Client Operations

 This section specifies operations that can be performed by any
 client. That is, they are not specific to floor participants or
 floor chairs. They can be performed by both.

12.1. Requesting Information about Floors

 A client can obtain information about the status of a floor or floors
 in different ways, which include using BFCP and using out-of-band
 mechanisms. Clients using BFCP to obtain such information use the
 procedures described in this section.

 Clients request information about the status of one or several floors
 by sending a FloorQuery message to the floor control server.

12.1.1. Sending a FloorQuery Message

 The ABNF in Section 5.3.7 describes the attributes that a FloorQuery
 message can contain. In addition, the ABNF specifies normatively
 which of these attributes are mandatory, and which ones are optional.

 The client sets the Conference ID and the Transaction ID in the
 common header following the rules given in Section 8.1. The client
 sets the User ID in the common header to the client's identifier.
 This User ID will be used by the floor control server to authenticate
 and authorize the request.

 The client inserts in the message all the Floor IDs it wants to
 receive information about. The floor control server will send
 periodic information about all of these floors. If the client does
 not want to receive information about a particular floor any longer,
 it sends a new FloorQuery message removing the FLOOR-ID of this
 floor. If the client does not want to receive information about any
 floor any longer, it sends a FloorQuery message with no FLOOR-ID
 attribute.

Camarillo, et al. Expires January 15, 2013 [Page 53]

Internet-Draft BFCP July 2012

12.1.2. Receiving a Response

 A message from the floor control server is considered a response to
 the FloorQuery message if the message from the floor control server
 has the same Conference ID, Transaction ID, and User ID as the
 FloorRequest message, as described in Section 8.1. On receiving such
 a response, the client follows the rules in Section 9 that relate to
 floor control server authentication.

 On reception of the FloorQuery message, the floor control server will
 respond with a FloorStatus message or with an Error message. If the
 response is a FloorStatus message, it will contain information about
 one of the floors the client requested information about. If the
 client did not include any FLOOR-ID attribute in its FloorQuery
 message (i.e., the client does not want to receive information about
 any floor any longer), the FloorStatus message from the floor control
 server will not include any FLOOR-ID attribute either.

 FloorStatus messages that carry information about a floor contain a
 FLOOR-ID attribute that identifies the floor. After this attribute,
 FloorStatus messages contain information about existing (one or more)
 floor requests that relate to that floor. The information about each
 particular floor request is encoded in a FLOOR-REQUEST-INFORMATION
 attribute. This grouped attribute carries a Floor Request ID that
 identifies the floor request, followed by a set of attributes that
 provide information about the floor request.

 After the first FloorStatus, the floor control server will continue
 sending FloorStatus messages, periodically informing the client about
 changes on the floors the client requested information about.

12.1.3. Reception of a Subsequent FloorStatus Message

 When communicating over unreliable transport and upon receiving a
 FloorStatus message from a floor control server, the participant MUST
 respond with a FloorStatusAck message within the transaction failure
 window to complete the transaction.

12.2. Requesting Information about Floor Requests

 A client can obtain information about the status of one or several
 floor requests in different ways, which include using BFCP and using
 out-of-band mechanisms. Clients using BFCP to obtain such
 information use the procedures described in this section.

 Clients request information about the current status of a floor
 request by sending a FloorRequestQuery message to the floor control
 server.

Camarillo, et al. Expires January 15, 2013 [Page 54]

Internet-Draft BFCP July 2012

 Requesting information about a particular floor request is useful in
 a number of situations. For example, on reception of a FloorRequest
 message, a floor control server may choose to return
 FloorRequestStatus messages only when the floor request changes its
 state (e.g., from Accepted to Granted), but not when the floor
 request advances in its queue. In this situation, if the user
 requests it, the floor participant can use a FloorRequestQuery
 message to poll the floor control server for the status of the floor
 request.

12.2.1. Sending a FloorRequestQuery Message

 The ABNF in Section 5.3.3 describes the attributes that a
 FloorRequestQuery message can contain. In addition, the ABNF
 specifies normatively which of these attributes are mandatory, and
 which ones are optional.

 The client sets the Conference ID and the Transaction ID in the
 common header following the rules given in Section 8.1. The client
 sets the User ID in the common header to the client's identifier.
 This User ID will be used by the floor control server to authenticate
 and authorize the request.

 The client must insert a FLOOR-REQUEST-ID attribute that identifies
 the floor request at the floor control server.

12.2.2. Receiving a Response

 A message from the floor control server is considered a response to
 the FloorRequestQuery message if the message from the floor control
 server has the same Conference ID, Transaction ID, and User ID as the
 FloorRequestQuery message, as described in Section 8.1. On receiving
 such a response, the client follows the rules in Section 9 that
 relate to floor control server authentication.

 If the response is a FloorRequestStatus message, the client obtains
 information about the status of the FloorRequest the client requested
 information about in a FLOOR-REQUEST-INFORMATION attribute.

 If the response is an Error message, the floor control server could
 not process the FloorRequestQuery message for some reason, which is
 described in the Error message.

12.3. Requesting Information about a User

 A client can obtain information about a participant and the floor
 requests related to this participant in different ways, which include
 using BFCP and using out-of-band mechanisms. Clients using BFCP to

Camarillo, et al. Expires January 15, 2013 [Page 55]

Internet-Draft BFCP July 2012

 obtain such information use the procedures described in this section.

 Clients request information about a participant and the floor
 requests related to this participant by sending a UserQuery message
 to the floor control server.

 This functionality may be useful for floor chairs or floor
 participants interested in the display name and the URI of a
 particular floor participant. In addition, a floor participant may
 find it useful to request information about itself. For example, a
 floor participant, after experiencing connectivity problems (e.g.,
 its TCP connection with the floor control server was down for a while
 and eventually was re-established), may need to request information
 about all the floor requests associated to itself that still exist.

12.3.1. Sending a UserQuery Message

 The ABNF in Section 5.3.5 describes the attributes that a UserQuery
 message can contain. In addition, the ABNF specifies normatively
 which of these attributes are mandatory, and which ones are optional.

 The client sets the Conference ID and the Transaction ID in the
 common header following the rules given in Section 8.1. The client
 sets the User ID in the common header to the client's identifier.
 This User ID will be used by the floor control server to authenticate
 and authorize the request.

 If the floor participant the client is requesting information about
 is not the client issuing the UserQuery message (which is identified
 by the User ID in the common header of the message), the client MUST
 insert a BENEFICIARY-ID attribute.

12.3.2. Receiving a Response

 A message from the floor control server is considered a response to
 the UserQuery message if the message from the floor control server
 has the same Conference ID, Transaction ID, and User ID as the
 UserQuery message, as described in Section 8.1. On receiving such a
 response, the client follows the rules in Section 9 that relate to
 floor control server authentication.

 If the response is a UserStatus message, the client obtains
 information about the floor participant in a BENEFICIARY-INFORMATION
 grouped attribute and about the status of the floor requests
 associated with the floor participant in FLOOR-REQUEST-INFORMATION
 attributes.

 If the response is an Error message, the floor control server could

Camarillo, et al. Expires January 15, 2013 [Page 56]

Internet-Draft BFCP July 2012

 not process the UserQuery message for some reason, which is described
 in the Error message.

12.4. Obtaining the Capabilities of a Floor Control Server

 A client that wishes to obtain the capabilities of a floor control
 server does so by sending a Hello message to the floor control
 server.

12.4.1. Sending a Hello Message

 The ABNF in Section 5.3.11 describes the attributes that a Hello
 message can contain. In addition, the ABNF specifies normatively
 which of these attributes are mandatory, and which ones are optional.

 The client sets the Conference ID and the Transaction ID in the
 common header following the rules given in Section 8.1. The client
 sets the User ID in the common header to the client's identifier.
 This User ID will be used by the floor control server to authenticate
 and authorize the request.

12.4.2. Receiving Responses

 A message from the floor control server is considered a response to
 the Hello message by the client if the message from the floor control
 server has the same Conference ID, Transaction ID, and User ID as the
 Hello message, as described in Section 8.1. On receiving such a
 response, the client follows the rules in Section 9 that relate to
 floor control server authentication.

 If the response is a HelloAck message, the floor control server could
 process the Hello message successfully. The SUPPORTED-PRIMITIVES and
 SUPPORTED-ATTRIBUTES attributes indicate which primitives and
 attributes, respectively, are supported by the server.

 If the response is an Error message, the floor control server could
 not process the Hello message for some reason, which is described in
 the Error message.

13. Floor Control Server Operations

 This section specifies how floor control servers can perform
 different operations, such as granting a floor, using the protocol
 elements described in earlier sections.

 On reception of a message from a client, the floor control server
 MUST check whether the value of the Primitive is supported. If it is

Camarillo, et al. Expires January 15, 2013 [Page 57]

Internet-Draft BFCP July 2012

 not, the floor control server SHOULD send an Error message, as
 described in Section 13.8, with Error code 3 (Unknown Primitive).

 On reception of a message from a client, the floor control server
 MUST check whether the value of the Conference ID matched an existing
 conference. If it does not, the floor control server SHOULD send an
 Error message, as described in Section 13.8, with Error code 1
 (Conference does not Exist).

 On reception of a message from a client, the floor control server
 follows the rules in Section 9 that relate to the authentication of
 the message.

 On reception of a message from a client, the floor control server
 MUST check whether it understands all the mandatory ('M' bit set)
 attributes in the message. If the floor control server does not
 understand all of them, the floor control server SHOULD send an Error
 message, as described in Section 13.8, with Error code 4 (Unknown
 Mandatory Attribute). The Error message SHOULD list the attributes
 that were not understood.

13.1. Reception of a FloorRequest Message

 On reception of a FloorRequest message, the floor control server
 follows the rules in Section 9 that relate to client authentication
 and authorization. If while processing the FloorRequest message, the
 floor control server encounters an error, it SHOULD generate an Error
 response following the procedures described in Section 13.8.

 BFCP allows floor participants to have several ongoing floor
 requests for the same floor (e.g., the same floor participant can
 occupy more than one position in a queue at the same time). A
 floor control server that only supports a certain number of
 ongoing floor requests per floor participant (e.g., one) can use
 Error Code 8 (You have Already Reached the Maximum Number of
 Ongoing Floor Requests for this Floor) to inform the floor
 participant.

 When communicating over unreliable transport and upon receiving a
 FloorRequest from a participant, the floor control server MUST
 respond with a FloorRequestStatus message within the transaction
 failure window to complete the transaction.

13.1.1. Generating the First FloorRequestStatus Message

 The successful processing of a FloorRequest message by a floor
 control server involves generating one or several FloorRequestStatus
 messages, the first of which SHOULD be generated as soon as possible.

Camarillo, et al. Expires January 15, 2013 [Page 58]

Internet-Draft BFCP July 2012

 If the floor control server cannot accept, grant, or deny the floor
 request right away (e.g., a decision from a chair is needed), it
 SHOULD use a Request Status value of Pending in the OVERALL-REQUEST-
 STATUS attribute (within the FLOOR-REQUEST-INFORMATION grouped
 attribute) of the first FloorRequestStatus message it generates.

 The policy that a floor control server follows to grant or deny
 floors is outside the scope of this document. A given floor
 control server may perform these decisions automatically while
 another may contact a human acting as a chair every time a
 decision needs to be made.

 The floor control server MUST copy the Conference ID, the Transaction
 ID, and the User ID from the FloorRequest into the
 FloorRequestStatus, as described in Section 8.2. Additionally, the
 floor control server MUST add a FLOOR-REQUEST-INFORMATION grouped
 attribute to the FloorRequestStatus. The attributes contained in
 this grouped attribute carry information about the floor request.

 The floor control server MUST assign an identifier that is unique
 within the conference to this floor request, and MUST insert it in
 the Floor Request ID field of the FLOOR-REQUEST-INFORMATION
 attribute. This identifier will be used by the floor participant (or
 by a chair or chairs) to refer to this specific floor request in the
 future.

 The floor control server MUST copy the Floor IDs in the FLOOR-ID
 attributes of the FloorRequest into the FLOOR-REQUEST-STATUS
 attributes in the FLOOR-REQUEST-INFORMATION grouped attribute. These
 Floor IDs identify the floors being requested (i.e., the floors
 associated with this particular floor request).

 The floor control server SHOULD copy (if present) the contents of the
 BENEFICIARY-ID attribute from the FloorRequest into a BENEFICIARY-
 INFORMATION attribute inside the FLOOR-REQUEST-INFORMATION grouped
 attribute. Additionally, the floor control server MAY provide the
 display name and the URI of the beneficiary in this BENEFICIARY-
 INFORMATION attribute.

 The floor control server MAY provide information about the requester
 of the floor in a REQUESTED-BY-INFORMATION attribute inside the
 FLOOR-REQUEST-INFORMATION grouped attribute.

 The floor control server MAY copy (if present) the PRIORITY attribute
 from the FloorRequest into the FLOOR-REQUEST-INFORMATION grouped
 attribute.

Camarillo, et al. Expires January 15, 2013 [Page 59]

Internet-Draft BFCP July 2012

 Note that this attribute carries the priority requested by the
 participant. The priority that the floor control server assigns
 to the floor request depends on the priority requested by the
 participant and the rights the participant has according to the
 policy of the conference. For example, a participant that is only
 allowed to use the Normal priority may request Highest priority
 for a floor request. In that case, the floor control server would
 ignore the priority requested by the participant.

 The floor control server MAY copy (if present) the PARTICIPANT-
 PROVIDED-INFO attribute from the FloorRequest into the FLOOR-REQUEST-
 INFORMATION grouped attribute.

13.1.2. Generation of Subsequent FloorRequestStatus Messages

 A floor request is considered to be ongoing as long as it is not in
 the Cancelled, Released, or Revoked states. If the OVERALL-REQUEST-
 STATUS attribute (inside the FLOOR-REQUEST-INFORMATION grouped
 attribute) of the first FloorRequestStatus message generated by the
 floor control server did not indicate any of these states, the floor
 control server will need to send subsequent FloorRequestStatus
 messages.

 When the status of the floor request changes, the floor control
 server SHOULD send new FloorRequestStatus messages with the
 appropriate Request Status. The floor control server MUST add a
 FLOOR-REQUEST-INFORMATION attribute with a Floor Request ID equal to
 the one sent in the first FloorRequestStatus message to any new
 FloorRequestStatus related to the same floor request. (The Floor
 Request ID identifies the floor request to which the
 FloorRequestStatus applies.)

 When using BFCP over reliable transports, the floor control server
 MUST set the Transaction ID of subsequent FloorRequestStatus messages
 to 0. When using BFCP over unreliable transports, the Transaction ID
 MUST be non-zero and unique in the context of outstanding
 transactions over unreliable transports as described in Section 8.

 The rate at which the floor control server sends
 FloorRequestStatus messages is a matter of local policy. A floor
 control server may choose to send a new FloorRequestStatus message
 every time the floor request moves in the floor request queue,
 while another may choose only to send a new FloorRequestStatus
 message when the floor request is Granted or Denied.

 The floor control server may add a STATUS-INFO attribute to any of
 the FloorRequestStatus messages it generates to provide extra
 information about its decisions regarding the floor request (e.g.,

Camarillo, et al. Expires January 15, 2013 [Page 60]

Internet-Draft BFCP July 2012

 why it was denied).

 Floor participants and floor chairs may request to be informed
 about the status of a floor following the procedures in

Section 12.1. If the processing of a floor request changes the
 status of a floor (e.g., the floor request is granted and
 consequently the floor has a new holder), the floor control server
 needs to follow the procedures in Section 13.5 to inform the
 clients that have requested that information.

 The common header and the rest of the attributes are the same as in
 the first FloorRequestStatus message.

 The floor control server can discard the state information about a
 particular floor request when this reaches a status of Cancelled,
 Released, or Revoked.

 When communicating over unreliable transport and a
 FloorRequestStatusAck message is not received within the transaction
 failure window, the floor control server MUST retransmit the
 FloorRequestStatus message according to Section 6.2.

13.2. Reception of a FloorRequestQuery Message

 On reception of a FloorRequestQuery message, the floor control server
 follows the rules in Section 9 that relate to client authentication
 and authorization. If while processing the FloorRequestQuery
 message, the floor control server encounters an error, it SHOULD
 generate an Error response following the procedures described in

Section 13.8.

 The successful processing of a FloorRequestQuery message by a floor
 control server involves generating a FloorRequestStatus message,
 which SHOULD be generated as soon as possible.

 When communicating over unreliable transport and upon receiving a
 FloorRequestQuery from a participant, the floor control server MUST
 respond with a FloorRequestStatus message within the transaction
 failure window to complete the transaction.

 The floor control server MUST copy the Conference ID, the Transaction
 ID, and the User ID from the FloorRequestQuery message into the
 FloorRequestStatus message, as described in Section 8.2.
 Additionally, the floor control server MUST include information about
 the floor request in the FLOOR-REQUEST-INFORMATION grouped attribute
 to the FloorRequestStatus.

 The floor control server MUST copy the contents of the

Camarillo, et al. Expires January 15, 2013 [Page 61]

Internet-Draft BFCP July 2012

 FLOOR-REQUEST-ID attribute from the FloorRequestQuery message into
 the Floor Request ID field of the FLOOR-REQUEST-INFORMATION
 attribute.

 The floor control server MUST add FLOOR-REQUEST-STATUS attributes to
 the FLOOR-REQUEST-INFORMATION grouped attribute identifying the
 floors being requested (i.e., the floors associated with the floor
 request identified by the FLOOR-REQUEST-ID attribute).

 The floor control server SHOULD add a BENEFICIARY-ID attribute to the
 FLOOR-REQUEST-INFORMATION grouped attribute identifying the
 beneficiary of the floor request. Additionally, the floor control
 server MAY provide the display name and the URI of the beneficiary in
 this BENEFICIARY-INFORMATION attribute.

 The floor control server MAY provide information about the requester
 of the floor in a REQUESTED-BY-INFORMATION attribute inside the
 FLOOR-REQUEST-INFORMATION grouped attribute.

 The floor control server MAY provide the reason why the floor
 participant requested the floor in a PARTICIPANT-PROVIDED-INFO.

 The floor control server MAY also add to the FLOOR-REQUEST-
 INFORMATION grouped attribute a PRIORITY attribute with the Priority
 value requested for the floor request and a STATUS-INFO attribute
 with extra information about the floor request.

 The floor control server MUST add an OVERALL-REQUEST-STATUS attribute
 to the FLOOR-REQUEST-INFORMATION grouped attribute with the current
 status of the floor request. The floor control server MAY provide
 information about the status of the floor request as it relates to
 each of the floors being requested in the FLOOR-REQUEST-STATUS
 attributes.

13.3. Reception of a UserQuery Message

 On reception of a UserQuery message, the floor control server follows
 the rules in Section 9 that relate to client authentication and
 authorization. If while processing the UserQuery message, the floor
 control server encounters an error, it SHOULD generate an Error
 response following the procedures described in Section 13.8.

 The successful processing of a UserQuery message by a floor control
 server involves generating a UserStatus message, which SHOULD be
 generated as soon as possible.

 When communicating over unreliable transport and upon receiving a
 UserQuery from a participant, the floor control server MUST respond

Camarillo, et al. Expires January 15, 2013 [Page 62]

Internet-Draft BFCP July 2012

 with a UserStatus message within the transaction failure window to
 complete the transaction.

 The floor control server MUST copy the Conference ID, the Transaction
 ID, and the User ID from the UserQuery message into the USerStatus
 message, as described in Section 8.2.

 The sender of the UserQuery message is requesting information about
 all the floor requests associated with a given participant (i.e., the
 floor requests where the participant is either the beneficiary or the
 requester). This participant is identified by a BENEFICIARY-ID
 attribute or, in the absence of a BENEFICIARY-ID attribute, by a the
 User ID in the common header of the UserQuery message.

 The floor control server MUST copy, if present, the contents of the
 BENEFICIARY-ID attribute from the UserQuery message into a
 BENEFICIARY-INFORMATION attribute in the UserStatus message.
 Additionally, the floor control server MAY provide the display name
 and the URI of the participant about which the UserStatus message
 provides information in this BENEFICIARY-INFORMATION attribute.

 The floor control server SHOULD add to the UserStatus message a
 FLOOR-REQUEST-INFORMATION grouped attribute for each floor request
 related to the participant about which the message provides
 information (i.e., the floor requests where the participant is either
 the beneficiary or the requester). For each FLOOR-REQUEST-
 INFORMATION attribute, the floor control server follows the following
 steps.

 The floor control server MUST identify the floor request the FLOOR-
 REQUEST-INFORMATION attribute applies to by filling the Floor Request
 ID field of the FLOOR-REQUEST-INFORMATION attribute.

 The floor control server MUST add FLOOR-REQUEST-STATUS attributes to
 the FLOOR-REQUEST-INFORMATION grouped attribute identifying the
 floors being requested (i.e., the floors associated with the floor
 request identified by the FLOOR-REQUEST-ID attribute).

 The floor control server SHOULD add a BENEFICIARY-ID attribute to the
 FLOOR-REQUEST-INFORMATION grouped attribute identifying the
 beneficiary of the floor request. Additionally, the floor control
 server MAY provide the display name and the URI of the beneficiary in
 this BENEFICIARY-INFORMATION attribute.

 The floor control server MAY provide information about the requester
 of the floor in a REQUESTED-BY-INFORMATION attribute inside the
 FLOOR-REQUEST-INFORMATION grouped attribute.

Camarillo, et al. Expires January 15, 2013 [Page 63]

Internet-Draft BFCP July 2012

 The floor control server MAY provide the reason why the floor
 participant requested the floor in a PARTICIPANT-PROVIDED-INFO.

 The floor control server MAY also add to the FLOOR-REQUEST-
 INFORMATION grouped attribute a PRIORITY attribute with the Priority
 value requested for the floor request.

 The floor control server MUST include the current status of the floor
 request in an OVERALL-REQUEST-STATUS attribute to the FLOOR-REQUEST-
 INFORMATION grouped attribute. The floor control server MAY add a
 STATUS-INFO attribute with extra information about the floor request.

 The floor control server MAY provide information about the status of
 the floor request as it relates to each of the floors being requested
 in the FLOOR-REQUEST-STATUS attributes.

13.4. Reception of a FloorRelease Message

 On reception of a FloorRelease message, the floor control server
 follows the rules in Section 9 that relate to client authentication
 and authorization. If while processing the FloorRelease message, the
 floor control server encounters an error, it SHOULD generate an Error
 response following the procedures described in Section 13.8.

 The successful processing of a FloorRelease message by a floor
 control server involves generating a FloorRequestStatus message,
 which SHOULD be generated as soon as possible.

 When communicating over unreliable transport and upon receiving a
 FloorRelease from a participant, the floor control server MUST
 respond with a FloorRequestStatus message within the transaction
 failure window to complete the transaction.

 The floor control server MUST copy the Conference ID, the Transaction
 ID, and the User ID from the FloorRelease message into the
 FloorRequestStatus message, as described in Section 8.2.

 The floor control server MUST add a FLOOR-REQUEST-INFORMATION grouped
 attribute to the FloorRequestStatus. The attributes contained in
 this grouped attribute carry information about the floor request.

 The FloorRelease message identifies the floor request it applies to
 using a FLOOR-REQUEST-ID. The floor control server MUST copy the
 contents of the FLOOR-REQUEST-ID attribute from the FloorRelease
 message into the Floor Request ID field of the FLOOR-REQUEST-
 INFORMATION attribute.

 The floor control server MUST identify the floors being released

Camarillo, et al. Expires January 15, 2013 [Page 64]

Internet-Draft BFCP July 2012

 (i.e., the floors associated with the floor request identified by the
 FLOOR-REQUEST-ID attribute) in FLOOR-REQUEST-STATUS attributes to the
 FLOOR-REQUEST-INFORMATION grouped attribute.

 The floor control server MUST add an OVERALL-REQUEST-STATUS attribute
 to the FLOOR-REQUEST-INFORMATION grouped attribute. The Request
 Status value SHOULD be Released, if the floor (or floors) had been
 previously granted, or Cancelled, if the floor (or floors) had not
 been previously granted. The floor control server MAY add a STATUS-
 INFO attribute with extra information about the floor request.

13.5. Reception of a FloorQuery Message

 On reception of a FloorQuery message, the floor control server
 follows the rules in Section 9 that relate to client authentication.
 If while processing the FloorQuery message, the floor control server
 encounters an error, it SHOULD generate an Error response following
 the procedures described in Section 13.8.

 When communicating over unreliable transport and upon receiving a
 FloorQuery from a participant, the floor control server MUST respond
 with a FloorStatus message within the transaction failure window to
 complete the transaction.

 A floor control server receiving a FloorQuery message from a client
 SHOULD keep this client informed about the status of the floors
 identified by FLOOR-ID attributes in the FloorQuery message. Floor
 Control Servers keep clients informed by using FloorStatus messages.

 An individual FloorStatus message carries information about a single
 floor. So, when a FloorQuery message requests information about more
 than one floor, the floor control server needs to send separate
 FloorStatus messages for different floors.

 The information FloorQuery messages carry may depend on the user
 requesting the information. For example, a chair may be able to
 receive information about pending requests, while a regular user may
 not be authorized to do so.

13.5.1. Generation of the First FloorStatus Message

 The successful processing of a FloorQuery message by a floor control
 server involves generating one or several FloorStatus messages, the
 first of which SHOULD be generated as soon as possible.

 The floor control server MUST copy the Conference ID, the Transaction
 ID, and the User ID from the FloorQuery message into the FloorStatus
 message, as described in Section 8.2.

Camarillo, et al. Expires January 15, 2013 [Page 65]

Internet-Draft BFCP July 2012

 If the FloorQuery message did not contain any FLOOR-ID attribute, the
 floor control server sends the FloorStatus message without adding any
 additional attribute and does not send any subsequent FloorStatus
 message to the floor participant.

 If the FloorQuery message contained one or more FLOOR-ID attributes,
 the floor control server chooses one from among them and adds this
 FLOOR-ID attribute to the FloorStatus message. The floor control
 server SHOULD add a FLOOR-REQUEST-INFORMATION grouped attribute for
 each floor request associated to the floor. Each FLOOR-REQUEST-
 INFORMATION grouped attribute contains a number of attributes that
 provide information about the floor request. For each FLOOR-REQUEST-
 INFORMATION attribute, the floor control server follows the following
 steps.

 The floor control server MUST identify the floor request the FLOOR-
 REQUEST-INFORMATION attribute applies to by filling the Floor Request
 ID field of the FLOOR-REQUEST-INFORMATION attribute.

 The floor control server MUST add FLOOR-REQUEST-STATUS attributes to
 the FLOOR-REQUEST-INFORMATION grouped attribute identifying the
 floors being requested (i.e., the floors associated with the floor
 request identified by the FLOOR-REQUEST-ID attribute).

 The floor control server SHOULD add a BENEFICIARY-ID attribute to the
 FLOOR-REQUEST-INFORMATION grouped attribute identifying the
 beneficiary of the floor request. Additionally, the floor control
 server MAY provide the display name and the URI of the beneficiary in
 this BENEFICIARY-INFORMATION attribute.

 The floor control server MAY provide information about the requester
 of the floor in a REQUESTED-BY-INFORMATION attribute inside the
 FLOOR-REQUEST-INFORMATION grouped attribute.

 The floor control server MAY provide the reason why the floor
 participant requested the floor in a PARTICIPANT-PROVIDED-INFO.

 The floor control server MAY also add to the FLOOR-REQUEST-
 INFORMATION grouped attribute a PRIORITY attribute with the Priority
 value requested for the floor request.

 The floor control server MUST add an OVERALL-REQUEST-STATUS attribute
 to the FLOOR-REQUEST-INFORMATION grouped attribute with the current
 status of the floor request. The floor control server MAY add a
 STATUS-INFO attribute with extra information about the floor request.

 The floor control server MAY provide information about the status of
 the floor request as it relates to each of the floors being requested

Camarillo, et al. Expires January 15, 2013 [Page 66]

Internet-Draft BFCP July 2012

 in the FLOOR-REQUEST-STATUS attributes.

13.5.2. Generation of Subsequent FloorStatus Messages

 If the FloorQuery message carried more than one FLOOR-ID attribute,
 the floor control server SHOULD generate a FloorStatus message for
 each of them (except for the FLOOR-ID attribute chosen for the first
 FloorStatus message) as soon as possible. These FloorStatus messages
 are generated following the same rules as those for the first
 FloorStatus message (see Section 13.5.1), but their Transaction ID is
 0 when using reliable transports and non-zero and unique in the
 context of outstanding transactions when using unreliable transports
 (cf. Section 8).

 After generating these messages, the floor control server sends
 FloorStatus messages, periodically keeping the client informed about
 all the floors for which the client requested information. The
 Transaction ID of these messages MUST be 0 when using reliable
 transports and non-zero and unique in the context of outstanding
 transactions when using unreliable transports (cf. Section 8).

 The rate at which the floor control server sends FloorStatus
 messages is a matter of local policy. A floor control server may
 choose to send a new FloorStatus message every time a new floor
 request arrives, while another may choose to only send a new
 FloorStatus message when a new floor request is Granted.

 When communicating over unreliable transport and a FloorStatusAck
 message is not received within the transaction failure window, the
 floor control server MUST retransmit the FloorStatus message
 according to Section 6.2.

13.6. Reception of a ChairAction Message

 On reception of a ChairAction message, the floor control server
 follows the rules in Section 9 that relate to client authentication
 and authorization. If while processing the ChairAction message, the
 floor control server encounters an error, it SHOULD generate an Error
 response following the procedures described in Section 13.8.

 The successful processing of a ChairAction message by a floor control
 server involves generating a ChairActionAck message, which SHOULD be
 generated as soon as possible.

 When communicating over unreliable transport and upon receiving a
 ChairAction from a chair, the floor control server MUST respond with
 a ChairActionAck message within the transaction failure window to
 complete the transaction.

Camarillo, et al. Expires January 15, 2013 [Page 67]

Internet-Draft BFCP July 2012

 The floor control server MUST copy the Conference ID, the Transaction
 ID, and the User ID from the ChairAction message into the
 ChairActionAck message, as described in Section 8.2.

 The floor control server needs to take into consideration the
 operation requested in the ChairAction message (e.g., granting a
 floor) but does not necessarily need to perform it as requested by
 the floor chair. The operation that the floor control server
 performs depends on the ChairAction message and on the internal state
 of the floor control server.

 For example, a floor chair may send a ChairAction message granting a
 floor that was requested as part of an atomic floor request operation
 that involved several floors. Even if the chair responsible for one
 of the floors instructs the floor control server to grant the floor,
 the floor control server will not grant it until the chairs
 responsible for the other floors agree to grant them as well.

 So, the floor control server is ultimately responsible for keeping a
 coherent floor state using instructions from floor chairs as input to
 this state.

 If the new Status in the ChairAction message is Accepted and all the
 bits of the Queue Position field are zero, the floor chair is
 requesting that the floor control server assign a queue position
 (e.g., the last in the queue) to the floor request based on the local
 policy of the floor control server. (Of course, such a request only
 applies if the floor control server implements a queue.)

13.7. Reception of a Hello Message

 On reception of a Hello message, the floor control server follows the
 rules in Section 9 that relate to client authentication. If while
 processing the Hello message, the floor control server encounters an
 error, it SHOULD generate an Error response following the procedures
 described in Section 13.8.

 When communicating over unreliable transport and upon receiving a
 Hello from a participant, the floor control server MUST respond with
 a HelloAck message within the transaction failure window to complete
 the transaction.

 The successful processing of a Hello message by a floor control
 server involves generating a HelloAck message, which SHOULD be
 generated as soon as possible. The floor control server MUST copy
 the Conference ID, the Transaction ID, and the User ID from the Hello
 into the HelloAck, as described in Section 8.2.

Camarillo, et al. Expires January 15, 2013 [Page 68]

Internet-Draft BFCP July 2012

 The floor control server MUST add a SUPPORTED-PRIMITIVES attribute to
 the HelloAck message listing all the primitives (i.e., BFCP messages)
 supported by the floor control server.

 The floor control server MUST add a SUPPORTED-ATTRIBUTES attribute to
 the HelloAck message listing all the attributes supported by the
 floor control server.

13.8. Error Message Generation

 Error messages are always sent in response to a previous message from
 the client as part of a client-initiated transaction. The ABNF in

Section 5.3.13 describes the attributes that an Error message can
 contain. In addition, the ABNF specifies normatively which of these
 attributes are mandatory and which ones are optional.

 The floor control server MUST copy the Conference ID, the Transaction
 ID, and the User ID from the message from the client into the Error
 message, as described in Section 8.2.

 The floor control server MUST add an ERROR-CODE attribute to the
 Error message. The ERROR-CODE attribute contains an Error Code from
 Table 5. Additionally, the floor control server may add an ERROR-
 INFO attribute with extra information about the error.

14. Security Considerations

 BFCP uses TLS/DTLS to provide mutual authentication between clients
 and servers. TLS/DTLS also provides replay and integrity protection
 and confidentiality. It is RECOMMENDED that TLS/DTLS with non-null
 encryption always be used. BFCP entities MAY use other security
 mechanisms as long as they provide similar security properties.

 The remainder of this section analyzes some of the threats against
 BFCP and how they are addressed.

 An attacker may attempt to impersonate a client (a floor participant
 or a floor chair) in order to generate forged floor requests or to
 grant or deny existing floor requests. Client impersonation is
 avoided by having servers only accept BFCP messages over
 authenticated TLS/DTLS connections. The floor control server assumes
 that attackers cannot highjack the TLS/DTLS connection and,
 therefore, that messages over the TLS/DTLS connection come from the
 client that was initially authenticated.

 An attacker may attempt to impersonate a floor control server. A
 successful attacker would be able to make clients think that they

Camarillo, et al. Expires January 15, 2013 [Page 69]

Internet-Draft BFCP July 2012

 hold a particular floor so that they would try to access a resource
 (e.g., sending media) without having legitimate rights to access it.
 Floor control server impersonation is avoided by having servers only
 accept BFCP messages over authenticated TLS/DTLS connections, as well
 as ensuring clients only send and accept messages over authenticated
 TLS/DTLS connections.

 Attackers may attempt to modify messages exchanged by a client and a
 floor control server. The integrity protection provided by TLS/DTLS
 connections prevents this attack.

 An attacker may attempt to fetch a valid message sent by a client to
 a floor control server and replay it over a connection between the
 attacker and the floor control server. This attack is prevented by
 having floor control servers check that messages arriving over a
 given authenticated TLS/DTLS connection use an authorized user ID
 (i.e., a user ID that the user that established the authenticated
 TLS/DTLS connection is allowed to use).

 Attackers may attempt to pick messages from the network to get access
 to confidential information between the floor control server and a
 client (e.g., why a floor request was denied). TLS/DTLS
 confidentiality prevents this attack. Therefore, it is RECOMMENDED
 that TLS/DTLS be used with a non-null encryption algorithm.

15. IANA Considerations

 [Editorial note: This section instructs the IANA to register new
 entries in the BFCP Primitive subregistry in Section 15.2 and for
 the BFCP Error Code subregistry in Section 15.4.]

 The IANA has created a registry for BFCP parameters called "Binary
 Floor Control Protocol (BFCP) Parameters". This registry has a
 number of subregistries, which are described in the following
 sections.

15.1. Attribute Subregistry

 This section establishes the Attribute subregistry under the BFCP
 Parameters registry. As per the terminology in RFC 5226 [3], the
 registration policy for BFCP attributes shall be "Specification
 Required". For the purposes of this subregistry, the BFCP attributes
 for which IANA registration is requested MUST be defined by a
 standards-track RFC. Such an RFC MUST specify the attribute's type,
 name, format, and semantics.

 For each BFCP attribute, the IANA registers its type, its name, and

https://datatracker.ietf.org/doc/html/rfc5226

Camarillo, et al. Expires January 15, 2013 [Page 70]

Internet-Draft BFCP July 2012

 the reference to the RFC where the attribute is defined. The
 following table contains the initial values of this subregistry.

 +------+---------------------------+------------+
 | Type | Attribute | Reference |
 +------+---------------------------+------------+
 | 1 | BENEFICIARY-ID | [RFC XXXX] |
 | 2 | FLOOR-ID | [RFC XXXX] |
 | 3 | FLOOR-REQUEST-ID | [RFC XXXX] |
 | 4 | PRIORITY | [RFC XXXX] |
 | 5 | REQUEST-STATUS | [RFC XXXX] |
 | 6 | ERROR-CODE | [RFC XXXX] |
 | 7 | ERROR-INFO | [RFC XXXX] |
 | 8 | PARTICIPANT-PROVIDED-INFO | [RFC XXXX] |
 | 9 | STATUS-INFO | [RFC XXXX] |
 | 10 | SUPPORTED-ATTRIBUTES | [RFC XXXX] |
 | 11 | SUPPORTED-PRIMITIVES | [RFC XXXX] |
 | 12 | USER-DISPLAY-NAME | [RFC XXXX] |
 | 13 | USER-URI | [RFC XXXX] |
 | 14 | BENEFICIARY-INFORMATION | [RFC XXXX] |
 | 15 | FLOOR-REQUEST-INFORMATION | [RFC XXXX] |
 | 16 | REQUESTED-BY-INFORMATION | [RFC XXXX] |
 | 17 | FLOOR-REQUEST-STATUS | [RFC XXXX] |
 | 18 | OVERALL-REQUEST-STATUS | [RFC XXXX] |
 +------+---------------------------+------------+

 Table 7: Initial values of the BFCP Attribute subregistry

15.2. Primitive Subregistry

 [Editorial note: This section instructs the IANA to register the
 following new values for the BFCP Primitive subregistry:
 FloorRequestStatusAck, FloorStatusAck, Goodbye, and GoodbyeAck.]

 This section establishes the Primitive subregistry under the BFCP
 Parameters registry. As per the terminology in RFC 5226 [3], the
 registration policy for BFCP primitives shall be "Specification
 Required". For the purposes of this subregistry, the BFCP primitives
 for which IANA registration is requested MUST be defined by a
 standards-track RFC. Such an RFC MUST specify the primitive's value,
 name, format, and semantics.

 For each BFCP primitive, the IANA registers its value, its name, and
 the reference to the RFC where the primitive is defined. The
 following table contains the initial values of this subregistry.

https://datatracker.ietf.org/doc/html/rfc5226

Camarillo, et al. Expires January 15, 2013 [Page 71]

Internet-Draft BFCP July 2012

 +-------+-----------------------+------------+
 | Value | Primitive | Reference |
 +-------+-----------------------+------------+
 | 1 | FloorRequest | [RFC XXXX] |
 | 2 | FloorRelease | [RFC XXXX] |
 | 3 | FloorRequestQuery | [RFC XXXX] |
 | 4 | FloorRequestStatus | [RFC XXXX] |
 | 5 | UserQuery | [RFC XXXX] |
 | 6 | UserStatus | [RFC XXXX] |
 | 7 | FloorQuery | [RFC XXXX] |
 | 8 | FloorStatus | [RFC XXXX] |
 | 9 | ChairAction | [RFC XXXX] |
 | 10 | ChairActionAck | [RFC XXXX] |
 | 11 | Hello | [RFC XXXX] |
 | 12 | HelloAck | [RFC XXXX] |
 | 13 | Error | [RFC XXXX] |
 | 14 | FloorRequestStatusAck | [RFC XXXX] |
 | 15 | FloorStatusAck | [RFC XXXX] |
 | 16 | Goodbye | [RFC XXXX] |
 | 17 | GoodbyeAck | [RFC XXXX] |
 +-------+-----------------------+------------+

 Table 8: Initial values of the BFCP primitive subregistry

15.3. Request Status Subregistry

 This section establishes the Request Status subregistry under the
 BFCP Parameters registry. As per the terminology in RFC 5226 [3],
 the registration policy for BFCP request status shall be
 "Specification Required". For the purposes of this subregistry, the
 BFCP request status for which IANA registration is requested MUST be
 defined by a standards-track RFC. Such an RFC MUST specify the value
 and the semantics of the request status.

 For each BFCP request status, the IANA registers its value, its
 meaning, and the reference to the RFC where the request status is
 defined. The following table contains the initial values of this
 subregistry.

https://datatracker.ietf.org/doc/html/rfc5226

Camarillo, et al. Expires January 15, 2013 [Page 72]

Internet-Draft BFCP July 2012

 +-------+-----------+------------+
 | Value | Status | Reference |
 +-------+-----------+------------+
 | 1 | Pending | [RFC XXXX] |
 | 2 | Accepted | [RFC XXXX] |
 | 3 | Granted | [RFC XXXX] |
 | 4 | Denied | [RFC XXXX] |
 | 5 | Cancelled | [RFC XXXX] |
 | 6 | Released | [RFC XXXX] |
 | 7 | Revoked | [RFC XXXX] |
 +-------+-----------+------------+

 Table 9: Initial values of the Request Status subregistry

15.4. Error Code Subregistry

 [Editorial note: This section instructs the IANA to register the
 following new values for the BFCP Error Code subregistry: 10, 11,
 12, 13 and 14.]

 This section establishes the Error Code subregistry under the BFCP
 Parameters registry. As per the terminology in RFC 5226 [3], the
 registration policy for BFCP error codes shall be "Specification
 Required". For the purposes of this subregistry, the BFCP error
 codes for which IANA registration is requested MUST be defined by a
 standards-track RFC. Such an RFC MUST specify the value and the
 semantics of the error code, and any Error Specific Details that
 apply to it.

 For each BFCP primitive, the IANA registers its value, its meaning,
 and the reference to the RFC where the primitive is defined. The
 following table contains the initial values of this subregistry.

https://datatracker.ietf.org/doc/html/rfc5226

Camarillo, et al. Expires January 15, 2013 [Page 73]

Internet-Draft BFCP July 2012

 +-------+--------------------------------------+------------+
 | Value | Meaning | Reference |
 +-------+--------------------------------------+------------+
 | 1 | Conference does not Exist | [RFC XXXX] |
 | 2 | User does not Exist | [RFC XXXX] |
 | 3 | Unknown Primitive | [RFC XXXX] |
 | 4 | Unknown Mandatory Attribute | [RFC XXXX] |
 | 5 | Unauthorized Operation | [RFC XXXX] |
 | 6 | Invalid Floor ID | [RFC XXXX] |
 | 7 | Floor Request ID Does Not Exist | [RFC XXXX] |
 | 8 | You have Already Reached the Maximum | [RFC XXXX] |
 | | Number of Ongoing Floor Requests for | |
 | | this Floor | |
 | 9 | Use TLS | [RFC XXXX] |
 | 10 | Unable to parse message | [RFC XXXX] |
 | 11 | Use DTLS | [RFC XXXX] |
 | 12 | Unsupported Version | [RFC XXXX] |
 | 13 | Incorrect Message Length | [RFC XXXX] |
 | 14 | Generic Error | [RFC XXXX] |
 +-------+--------------------------------------+------------+

 Table 10: Initial Values of the Error Code subregistry

16. Changes from RFC 4582

 Following is the list of technical changes and other non-trivial
 fixes from [17].

 Main purpose of this work was to revise the specification to support
 BFCP over unreliable transport, resulting in the following changes:

 Overview of Operation (Section 4):
 Expand the description of client-initiated and server-initiated
 transactions.

 COMMON-HEADER Format (Section 5.1):
 Ver(sion) field, where the value 2 is used for the extensions
 for unreliable transport. Added new R and F flag-bits for
 unreliable transport. Res(erved) field is now 3 bit. New
 optional Fragment Offset and Fragment Length fields.

 New primitives (Section 5.1):
 Added five new primitives: FloorRequestStatusAck,
 FloorStatusAck, Goodbye, and GoodbyeAck.

https://datatracker.ietf.org/doc/html/rfc4582

Camarillo, et al. Expires January 15, 2013 [Page 74]

Internet-Draft BFCP July 2012

 New error codes (Section 5.2.6):
 Added three new error codes: "Unable to Parse Message", "Use
 DTLS" and "Unsupported Version".

 ABNF for new primitives (Section 5.3):
 New subsections with normative ABNF for the new primitives.

 Transport split in two (Section 6):
Section 6 specifying the transport was split in two

 subsections; Section 6.1 for reliable transport and Section 6.2
 for unreliable transport. Where the specification for
 unreliable transport amongst other issues deals with
 reliability, congestion control, fragmentation and ICMP.

 Mandate DTLS (Section 7 and Section 9):
 Mandate DTLS support when transport over UDP is used.

 Transaction changes (Section 8):
 Server-initiated transactions over unreliable transport has
 non-zero and unique Transaction ID. Over unreliable transport,
 the retransmit timers T1 and T2 described in Section 8.3
 applies.

 Requiring timely response (Section 10.1.2, Section 10.2.2,
Section 11.2, Section 12.1.2, Section 12.2.2, Section 12.3.2,
Section 12.4.2, Section 10.1.3 and Section 12.1.3):

 Describing that a given response must be sent within the
 transaction failure window to complete the transaction.

 Updated IANA Considerations (Section 15):
 Added the new primitives and error codes to Section 15.2 and

Section 15.4 respectively.

 Examples over unreliable transport (Appendix A):
 Added sample interactions over unreliable transport for the
 scenarios in Figure 2 and Figure 3

 Motivation for unreliable transport (Appendix B):
 Introduction to and motivation for extending BFCP to support
 unreliable transport.

 The clarification and bug fixes:

 ABNF fixes (Figure 22, Figure 24, ="fig:reqby-information"/>,
 Figure 28, Figure 30, and the ABNF figures in Section 5.3):
 Although formally correct in [17], the notation has changed in a
 number of Figures to an equivalent form for clarity, e.g.
 s/*1(FLOOR-ID)/[FLOOR-ID]/ in Figure 38 and s/*[XXX]/*(XXX)/ in

Camarillo, et al. Expires January 15, 2013 [Page 75]

Internet-Draft BFCP July 2012

 the other figures.

 Typo (Section 12.4.2):
 Change from SUPPORTED-PRIMITIVES to SUPPORTED-PRIMITVIES in the
 second paragraph.

 Corrected attribute type (Section 13.1.1):
 Change from PARTICIPANT-PROVIDED-INFO to PRIORITY attributed in
 the eighth paragraph, since the note below describes priority and
 that the last paragraph deals with PARTICIPANT-PROVIDED-INFO.

 New error codes (Section 5.2.6):
 Added two additional error codes: "Incorrect Message Length" and
 "Generic Error".

17. Acknowledgements

 The XCON WG chairs, Adam Roach and Alan Johnston, provided useful
 ideas for RFC 4582 [17]. Additionally, Xiaotao Wu, Paul Kyzivat,
 Jonathan Rosenberg, Miguel A. Garcia-Martin, Mary Barnes, Ben
 Campbell, Dave Morgan, and Oscar Novo provided useful comments during
 the work with RFC 4582. The authors also acknowledge contributions
 to the revision of BFCP for use over an unreliable transport from
 Geir Arne Sandbakken who had the initial idea, Alfred E. Heggestad,
 Trond G. Andersen, Gonzalo Camarillo, Roni Even, Lorenzo Miniero,
 Joerg Ott, Eoin McLeod, Mark K. Thompson, Hadriel Kaplan, Dan Wing,
 Cullen Jennings, David Benham, Nivedita Melinkeri, Woo Johnman,
 Vijaya Mandava and Alan Ford. In the final phase Erns Horvath did a
 thorough review revealing issues that needed clarification and
 changes.

18. References

18.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [3] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.

 [4] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
 Protocol Version 1.2", RFC 5246, August 2008.

https://datatracker.ietf.org/doc/html/rfc4582
https://datatracker.ietf.org/doc/html/rfc4582
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246

Camarillo, et al. Expires January 15, 2013 [Page 76]

Internet-Draft BFCP July 2012

 [5] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [6] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
 STD 63, RFC 3629, November 2003.

 [7] Camarillo, G. and T. Kristensen, Ed., "Session Description
 Protocol (SDP) Format for Binary Floor Control Protocol (BFCP)
 Streams", draft-ietf-bfcpbis-rfc4583bis-02 (work in progress),
 July 2012.

 [8] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework for
 Establishing a Secure Real-time Transport Protocol (SRTP)
 Security Context Using Datagram Transport Layer Security
 (DTLS)", RFC 5763, May 2010.

 [9] Wing, D., "Symmetric RTP / RTP Control Protocol (RTCP)",
BCP 131, RFC 4961, July 2007.

 [10] Jennings, C., Mahy, R., and F. Audet, "Managing Client-
 Initiated Connections in the Session Initiation Protocol
 (SIP)", RFC 5626, October 2009.

 [11] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, "Session
 Traversal Utilities for NAT (STUN)", RFC 5389, October 2008.

18.2. Informational References

 [12] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
 Session Description Protocol (SDP)", RFC 3264, June 2002.

 [13] Koskelainen, P., Ott, J., Schulzrinne, H., and X. Wu,
 "Requirements for Floor Control Protocols", RFC 4376,
 February 2006.

 [14] Barnes, M., Boulton, C., and O. Levin, "A Framework for
 Centralized Conferencing", RFC 5239, June 2008.

 [15] Rosenberg, J., "Interactive Connectivity Establishment (ICE): A
 Protocol for Network Address Translator (NAT) Traversal for
 Offer/Answer Protocols", RFC 5245, April 2010.

 [16] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [17] Camarillo, G., Ott, J., and K. Drage, "The Binary Floor Control
 Protocol (BFCP)", RFC 4582, November 2006.

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/draft-ietf-bfcpbis-rfc4583bis-02
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/bcp131
https://datatracker.ietf.org/doc/html/rfc4961
https://datatracker.ietf.org/doc/html/rfc5626
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc4376
https://datatracker.ietf.org/doc/html/rfc5239
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4582

Camarillo, et al. Expires January 15, 2013 [Page 77]

Internet-Draft BFCP July 2012

 [18] Huitema, C., "Teredo: Tunneling IPv6 over UDP through Network
 Address Translations (NATs)", RFC 4380, February 2006.

 [19] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines for
 Application Designers", BCP 145, RFC 5405, November 2008.

 [20] Thaler, D., "Teredo Extensions", RFC 6081, January 2011.

 [21] Stewart, R., "Stream Control Transmission Protocol", RFC 4960,
 September 2007.

 [22] Rosenberg, J., Keranen, A., Lowekamp, B., and A. Roach, "TCP
 Candidates with Interactive Connectivity Establishment (ICE)",

RFC 6544, March 2012.

 [23] Manner, J., Varis, N., and B. Briscoe, "Generic UDP Tunnelling
 (GUT)", draft-manner-tsvwg-gut-02 (work in progress),
 July 2010.

 [24] Stucker, B., Tschofenig, H., and G. Salgueiro, "Analysis of
 Middlebox Interactions for Signaling Protocol Communication
 along the Media Path",

draft-ietf-mmusic-media-path-middleboxes-04 (work in progress),
 January 2012.

 [25] Guha, S. and P. Francis, "Characterization and Measurement of
 TCP Traversal through NATs and Firewalls", 2005,
 <http://saikat.guha.cc/pub/imc05-tcpnat.pdf/>.

 [26] Ford, B., Srisuresh, P., and D. Kegel, "Peer-to-Peer
 Communication Across Network Address Translators", April 2005,
 <http://www.brynosaurus.com/pub/net/p2pnat.pdf/>.

Appendix A. Example Call Flows for BFCP over Unreliable Transport

 With reference to Section 4.1, the following figures show
 representative call-flows for requesting and releasing a floor, and
 obtaining status information about a floor when BFCP is deployed over
 an unreliable transport. The figures here show a loss-less
 interaction.

 Floor Participant Floor Control
 Server
 |(1) FloorRequest |
 |Transaction ID: 123 |
 |User ID: 234 |

https://datatracker.ietf.org/doc/html/rfc4380
https://datatracker.ietf.org/doc/html/bcp145
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc6081
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6544
https://datatracker.ietf.org/doc/html/draft-manner-tsvwg-gut-02
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-media-path-middleboxes-04
http://saikat.guha.cc/pub/imc05-tcpnat.pdf/
http://www.brynosaurus.com/pub/net/p2pnat.pdf/

Camarillo, et al. Expires January 15, 2013 [Page 78]

Internet-Draft BFCP July 2012

 |FLOOR-ID: 543 |
 |-->|
 | |
 |(2) FloorRequestStatus |
 |Transaction ID: 123 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Pending |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|
 | |
 |(3) FloorRequestStatus |
 |Transaction ID: 4098 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 1st |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|
 | |
 |(4) FloorRequestStatusAck |
 |Transaction ID: 4098 |
 |User ID: 234 |
 |-->|
 | |
 |(5) FloorRequestStatus |
 |Transaction ID: 4130 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Granted |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|
 | |
 |(6) FloorRequestStatusAck |
 |Transaction ID: 4130 |
 |User ID: 234 |
 |-->|
 | |
 |(7) FloorRelease |

Camarillo, et al. Expires January 15, 2013 [Page 79]

Internet-Draft BFCP July 2012

 |Transaction ID: 154 |
 |User ID: 234 |
 |FLOOR-REQUEST-ID: 789 |
 |-->|
 | |
 |(8) FloorRequestStatus |
 |Transaction ID: 154 |
 |User ID: 234 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 789 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Released |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 |<--|

 Figure 48: Requesting and releasing a floor

 Note that in Figure 48, the FloorRequestStatus message from the floor
 control server to the floor participant is a transaction-closing
 message as a response to the client-initiated transaction with
 Transaction ID 154. It does not and SHOULD NOT be followed by a
 FloorRequestStatusAck message from the floor participant to the floor
 control server.

 Floor Participant Floor Control
 Server
 |(1) FloorQuery |
 |Transaction ID: 257 |
 |User ID: 234 |
 |FLOOR-ID: 543 |
 |-->|
 | |
 |(2) FloorStatus |
 |Transaction ID: 257 |
 |User ID: 234 |
 |FLOOR-ID:543 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 764 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 1st |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 124 |
 |FLOOR-REQUEST-INFORMATION |

Camarillo, et al. Expires January 15, 2013 [Page 80]

Internet-Draft BFCP July 2012

 | Floor Request ID: 635 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 2nd |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 154 |
 |<--|
 | |
 |(3) FloorStatus |
 |Transaction ID: 4319 |
 |User ID: 234 |
 |FLOOR-ID:543 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 764 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Granted |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 124 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 635 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Accepted |
 | Queue Position: 1st |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |
 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 154 |
 |<--|
 | |
 |(4) FloorStatusAck |
 |Transaction ID: 4319 |
 |User ID: 234 |
 |-->|
 | |
 |(5) FloorStatus |
 |Transaction ID: 4392 |
 |User ID: 234 |
 |FLOOR-ID:543 |
 |FLOOR-REQUEST-INFORMATION |
 | Floor Request ID: 635 |
 | OVERALL-REQUEST-STATUS |
 | Request Status: Granted |
 | FLOOR-REQUEST-STATUS |
 | Floor ID: 543 |

Camarillo, et al. Expires January 15, 2013 [Page 81]

Internet-Draft BFCP July 2012

 | BENEFICIARY-INFORMATION |
 | Beneficiary ID: 154 |
 |<--|
 | |
 |(6) FloorStatusAck |
 |Transaction ID: 4392 |
 |User ID: 234 |
 |-->|

 Figure 49: Obtaining status information about a floor

Appendix B. Motivation for Supporting Unreliable Transport

 [Editorial note: This appendix is contained in this draft as an
 aid and rationale for new readers and reviewers. However, it is
 not yet decided whether this Appendix will be part of the final
 (RFC) version or not.]

B.1. Motivation

 In existing video conferencing deployments, BFCP is used to manage
 the floor for the content sharing associated with the conference.
 For peer to peer scenarios, including business to business
 conferences and point to point conferences in general, it is
 frequently the case that one or both endpoints exists behind a NAT/
 firewall. BFCP roles are negotiated in the offer/answer exchange as
 specified in [7], resulting in one endpoint being responsible for
 opening the TCP connection used for the BFCP communication.

 +---------+
 | Network |
 +---------+
 +-----+ / \ +-----+
 | NAT |/ \| NAT |
 +-----+ +-----+
 +----+ / \ +----+
 |BFCP|/ \|BFCP|
 | UA | | UA |
 +----+ +----+

 Figure 50: Use Case

 The communication session between the video conferencing endpoints
 typically consists of a number of RTP over UDP media streams, for
 audio and video, and a BFCP connection for floor control. Existing
 deployments are most common in, but not limited to, enterprise

Camarillo, et al. Expires January 15, 2013 [Page 82]

Internet-Draft BFCP July 2012

 networks. In existing deployments, NAT/firewall traversal for the
 RTP streams works using ICE and/or other methods, including those
 described in [24].

 When enhancing an existing SIP based video conferencing deployment
 with support for content sharing, the BFCP connection often poses a
 problem. The reasons for this fall into two general classes. First,
 there may be a strong preference for UDP based signaling in general.
 On high capacity endpoints (e.g. PSTN gateways or SIP/H.323 inter-
 working gateways), TCP can suffer from head of line blocking, and it
 uses many kernel buffers. Network operators view UDP as a way to
 avoid both of these. Second, establishment and traversal of the TCP
 connection involving ephemeral ports, as is typically the case with
 BFCP over TCP, can be problematic, as described in Appendix A of
 [22]. A broad study of NAT behavior and peer-to-peer TCP
 establishment for a comprehensive set of TCP NAT traversal techniques
 over a wide range of commercial NAT products concluded it was not
 possible to establish a TCP connection in 11% of the cases [25]. The
 results are worse when focusing on enterprise NATs. A study of hole
 punching as a NAT traversal technique across a wide variety of
 deployed NATs reported consistently higher success rates when using
 UDP than when using TCP [26].

 It is worth noticing that BFCP over UDP were already used in real
 deployments, underlining the necessity to specify a common way to
 exchange BFCP messages where TCP is not appropriate, to avoid a
 situation where multiple different and non-interoperable would co-
 exist in the market. The purpose of this draft is to formalize and
 publish the extension from the standard specification to facilitate
 complete interoperability between implementations.

B.1.1. Alternatives Considered

 In selecting the approach of defining UDP as an alternate transport
 for BFCP, several alternatives were considered and explored to some
 degree. Each of these is discussed briefly in the following
 subsections. In summary, while the not chosen alternatives work in a
 number of scenarios, they are not sufficient, in and of themselves,
 to address the use case targeted by this draft. The last
 alternative, presented in Appendix B.1.1.7, is the selected one and
 is specified in this draft.

 It is also worth noting that the IETF Transport Area were asked for a
 way to tunnel TCP over UDP, but at that point there was no consensus
 on how to achieve that.

Camarillo, et al. Expires January 15, 2013 [Page 83]

Internet-Draft BFCP July 2012

B.1.1.1. ICE TCP

 ICE TCP [22] extends ICE to TCP based media, including the ability to
 offer a mix of TCP and UDP based candidates for a single stream. ICE
 TCP has, in general, a lower success probability for enabling TCP
 connectivity without a relay if both of the hosts are behind a NAT
 (see Appendix A of [22]) than enabling UDP connectivity in the same
 scenarios. The happens because many of the currently deployed NATs
 in video conferencing networks do not support the flow of TCP hand
 shake packets seen in case of TCP simultaneous-open, either because
 they do not allow incoming TCP SYN packets from an address to which a
 SYN packet has been sent to recently, or because they do not properly
 process the subsequent SYNACK. Implementing various techniques
 advocated for candidate collection in [22] should increase the
 success probability, but many of these techniques require support
 from some network elements (e.g., from the NATs). Such support is
 not common in enterprise firewalls and NATs.

B.1.1.2. Teredo

 Teredo [18] enables nodes located behind one or more IPv4 NATs to
 obtain IPv6 connectivity by tunneling packets over UDP. Teredo
 extensions [20] provide additional capabilities to Teredo, including
 support for more types of NATs and support for more efficient
 communication.

 As defined, Teredo could be used to make BFCP work for the video
 conferencing use cases addressed in this draft. However, running the
 service requires the help of "Teredo servers" and "Teredo relays"
 [18]. These servers and relays generally do not exist in the
 existing video conferencing deployments. It also requires IPv6
 awareness on the endpoints. It should also be noted that ICMP6, as
 used with Teredo to complete an initial protocol exchange and confirm
 that the appropriate NAT bindings have been set up, is not a
 conventional feature of IPv4 or even IPv6, and some currently
 deployed IPv6 firewalls discard ICMP messages. As these networks
 continue to evolve and tackle the transaction to IPv6, Teredo servers
 and relays may be deployed, making Teredo available as a suitable
 alternative to BFCP over UDP.

B.1.1.3. GUT

 GUT [23] attempts to facilitate tunneling over UDP by encapsulating
 the native transport protocol and its payload (in general the whole
 IP payload) within a UDP packet destined to the well-known port
 GUT_P. Unfortunately, it requires user-space TCP, for which there is
 not a readily available implementation, and creating one is a large
 project in itself. This draft has expired and its future is still

Camarillo, et al. Expires January 15, 2013 [Page 84]

Internet-Draft BFCP July 2012

 not clear as it has not yet been adopted by a working group.

B.1.1.4. UPnP IGD

 Universal Plug and Play Internet Gateway Devices (UPnP IGD) sit on
 the edge of the network, providing connectivity to the Internet for
 computers internal to the LAN, but do not allow Internet devices to
 connect to computers on the internal LAN. IGDs enable a computer on
 an internal LAN to create port mappings on their NAT, through which
 hosts on the Internet can send data that will be forwarded to the
 computer on the internal LAN. IGDs may be self-contained hardware
 devices or may be software components provided within an operating
 system.

 In considering UPnP IGD, several issues exist. Not all NATs support
 UPnP, and many that do support it are configured with it turned off
 by default. NATs are often multilayered, and UPnP does not work well
 with such NATs. For example, a typical DSL modems acts as a NAT, and
 the user plugs in a wireless access point behind that, which adds
 another layer NAT. The client can discover the first layer of NAT
 using multicast but it is harder to figure out how to discover and
 control NATs in the next layer up.

B.1.1.5. NAT PMP

 The NAT Port Mapping Protocol (NAT PMP) allows a computer in a
 private network (behind a NAT router) to automatically configure the
 router to allow parties outside the private network to contact it.
 NAT PMP runs over UDP. It essentially automates the process of port
 forwarding. Included in the protocol is a method for retrieving the
 public IP address of a NAT gateway, thus allowing a client to make
 this public IP address and port number known to peers that may wish
 to communicate with it.

 Many NATs do not support PMP. In those that do support it, it has
 similar issues with negotiation of multilayer NATs as UPnP. Video
 conferencing is used extensively in enterprise networks, and NAT PMP
 is not generally available in enterprise-class routers.

B.1.1.6. SCTP

 It would be quite straight forward to specify a BFCP binding for SCTP
 [21], and then tunnel SCTP over UDP in the use case described in

Appendix B.1. SCTP is gaining some momentum currently. There is
 ongoing discussion in the RTCWeb WG regarding this approach.
 However, this approach for tunneling over UDP was not mature enough
 when considered and not even fully specified.

Camarillo, et al. Expires January 15, 2013 [Page 85]

Internet-Draft BFCP July 2012

B.1.1.7. BFCP over UDP transport

 To overcome the problems with establishing TCP flows between BFCP
 entities, an alternative is to define UDP as an alternate transport
 for BFCP, leveraging the same mechanisms in place for the RTP over
 UDP media streams for the BFCP communication. When using UDP as the
 transport, it is recommended to follow the guidelines provided in
 [19].

 Minor changes to the transaction model are introduced in that all
 requests now have an appropriate response to complete the
 transaction. The requests are sent with a retransmit timer
 associated with the response to achieve reliability. This
 alternative does not change the semantics of BFCP. It permits UDP as
 an alternate transport.

 Existing implementations, in the spirit of the approach detailed in
 earlier versions of this draft, have demonstrated this approach to be
 feasible. Initial compatibility among implementations has been
 achieved at previous interoperability events. The authors view this
 extension as a pragmatic solution to an existing deployment
 challenge. This is the chosen approach, and the extensions is
 specified in this document.

Authors' Addresses

 Gonzalo Camarillo
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: gonzalo.camarillo@ericsson.com

 Keith Drage
 Alcatel-Lucent
 Quadrant, StoneHill Green, Westlea
 Swindon, Wilts
 UK

 Email: drage@alcatel-lucent.com

Camarillo, et al. Expires January 15, 2013 [Page 86]

Internet-Draft BFCP July 2012

 Tom Kristensen (editor)
 Cisco
 Philip Pedersens vei 22
 N-1366 Lysaker
 Norway

 Email: tomkrist@cisco.com, tomkri@ifi.uio.no

 Joerg Ott
 Aalto University
 Otakaari 5 A
 Espoo, FIN 02150
 Finland

 Email: jo@comnet.tkk.fi

 Charles Eckel
 Cisco
 170 West Tasman Drive
 San Jose, CA 95134
 United States

 Email: eckelcu@cisco.com

Camarillo, et al. Expires January 15, 2013 [Page 87]

