
BGMP Working Group D. Thaler
Internet Engineering Task Force Microsoft
INTERNET-DRAFT 30 June 2002
Expires December 2002

Border Gateway Multicast Protocol (BGMP):
Protocol Specification

<draft-ietf-bgmp-spec-03.txt>

Status of this Memo

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

This document describes BGMP, a protocol for inter-domain multicast
routing. BGMP builds shared trees for active multicast groups, and
optionally allows receiver domains to build source-specific, inter-
domain, distribution branches where needed. BGMP natively supports

https://datatracker.ietf.org/doc/html/draft-ietf-bgmp-spec-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Draft BGMP June 2002

"source-specific multicast" (SSM). To also support "any-source
multicast" (ASM), BGMP requires that each multicast group be associated
with a single root (in BGMP it is referred to as the root domain). It
requires that different ranges of the class D space are associated
(e.g., with Unicast-Prefix-Based Multicast addressing) with different
domains. Each of these domains then becomes the root of the shared
domain-trees for all groups in its range. Multicast participants will
generally receive better multicast service if the session initiator's
address allocator selects addresses from its own domain's part of the
space, thereby causing the root domain to be local to at least one of
the session participants.

Copyright Notice

Copyright (C) The Internet Society (2002). All Rights Reserved.

1. Acknowledgements

 In addition to the editors, the following individuals have
 contributed to the design of BGMP: Cengiz Alaettinoglu, Tony
 Ballardie, Steve Casner, Steve Deering, Deborah Estrin, Dino
 Farinacci, Bill Fenner, Mark Handley, Ahmed Helmy, Van Jacobson, Dave
 Meyer, and Satish Kumar.

 This document is the product of the IETF BGMP Working Group with Dave
 Thaler as editor.

 Rusty Eddy, Isidor Kouvelas, and Pavlin Radoslavov also provided
 valuable feedback on this document.

2. Purpose

 It has been suggested that inter-domain "any-source" multicast is
 better supported with a rendezvous mechanism whereby members receive
 source's data packets without any sort of global broadcast (e.g.,
 MSDP broadcasts source information, PIM-DM and DVMRP broadcast
 initial data packets, and MOSPF broadcasts membership information).
 PIM-SM [PIMSM] and CBT [CBT] use a shared group-tree, to which all
 members join and thereby hear from all sources (and to which non-
 members do not join and thereby hear from no sources).

 This document describes BGMP, a protocol for inter-domain multicast
 routing. BGMP natively supports "source-specific multicast" (SSM).

Expires December 2002 [Page 2]

Draft BGMP June 2002

 To also support "any-source multicast" (ASM), BGMP builds shared
 trees for active multicast groups, and allows domains to build
 source-specific, inter-domain, distribution branches where needed.
 Building upon concepts from PIM-SM and CBT, BGMP requires that each
 global multicast group be associated with a single root. However, in
 BGMP, the root is an entire exchange or domain, rather than a single
 router.

 For non-source-specific groups, BGMP assumes that ranges of the class
 D space have been associated (e.g., with Unicast-Prefix-Based
 Multicast [V4PREFIX,V6PREFIX] addressing) with selected domains.
 Each such domain then becomes the root of the shared domain-trees for
 all groups in its range. An address allocator will generally achieve
 better distribution trees if it takes its multicast addresses from
 its own domain's part of the space, thereby causing the root domain
 to be local.

 BGMP uses TCP as its transport protocol. This eliminates the need to
 implement message fragmentation, retransmission, acknowledgement, and
 sequencing. BGMP uses TCP port 264 for establishing its connections.
 This port is distinct from BGP's port to provide protocol
 independence, and to facilitate distinguishing between protocol
 packets (e.g., by packet classifiers, diagnostic utilities, etc.)

 Two BGMP peers form a TCP connection between one another, and
 exchange messages to open and confirm the connection parameters.
 They then send incremental Join/Prune Updates as group memberships
 change. BGMP does not require periodic refresh of individual
 entries. KeepAlive messages are sent periodically to ensure the
 liveness of the connection. Notification messages are sent in
 response to errors or special conditions. If a connection encounters
 an error condition, a notification message is sent and the connection
 is closed if the error is a fatal one.

3. Revision History

29 June 2002 draft-01

 (1) Removed all references to MASC and G-RIB. The current spec only
 covers BGMP operation for source-specific groups, and any-source-
 multicast using unicast prefix-based multicast addresses (for
 both IPv4 and IPv6). No new routes of any type are needed in the
 routing table.

https://datatracker.ietf.org/doc/html/draft-01

Expires December 2002 [Page 3]

Draft BGMP June 2002

 (2) Removed section on transitioning away from using DVMRP as the
 backbone to an AS-based multicast routing system with MBGP, as
 this has already happened.

4. Terminology

This document uses the following technical terms:

Domain:
 A set of one or more contiguous links and zero or more routers
 surrounded by one or more multicast border routers. Note that this
 loose definition of domain also applies to an external link between
 two domains, as well as an exchange.

Root Domain:
 When constructing a shared tree of domains for some group, one
 domain will be the "root" of the tree. The root domain receives
 data from each sender to the group, and functions as a rendezvous
 domain toward which member domains can send inter-domain joins, and
 to which sender domains can send data.

Multicast RIB:
 The Routing Information Base, or routing table, used to calculate
 the "next-hop" towards a particular address for multicast traffic.

Multicast IGP (M-IGP):
 A generic term for any multicast routing protocol used for tree
 construction within a domain. Typical examples of M-IGPs are: PIM-
 SM, PIM-DM, DVMRP, MOSPF, and CBT.

EGP: A generic term for the interdomain unicast routing protocol in use.
 Typically, this will be some version of BGP which can support a
 Multicast RIB, such as MBGP [MBGP], containing both unicast and
 multicast address prefixes.

Component:
 The portion of a border router associated with (and logically
 inside) a particular domain that runs the multicast IGP (M-IGP) for
 that domain, if any. Each border router thus has zero or more
 components inside routing domains. In addition, each border router
 with external links that do not fall inside any routing domain will
 have an inter-domain component that runs BGMP.

Expires December 2002 [Page 4]

Draft BGMP June 2002

External peer:
 A border router in another multicast AS (autonomous system, as used
 in BGP), to which a BGMP TCP-connection is open. If BGP is being
 used as the EGP, a separate "eBGP" TCP-connection will also be open
 to the same peer.

Internal peer:
 Another border router of the same multicast AS. If BGP is being
 used as the EGP, the border router either speaks iBGP ("internal"
 BGP) directly to internal peers in a full mesh, or indirectly
 through a route reflector [REFLECT].

Next-hop peer:
 The next-hop peer towards a given IP address is the next EGP router
 on the path to the given address, according to multicast RIB routes
 in the EGP's routing table (e.g., in MBGP, routes whose Subsequent
 Address Family Identifier field indicates that the route is valid
 for multicast traffic).

target:
 Either an EGP peer, or an M-IGP component.

Tree State Table:
 This is a table of (S-prefix,G) and (*,G-prefix) entries that have
 been explicitly joined by a set of targets. Each entry has, in
 addition to the source and group addresses and masks, a list of
 targets that have explicitly requested data (on behalf of directly
 connected hosts or downstream routers). (S,G) entries also have an
 "SPT" bit.

The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY" in
this document are to be interpreted as described in [RFC2119].

5. Protocol Overview

 BGMP maintains group-prefix state in response to messages from BGMP
 peers and notifications from M-IGP components. Group-shared trees
 are rooted at the domain advertising the group prefix covering those
 groups. When a receiver joins a specific group address, the border
 router towards the root domain generates a group-specific Join
 message, which is then forwarded Border-Router-by-Border-Router
 towards the root domain (see Figure 1). BGMP Join and Prune messages
 are sent over TCP connections between BGMP peers, and BGMP protocol
 state is refreshed by KEEPALIVE messages periodically sent over TCP.

https://datatracker.ietf.org/doc/html/rfc2119

Expires December 2002 [Page 5]

Draft BGMP June 2002

 BGMP routers build group-specific bidirectional forwarding state as
 they process the BGMP Join messages. Bidirectional forwarding state
 means that packets received from any target are forwarded to all
 other targets in the target list without any RPF checks. No group-
 specific state or traffic exists in parts of the network where there
 are no members of that group.

 BGMP routers optionally build source-specific unidirectional
 forwarding state, only where needed, to be compatible with source-
 specific trees (SPTs) used by some M-IGPs (e.g., DVMRP, PIM-DM, or
 PIM-SM), or to construct trees for source-specific groups. A domain
 that uses an SPT-based M-IGP may need to inject multicast packets
 from external sources via different border routers (to be compatible
 with the M-IGP RPF checks) which thus act as "surrogates". For
 example, in the Transit_1 domain, data from Src_A arrives at BR12,
 but must be injected by BR11. A surrogate router may create a
 source-specific BGMP branch if no shared tree state exists. Note:
 stub domains with a single border router, such as Rcvr_Stub_7 in
 Figure 1, receive all multicast data packets through that router, to
 which all RPF checks point. Therefore, stub domains never build
 source-specific state.

 Root_Domain
 [BR91]--------------------------\
 | |
 [BR32] [BR41]
 Transit_3 Transit_4
 [BR31] [BR42] [BR43]
 | | |
 [BR22] [BR52] [BR53]
 Transit_2 Transit_5
 [BR21] [BR51]
 | |
 [BR12] [BR61]
 Transit_1[BR11]----------[BR62]Stub_6
 [BR13] (Src_A)
 | (Rcvr_D)

 | |
 [BR71] [BR81]
 Rcvr_Stub_7 Src_only_Stub_8
 (Rcvr_C) (Src_B)

 Figure 1: Example inter-domain topology. [BRXY] represents a BGMP
 border

Expires December 2002 [Page 6]

Draft BGMP June 2002

 router. Transit_X is a transit domain network. *_Stub_X is a stub
 domain network.

 Data packets are forwarded based on a combination of BGMP and M-IGP
 rules. The router forwards to a set of targets according to a
 matching (S,G) BGMP tree state entry if it exists. If not found, the
 router checks for a matching (*,G) BGMP tree state entry. If neither
 is found, then the packet is sent natively to the next-hop EGP peer
 for G, according to the Multicast RIB (for example, in the case of a
 non-member sender such as Src_B in Figure 1). If a matching entry
 was found, the packet is forwarded to all other targets in the target
 list. In this way BGMP trees forward data in a bidirectional manner.
 If a target is an M-IGP component then forwarding is subject to the
 rules of that M-IGP protocol.

5.1. Design Rationale

 Several other protocols, or protocol proposals, build shared trees
 within domains [PIM-SM, CBT]. The design choices made for BGMP
 result from our focus on Inter-Domain multicast in particular. The
 design choices made by PIM-SM and CBT are better suited to the wide-
 area intra-domain case. There are three major differences between
 BGMP and other shared-tree protocols:

 (1) Unidirectional vs. Bidirectional trees

 Bidirectional trees (using bidirectional forwarding state as
 described above) minimize third party dependence which is essential
 in the inter-domain context. For example, in Figure 1, stub domains
 7 and 8 would like to exchange multicast packets without being
 dependent on the quality of connectivity of the root domain.
 However, unidirectional shared trees (i.e., those using RPF checks)
 have more aggressive loop prevention and share the same processing
 rules as source-specific entries which are inherently unidirectional.

 The lack of third party dependence concerns in the INTRA domain case
 reduces the incentive to employ bidirectional trees. BGMP supports
 bidirectional trees because it has to, and because it can without
 excessive cost.

 (2) Source-specific distribution trees/branches

 In a departure from other shared tree protocols, source-specific BGMP

Expires December 2002 [Page 7]

Draft BGMP June 2002

 state is built ONLY where (a) it is needed to pull the multicast
 traffic down to a BGMP router that has source-specific (S,G) state,
 and (b) that router is NOT already on the shared tree (i.e., has no
 (*,G) state), and (c) that router does not want to receive packets
 via encapsulation from a router which is on the shared tree. BGMP
 provides source-specific branches because most M-IGP protocols in use
 today build source-specific trees. BGMP's source-specific branches
 eliminate the unnecessary overhead of encapsulations for high data
 rate sources from the shared tree's ingress router to the surrogate
 injector (e.g. from BR12 to BR11 in Figure 1). Moreover, cases in
 which shared paths are significantly longer than SPT paths will also
 benefit.

 However, except for source-specific group distribution trees, we do
 not build source-specific inter-domain trees in general because (a)
 inter-domain connectivity is generally less rich than intra-domain
 connectivity, so shared distribution trees should have more
 acceptible path length and traffic concentration properties in the
 inter-domain context, than in the intra-domain case, and (b) by
 having the shared tree state always take precedence over source-
 specific tree state, we avoid ambiguities that can otherwise arise.

 In summary, BGMP trees are, in a sense, a hybrid between PIM-SM and
 CBT trees.

 (3) Method of choosing root of group shared tree

 The choice of a group's shared-tree-root has implications for
 performance and policy. In the intra-domain case it is sometimes
 assumed that all potential shared-tree roots (RPs/Cores) within the
 domain are equally suited to be the root for a group that is
 initiated within that domain. In the INTER-domain case, there is far
 more opportunity for unacceptably poor locality, and administrative
 control of a group's shared-tree root. Therefore in the intra-domain
 case, other protocols sometimes treat all candidate roots (RPs or
 Cores) as equivalent and emphasize load sharing and stability to
 maximize performance. In the Inter-Domain case, all roots are not
 equivalent, and we adopt an approach whereby a group's root domain is
 not random but is subject to administrative control.

6. Protocol Details

 In this section, we describe the detailed protocol that border
 routers perform. We assume that each border router conforms to the

Expires December 2002 [Page 8]

Draft BGMP June 2002

 component-based model described in [INTEROP], modulo one correction
 to section 3.2 ("BGMP" Dispatcher), as follows:

 The iif owner of a (*,G) entry is the component owning the next-hop
 interface towards the nominal root of G, in the multicast RIB.

6.1. Interaction with the EGP

 The fundamental requirements imposed by BGMP are that:

 (1) For a given source-specific group and source, BGMP must be able
 to look up the next-hop towards the source in the Multicast RIB,
 and

 (2) For a given non-source-specific group, BGMP will map the group
 address to a nominal "root" address, and must be able to look up
 the next-hop towards that address in the Multicast RIB.

BGMP determines the nominal "root" address as follows. If the multicast
address is a Unicast-Prefix-based Multicast address (for either IPv4 or
IPv6), then the nominal root address is the embedded unicast prefix,
padded with a suffix of 0 bits to form a full address.

For example, if the IPv6 group address is
ff2e:0100:1234:5678:9abc:def0::123, then the unicast prefix is
1234:5678:9abc:def0/64, and the nominal root address would be
1234:5678:9abc:def0::. (This address is in fact the subnet routers
anycast address [IPv6AA].)

As an IPv4 example, if the IPv4 group address were 225.1.2.3, then the
nominal root address would be 1.2.3.0.

Support for any-source-multicast using any address other than a Unicast-
prefix-based Multicast Address is outside the scope of this document.

6.2. Multicast Data Packet Processing

 For BGMP rules to be applied, an incoming packet must first be
 "accepted":

 o If the packet arrived on an interface owned by an M-IGP, the M-IGP
 component determines whether the packet should be accepted or
 dropped according to its rules. If the packet is accepted, the

Expires December 2002 [Page 9]

Draft BGMP June 2002

 packet is forwarded (or not forwarded) out any other interfaces
 owned by the same component, as specified by the M-IGP.

 o If the packet was received over a point-to-point interface owned
 by BGMP, the packet is accepted.

 o If the packet arrived on a multiaccess network interface owned by
 BGMP, the packet is accepted if it is receiving data on a source-
 specific branch, if it is the designated forwarder for the longest
 matching route for S, or for the longest matching route for the
 nominal root of G.

 If the packet is accepted, then the router checks the tree state
 table for a matching (S,G) entry. If one is found, but the packet
 was not received from the next hop target towards S (if the entry's
 SPT bit is True), or was not received from the next hop target
 towards G (if the entry's SPT bit is False) then the packet is
 dropped and no further actions are taken. If no (S,G) entry was
 found, the router then checks for a matching (*,G) entry.

 If neither is found, then the packet is forwarded towards the next-
 hop peer for the nominal root of G, according to the Multicast RIB.
 If a matching entry was found, the packet is forwarded to all other
 targets in the target list.

 Forwarding to a target which is an M-IGP component means that the
 packet is forwarded out any interfaces owned by that component
 according to that component's multicast forwarding rules.

6.3. BGMP processing of Join and Prune messages and notifications

6.3.1. Receiving Joins

 When the BGMP component receives a (*,G) or (S,G) Join alert from
 another component, or a BGMP (S,G) or (*,G) Join message from an
 external peer, it searches the tree state table for a matching entry.
 If an entry is found, and that peer is already listed in the target
 list, then no further actions are taken.

 Otherwise, if no (*,G) or (S,G) entry was found, one is created. In
 the case of a (*,G), the target list is initialized to contain the
 next-hop peer towards the nominal root of G, if it is an external
 peer. If the peer is internal, the target list is initialized to
 contain the M-IGP component owning the next-hop interface. If there

Expires December 2002 [Page 10]

Draft BGMP June 2002

 is no next-hop peer (because the nominal root of G is inside the
 domain), then the target list is initialized to contain the next-hop
 component. If an (S,G) entry exists for the same G for which the
 (*,G) Join is being processed, and the next-hop peers toward S and
 the nominal root of G are different, the BGMP router must first send
 a (S,G) Prune message toward the source and clear the SPT bit on the
 (S,G) entry, before activating the (*,G) entry.

 When creating (S,G) state, if the source is internal to the BGMP
 speaker's domain, a "Poison-Reverse" bit (PR-bit) is set. This bit
 indicates that the router may receive packets matching (S,G) anyway
 due to the BGMP speaker being a member of a domain on the path
 between S and the root domain. (Depending on the M-IGP protocol, it
 may in fact receive such packets anyway only if it is the best exit
 for the nominal root of G.)

 The target from which the Join was received is then added to the
 target list. The router then looks up S or the nominal root of G in
 the Multicast RIB to find the next-hop EGP peer. If the target list,
 not including the next-hop target towards G for a (*,G) entry,
 becomes non-null as a result, the next-hop EGP peer must be notified
 as follows:

 a) If the next-hop peer towards the nominal root of G (for a (*,G)
 entry) is an external peer, a BGMP (*,G) Join message is unicast
 to the external peer. If the next-hop peer towards S (for an
 (S,G) entry) is an external peer, and the router does NOT have any
 active (*,G) state for that group address G, a BGMP (S,G) Join
 message is unicast to the external peer. A BGMP (S,G) Join
 message is never sent to an external peer by a router that also
 contains active (*,G) state for the same group. If the next-hop
 peer towards S (for an (S,G entry) is an external peer and the
 router DOES have active (*,G) state for that group G, the SPT bit
 is always set to False.

 b) If the next-hop peer is an internal peer, a (*,G) or (S,G) Join
 alert is sent to the M-IGP component owning the next-hop
 interface.

 c) If there is no next-hop peer, a (*,G) or (S,G) Join alert is sent
 to the M-IGP component owning the next-hop interface.

 Finally, if an (S,G) Join is received from an internal peer, the
 peer should be stored with the M-IGP component target. If (S,G)

Expires December 2002 [Page 11]

Draft BGMP June 2002

 state exists with the PR-bit set, and the next-hop towards the
 nominal root for G is through the M-IGP component, an (S,G)
 Poison-Reverse message is immediately sent to the internal peer.

 If an (S,G) Join is received from an external peer, and (S,G)
 state exists with the PR-bit set, and the local BGMP speaker is
 the best exit for the nominal root of G, and the next-hop towards
 the nominal root for G is through the interface towards the
 external peer, an (S,G) Poison-Reverse message is immediately sent
 to the external peer.

6.3.2. Receiving Prune Notifications

 When the BGMP component receives a (*,G) or (S,G) Prune alert from
 another component, or a BGMP (*,G) or (S,G) Prune message from an
 external peer, it searches the tree state table for a matching entry.
 If no (S,G) entry was found for an (S,G) Prune, but (*,G) state
 exists, an (S,G) entry is created, with the target list copied from
 the (*,G) entry. If no matching entry exists, or if the component or
 peer is not listed in the target list, no further actions are taken.

 Otherwise, the component or peer is removed from the target list. If
 the target list becomes null as a result, the next-hop peer towards
 the nominal root of G (for a (*,G) entry), or towards S (for an (S,G)
 entry if and only if the BGMP router does NOT have any corresponding
 (*,G) entry), must be notified as follows.

 a) If the peer is an external peer, a BGMP (*,G) or (S,G) Prune
 message is unicast to it.

 b) If the next-hop peer is an internal peer, a (*,G) or (S,G) Prune
 alert is sent to the M-IGP component owning the next-hop
 interface.

 c) If there is no next-hop peer, a (*,G) or (S,G) Prune alert is sent
 to the M-IGP component owning the next-hop interface.

6.3.3. Receiving Route Change Notifications

 When a border router receives a route for a new prefix in the
 multicast RIB, or a existing route for a prefix is withdrawn, a route
 change notification for that prefix must be sent to the BGMP

Expires December 2002 [Page 12]

Draft BGMP June 2002

 component. In addition, when the next hop peer (according to the
 multicast RIB) changes, a route change notification for that prefix
 must be sent to the BGMP component.

 In addition, in IPv4 (only), an internal route for each class-D
 prefix associated with the domain (if any) MUST be injected into the
 multicast RIB in the EGP by the domain's border routers.

 When a route for a new group prefix is learned, or an existing route
 for a group prefix is withdrawn, or the next-hop peer for a group
 prefix changes, a BGMP router updates all affected (*,G) target
 lists. The router sends a (*,G) Join to the new next-hop target, and
 a (*,G) Prune to the old next-hop target, as appropriate. In
 addition, if any (S,G) state exists with the PR-bit set:

 o If the BGMP speaker has just become the best exit for the nominal
 root of G, an (S,G) Poison Reverse message with the PR-bit set is
 sent as noted below.

 o If the BGMP speaker was the best exit for the nominal root of G
 and is no longer, an (S,G) Poison Reverse message with the PR-bit
 clear is sent as noted below.
 The (S,G) Poison-Reverse messages are sent to all external peers on
 the next-hop interface towards the nominal root of G from which (S,G)
 Joins have been received.

 When an existing route for a source prefix is withdrawn, or the next-
 hop peer for a source prefix changes, a BGMP router updates all
 affected (S,G) target lists. The router sends a (S,G) Join to the
 new next-hop target, and a (S,G) Prune to the old next-hop target, as
 appropriate.

6.3.4. Receiving (S,G) Poison-Reverse messages

 When a BGMP speaker receives an (S,G) Poison-Reverse message from a
 peer, it sets the PR-bit on the (S,G) state to match the PR-bit in
 the message, and looks up the next-hop towards the nominal root of G.
 If the next-hop target is an M-IGP component, it forwards the (S,G)
 Poison Reverse message to all internal peers of that component from
 which it has received (S,G) Joins. If the next-hop target is an
 external peer on a given interface, it forwards the (S,G) Poison
 Reverse message to all external peers on that interface.

 When a BGMP speaker receives an (S,G) Poison-Reverse message from an

Expires December 2002 [Page 13]

Draft BGMP June 2002

 external peer, with the PR-bit set, and the speaker has received no
 (S,G) Joins from any other peers (e.g., only from the M-IGP, or has
 (S,G) state due to encapsulation as described in 5.4.1), it knows
 that its own (S,G) Join is unnecessary, and should send an (S,G)
 Prune.

 When a BGMP speaker receives an (S,G) Poison-Reverse message from an
 internal peer, with the PR-bit set, and the speaker is the best exit
 for the nominal root of G, and has (S,G) prune state, an (S,G) Join
 message is sent to cancel the prune state and the state is deleted.

6.4. Interaction with M-IGP components

 When an M-IGP component on a border router first learns that there
 are internally-reached members for a group G (whose scope is larger
 than that domain), a (*,G) Join alert is sent to the BGMP component.
 Similarly, when an M-IGP component on a border router learns that
 there are no longer internally-reached members for a group G (whose
 scope is larger than a single domain), a (*,G) Prune alert is sent to
 the BGMP component.

 At any time, any M-IGP domain MAY decide to join a source-specific
 branch for some external source S and group G. When the M-IGP
 component in the border router that is the next-hop router for a
 particular source S learns that a receiver wishes to receive data
 from S on a source-specific path, an (S,G) Join alert is sent to the
 BGMP component. When it is learned that such receivers no longer
 exist, an (S,G) Prune alert is sent to the BGMP component. Recall
 that the BGMP component will generate external source-specific Joins
 only where the source-specific branch does not coincide with the
 shared tree distribution tree for that group.

 Finally, we will require that the border router that is the next-hop
 internal peer for a particular address S or the nominal root of G be
 able to forward data for a matching tree state table entry to all
 members within the domain. This requirement has implications on
 specific M-IGPs as follows.

6.4.1. Interaction with DVMRP and PIM-DM

 DVMRP and PIM-DM are both "broadcast and prune" protocols in which
 every data packet must pass an RPF check against the packet's source
 address, or be dropped. If the border router receiving packets from

Expires December 2002 [Page 14]

Draft BGMP June 2002

 an external source is the only BR to inject the route for the source
 into the domain, then there are no problems. For example, this will
 always be true for stub domains with a single border router (see
 Figure 1). Otherwise, the border router receiving packets externally
 is responsible for encapsulating the data to any other border routers
 that must inject the data into the domain for RPF checks to succeed.

 When an intended border router injector for a source receives
 encapsulated packets from another border router in its domain, it
 should create source-specific (S,G) BGMP state. Note that the border
 router may be configured to do this on a data-rate triggered basis so
 that the state is not created for very low data-rate/intermittent
 sources. If source-specific state is created, then its incoming
 interface points to the virtual encapsulation interface from the
 border router that forwarded the packet, and it has an SPT flag that
 is initialized to be False.

 When the (S,G) BGMP state is created, the BGMP component will in turn
 send a BGMP (S,G) Join message to the next-hop external peer towards
 S if there is no (*,G) state for that same group, G. The (S,G) BGMP
 state will have the SPT bit set to False if (*,G) BGMP state is
 present.

 When the first data packet from S arrives from the external peer and
 matches on the BGMP (S,G) state, and IF there is no (*,G) state, the
 router sets the SPT flag to True, resets the incoming interface to
 point to the external peer, and sends a BGMP (S,G) Prune message to
 the border router that was encapsulating the packets (e.g., in Figure
 1, BR11 sends the (Src_A,G) Prune to BR12). When the border router
 with (*,G) state receives the prune for (S,G), it then deletes that
 border router from its list of targets.

 If the decapsulator receives a (S,G) Poison Reverse message with the
 PR-bit set, it will forward it to the encapsulator (which may again
 forward it up the shared tree according to normal BGMP rules), and
 both will delete their BGMP (S,G) state.

 PIM-DM and DVMRP present an additional problem, i.e., no protocol
 mechanism exists for joining and pruning entire groups; only joins
 and prunes for individual sources are available. If any such domain
 desires to be able to serve as a transit domain, we require that some
 form of Domain-Wide Reports (DWRs) [DWR] are available within such
 domains. Such messages provide the ability to join and prune an
 entire group across the domain. One simple heuristic to approximate
 DWRs is to assume that if there are any internally-reached members,

Expires December 2002 [Page 15]

Draft BGMP June 2002

 then at least one of them is a sender. With this heuristic, the
 presense of any M-IGP (S,G) state for internally-reached sources can
 be used instead. Sending a data packet to a group is then equivalent
 to sending a DWR for the group.

6.4.2. Interaction with PIM-SM

 Protocols such as PIM-SM build unidirectional shared and source-
 specific trees. As with DVMRP and PIM-DM, every data packet must
 pass an RPF check against some group-specific or source-specific
 address.

 The fewest encapsulations/decapsulations will be done when the intra-
 domain tree is rooted at the next-hop internal peer (which becomes
 the RP) towards the nominal root of G, since in general that router
 will receive the most packets from external sources. To achieve
 this, each BGMP border router to a PIM-SM domain should send
 Candidate-RP-Advertisements within the domain for those groups for
 which it is the shared-domain tree ingress router. When the border
 router that is the RP for a group G receives an external data packet,
 it forwards the packet according to the M-IGP (i.e., PIM-SM) shared-
 tree outgoing interface list.

 Other border routers will receive data packets from external sources
 that are farther down the bidirectional tree of domains. When a
 border router that is not the RP receives an external packet for
 which it does not have a source-specific entry, the border router
 treats it like a local source by creating (S,G) state with a Register
 flag set, based on normal PIM-SM rules; the Border router then
 encapsulates the data packets in PIM-SM Registers and unicasts them
 to the RP for the group. As explained above, the RP for the inter-
 domain group will be one of the other border routers of the domain.

 If a source's data rate is high enough, DRs within the PIM-SM domain
 may switch to the shortest path tree. If the shortest path to an
 external source is via the group's ingress router for the shared
 tree, the new (S,G) state in the BGMP border router will not cause
 BGMP (S,G) Joins because that border router will already have (*,G)
 state. If however, the shortest path to an external source is via
 some other border router, that border router will create (S,G) BGMP
 state in response to the M-IGP (S,G) Join alert. In this case,
 because there is no local (*,G) state to supress it, the border
 router will send a BGMP (S,G) Join to the next-hop external peer

Expires December 2002 [Page 16]

Draft BGMP June 2002

 towards S, in order to pull the data down directly. (See BR11 in
 Figure 1.) As in normal PIM-SM operation, those PIM-SM routers that
 have (*,G) and (S,G) state pointing to different incoming interfaces
 will prune that source off the shared tree. Therefore, all internal
 interfaces may be eventually pruned off the internal shared tree.

 After the border router sends a BGMP (S,G) Join, if its (S,G) state
 has the PR-bit clear, a (S,G) Poison-Reverse message (with the PR-bit
 clear) is sent to the ingress router for G. The ingress router then
 creates (S,G) if it does not already exist, and removes the next hop
 towards the nominal root of G from the target list.

 If the border router later receives an (S,G) Poison-Reverse message
 with the PR-bit set, the Poison-Reverse message is forwarded to the
 ingress router for G. The best-exit router then creates (S,G) state
 if it does not already exist, and puts the next hop towards the
 nominal root of G in the target list if not already present.

6.4.3. Interaction with CBT

 CBT builds bidirectional shared trees but must address two points of
 compatibility with BGMP. First, CBT can not accommodate more than
 one border router injecting a packet. Therefore, if a CBT domain
 does have multiple external connections, the M-IGP components of the
 border routers are responsible for insuring that only one of them
 will inject data from any given source.

 Second, CBT cannot process source-specific Joins or Prunes. Two
 options thus exist for each CBT domain:

 Option A:
 The CBT component interprets a (S,G) Join alert as if it were an
 (*,G) Join alert, as described in [INTEROP]. That is, if it is not
 already on the core-tree for G, then it sends a CBT (*,G) JOIN-
 REQUEST message towards the core for G. Similarly, when the CBT
 component receives an (S,G) Prune alert, and the child interface
 list for a group is NULL, then it sends a (*,G) QUIT_NOTIFICATION
 towards the core for G. This option has the disadvantage of
 pulling all data for the group G down to the CBT domain when no
 members exist.

 Option B:
 The CBT domain does not propagate any source routes (i.e., non-
 class D routes) to their external peers for the Multicast RIB

Expires December 2002 [Page 17]

Draft BGMP June 2002

 unless it is known that no other path exists to that prefix (e.g.,
 routes for prefixes internal to the domain or in a singly-homed
 customer's domain may be propagated). This insures that source-
 specific joins are never received unless the source's data already
 passes through the domain on the shared tree, in which case the
 (S,G) Join need not be propagated anyway. BGMP border routers will
 only send source-specific Joins or Prunes to an external peer if
 that external peer advertises source-prefixes in the EGP. If a
 BGMP-CBT border router does receive an (S,G) Join or Prune, that
 border router should ignore the message.

 To minimize en/de-capsulations, CBTv2 BR's may follow the same
 scheme as described under PIM-SM above, in which Candidate-Core
 advertisements are sent for those groups for which it is the
 shared-tree ingress router.

6.4.4. Interaction with MOSPF

 As with CBTv2, MOSPF cannot process source-specific Joins or Prunes,
 and the same two options are available. Therefore, an MOSPF domain
 may either:

 Option A:
 send a Group-Membership-LSA for all of G in response to a (S,G)
 Join alert, and "prematurely age" it out (when no other downstream
 members exist) in response to an (S,G) Prune alert, OR

 Option B:
 not propagate any source routes (i.e., non-class D routes) to their
 external peers for the Multicast RIB unless it is known that no
 other path exists to that prefix (e.g., routes for prefixes
 internal to the domain or in a singly-homed customer's domain may
 be propagated)

6.5. Operation over Multi-access Networks

 Multiaccess links require special handling to prevent duplicates.
 The following mechanism enables BGMP to operate over multiaccess
 links which do not run an M-IGP. This avoids broadcast-and-prune
 behavior and does not require (S,G) state.

 To elect a designated forwarder per prefix, BGMP uses a FWDR_PREF
 message to exchange "forwarder preference" values for each prefix.

Expires December 2002 [Page 18]

Draft BGMP June 2002

 The peer with the highest forwarder preference becomes the designated
 forwarder, with ties broken by lowest BGMP Identifier. The
 designated forwarder is the router responsible for forwarding packets
 up the tree, and is the peer to which joins will be sent.

 When BGMP first learns that a route exists in the multicast RIB whose
 next-hop interface is NOT the multiaccess link, the BGMP router sends
 a BGMP FWDR_PREF message for the prefix, to all BGMP peers on the
 LAN. The FWDR_PREF message contains a "forwarder preference value"
 for the local router, and the same value MUST be sent to all peers on
 the LAN. Likewise, when the prefix is no longer reachable, a
 FWDR_PREF of 0 is sent to all peers on the LAN.

 Whenever a BGMP router calculates the next-hop peer towards a
 particular address, and that peer is reached over a BGMP-owned
 multiaccess LAN, the designated forwarder is used instead.

 When a BGMP router receives a FWDR_PREF message from a peer, it looks
 up the matching route in its multicast RIB, and calculates the new
 designated forwarder. If the router has tree state entries whose
 parent target was the old forwarder, it sends Joins to the new
 forwarder and Prunes to the old forwarder.

 When a BGMP router which is NOT the designated forwarder receives a
 packet on the multiaccess link, it is silently dropped.

 Finally, this mechanism prevents duplicates where full peering exists
 on a "logical" link. Where full peering does not exist, steps must
 be taken (outside of BGMP) to present separate logical interfaces to
 BGMP, each of which is a link with full peering. This might entail,
 for example, using different link-layer address mappings, doing
 encapsulation, or changing the physical media.

6.6. Interaction between (S,G) state and G-routes

As discussed earlier, routers with (*,G) state will not propagate (S,G)
joins. However, a special case occurs when (S,G) state coincides with
the G-route (or route towards the nominal root of G). When this occurs,
care must be taken so that the data will reach the root domain without
causing duplicates or black holes. For this reason, (S,G) state on the
path between the source and the root domain is annotated as being
"poison-reversed". A PR-bit is kept for this purpose, which is updated
by (UN)POISON_REVERSE messages.

Expires December 2002 [Page 19]

Draft BGMP June 2002

7. Message Formats

 This section describes message formats used by BGMP.

 Messages are sent over a reliable transport protocol connection. A
 message is processed only after it is entirely received. The maximum
 message size is 4096 octets. All implementations are required to
 support this maximum message size.

 All fields labelled "Reserved" below must be transmitted as 0, and
 ignored upon receipt.

7.1. Message Header Format

 Each message has a fixed-size (4-byte) header. There may or may not
 be a data portion following the header, depending on the message
 type. The layout of these fields is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type | Reserved |
 +-+

 Length:
 This 2-octet unsigned integer indicates the total length of the
 message, including the header, in octets. Thus, e.g., it allows
 one to locate in the transport-level stream the start of the next
 message. The value of the Length field must always be at least 4
 and no greater than 4096, and may be further constrained, depending
 on the message type. No "padding" of extra data after the message
 is allowed, so the Length field must have the smallest value
 required given the rest of the message.

 Type:
 This 1-octet unsigned integer indicates the type code of the
 message. The following type codes are defined:

 1 - OPEN
 2 - UPDATE
 3 - NOTIFICATION
 4 - KEEPALIVE

Expires December 2002 [Page 20]

Draft BGMP June 2002

7.2. OPEN Message Format

 After a transport protocol connection is established, the first
 message sent by each side is an OPEN message. If the OPEN message is
 acceptable, a KEEPALIVE message confirming the OPEN is sent back.
 Once the OPEN is confirmed, UPDATE, KEEPALIVE, and NOTIFICATION
 messages may be exchanged.

 In addition to the fixed-size BGMP header, the OPEN message contains
 the following fields:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version | Rsvd| AddrFam | Hold Time |
 +-+
 | BGMP Identifier (variable length) |
 +-+
 | |
 + (Optional Parameters) |
 | |
 +-+

 Version:
 This 1-octet unsigned integer indicates the protocol version number
 of the message. The current BGMP version number is 1.

 AddrFam:
 The IANA-assigned address family number of the BGMP Identifier.
 These include (among others):

 Number Description
 ------ -----------
 1 IP (IP version 4)
 2 IPv6 (IP version 6)

 Hold Time:
 This 2-octet unsigned integer indicates the number of seconds that
 the sender proposes for the value of the Hold Timer. Upon receipt
 of an OPEN message, a BGMP speaker MUST calculate the value of the
 Hold Timer by using the smaller of its configured Hold Time and the
 Hold Time received in the OPEN message. The Hold Time MUST be

Expires December 2002 [Page 21]

Draft BGMP June 2002

 either zero or at least three seconds. An implementation may
 reject connections on the basis of the Hold Time. The calculated
 value indicates the maximum number of seconds that may elapse
 between the receipt of successive KEEPALIVE, and/or UPDATE messages
 by the sender.

 BGMP Identifier:
 This 4-octet (for IPv4) or 16-octet (IPv6) unsigned integer
 indicates the BGMP Identifier of the sender. A given BGMP speaker
 sets the value of its BGMP Identifier to a globally-unique value
 assigned to that BGMP speaker (e.g., an IPv4 address). The value
 of the BGMP Identifier is determined on startup and is the same for
 every BGMP session opened.

 Optional Parameters:
 This field may contain a list of optional parameters, where each
 parameter is encoded as a <Parameter Length, Parameter Type,
 Parameter Value> triplet. The combined length of all optional
 parameters can be derived from the Length field in the message
 header.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-...
 | Parm. Type | Parm. Length | Parameter Value (variable)
 +-...

 Parameter Type is a one octet field that unambiguously identifies
 individual parameters. Parameter Length is a one octet field that
 contains the length of the Parameter Value field in octets.
 Parameter Value is a variable length field that is interpreted
 according to the value of the Parameter Type field.

 This document defines the following Optional Parameters:

 a) Authentication Information (Parameter Type 1):
 This optional parameter may be used to authenticate a BGMP peer.
 The Parameter Value field contains a 1-octet Authentication Code
 followed by a variable length Authentication Data.

 0 1 2 3 4 5 6 7 8

Expires December 2002 [Page 22]

Draft BGMP June 2002

 +-+-+-+-+-+-+-+-+
 | Auth. Code |
 +-+
 | |
 | Authentication Data |
 | |
 +-+

 Authentication Code:

 This 1-octet unsigned integer indicates the authentication
 mechanism being used. Whenever an authentication mechanism is
 specified for use within BGMP, three things must be included in
 the specification:

 - the value of the Authentication Code which indicates use of the
 mechanism, and - the form and meaning of the Authentication Data.

 Note that a separate authentication mechanism may be used in
 establishing the transport level connection.

 Authentication Data:

 The form and meaning of this field is a variable-length field
 depend on the Authentication Code.

 The minimum length of the OPEN message is 12 octets (including
 message header).

 b) Capability Information (Parameter Type 2):
 This is an Optional Parameter that is used by a BGMP-speaker to
 convey to its peer the list of capabilities supported by the
 speaker. The parameter contains one or more triples <Capability
 Code, Capability Length, Capability Value>, where each triple is
 encoded as shown below:
 +------------------------------+
 | Capability Code (1 octet) |
 +------------------------------+
 | Capability Length (1 octet) |
 +------------------------------+
 | Capability Value (variable) |
 +------------------------------+
 Capability Code:

Expires December 2002 [Page 23]

Draft BGMP June 2002

 Capability Code is a one octet field that unambiguously identifies
 individual capabilities.

 Capability Length:

 Capability Length is a one octet field that contains the length of
 the Capability Value field in octets.

 Capability Value:

 Capability Value is a variable length field that is interpreted
 according to the value of the Capability Code field.

 A particular capability, as identified by its Capability Code, may
 occur more than once within the Optional Parameter.

 This document reserves Capability Codes 128-255 for vendor-specific
 applications.

 This document reserves value 0.

 Capability Codes (other than those reserved for vendor specific use)
 are assigned only by the IETF consensus process and IESG approval.

7.3. UPDATE Message Format

 UPDATE messages are used to transfer Join/Prune/FwdrPref information
 between BGMP peers. The UPDATE message always includes the fixed-
 size BGMP header, and one or more attributes as described below.

 The message format below allows compact encoding of (*,G) Joins and
 Prunes, while allowing the flexibility needed to do other updates
 such as (S,G) Joins and Prunes towards sources as well as on the
 shared tree. In the discussion below, an Encoded-Address-Prefix is
 of the form:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |EnTyp| AddrFam |
 +-+
 | Address (variable length) |
 +-+
 | Mask (variable length) |

Expires December 2002 [Page 24]

Draft BGMP June 2002

 +-+

 EnTyp:
 0 - All 1's Mask. The Mask field is 0 bytes long.
 1 - Mask length included. The Mask field is 4 bytes long, and
 contains the mask length, in bits.
 2 - Full Mask included. The Mask field is the same length
 as the Address field, and contains the full bitmask.

 AddrFam:
 The IANA-assigned address family number of the encoded prefix.

 Address:
 The address associated with the given prefix to be encoded. The
 length is determined based on the Address Family.

 Mask:
 The mask associated with the given prefix. The format (or absence)
 of this field is determined by the EnTyp field.

 Each attribute is of the form:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type | Data ...
 +-+
 All attributes are 4-byte aligned.

 Length:
 The Length is the length of the entire attribute, including the
 length, type, and data fields. If other attributes are nested
 within the data field, the length includes the size of all such
 nested attributes.

 Type:

 Types 128-255 are reserved for "optional" attributes. If a
 required attribute is unrecognized, a NOTIFICATION will be sent and
 the connection will be closed if the error is a fatal one.
 Unrecognized optional attributes are simply ignored.

 0 - JOIN

Expires December 2002 [Page 25]

Draft BGMP June 2002

 1 - PRUNE
 2 - GROUP
 3 - SOURCE
 4 - FWDR_PREF
 5 - POISON_REVERSE

 a) JOIN (Type Code 0)

 The JOIN attribute indicates that all GROUP or SOURCE options
 nested immediately within the JOIN option should be joined.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type=0 | Reserved |
 +-+
 | Nested Attributes ...
 +-+
 No JOIN, PRUNE, or FWDR_PREF attributes may be immediately nested
 within a JOIN attribute.

 b) PRUNE (Type Code 1)

 The PRUNE attribute indicates that all GROUP or SOURCE attributes
 nested immediately within the PRUNE attribute should be pruned.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type=1 | Reserved |
 +-+
 | Nested Attributes ...
 +-+
 No JOIN, PRUNE, or FWDR_PREF attributes may be immediately nested
 within a PRUNE attribute.

 c) GROUP (Type Code 2)

 The GROUP attribute identifies a given group-prefix. In addition,
 any attributes nested immediately within the GROUP attribute also
 apply to the given group-prefix.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

Expires December 2002 [Page 26]

Draft BGMP June 2002

 | Length | Type=2 | |
 +-+ +
 | |
 | Encoded-Address-Prefix |
 | |
 +-+
 | Nested Attributes (optional) ...
 +-+
 Encoded-Address-Prefix
 The multicast group prefix to be joined to
 pruned,
 in the format described above.
 Nested Attributes No GROUP, SOURCE, or FWDR_PREF attributes may
 be
 immediately nested within a GROUP attribute.

 d) SOURCE (Type Code 3):

 The SOURCE attribute identifies a given source-prefix. In
 addition, any attributes nested immediately within the SOURCE
 attribute also apply to the given source-prefix.

 The SOURCE attribute has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type=2 | |
 +-+ +
 | |
 | Encoded-Address-Prefix |
 | |
 +-+
 | Nested Attributes (optional) ...
 +-+
 Encoded-Address-Prefix
 The Source-prefix in the format described
 above.
 Nested Attributes No GROUP, SOURCE, or FWDR_PREF attributes may
 be
 immediately nested within a SOURCE attribute.

 e) FWDR_PREF (Type Code 4)

 The FWDR_PREF attribute provides a forwarder preference value for

Expires December 2002 [Page 27]

Draft BGMP June 2002

 all GROUP or SOURCE attributes nested immediately within the
 FWDR_PREF attribute. It is used by a BGMP speaker to inform other
 BGMP speakers of the originating speaker's degree of preference for
 a given group or source prefix. Usage of this attribute is
 described in 5.5.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type=1 | Reserved |
 +-+
 | Preference Value |
 +-+
 | Nested Attributes ...
 +-+
 Preference Value A 32-bit non-negative integer.
 Nested Attributes No JOIN, PRUNE, or FWDR_PREF attributes may be
 immediately nested within a FWDR_PREF
 attribute.

 e) POISON_REVERSE (Type Code 5)

 The POISON_REVERSE attribute provides a "poison-reverse" (PR-bit)
 value for all SOURCE attributes nested immediately within the
 POISON_REVERSE attribute. It is used by a BGMP speaker to inform
 other BGMP speakers from which it has received (S,G) Joins that
 they are on the path of domains between the source and the root
 domain.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type=1 | Reserved |P|
 +-+
 | Nested Attributes ...
 +-+
 P The PR-bit value.
 Nested Attributes No attribues in the document other than SOURCE
 may be immediately nested within a
 POISON_REVERSE
 attribute.

Expires December 2002 [Page 28]

Draft BGMP June 2002

7.4. Encoding examples

 Below are enumerated examples of how various updates are built using
 nested attributes, where A (B) denotes that attribute B is nested
 within attribute A.
 (*,G-prefix) Join: JOIN (GROUP)
 (*,G-prefix) Prune: PRUNE (GROUP)
 (S,G) Join towards S : GROUP (JOIN (SOURCE))
 (S,G) Join cancelling prune towards root of G: GROUP (JOIN (SOURCE))
 (S,G) Prune towards S: GROUP (PRUNE (SOURCE))
 (S,G) Prune towards root of G: GROUP (PRUNE (SOURCE))
 Switch from (*,G) to (S,G): PRUNE (GROUP (JOIN (SOURCE)))
 Switch from (S,G) to (*,G): JOIN (GROUP)
 Initial (*,G) Join with S pruned: JOIN (GROUP (PRUNE (SOURCE)))
 Forwarder preference announcement for G-prefix: FWDR_PREF (GROUP)
 Forwarder preference announcement for S-prefix: FWDR_PREF (SOURCE)

7.5. KEEPALIVE Message Format

 BGMP does not use any transport protocol-based keep-alive mechanism
 to determine if peers are reachable. Instead, KEEPALIVE messages are
 exchanged between peers often enough as not to cause the Hold Timer
 to expire. A reasonable maximum time between the last KEEPALIVE or
 UPDATE message sent, and the time at which a KEEPALIVE message is
 sent, would be one third of the Hold Time interval. KEEPALIVE
 messages MUST NOT be sent more frequently than one per second. An
 implementation MAY adjust the rate at which it sends KEEPALIVE
 messages as a function of the Hold Time interval.

 If the negotiated Hold Time interval is zero, then periodic KEEPALIVE
 messages MUST NOT be sent.

 A KEEPALIVE message consists of only a message header, and has a
 length of 4 octets.

7.6. NOTIFICATION Message Format

 A NOTIFICATION message is sent when an error condition is detected.
 The BGMP connection is closed immediately after sending it if the
 error is a fatal one.

 In addition to the fixed-size BGMP header, the NOTIFICATION message
 contains the following fields:

Expires December 2002 [Page 29]

Draft BGMP June 2002

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |O| Error code | Error subcode | Data |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 +-+

 O-bit:
 Open-bit. If clear, the connection will be closed.
 If set, indicates the error is not fatal.

 Error Code:

 This 1-octet unsigned integer indicates the type of
 NOTIFICATION. The following Error Codes have been defined:

 Error Code Symbolic Name Reference

 1 Message Header Error Section 9.1

 2 OPEN Message Error Section 9.2

 3 UPDATE Message Error Section 9.3

 4 Hold Timer Expired Section 9.5

 5 Finite State Machine Error Section 9.6

 6 Cease Section 9.7

 Error subcode:

 This 1-octet unsigned integer provides more specific
 information about the nature of the reported error. Each
 Error
 Code may have one or more Error Subcodes associated with it.
 If no appropriate Error Subcode is defined, then a zero
 (Unspecific) value is used for the Error Subcode field.
 The notation (MC) below indicates the error is a fatal one
 and the O-bit must be clear. Non-fatal subcodes SHOULD
 be sent with the O-bit set.

 Message Header Error subcodes:

Expires December 2002 [Page 30]

Draft BGMP June 2002

 2 - Bad Message Length
 (MC)
 3 - Bad Message Type
 (MC)

 OPEN Message Error subcodes:

 1 - Unsupported Version
 (MC)
 4 - Unsupported Optional Parameter
 5 - Authentication Failure
 (MC)
 6 - Unacceptable Hold Time
 (MC)
 7 - Unsupported Capability
 (MC)

 UPDATE Message Error subcodes:

 1 - Malformed Attribute List
 (MC)
 2 - Unrecognized Attribute Type
 5 - Attribute Length Error
 (MC)
 10 - Invalid Address
 11 - Invalid Mask
 13 - Unrecognized Address Family
 Data:
 This variable-length field is used to diagnose the reason for the
 NOTIFICATION. The contents of the Data field depend upon the
 Error Code and Error Subcode. See Section 9 below for more
 details.

 Note that the length of the Data field can be determined from the
 message Length field by the formula:

 Message Length = 6 + Data Length

 The minimum length of the NOTIFICATION message is 6 octets
 (including message header).

Expires December 2002 [Page 31]

Draft BGMP June 2002

8. BGMP Error Handling

 This section describes actions to be taken when errors are detected
 while processing BGMP messages. BGMP Error Handling is similar to
 that of BGP [BGP].

 When any of the conditions described here are detected, a
 NOTIFICATION message with the indicated Error Code, Error Subcode,
 and Data fields is sent, and the BGMP connection is closed if the
 error is a fatal one. If no Error Subcode is specified, then a zero
 must be used.

 The phrase "the BGMP connection is closed" means that the transport
 protocol connection has been closed and that all resources for that
 BGMP connection have been deallocated. The remote peer is removed
 from the target list of all tree state entries.

 Unless specified explicitly, the Data field of the NOTIFICATION
 message that is sent to indicate an error is empty.

8.1. Message Header error handling

 All errors detected while processing the Message Header are indicated
 by sending the NOTIFICATION message with Error Code Message Header
 Error. The Error Subcode elaborates on the specific nature of the
 error.

 If the Length field of the message header is less than 4 or greater
 than 4096, or if the Length field of an OPEN message is less than
 the minimum length of the OPEN message, or if the Length field of an
 UPDATE message is less than the minimum length of the UPDATE message,
 or if the Length field of a KEEPALIVE message is not equal to 4, then
 the Error Subcode is set to Bad Message Length. The Data field
 contains the erroneous Length field.

 If the Type field of the message header is not recognized, then the
 Error Subcode is set to Bad Message Type. The Data field contains
 the erroneous Type field.

8.2. OPEN message error handling

 All errors detected while processing the OPEN message are indicated
 by sending the NOTIFICATION message with Error Code OPEN Message

Expires December 2002 [Page 32]

Draft BGMP June 2002

 Error. The Error Subcode elaborates on the specific nature of the
 error.

 If the version number contained in the Version field of the received
 OPEN message is not supported, then the Error Subcode is set to
 Unsupported Version Number. The Data field is a 2-octet unsigned
 integer, which indicates the largest locally supported version number
 less than the version the remote BGMP peer bid (as indicated in the
 received OPEN message).

 If the Hold Time field of the OPEN message is unacceptable, then the
 Error Subcode MUST be set to Unacceptable Hold Time. An
 implementation MUST reject Hold Time values of one or two seconds.
 An implementation MAY reject any proposed Hold Time. An
 implementation which accepts a Hold Time MUST use the negotiated
 value for the Hold Time.

 If one of the Optional Parameters in the OPEN message is not
 recognized, then the Error Subcode is set to Unsupported Optional
 Parameters.

 If the OPEN message carries Authentication Information (as an
 Optional Parameter), then the corresponding authentication procedure
 is invoked. If the authentication procedure (based on Authentication
 Code and Authentication Data) fails, then the Error Subcode is set to
 Authentication Failure.

 If the OPEN message indicates that the peer does not support a
 capability which the receiver requires, the receiver may send a
 NOTIFICATION message to the peer, and terminate peering. The Error
 Subcode in the message is set to Unsupported Capability. The Data
 field in the NOTIFICATION message lists the set of capabilities that
 cause the speaker to send the message. Each such capability is
 encoded the same way as it was encoded in the received OPEN message.

8.3. UPDATE message error handling

 All errors detected while processing the UPDATE message are indicated
 by sending the NOTIFICATION message with Error Code UPDATE Message
 Error. The error subcode elaborates on the specific nature of the
 error.

Expires December 2002 [Page 33]

Draft BGMP June 2002

 If any recognized attribute has Attribute Length that conflicts with
 the expected length (based on the attribute type code), then the
 Error Subcode is set to Attribute Length Error. The Data field
 contains the erroneous attribute (type, length and value).

 If the Encoded-Address-Prefix field in some attribute is
 syntactically incorrect, then the Error Subcode is set to Invalid
 Prefix Field.

 If any other is encountered when processing attributes (such as
 invalid nestings), then the Error Subcode is set to Malformed
 Attribute List, and the problematic attribute is included in the data
 field.

8.4. NOTIFICATION message error handling

 If a peer sends a NOTIFICATION message, and there is an error in that
 message, there is unfortunately no means of reporting this error via
 a subsequent NOTIFICATION message. Any such error, such as an
 unrecognized Error Code or Error Subcode, should be noticed, logged
 locally, and brought to the attention of the administration of the
 peer. The means to do this, however, lies outside the scope of this
 document.

8.5. Hold Timer Expired error handling

 If a system does not receive successive KEEPALIVE and/or UPDATE
 and/or NOTIFICATION messages within the period specified in the Hold
 Time field of the OPEN message, then the NOTIFICATION message with
 Hold Timer Expired Error Code must be sent and the BGMP connection
 closed.

8.6. Finite State Machine error handling

 Any error detected by the BGMP Finite State Machine (e.g., receipt of
 an unexpected event) is indicated by sending the NOTIFICATION message
 with Error Code Finite State Machine Error.

Expires December 2002 [Page 34]

Draft BGMP June 2002

8.7. Cease

 In absence of any fatal errors (that are indicated in this section),
 a BGMP peer may choose at any given time to close its BGMP connection
 by sending the NOTIFICATION message with Error Code Cease. However,
 the Cease NOTIFICATION message must not be used when a fatal error
 indicated by this section does exist.

8.8. Connection collision detection

 If a pair of BGMP speakers try simultaneously to establish a TCP
 connection to each other, then two parallel connections between this
 pair of speakers might well be formed. We refer to this situation as
 connection collision. Clearly, one of these connections must be
 closed.

 Based on the value of the BGMP Identifier a convention is established
 for detecting which BGMP connection is to be preserved when a
 collision does occur. The convention is to compare the BGMP
 Identifiers of the peers involved in the collision and to retain only
 the connection initiated by the BGMP speaker with the higher-valued
 BGMP Identifier.

 Upon receipt of an OPEN message, the local system must examine all of
 its connections that are in the OpenConfirm state. A BGMP speaker
 may also examine connections in an OpenSent state if it knows the
 BGMP Identifier of the peer by means outside of the protocol. If
 among these connections there is a connection to a remote BGMP
 speaker whose BGMP Identifier equals the one in the OPEN message,
 then the local system performs the following collision resolution
 procedure:

 1. The BGMP Identifier of the local system is compared to the BGMP
 Identifier of the remote system (as specified in the OPEN message).

 2. If the value of the local BGMP Identifier is less than the remote
 one, the local system closes BGMP connection that already exists (the
 one that is already in the OpenConfirm state), and accepts BGMP
 connection initiated by the remote system.

 3. Otherwise, the local system closes newly created BGMP connection
 (the one associated with the newly received OPEN message), and
 continues to use the existing one (the one that is already in the
 OpenConfirm state).

Expires December 2002 [Page 35]

Draft BGMP June 2002

 Comparing BGMP Identifiers is done by treating them as (4-octet long)
 unsigned integers.

 A connection collision with an existing BGMP connection that is in
 Established states causes unconditional closing of the newly created
 connection. Note that a connection collision cannot be detected with
 connections that are in Idle, or Connect, or Active states.

 Closing the BGMP connection (that results from the collision
 resolution procedure) is accomplished by sending the NOTIFICATION
 message with the Error Code Cease.

9. BGMP Version Negotiation

 BGMP speakers may negotiate the version of the protocol by making
 multiple attempts to open a BGMP connection, starting with the
 highest version number each supports. If an open attempt fails with
 an Error Code OPEN Message Error, and an Error Subcode Unsupported
 Version Number, then the BGMP speaker has available the version
 number it tried, the version number its peer tried, the version
 number passed by its peer in the NOTIFICATION message, and the
 version numbers that it supports. If the two peers do support one or
 more common versions, then this will allow them to rapidly determine
 the highest common version. In order to support BGMP version
 negotiation, future versions of BGMP must retain the format of the
 OPEN and NOTIFICATION messages.

9.1. BGMP Capability Negotiation

 When a BGMP speaker sends an OPEN message to its BGMP peer, the
 message may include an Optional Parameter, called Capabilities. The
 parameter lists the capabilities supported by the speaker.

 A BGMP speaker may use a particular capability when peering with
 another speaker only if both speakers support that capability. A
 BGMP speaker determines the capabilities supported by its peer by
 examining the list of capabilities present in the Capabilities
 Optional Parameter carried by the OPEN message that the speaker
 receives from the peer.

Expires December 2002 [Page 36]

Draft BGMP June 2002

10. BGMP Finite State machine

 This section specifies BGMP operation in terms of a Finite State
 Machine (FSM). Following is a brief summary and overview of BGMP
 operations by state as determined by this FSM.

 Initially BGMP is in the Idle state.

 Idle state:

 In this state BGMP refuses all incoming BGMP connections. No
 resources are allocated to the peer. In response to the Start
 event (initiated by either system or operator) the local system
 initializes all BGMP resources, starts the ConnectRetry timer,
 initiates a transport connection to the other BGMP peer, while
 listening for a connection that may be initiated by the remote
 BGMP peer, and changes its state to Connect. The exact value of
 the ConnectRetry timer is a local matter, but should be
 sufficiently large to allow TCP initialization.

 If a BGMP speaker detects an error, it shuts down the connection
 and changes its state to Idle. Getting out of the Idle state
 requires generation of the Start event. If such an event is
 generated automatically, then persistent BGMP errors may result in
 persistent flapping of the speaker. To avoid such a condition it
 is recommended that Start events should not be generated
 immediately for a peer that was previously transitioned to Idle
 due to an error. For a peer that was previously transitioned to
 Idle due to an error, the time between consecutive generation of
 Start events, if such events are generated automatically, shall
 exponentially increase. The value of the initial timer shall be 60
 seconds. The time shall be doubled for each consecutive retry.

 Any other event received in the Idle state is ignored.

 Connect state:

 In this state BGMP is waiting for the transport protocol
 connection to be completed.

 If the transport protocol connection succeeds, the local system
 clears the ConnectRetry timer, completes initialization, sends an
 OPEN message to its peer, and changes its state to OpenSent. If
 the transport protocol connect fails (e.g., retransmission
 timeout), the local system restarts the ConnectRetry timer,

Expires December 2002 [Page 37]

Draft BGMP June 2002

 continues to listen for a connection that may be initiated by the
 remote BGMP peer, and changes its state to Active state.

 In response to the ConnectRetry timer expired event, the local
 system restarts the ConnectRetry timer, initiates a transport
 connection to the other BGMP peer, continues to listen for a
 connection that may be initiated by the remote BGMP peer, and
 stays in the Connect state.

 The Start event is ignored in the Connect state.

 In response to any other event (initiated by either system or
 operator), the local system releases all BGMP resources associated
 with this connection and changes its state to Idle.

 Active state:

 In this state BGMP is trying to acquire a peer by listening for an
 incoming transport protocol connection.

 If the transport protocol connection succeeds, the local system
 clears the ConnectRetry timer, completes initialization, sends an
 OPEN message to its peer, sets its Hold Timer to a large value,
 and changes its state to OpenSent. A Hold Timer value of 4
 minutes is suggested.

 In response to the ConnectRetry timer expired event, the local
 system restarts the ConnectRetry timer, initiates a transport
 connection to other BGMP peer, continues to listen for a
 connection that may be initiated by the remote BGMP peer, and
 changes its state to Connect.

 If the local system detects that a remote peer is trying to
 establish BGMP connection to it, and the IP address of the remote
 peer is not an expected one, the local system restarts the
 ConnectRetry timer, rejects the attempted connection, continues to
 listen for a connection that may be initiated by the remote BGMP
 peer, and stays in the Active state.

 The Start event is ignored in the Active state.

 In response to any other event (initiated by either system or
 operator), the local system releases all BGMP resources associated
 with this connection and changes its state to Idle.

Expires December 2002 [Page 38]

Draft BGMP June 2002

 OpenSent state:

 In this state BGMP waits for an OPEN message from its peer. When
 an OPEN message is received, all fields are checked for
 correctness. If the BGMP message header checking or OPEN message
 checking detects an error (see Section 6.2), or a connection
 collision (see Section 6.8) the local system sends a NOTIFICATION
 message and changes its state to Idle.

 If there are no errors in the OPEN message, BGMP sends a KEEPALIVE
 message and sets a KeepAlive timer. The Hold Timer, which was
 originally set to a large value (see above), is replaced with the
 negotiated Hold Time value (see section 4.2). If the negotiated
 Hold Time value is zero, then the Hold Time timer and KeepAlive
 timers are not started. If the value of the Autonomous System
 field is the same as the local Autonomous System number, then the
 connection is an "internal" connection; otherwise, it is
 "external". Finally, the state is changed to OpenConfirm.

 If a disconnect notification is received from the underlying
 transport protocol, the local system closes the BGMP connection,
 restarts the ConnectRetry timer, while continue listening for
 connection that may be initiated by the remote BGMP peer, and goes
 into the Active state.

 If the Hold Timer expires, the local system sends NOTIFICATION
 message with error code Hold Timer Expired and changes its state
 to Idle.

 In response to the Stop event (initiated by either system or
 operator) the local system sends NOTIFICATION message with Error
 Code Cease and changes its state to Idle.

 The Start event is ignored in the OpenSent state.

 In response to any other event the local system sends NOTIFICATION
 message with Error Code Finite State Machine Error and changes its
 state to Idle.

 Whenever BGMP changes its state from OpenSent to Idle, it closes
 the BGMP (and transport-level) connection and releases all
 resources associated with that connection.

 OpenConfirm state:

Expires December 2002 [Page 39]

Draft BGMP June 2002

 In this state BGMP waits for a KEEPALIVE or NOTIFICATION message.

 If the local system receives a KEEPALIVE message, it changes its
 state to Established.

 If the Hold Timer expires before a KEEPALIVE message is received,
 the local system sends NOTIFICATION message with error code Hold
 Timer Expired and changes its state to Idle.

 If the local system receives a NOTIFICATION message, it changes
 its state to Idle.

 If the KeepAlive timer expires, the local system sends a KEEPALIVE
 message and restarts its KeepAlive timer.

 If a disconnect notification is received from the underlying
 transport protocol, the local system changes its state to Idle.

 In response to the Stop event (initiated by either system or
 operator) the local system sends NOTIFICATION message with Error
 Code Cease and changes its state to Idle.

 The Start event is ignored in the OpenConfirm state.

 In response to any other event the local system sends NOTIFICATION
 message with Error Code Finite State Machine Error and changes its
 state to Idle.

 Whenever BGMP changes its state from OpenConfirm to Idle, it
 closes the BGMP (and transport-level) connection and releases all
 resources associated with that connection.

 Established state:

 In the Established state BGMP can exchange UPDATE, NOTIFICATION,
 and KEEPALIVE messages with its peer.

 If the local system receives an UPDATE or KEEPALIVE message, it
 restarts its Hold Timer, if the negotiated Hold Time value is non-
 zero.

 If the local system receives a NOTIFICATION message, it changes
 its state to Idle.

 If the local system receives an UPDATE message and the UPDATE

Expires December 2002 [Page 40]

Draft BGMP June 2002

 message error handling procedure (see Section 6.3) detects an
 error, the local system sends a NOTIFICATION message and changes
 its state to Idle.

 If a disconnect notification is received from the underlying
 transport protocol, the local system changes its state to Idle.

 If the Hold Timer expires, the local system sends a NOTIFICATION
 message with Error Code Hold Timer Expired and changes its state
 to Idle.

 If the KeepAlive timer expires, the local system sends a KEEPALIVE
 message and restarts its KeepAlive timer.

 Each time the local system sends a KEEPALIVE or UPDATE message, it
 restarts its KeepAlive timer, unless the negotiated Hold Time
 value is zero.

 In response to the Stop event (initiated by either system or
 operator), the local system sends a NOTIFICATION message with
 Error Code Cease and changes its state to Idle.

 The Start event is ignored in the Established state.

 In response to any other event, the local system sends
 NOTIFICATION message with Error Code Finite State Machine Error
 and changes its state to Idle.

 Whenever BGMP changes its state from Established to Idle, it
 closes the BGMP (and transport-level) connection, releases all
 resources associated with that connection, and deletes all routes
 derived from that connection.

11. Security Considerations

BGMP uses TCP sessions for all network communication between peers. TCP
sessions may be secured through the use of IPsec [IPSEC].

12. Authors' Addresses

 Dave Thaler
 Microsoft

Expires December 2002 [Page 41]

Draft BGMP June 2002

 One Microsoft Way
 Redmond, WA 98052
 EMail: dthaler@microsoft.com

13. Normative References

[INTEROP]
 Thaler, D., "Interoperability Rules for Multicast Routing
 Protocols", RFC 2715, October 1999.

[IPSEC]
 Kent, S., and R. Atkinson, "Security Architecture for the Internet
 Protocol", RFC 2401, November 1998.

[RFC2119]
 S. Bradner, "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

[V4PREFIX]
 D. Thaler, "Unicast-Prefix-based IPv4 Multicast Addresses", draft-

thaler-ipv4-uni-based-mcast-00.txt, Work in progress, November
 2001.

[V6PREFIX]
 Haberman, B., and D. Thaler, "Unicast-Prefix-based IPv6 Multicast
 Addresses", draft-ietf-ipngwg-uni-based-mcast-03.txt, Work in
 progress, October 2001.

14. Non-normative References

[BGP]
 Rekhter, Y., and T. Li, "A Border Gateway Protocol 4 (BGP-4)", RFC

1771, March 1995.

[MBGP]
 Bates, T., Chandra, R., Katz, D., and Y. Rekhter, "Multiprotocol
 Extensions for BGP-4", RFC 2283, February 1998.

[CBT]
 Ballardie, A., "Core Based Trees (CBT version 2) Multicast
 Routing", RFC 2189, September 1997.

https://datatracker.ietf.org/doc/html/rfc2715
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-thaler-ipv4-uni-based-mcast-00.txt
https://datatracker.ietf.org/doc/html/draft-thaler-ipv4-uni-based-mcast-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-uni-based-mcast-03.txt
https://datatracker.ietf.org/doc/html/rfc1771
https://datatracker.ietf.org/doc/html/rfc1771
https://datatracker.ietf.org/doc/html/rfc2283
https://datatracker.ietf.org/doc/html/rfc2189

Expires December 2002 [Page 42]

Draft BGMP June 2002

[DVMRP]
 Pusateri, T., "Distance Vector Multicast Routing Protocol", draft-

ietf-idmr-dvmrp-v3-10.txt, Work in progress, August 2000.

[DWR]
 Fenner, W., "Domain-Wide Reports", draft-ietf-idmr-membership-

reports-04.txt, Work in progress, August 1999.

[IPv6AA]
 Hinden, R., and S. Deering, "IP Version 6 Addressing Architecture",

RFC 2373, July 1998.

[MOSPF]
 Moy, J., "Multicast Extensions to OSPF", RFC 1584, Proteon, March
 1994.

[PIMDM]
 Adams, A., Nicholas, J., and W. Siadak, "Protocol Independent
 Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised)",

draft-ietf-pim-dm-new-v2-01.txt, Work in progress, February 2002.

[PIMSM]
 Estrin, et al., "Protocol Independent Multicast-Sparse Mode (PIM-
 SM): Protocol Specification", RFC 2362, June 1998.

[REFLECT]
 Bates, T., and R. Chandra, "BGP Route Reflection: An alternative to
 full mesh IBGP", RFC 1966, June 1996.

15. Full Copyright Statement

Copyright (C) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included
on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice
or references to the Internet Society or other Internet organizations,
except as needed for the purpose of developing Internet standards in
which case the procedures for copyrights defined in the Internet

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-dvmrp-v3-10.txt
https://datatracker.ietf.org/doc/html/draft-ietf-idmr-dvmrp-v3-10.txt
https://datatracker.ietf.org/doc/html/draft-ietf-idmr-membership-reports-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-idmr-membership-reports-04.txt
https://datatracker.ietf.org/doc/html/rfc2373
https://datatracker.ietf.org/doc/html/rfc1584
https://datatracker.ietf.org/doc/html/draft-ietf-pim-dm-new-v2-01.txt
https://datatracker.ietf.org/doc/html/rfc2362
https://datatracker.ietf.org/doc/html/rfc1966

Expires December 2002 [Page 43]

Draft BGMP June 2002

languages other than English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS
IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

xp t

Expires December 2002 [Page 44]

