
Network Working Group T. Eckert, Ed.
Internet-Draft Futurewei
Intended status: Standards Track G. Cauchie
Expires: January 10, 2022 Bouygues Telecom
 M. Menth
 University of Tuebingen
 July 9, 2021

Tree Engineering for Bit Index Explicit Replication (BIER-TE)
draft-ietf-bier-te-arch-10

Abstract

 This memo describes per-packet stateless strict and loose path
 steered replication and forwarding for Bit Index Explicit Replication
 packets (RFC8279). It is called BIER Tree Engineering (BIER-TE) and
 is intended to be used as the path steering mechanism for Traffic
 Engineering with BIER.

 BIER-TE introduces a new semantic for bit positions (BP) that
 indicate adjacencies, as opposed to BIER in which BPs indicate Bit-
 Forwarding Egress Routers (BFER). BIER-TE can leverage BIER
 forwarding engines with little changes. Co-existence of BIER and
 BIER-TE forwarding in the same domain is possible, for example by
 using separate BIER sub-domains (SDs). Except for the optional
 routed adjacencies, BIER-TE does not require a BIER routing underlay,
 and can therefore operate without depending on an Interior Gateway
 Routing protocol (IGP).

 As it operates on the same per-packet stateless forwarding
 principles, BIER-TE can also be a good fit to support multicast path
 steering in Segment Routing (SR) networks.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Eckert, et al. Expires January 10, 2022 [Page 1]

https://datatracker.ietf.org/doc/html/rfc8279
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft BIER-TE ARCH July 2021

 This Internet-Draft will expire on January 10, 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Overview . 3
1.1. Requirements Language 5

2. Introduction . 5
2.1. Basic Examples . 5
2.2. BIER-TE Topology and adjacencies 8
2.3. Relationship to BIER 9
2.4. Accelerated/Hardware forwarding comparison 11

3. Components . 11
3.1. The Multicast Flow Overlay 12
3.2. The BIER-TE Control Plane 12
3.2.1. The BIER-TE Controller 13
3.2.1.1. BIER-TE Topology discovery and creation 14
3.2.1.2. Engineered Trees via BitStrings 14
3.2.1.3. Changes in the network topology 15
3.2.1.4. Link/Node Failures and Recovery 15

3.3. The BIER-TE Forwarding Plane 15
3.4. The Routing Underlay 16
3.5. Traffic Engineering Considerations 16

4. BIER-TE Forwarding . 17
4.1. The Bit Index Forwarding Table (BIFT) 17
4.2. Adjacency Types . 18
4.2.1. Forward Connected 18
4.2.2. Forward_routed 19
4.2.3. ECMP . 19
4.2.4. Local Decap(sulation) 19

4.3. Encapsulation / Co-existence with BIER 20
4.4. BIER-TE Forwarding Pseudocode 21
4.5. Basic BIER-TE Forwarding Example 24
4.6. BFR Requirements for BIER-TE forwarding 26

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Eckert, et al. Expires January 10, 2022 [Page 2]

Internet-Draft BIER-TE ARCH July 2021

5. BIER-TE Controller Operational Considerations 26
5.1. Bit position Assignments 26
5.1.1. P2P Links . 27
5.1.2. BFER . 27
5.1.3. Leaf BFERs . 27
5.1.4. LANs . 28
5.1.5. Hub and Spoke . 28
5.1.6. Rings . 29
5.1.7. Equal Cost MultiPath (ECMP) 30
5.1.8. Forward_routed adjacencies 32
5.1.8.1. Reducing bit positions 32
5.1.8.2. Supporting nodes without BIER-TE 33

5.1.9. Reuse of bit positions (without DNC) 33
5.1.10. Summary of BP optimizations 35

5.2. Avoiding duplicates and loops 36
5.2.1. Loops . 36
5.2.2. Duplicates . 36

5.3. Managing SI, sub-domains and BFR-ids 37
5.3.1. Why SI and sub-domains 37
5.3.2. Assigning bits for the BIER-TE topology 38
5.3.3. Assigning BFR-id with BIER-TE 39
5.3.4. Mapping from BFR to BitStrings with BIER-TE 40
5.3.5. Assigning BFR-ids for BIER-TE 41
5.3.6. Example bit allocations 41
5.3.6.1. With BIER . 41
5.3.6.2. With BIER-TE 42

5.3.7. Summary . 43
6. BIER-TE and Segment Routing 44
7. Security Considerations 45
8. IANA Considerations . 46
9. Acknowledgements . 46
10. Change log [RFC Editor: Please remove] 46
11. References . 56
11.1. Normative References 56
11.2. Informative References 56

 Authors' Addresses . 58

1. Overview

 BIER-TE is based on architecture, terminology and packet formats with
 BIER as described in [RFC8279] and [RFC8296]. This document
 describes BIER-TE in the expectation that the reader is familiar with
 these two documents.

 BIER-TE introduces a new semantic for bit positions (BP) that
 indicate adjacencies, as opposed to BIER in which BPs indicate Bit-
 Forwarding Egress Routers (BFER). With BIER-TE, the BIFT of each BFR
 is only populated with BP that are adjacent to the BFR in the BIER-TE

https://datatracker.ietf.org/doc/html/rfc8279
https://datatracker.ietf.org/doc/html/rfc8296

Eckert, et al. Expires January 10, 2022 [Page 3]

Internet-Draft BIER-TE ARCH July 2021

 Topology. Other BPs are empty in the BIFT. The BFR replicate and
 forwards BIER packets to adjacent BPs that are set in the packet.
 BPs are normally also cleared upon forwarding to avoid duplicates and
 loops. This is detailed further below.

 BIER-TE can leverage BIER forwarding engines with little or no
 changes. It can also co-exist with BIER forwarding in the same
 domain, for example by using separate BIER sub-domains. Except for
 the optional routed adjacencies, BIER-TE does not require a BIER
 routing underlay, and can therefore operate without depending on an
 Interior Gateway Routing protocol (IGP).

 As it operates on the same per-packet stateless forwarding
 principles, BIER-TE can also be a good fit to support multicast path
 steering in Segment Routing (SR) networks.

 This document is structured as follows:

 o Section 2 introduces BIER-TE with two reference forwarding
 examples, followed by an introduction of the new concepts of the
 BIER-TE (overlay) topology and finally a summary of the
 relationship between BIER and BIER-TE and a discussion of
 accelerated hardware forwarding.

 o Section 3 describes the components of the BIER-TE architecture,
 Flow overlay, BIER-TE layer with the BIER-TE control plane
 (including the BIER-TE controller) and BIER-TE forwarding plane,
 and the routing underlay.

 o Section 4 specifies the behavior of the BIER-TE forwarding plane
 with the different type of adjacencies and possible variations of
 BIER-TE forwarding pseudocode, and finally the mandatory and
 optional requirements.

 o Section 5 describes operational considerations for the BIER-TE
 controller, foremost how the BIER-TE controller can optimize the
 use of BP by using specific type of BIER-TE adjacencies for
 different type of topological situations, but also how to assign
 bits to avoid loops and duplicates (which in BIER-TE does not come
 for free), and finally how SI, sub-domains and BFR-ids can be
 managed by a BIER-TE controller, examples and summary.

 o Section 6 concludes the technology specific sections of document
 by further relating BIER-TE to Segment Routing (SR).

 Note that related work, [I-D.ietf-roll-ccast] uses Bloom filters
 [Bloom70] to represent leaves or edges of the intended delivery tree.
 Bloom filters in general can support larger trees/topologies with

Eckert, et al. Expires January 10, 2022 [Page 4]

Internet-Draft BIER-TE ARCH July 2021

 fewer addressing bits than explicit BitStrings, but they introduce
 the heuristic risk of false positives and cannot clear bits in the
 BitString during forwarding to avoid loops. For these reasons, BIER-
 TE uses explicit BitStrings like BIER. The explicit BitStrings of
 BIER-TE can also be seen as a special type of Bloom filter, and this
 is how related work [ICC] describes it.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119], [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Introduction

2.1. Basic Examples

 BIER-TE forwarding is best introduced with simple examples.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Eckert, et al. Expires January 10, 2022 [Page 5]

Internet-Draft BIER-TE ARCH July 2021

 BIER-TE Topology:

 Diagram:

 p5 p6
 --- BFR3 ---
 p3/ p13 \p7 p15
 BFR1 ---- BFR2 BFR5 ----- BFR6
 p1 p2 p4\ p14 /p10 p11 p12
 --- BFR4 ---
 p8 p9

 (simplified) BIER-TE Bit Index Forwarding Tables (BIFT):

 BFR1: p1 -> local_decap
 p2 -> forward_connected() to BFR2

 BFR2: p1 -> forward_connected() to BFR1
 p5 -> forward_connected() to BFR3
 p8 -> forward_connected() to BFR4

 BFR3: p3 -> forward_connected() to BFR2
 p7 -> forward_connected() to BFR5
 p13 -> local_decap

 BFR4: p4 -> forward_connected() to BFR2
 p10 -> forward_connected() to BFR5
 p14 -> local_decap

 BFR5: p6 -> forward_connected() to BFR3
 p9 -> forward_connected() to BFR4
 p12 -> forward_connected() to BFR6

 BFR6: p11 -> forward_connected() to BFR5
 p15 -> local_decap

 Figure 1: BIER-TE basic example

 Consider the simple network in the above BIER-TE overview example
 picture with 6 BFRs. p1...p14 are the bit positions (BP) used. All
 BFRs can act as an ingress BFR (BFIR), BFR1, BFR3, BFR4 and BFR6 can
 also be egress BFRs (BFERs). Forward_connected() is the name for
 adjacencies that are representing subnet adjacencies of the network.
 Local_decap() is the name of the adjacency to decapsulate BIER-TE
 packets and pass their payload to higher layer processing.

Eckert, et al. Expires January 10, 2022 [Page 6]

Internet-Draft BIER-TE ARCH July 2021

 Assume a packet from BFR1 should be sent via BFR4 to BFR6. This
 requires a BitString (p2,p8,p10,p12,p15). When this packet is
 examined by BIER-TE on BFR1, the only bit position from the BitString
 that is also set in the BIFT is p2. This will cause BFR1 to send the
 only copy of the packet to BFR2. Similarly, BFR2 will forward to
 BFR4 because of p8, BFR4 to BFR5 because of p10 and BFR5 to BFR6
 because of p12. p15 finally makes BFR6 receive and decapsulate the
 packet.

 To send in addition to BFR6 via BFR4 also a copy to BFR3, the
 BitString needs to be (p2,p5,p8,p10,p12,p13). When this packet is
 examined by BFR2, p5 causes one copy to be sent to BFR3 and p8 one
 copy to BFR4. When BFR3 receives the packet, p13 will cause it to
 receive and decapsulate the packet.

 If instead the BitString was (p2,p6,p8,p10,p12,p13,p15), the packet
 would be copied by BFR5 towards BFR3 because of p6 instead of being
 copied by BFR2 to BFR3 because of p5 in the prior case. This is
 showing the ability of the shown BIER-TE Topology to make the traffic
 pass across any possible path and be replicated where desired.

 BIER-TE has various options to minimize BP assignments, many of which
 are based on assumptions about the required multicast traffic paths
 and bandwidth consumption in the network.

 The following picture shows a modified example, in which Rtr2 and
 Rtr5 are assumed not to support BIER-TE, so traffic has to be unicast
 encapsulated across them. To emphasize non-L2, but routed/tunneled
 forwarding of BIER-TE packets, these adjacencies are called
 "forward_routed". Otherwise there is no difference in their
 processing over the aforementioned "forward_connected" adjacencies.

 In addition, bits are saved in the following example by assuming that
 BFR1 only needs to be BFIR but not BFER or transit BFR.

Eckert, et al. Expires January 10, 2022 [Page 7]

Internet-Draft BIER-TE ARCH July 2021

 BIER-TE Topology:

 Diagram:

 p1 p3 p7
 > BFR3 <.... p5
 >
 BFR1 (Rtr2) (Rtr5) BFR6
 >
 > BFR4 <.... p6
 p2 p4 p8

 (simplified) BIER-TE Bit Index Forwarding Tables (BIFT):

 BFR1: p1 -> forward_routed() to BFR3
 p2 -> forward_routed() to BFR4

 BFR3: p3 -> local_decap
 p5 -> forward_routed() to BFR6

 BFR4: p4 -> local_decap
 p6 -> forward_routed() to BFR6

 BFR6: p5 -> local_decap
 p6 -> local_decap
 p7 -> forward_routed() to BFR3
 p8 -> forward_routed() to BFR4

 Figure 2: BIER-TE basic overlay example

 To send a BIER-TE packet from BFR1 via BFR3 to BFR6, the BitString is
 (p1,p5). From BFR1 via BFR4 to BFR6 it is (p2,p6). A packet from
 BFR1 to BFR3,BFR4 and from BFR3 to BFR6 uses (p1,p2,p3,p4,p5). A
 packet from BFR1 to BFR3,BFR4 and from BFR4 to BFR uses
 (p1,p2,p3,p4,p6). A packet from BFR1 to BFR4, and from BFR4 to BFR6
 and from BFR6 to BFR3 uses (p2,p3,p4,p6,p7). A packet from BFR1 to
 BFR3, and from BFR3 to BFR6 and from BFR6 to BFR4 uses
 (p1,p3,p4,p5,p8).

2.2. BIER-TE Topology and adjacencies

 The key new component in BIER-TE compared to BIER is the BIER-TE
 topology as introduced through the two examples in Section 2.1. It
 is used to control where replication can or should happen and how to
 minimize the required number of BP for adjacencies.

Eckert, et al. Expires January 10, 2022 [Page 8]

Internet-Draft BIER-TE ARCH July 2021

 The BIER-TE Topology consists of the BIFTs of all the BFR and can
 also be expressed as a directed graph where the edges are the
 adjacencies between the BFR labelled with the BP used for the
 adjacency. Adjacencies are naturally unidirectional. BP can be
 reused across multiple adjacencies as long as this does not lead to
 undesired duplicates or loops as explained further down in the text.

 If the BIER-TE topology represents (a subset of) the underlying
 (layer 2) topology of the network as shown in the first example, this
 may be called a "native" BIER-TE topology. A topology consisting
 only of "forward_routed" adjacencies as shown in the second example
 may be called an "overlay" BIER-TE topology. A BIER-TE topology will
 both "forward_connected" and "forward_routed" adjacencies may be
 called a "hybrid" BIER-TE topology.

2.3. Relationship to BIER

 BIER-TE is designed so that is forwarding plane is a simple extension
 to the BIER forwarding plane, hence allowing for it to be added to
 BIER deployments where it can be beneficial.

 BIER-TE is also intended as an option to expand the BIER architecture
 into deployments where BIER may not be the best fit, such as
 statically provisioned networks with needs for path steering but
 without desire for distributed routing protocols.

 1. BIER-TE inherits the following aspects from BIER unchanged:

 1. The fundamental purpose of per-packet signaled packet
 replication and delivery via a BitString.

 2. The overall architecture consisting of three layers, flow
 overlay, BIER(-TE) layer and routing underlay.

 3. The supportable encapsulations, [RFC8296] or other (future)
 encapsulations.

 4. The semantic of all [RFC8296] header elements used by the
 BIER-TE forwarding plane other than the semantic of the BP in
 the BitString.

 5. The BIER forwarding plane, with the exception of how bits
 have to be cleared during replication.

 2. BIER-TE has the following key changes with respect to BIER:

 1. In BIER, bits in the BitString of a BIER packet header
 indicate a BFER and bits in the BIFT indicate the BIER

https://datatracker.ietf.org/doc/html/rfc8296
https://datatracker.ietf.org/doc/html/rfc8296

Eckert, et al. Expires January 10, 2022 [Page 9]

Internet-Draft BIER-TE ARCH July 2021

 control plane calculated next-hop toward that BFER. In BIER-
 TE, bits in the BitString of a BIER packet header indicate an
 adjacency in the BIER-TE topology, and only the BFRs that are
 upstream of this adjacency have this bit populated with the
 adjacency in their BIFT.

 2. In BIER, the implied reference option for the core part of
 the BIER layer control plane is the BIER extension to
 distributed routing protocol, such as standardized in ISIS/
 OSPF extensions for BIER, [RFC8401] and [RFC8444]. The
 reference option for the core part of the BIER-TE control
 plane is the BIER-TE controller. Nevertheless, both BIER and
 BIER-TE BIFT forwarding plane state could equally be
 populated by any mechanism.

 3. Assuming the reference options for the control plane, BIER-TE
 replaces in-network autonomous path calculation by explicit
 paths calculated by the BIER-TE controller.

 3. The following element/functions described in the BIER
 architecture are not required by the BIER-TE architecture:

 1. BIRTs on BFR for BIER-TE are not required when using a BIER-
 TE controller because the controller can directly populate
 the BIFTs. In BIER, BIRTs are populated by the distributed
 routing protocol support for BIER, allowing BFR to populate
 their BIFTs locally from their BIRTs. Other BIER-TE control
 plane or management plane options may introduce requirements
 for BIRTs for BIER-TE BFR.

 2. The BIER-TE layer forwarding plane does not require BFR to
 have a unique BP and therefore also no unique BFR-id. See
 for example See Section 5.1.3.

 3. Identification of BFR by the BIER-TE control plane is outside
 the scope of this specification. Whereas the BIER control
 plane uses BFR-ids in its BFR to BFR signaling, a BIER-TE
 controller may choose any form of identification deemed
 appropriate.

 4. BIER-TE forwarding does not use the BFR-id field of the BIER
 packet header.

 4. Co-existence of BIER and BIER-TE in the same network requires the
 following:

 1. The BIER/BIER-TE packet header needs to allow addressing both
 BIER and BIER-TE BIFT. Depending on the encapsulation

https://datatracker.ietf.org/doc/html/rfc8401
https://datatracker.ietf.org/doc/html/rfc8444

Eckert, et al. Expires January 10, 2022 [Page 10]

Internet-Draft BIER-TE ARCH July 2021

 option, the same SD may or may not be reusable across BIER
 and BIER-TE. See Section 4.3. In either case, a packet is
 always only forwarded end-to-end via BIER or via BIER-TE
 (ships in the nights forwarding).

 2. BIER-TE deployments will have to assign BFR-ids to BFR and
 insert them into the BFR-id field of BIER packet headers as
 BIER does, whenever the deployment uses (unchanged)
 components developed for BIER that use BFR-id, such as
 multicast flow overlays or BIER layer control plane elements.
 See also Section 5.3.3.

2.4. Accelerated/Hardware forwarding comparison

 Forwarding of BIER-TE is designed to easily build/program common
 forwarding hardware with BIER. The pseudocode in Section 4.4 shows
 how existing BIER/BIFT forwarding can be modified to support the
 REQUIRED BIER-TE forwarding functionality, by using BIER BIFT's
 "Forwarding Bit Mask" (F-BM): Only the clearing of bits to avoid
 duplicate packets to a BFR neighbor is skipped in BIER-TE forwarding
 because it is not necessary and could not be done when using BIER
 F-BM.

 Whether to use BIER or BIER-TE forwarding is simply a choice of the
 mode of the BIFT indicated by the packet (BIER or BIER-TE BIFT).
 This is determined by the BFR configuration for the encapsulation,
 see Section 4.3.

3. Components

 BIER-TE can be thought of being constituted from the same three
 layers as BIER: The "multicast flow overlay", the "BIER layer" and
 the "routing underlay". The following picture also shows how the
 "BIER layer" is constituted from the "BIER-TE forwarding plane" and
 the "BIER-TE control plane" represent by the "BIER-TE Controller".

Eckert, et al. Expires January 10, 2022 [Page 11]

Internet-Draft BIER-TE ARCH July 2021

 <------BGP/PIM----->
 |<-IGMP/PIM-> multicast flow <-PIM/IGMP->|
 overlay

 BIER-TE [BIER-TE Controller] <=> [BIER-TE Topology]
 control ^ ^ ^
 plane / | \ BIER-TE control protocol
 | | | e.g. YANG/Netconf/RestConf
 | | | PCEP/...
 v v v
 Src -> Rtr1 -> BFIR-----BFR-----BFER -> Rtr2 -> Rcvr

 |<----------------->|
 BIER-TE forwarding plane

 |<- BIER-TE domain->|

 |<--------------------->|
 Routing underlay

 Figure 3: BIER-TE architecture

3.1. The Multicast Flow Overlay

 The Multicast Flow Overlay has the same role as described for BIER in
[RFC8279], Section 4.3. See also Section 3.2.1.2.

3.2. The BIER-TE Control Plane

 In the BIER architecture [RFC8279], the BIER control plane is not
 explicitly separated from the BIER forwarding plane, but instead
 their functions are summarized together in Section 4.2. Example
 standardized options for the BIER control plane include ISIS/OSPF
 extensions for BIER, [RFC8401] and [RFC8444].

 For BIER-TE, the control plane includes at minimum the following
 functionality.

 1. During initial provisioning of the network and/or during
 modifications of its topology and/or services: protocols and/or
 procedures to establish BIER-TE BIFTs:

 1. Determine the desired BIER-TE topology for a BIER-TE sub-
 domains: the native and/or overlay adjacencies that are
 assigned to BPs.

 2. Determine the per-BFR BIFT from the BIER-TE topology.

https://datatracker.ietf.org/doc/html/rfc8279#section-4.3
https://datatracker.ietf.org/doc/html/rfc8279
https://datatracker.ietf.org/doc/html/rfc8401
https://datatracker.ietf.org/doc/html/rfc8444

Eckert, et al. Expires January 10, 2022 [Page 12]

Internet-Draft BIER-TE ARCH July 2021

 3. Optionally assign BFR-id to BFIR for later insertion into
 BIER-TE headers on BFIR. Alternatively, bfir-id in BIER
 packet headers may be managed solely by the flow overlay
 layer and/or be unused.

 4. Install/update the BIFTs into the BFRs and optionally BFR-id
 into BFIR.

 2. During operations of the network: Protocols and/or procedures to
 support creation/change/removal of overlay flows on BFIR:

 1. Process the BIER-TE requirements for the multicast overlay
 flow: BFIR and BFERs of the flow as well as policies for the
 path selection of the flow.

 2. Determine the BitStrings and optionally Entropy.

 3. Install state on the BFIR to imposition the desired BIER
 packet header(s) for packets of the overlay flow.

 4. Install the necessary state on the BFERs to decapsulate the
 BIER packet header and properly dispatch its payload.

3.2.1. The BIER-TE Controller

 Notwithstanding other options, this architecture describes the BIER
 control plane as shown in Figure 3 to consists of:

 o A single centralized BIER-TE controller.

 o Data-models and protocols to communicate between controller and
 BFR in step 1, such YANG/Netconf/RestConf.

 o Protocols to communicate between controller and BFIR in step 2,
 such as BIER-TE extensions for [RFC5440].

 The BIER control plane could equally be implemented without any
 active dynamic components by an operator via CLI on the BFRs. In
 that case, operator configured local policy on the BFIR would have to
 determine how to set the appropriate BIER header fields. The BIER-TE
 control plane could also be decentralized and/or distributed, but
 this document does not consider any additional protocols and/or
 procedures which would then be necessary to coordinate its entities
 to achieve the above described functionality.

https://datatracker.ietf.org/doc/html/rfc5440

Eckert, et al. Expires January 10, 2022 [Page 13]

Internet-Draft BIER-TE ARCH July 2021

3.2.1.1. BIER-TE Topology discovery and creation

 Step 1.1 includes network topology discovery and BIER-TE topology
 creation. The latter describes the process by which a Controller
 determines which routers are to be configured as BFR and the
 adjacencies between them.

 In statically managed networks, such as in industrial environments,
 both discovery and creation can be a manual/offline process.

 In other networks, topology discovery may rely on protocols including
 extending a Link-State-Protocol (LSP) based IGP into the BIER-TE
 controller itself, [RFC7752] (BGP-LS) or [RFC8345] (Yang topology) as
 well as BIER-TE specific methods, for example via
 [I-D.ietf-bier-te-yang]. These options are non-exhaustive.

 Dynamic creation of the BIER-TE topology can be as easy as mapping
 the network topology 1:1 to the BIER-TE topology by assigning a BP
 for every network subnet adjacency. In larger networks, it likely
 involves more complex policy and optimization decisions including how
 to minimize the number of BP required and how to assign BP across
 different BitStrings to minimize the number of duplicate packets
 across links when delivering an overlay flow to BFER using different
 SIs/BitStrings. These topics are discussed in Section 5.

 When the topology is determined, the BIER-TE Controller then pushes
 the BitPositions/adjacencies to the BIFT of the BFRs, populating only
 those SI:BitPositions to the BIFT of each BFR to which that BFR
 should be able to send packets to - adjacencies connecting to this
 BFR.

 Communications between the BIER-TE Controller and BFRs (beside
 topology discovery) is ideally via standardized protocols and data-
 models such as Netconf/RestConf/Yang/PCEP. Vendor-specific CLI on
 the BFRs is also an option (as in many other SDN solutions lacking
 definition of standardized data model).

3.2.1.2. Engineered Trees via BitStrings

 In BIER, the same set of BFER in a single sub-domain is always
 encoded as the same BitString. In BIER-TE, the BitString used to
 reach the same set of BFER in the same sub-domain can be different
 for different overlay flows because the BitString encodes the paths
 towards the BFER, so the BitStrings from different BFIR to the same
 set of BFER will often be different, and the BitString from the same
 BFIR to the same set of BFER can different for different overlay
 flows for policy reasons such as shortest path trees, Steiner trees
 (minimum cost trees), diverse path trees for redundancy and so on.

https://datatracker.ietf.org/doc/html/rfc7752
https://datatracker.ietf.org/doc/html/rfc8345

Eckert, et al. Expires January 10, 2022 [Page 14]

Internet-Draft BIER-TE ARCH July 2021

 See also [I-D.ietf-bier-multicast-http-response] for a solution
 describing this interaction.

3.2.1.3. Changes in the network topology

 If the network topology changes (not failure based) so that
 adjacencies that are assigned to bit positions are no longer needed,
 the BIER-TE Controller can re-use those bit positions for new
 adjacencies. First, these bit positions need to be removed from any
 BFIR flow state and BFR BIFT state, then they can be repopulated,
 first into BIFT and then into the BFIR.

3.2.1.4. Link/Node Failures and Recovery

 When link or nodes fail or recover in the topology, BIER-TE could
 quickly respond with out-of-scope FRR procedures such as
 [I-D.eckert-bier-te-frr]. It can also more slowly react by
 recalculating the BitStrings of affected multicast flows. This
 reaction is slower than the FRR procedure because the BIER-TE
 Controller needs to receive link/node up/down indications,
 recalculate the desired BitStrings and push them down into the BFIRs.
 With FRR, this is all performed locally on a BFR receiving the
 adjacency up/down notification.

3.3. The BIER-TE Forwarding Plane

 The BIER-TE Forwarding Plane constitutes of the following components:

 1. On BFIR imposition of BIER header for packets from overlay flows.
 This is driven by a combination of state established by the BIER-
 TE control plane and/or the multicast flow overlay as explained
 in Section 3.1.

 2. On BFR (including BFIR and BFER), forwarding/replication of BIER
 packets according to their BitString as explained below and
 optionally Entropy. Processing of other BIER header fields such
 as DSCP is outside the scope of this document.

 3. On BFER removal of BIER header and dispatching of the payload
 according to state created by the BIER-TE control plane and/or
 overlay layer.

 When the BIER-TE Forwarding Plane receives a packet, it simply looks
 up the bit positions that are set in the BitString of the packet in
 the Bit Index Forwarding Table (BIFT) that was populated by the BIER-
 TE Controller. For every BP that is set in the BitString, and that
 has one or more adjacencies in the BIFT, a copy is made according to
 the type of adjacencies for that BP in the BIFT. Before sending any

Eckert, et al. Expires January 10, 2022 [Page 15]

Internet-Draft BIER-TE ARCH July 2021

 copy, the BFR clears all BPs in the BitString of the packet for which
 the BFR has one or more adjacencies in the BIFT, except when the
 adjacency indicates "DoNotClear" (DNC, see Section 4.2.1). This is
 done to inhibit that packets can loop.

3.4. The Routing Underlay

 For forward_connected() adjacencies, BIER-TE is sending BIER packets
 to directly connected BIER-TE neighbors as L2 (unicasted) BIER
 packets without requiring a routing underlay. For forward_routed()
 adjacencies, BIER-TE forwarding encapsulates a copy of the BIER
 packet so that it can be delivered by the forwarding plane of the
 routing underlay to the routable destination address indicated in the
 adjacency. See Section 4.2.2 for the adjacency definition.

 BIER relies on the routing underlay to calculate paths towards BFERs
 and derive next-hop BFR adjacencies for those paths. This commonly
 relies on BIER specific extensions to the routing protocols of the
 routing underlay but may also be established by a controller. In
 BIER-TE, the next-hops of a packet are determined by the BitString
 through the BIER-TE Controller established adjacencies on the BFR for
 the BPs of the BitString. There is thus no need for BFER specific
 routing underlay extensions to forward BIER packets with BIER-TE
 semantics.

 Encapsulation parameters can be provisioned by the BIER-TE controller
 into the forward_connected() or forward_routed() adjacencies directly
 without relying on a routing underlay.

 If the BFR intends to support FRR for BIER-TE, then the BIER-TE
 forwarding plane needs to receive fast adjacency up/down
 notifications: Link up/down or neighbor up/down, e.g. from BFD.
 Providing these notifications is considered to be part of the routing
 underlay in this document.

3.5. Traffic Engineering Considerations

 Traffic Engineering ([I-D.ietf-teas-rfc3272bis]) provides performance
 optimization of operational IP networks while utilizing network
 resources economically and reliably. The key elements needed to
 effect TE are policy, path steering and resource management. These
 elements require support at the control/controller level and within
 the forwarding plane.

 Policy decisions are made within the BIER-TE control plane, i.e.,
 within BIER-TE Controllers. Controllers use policy when composing
 BitStrings and BFR BIFT state. The mapping of user/IP traffic to
 specific BitStrings/BIER-TE flows is made based on policy. The

Eckert, et al. Expires January 10, 2022 [Page 16]

Internet-Draft BIER-TE ARCH July 2021

 specific details of BIER-TE policies and how a controller uses them
 are out of scope of this document.

 Path steering is supported via the definition of a BitString.
 BitStrings used in BIER-TE are composed based on policy and resource
 management considerations. For example, when composing BIER-TE
 BitStrings, a Controller must take into account the resources
 available at each BFR and for each BP when it is providing congestion
 loss free services such as Rate Controlled Service Disciplines
 [RCSD94]. Resource availability could be provided for example via
 routing protocol information, but may also be obtained via a BIER-TE
 control protocol such as Netconf or any other protocol commonly used
 by a PCE to understand the resources of the network it operates on.
 The resource usage of the BIER-TE traffic admitted by the BIER-TE
 controller can be solely tracked on the BIER-TE Controller based on
 local accounting as long as no forward_routed() adjacencies are used
 (see Section 4.2.1 for the definition of forward_routed()
 adjacencies). When forward_routed() adjacencies are used, the paths
 selected by the underlying routing protocol need to be tracked as
 well.

 Resource management has implications on the forwarding plane beyond
 the BIER-TE defined steering of packets. This includes allocation of
 buffers to guarantee the worst case requirements of admitted RCSD
 traffic and potential policing and/or rate-shaping mechanisms,
 typically done via various forms of queuing. This level of resource
 control, while optional, is important in networks that wish to
 support congestion management policies to control or regulate the
 offered traffic to deliver different levels of service and alleviate
 congestion problems, or those networks that wish to control latencies
 experienced by specific traffic flows.

4. BIER-TE Forwarding

4.1. The Bit Index Forwarding Table (BIFT)

 The Bit Index Forwarding Table (BIFT) exists in every BFR. For every
 sub-domain in use, it is a table indexed by SI:bit position and is
 populated by the BIER-TE control plane. Each index can be empty or
 contain a list of one or more adjacencies.

 Like BIER, BIER-TE can support multiple sub-domains, each with a
 separate BIFT.

 In [RFC8279], Figure 2, indices into the BIFT are both SI:BitString
 and BFR-id, where BitString is indicating a BP: BFR-id = SI * 2^BSL +
 BP. As shown in Figure 4, in BIER-TE, only SI:BP are used as indices
 into a BIFT because they identify adjacencies and not BFR.

https://datatracker.ietf.org/doc/html/rfc8279

Eckert, et al. Expires January 10, 2022 [Page 17]

Internet-Draft BIER-TE ARCH July 2021

 --
 | Index: | Adjacencies: |
 | SI:bit position | <empty> or one or more per entry |
 ==
 | 0:1 | forward_connected(interface,neighbor{,DNC}) |
 --
 | 0:2 | forward_connected(interface,neighbor{,DNC}) |
 | | forward_connected(interface,neighbor{,DNC}) |
 --
 | 0:3 | local_decap({VRF}) |
 --
 | 0:4 | forward_routed({VRF,}l3-neighbor) |
 --
 | 0:5 | <empty> |
 --
 | 0:6 | ECMP({adjacency1,...adjacencyN}, seed) |
 --
 ...
 | BitStringLength | ... |
 --
 Bit Index Forwarding Table

 Figure 4: BIFT adjacencies

 The BIFT is programmed into the data plane of BFRs by the BIER-TE
 Controller and used to forward packets, according to the rules
 specified in the BIER-TE Forwarding Procedures.

 Note that a BIFT index (SI:BP) may be populated in the BIFT of more
 than one BFR. See Section 5.1.6 for an example of how a BIER-TE
 controller could assign BPs to (logical) adjacencies shared across
 multiple BFRs, Section 5.1.3 for an example of assigning the same BP
 to different adjacencies, and Section 5.1.9 for guidelines regarding
 re-use of BPs across different adjacencies.

 {VRF} indicates the Virtual Routing and Forwarding context into which
 the BIER payload is to be delivered. This is optional and depends on
 the multicast flow overlay.

4.2. Adjacency Types

4.2.1. Forward Connected

 A "forward_connected" adjacency is towards a directly connected BFR
 neighbor using an interface address of that BFR on the connecting
 interface. A forward_connected() adjacency does not route packets
 but only L2 forwards them to the neighbor.

Eckert, et al. Expires January 10, 2022 [Page 18]

Internet-Draft BIER-TE ARCH July 2021

 Packets sent to an adjacency with "DoNotClear" (DNC) set in the BIFT
 MUST NOT have the bit position for that adjacency cleared when the
 BFR creates a copy for it. The bit position will still be cleared
 for copies of the packet made towards other adjacencies. This can be
 used for example in ring topologies as explained below.

4.2.2. Forward_routed

 A "forward_routed" adjacency is an adjacency towards a BFR that uses
 a (tunneling) encapsulation which will cause the packet to be
 forwarded by the routing underlay toward the adjacent BFR. This can
 leverage any feasible encapsulation, such as MPLS or tunneling over
 IP/IPv6, as long as the BIER-TE packet can be identified as a
 payload. This identification can either rely on the BIER/BIER-TE co-
 existence mechanisms described in Section 4.3, or by explicit support
 for a BIER-TE payload type in the tunneling encapsulation.

 "forward_routed" adjacencies are necessary to pass BIER-TE traffic
 across non BIER-TE capable routers or to minimize the number of
 required BP by tunneling over (BIER-TE capable) routers on which
 neither replication nor path-steering is desired, or simply to
 leverage path redundancy and FRR of the routing underlay towards the
 next BFR. They may also be useful to a multi-subnet adjacent BFR to
 leverage the routing underlay ECMP independent of BIER-TE ECMP
 (Section 4.2.3).

4.2.3. ECMP

 BIER ECMP is tied to the BIER BIFT processing semantic and are
 therefore not directly usable with BIER-TE.

 A BIER-TE "Equal Cost Multipath" (ECMP) adjacency has a list of two
 or more non-ECMP adjacencies and a seed parameter. When a BIER-TE
 packet is copied onto such an ECMP adjacency, an implementation
 specific so-called hash function will select one out of the lists
 adjacencies to which the packet is forwarded. This ECMP hash
 function MUST select the same adjacency from that list for all
 packets with the same entropy parameter. The seed parameter allows
 to design hash functions that are easy to implement at high speed
 without running into polarization issues across multiple consecutive
 ECMP hops. See Section 5.1.7 for more explanations.

4.2.4. Local Decap(sulation)

 A "local_decap" adjacency passes a copy of the payload of the BIER-TE
 packet to the protocol within the BFR (IPv4/IPv6, Ethernet,...)
 responsible for that payload according to the packet header fields.
 A local_decap() adjacency turns the BFR into a BFER for matching

Eckert, et al. Expires January 10, 2022 [Page 19]

Internet-Draft BIER-TE ARCH July 2021

 packets. Local_decap() adjacencies require the BFER to support
 routing or switching for NextProto to determine how to further
 process the packet.

4.3. Encapsulation / Co-existence with BIER

 Specifications for BIER-TE encapsulation are outside the scope of
 this document. This section gives explanations and guidelines.

 Because a BFR needs to interpret the BitString of a BIER-TE packet
 differently from a BIER packet, it is necessary to distinguish BIER
 from BIER-TE packets. In the BIER encapsulation [RFC8296], the BIFT-
 id field of the packet indicates the BIFT of the packet. BIER and
 BIER-TE can therefore be run simultaneously, when the BIFT-id address
 space is shared across BIER BIFT and BIER-TE BIFT. Partitioning the
 BIFT-id address space is subject to BIER-TE/BIER control plane
 procedures.

 When [RFC8296] is used for BIER with MPLS, BIFT-id address ranges can
 be dynamically allocated from MPLS label space only for the set of
 actually used SD:BSL BIFT. This allows to also allocate non-
 overlapping label ranges for BIFT-ids that are to be used with BIER-
 TE BIFTs.

 With MPLS, it is also possible to reuse the same SD space for both
 BIER-TE and BIER, so that the same SD has both a BIER BIFT and
 according range of BIFT-ids and a disjoint BIER-TE BIFT and non-
 overlapping range of BIFT-ids.

 When a fixed mapping from BSL, SD, SI is used without specifically
 distinguishing BIER and BIER-TE, such as proposed for non-MPLS
 forwarding with [RFC8296] in [I-D.ietf-bier-non-mpls-bift-encoding]
 revision 04, section 5., then it is necessary to allocate disjoint
 SDs to BIER and BIER-TE BIFT so that both can be addressed by the
 BIFT-ids. The encoding proposed in section 6. of the same document
 does not statically encode BSL or SD into the BIFT-id, but allows for
 a mapping, and hence could provide for the same freedom as when MPLS
 is being used (same or different SD for BIER/BIER-TE).

 "forward_routed" requires an encapsulation permitting to unicast
 BIER-TE packets to a specific interface address on a target BFR.
 With MPLS encapsulation, this can simply be done via a label stack
 with that addresses label as the top label - followed by the label
 assigned to the (BSL,SD,SI) BitString. With non-MPLS encapsulation,
 some form of IP encapsulation would be required (for example IP/GRE).

 The encapsulation used for "forward_routed" adjacencies can equally
 support existing advanced adjacency information such as "loose source

https://datatracker.ietf.org/doc/html/rfc8296
https://datatracker.ietf.org/doc/html/rfc8296
https://datatracker.ietf.org/doc/html/rfc8296

Eckert, et al. Expires January 10, 2022 [Page 20]

Internet-Draft BIER-TE ARCH July 2021

 routes" via e.g. MPLS label stacks or appropriate header extensions
 (e.g. for IPv6).

4.4. BIER-TE Forwarding Pseudocode

 The following pseudocode, Figure 5, for BIER-TE forwarding is based
 on the BIER forwarding pseudocode of [RFC8279], section 6.5 with one
 modification.

 void ForwardBitMaskPacket_withTE (Packet)
 {
 SI=GetPacketSI(Packet);
 Offset=SI*BitStringLength;
 for (Index = GetFirstbit position(Packet->BitString); Index ;
 Index = GetNextbit position(Packet->BitString, Index)) {
 F-BM = BIFT[Index+Offset]->F-BM;
 if (!F-BM) continue; [3]
 BFR-NBR = BIFT[Index+Offset]->BFR-NBR;
 PacketCopy = Copy(Packet);
 PacketCopy->BitString &= F-BM; [2]
 PacketSend(PacketCopy, BFR-NBR);
 // The following must not be done for BIER-TE:
 // Packet->BitString &= ~F-BM; [1]
 }
 }

 Figure 5: BIER-TE Forwarding Pseudocode for required functions, based
 on BIER Pseudocode

 In step [2], the F-BM is used to clear bit(s) in PacketCopy. This
 step exists in both BIER and BIER-TE, but the F-BMs need to be
 populated differently for BIER-TE than for BIER for the desired
 clearing.

 In BIER, multiple bits of a BitString can have the same BFR-NBR.
 When a received packets BitString has more than one of those bits
 set, the BIER replication logic has to avoid that more than one
 PacketCopy is sent to that BFR-NBR ([1]). Likewise, the PacketCopy
 sent to a BFR-NBR must clear all bits in its BitString that are not
 routed across BFR-NBR. This protects against BIER replication on any
 possible further BFR to create duplicates ([2]).

 To solve both [1] and [2] for BIER, the F-BM of each bit needs to
 have all bits set that this BFR wants to route across BFR-NBR. [2]
 clears all other bits in PacketCopy->BitString, and [1] clears those
 bits from Packet->BitString after the first PacketCopy.

https://datatracker.ietf.org/doc/html/rfc8279#section-6.5

Eckert, et al. Expires January 10, 2022 [Page 21]

Internet-Draft BIER-TE ARCH July 2021

 In BIER-TE, a BFR-NBR is an adjacency, forward_connected,
 forward_routed or local_decap. There is no need for [2] to suppress
 duplicates in the way BIER does because in general, different BP
 would never have the same adjacency. If a BIER-TE controller
 actually finds some optimization in which this would be desirable,
 then the controller is also responsible to ensure that only one of
 those bits is set in any Packet->BitString, unless the controller
 explicitly wants for duplicates to be created.

 For BIER-TE, F-BM is handled as follows:

 1. The F-BM of all bits without an adjacency has all bits clear.
 This will cause [3] to skip further processing of such a bit.

 2. All bits with an adjacency (with DNC flag clear) have an F-BM
 that has only those bits set for which this BFR does not have an
 adjacency. This causes [2] to clear all bits from
 PacketCopy->BitString for which this BFR does have an adjacency.

 3. [1] is not performed for BIER-TE. All bit clearing required by
 BIER-TE is performed by [2].

 This Forwarding Pseudocode can support the REQUIRED BIER-TE
 forwarding functions (see Section 4.6), forward_connected,
 forward_routed() and local decap, but not the RECOMMENDED functions
 DNC flag and multiple adjacencies per bit nor the OPTIONAL function,
 ECMP adjacencies. The DNC flag cannot be supported when using only
 [1] to mask bits.

 The modified and expanded Forwarding Pseudocode in Figure 6 specifies
 how to support all BIER-TE forwarding functions (required,
 recommended and optional):

 o This pseudocode eliminates per-bit F-BM, therefore reducing the
 size of BIFT state by BitStringLength^2*SI and eliminating the
 need for per-packet-copy masking operation except for adjacencies
 with the DNC flag set:

 * AdjacentBits[SI] are bits with a non-empty list of adjacencies.
 This can be computed whenever the BIER-TE Controller updates
 the adjacencies.

 * Only the AdjacentBits need to be examined in the loop for
 packet copies.

 * The packets BitString is masked with those AdjacentBits before
 the loop to avoid doing this repeatedly for every PacketCopy.

Eckert, et al. Expires January 10, 2022 [Page 22]

Internet-Draft BIER-TE ARCH July 2021

 o The code loops over the adjacencies because there may be more than
 one adjacency for a bit.

 o When an adjacency has the DNC bit, the bit is set in the packet
 copy (to save bits in rings for example).

 o The ECMP adjacency is shown. Its parameters are a
 ListOfAdjacencies from which one is picked.

 o The forward_local, forward_routed, local_decap() adjacencies are
 shown with their parameters.

 void ForwardBitMaskPacket_withTE (Packet)
 {
 SI=GetPacketSI(Packet);
 Offset=SI*BitStringLength;
 AdjacentBits = Packet->BitString &= ~AdjacentBits[SI];
 Packet->BitString &= AdjacentBits[SI];
 for (Index = GetFirstbit position(AdjacentBits); Index ;
 Index = GetNextbit position(AdjacentBits, Index)) {
 foreach adjacency BIFT[Index+Offset] {
 if(adjacency == ECMP(ListOfAdjacencies, seed)) {
 I = ECMP_hash(sizeof(ListOfAdjacencies),
 Packet->Entropy, seed);
 adjacency = ListOfAdjacencies[I];
 }
 PacketCopy = Copy(Packet);
 switch(adjacency) {
 case forward_connected(interface,neighbor,DNC):
 if(DNC)
 PacketCopy->BitString |= 1<<(Index-1);
 SendToL2Unicast(PacketCopy,interface,neighbor);

 case forward_routed({VRF},neighbor):
 SendToL3(PacketCopy,{VRF,}l3-neighbor);

 case local_decap({VRF},neighbor):
 DecapBierHeader(PacketCopy);
 PassTo(PacketCopy,{VRF,}Packet->NextProto);
 }
 }
 }
 }

 Figure 6: Complete BIER-TE Forwarding Pseudocode for required,
 recommended and optional functions

Eckert, et al. Expires January 10, 2022 [Page 23]

Internet-Draft BIER-TE ARCH July 2021

4.5. Basic BIER-TE Forwarding Example

 [RFC Editor: remove this section.]

 THIS SECTION TO BE REMOVED IN RFC BECAUSE IT WAS SUPERCEEDED BY
SECTION 1.1 EXAMPLE - UNLESS REVIEWERS CHIME IN AND EXPRESS DESIRE TO

 KEEP THIS ADDITIONAL EXAMPLE SECTION. ALVARO RETANA DID NOT MIND
 ANOTHER EXAMPLE.

 Step by step example of basic BIER-TE forwarding. This example does
 not use ECMP or forward_routed() adjacencies nor does it try to
 minimize the number of required BitPositions for the topology.

 [BIER-TE Controller]
 / | \
 v v v
 . .
 | p13 p1 | .
 +- BFIR2 --+ | .
 | . | p2 p6 | . LAN2
 | . +-- BFR3 --+ . |
 | . | | p7 p11 |
 Src -+ . +-- BFER1 --+
 | . | p3 p8 | . |
 | . +-- BFR4 --+ . +-- Rcv1
 | . | | . |
 | . | .
 | p14 p4 | .
 +- BFIR1 --+ | .
 | . +-- BFR5 --+ p10 p12 |
 LAN1 . | p5 p9 +-- BFER2 --+
 . | . +-- Rcv2
 . . |
 . . LAN3
 . .
 IP |..... BIER-TE network.....| IP

 Figure 7: BIER-TE Forwarding Example

 pXX indicate the BitPositions number assigned by the BIER-TE
 Controller to adjacencies in the BIER-TE topology. For example, p9
 is the adjacency towards BFR5 on the LAN connecting to BFER2.

Eckert, et al. Expires January 10, 2022 [Page 24]

Internet-Draft BIER-TE ARCH July 2021

 BIFT BFIR2:
 p13: local_decap
 p2: forward_connected(BFR3)

 BIFT BFR3:
 p1: forward_connected(BFIR2)
 p7: forward_connected(BFER1)
 p8: forward_connected(BFR4)

 BIFT BFER1:
 p11: local_decap
 p6: forward_connected(BFR3)
 p8: forward_connected(BFR4)

 Figure 8: BIER-TE Forwarding Example Adjacencies

 ...and so on.

 For example, we assume that some multicast traffic seen on LAN1 needs
 to be sent via BIER-TE by BFIR2 towards Rcv1 and Rcv2. The BIER-TE
 Controller determines it wants it to pass this traffic across the
 following paths:

 -> BFER1 ---------------> Rcv1
 BFIR2 -> BFR3
 -> BFR4 -> BFR5 -> BFER2 -> Rcv2

 Figure 9: BIER-TE Forwarding Example Paths

 These paths equal to the following BitString: p2, p5, p7, p8, p10,
 p11, p12.

 This BitString is assigned by BFIR2 to the example multicast traffic
 received from LAN1.

 Then BFIR2 forwards this multicast traffic with BIER-TE based on that
 BitString. The BIFT of BFIR2 has only p2 and p13 populated. Only p2
 is in the BitString and this is an adjacency towards BFR3. BFIR2
 therefore clears p2 in the BitString and sends a copy towards BFR2.

 BFR3 sees a BitString of p5,p7,p8,p10,p11,p12. For those BPs, it has
 only adjacencies for p7,p8. It creates a copy of the packet to BFER1
 (due to p7) and one to BFR4 (due to p8). It clears p7, p8 before
 sending.

 BFER1 sees a BitString of p5,p10,p11,p12. For those BPs, it only has
 an adjacency for p11. p11 is a "local_decap" adjacency installed by
 the BIER-TE Controller to receive a copy of the BIER packet - dispose

Eckert, et al. Expires January 10, 2022 [Page 25]

Internet-Draft BIER-TE ARCH July 2021

 of the BIER header and pass the payload to IP multicast. IP
 multicast will then forward the packet out to LAN2 because it did
 receive PIM or IGMP joins on LAN2 for the traffic.

 Further processing of the packet in BFR4, BFR5 and BFER2 accordingly.

4.6. BFR Requirements for BIER-TE forwarding

 BFR MUST support to configure the BIFT of sub-domains so that they
 use BIER-TE forwarding rules instead of BIER forwarding rules. Every
 BP in the BIFT MUST support to have zero or one adjacency.
 Forwarding MUST support the adjacency types forward_connected() with
 clear DNC flag, forward_routed() and local_decap. As explained in

Section 4.4, these REQUIRED BIER-TE forwarding functions can be
 implement via the same Forwarding Pseudocode as BIER forwarding
 except for one modification (skipping one masking with F-BM).

 BIER-TE forwarding SHOULD support forward_connected() adjacencies
 with a set DNC flag, as this is highly useful to save bits in rings
 (see Section 5.1.6).

 BIER-TE forwarding SHOULD support more than one adjacency on a bit.
 This allows to save bits in hub&spoke scenarios (see Section 5.1.5).

 BIER-TE forwarding MAY support ECMP adjacencies to save bits in ECMP
 scenarios, see Section 5.1.7 for an example. This is a MAY
 requirement, because the deployment importance of ECMP adjacencies
 for BIER-TE is unclear as one can also leverage ECMP of the routing
 underlay via forwarded_routed adjacencies and/or might prefer to have
 more explicit control of the path chosen via explicit BP/adjacencies
 for each ECMP path alternative.

5. BIER-TE Controller Operational Considerations

5.1. Bit position Assignments

 This section describes how the BIER-TE Controller can use the
 different BIER-TE adjacency types to define the bit positions of a
 BIER-TE domain.

 Because the size of the BitString limits the size of the BIER-TE
 domain, many of the options described exist to support larger
 topologies with fewer bit positions (4.1, 4.3, 4.4, 4.5, 4.6, 4.7,
 4.8).

Eckert, et al. Expires January 10, 2022 [Page 26]

Internet-Draft BIER-TE ARCH July 2021

5.1.1. P2P Links

 On a P2P link that connects two BFR, the same bit position can be
 used on both BFR for the adjacency to the neighboring BFR. A P2P
 link requires therefore only one bit position.

5.1.2. BFER

 Every non-Leaf BFER is given a unique bit position with a local_decap
 adjacency.

5.1.3. Leaf BFERs

 BFR1(P) BFR2(P) BFR1(P) BFR2(P)
 | \ / | | |
 | X | | |
 | / \ | | |
 BFER1(PE) BFER2(PE) BFER1(PE)----BFER2(PE)

 ^ U-turn link

 Leaf BFER / Non-Leaf BFER /
 PE-router PE-router

 Figure 10: Leaf vs. non-Leaf BFER Example

 A leaf BFERs is one where incoming BIER-TE packets never need to be
 forwarded to another BFR but are only sent to the BFER to exit the
 BIER-TE domain. For example, in networks where Provider Edge (PE)
 router are spokes connected to Provider (P) routers, those PEs are
 Leaf BFERs unless there is a U-turn between two PEs.

 Consider how redundant disjoint traffic can reach BFER1/BFER2 in
 Figure 10: When BFER1/BFER2 are Non-Leaf BFER as shown on the right
 hand side, one traffic copy would be forwarded to BFER1 from BFR1,
 but the other one could only reach BFER1 via BFER2, which makes BFER2
 a non-Leaf BFER. Likewise BFER1 is a non-Leaf BFER when forwarding
 traffic to BFER2. Note that the BFERs in the left hand picture are
 only guaranteed to be leaf-BFER by fitting routing configuration that
 prohibits transit traffic to pass through the BFERs, which is
 commonly applied in these topologies.

 All leaf-BFERs in a BIER-TE domain can share a single bit position.
 This is possible because the bit position for the adjacency to reach
 the BFER can be used to distinguish whether or not packets should
 reach the BFER.

Eckert, et al. Expires January 10, 2022 [Page 27]

Internet-Draft BIER-TE ARCH July 2021

 This optimization will not work if an upstream interface of the BFER
 is using a bit position optimized as described in the following two
 sections (LAN, Hub and Spoke).

5.1.4. LANs

 In a LAN, the adjacency to each neighboring BFR is given a unique bit
 position. The adjacency of this bit position is a
 forward_connected() adjacency towards the BFR and this bit position
 is populated into the BIFT of all the other BFRs on that LAN.

 BFR1
 |p1
 LAN1-+-+---+-----+
 p3| p4| p2|
 BFR3 BFR4 BFR7

 Figure 11: LAN Example

 If Bandwidth on the LAN is not an issue and most BIER-TE traffic
 should be copied to all neighbors on a LAN, then bit positions can be
 saved by assigning just a single bit position to the LAN and
 populating the bit position of the BIFTs of each BFRs on the LAN with
 a list of forward_connected() adjacencies to all other neighbors on
 the LAN.

 This optimization does not work in the case of BFRs redundantly
 connected to more than one LAN with this optimization because these
 BFRs would receive duplicates and forward those duplicates into the
 opposite LANs. Adjacencies of such BFRs into their LAN still need a
 separate bit position.

5.1.5. Hub and Spoke

 In a setup with a hub and multiple spokes connected via separate p2p
 links to the hub, all p2p links can share the same bit position. The
 bit position on the hub's BIFT is set up with a list of
 forward_connected() adjacencies, one for each Spoke.

 This option is similar to the bit position optimization in LANs:
 Redundantly connected spokes need their own bit positions, unless
 they are themselves Leaf-BFER.

 This type of optimized BP could be used for example when all traffic
 is "broadcast" traffic (very dense receiver set) such as live-TV or
 situation-awareness (SA). This BP optimization can then be used to
 explicitly steer different traffic flows across different ECMP paths

Eckert, et al. Expires January 10, 2022 [Page 28]

Internet-Draft BIER-TE ARCH July 2021

 in Data-Center or broadband-aggregation networks with minimal use of
 BPs.

5.1.6. Rings

 In L3 rings, instead of assigning a single bit position for every p2p
 link in the ring, it is possible to save bit positions by setting the
 "DoNotClear" (DNC) flag on forward_connected() adjacencies.

 For the rings shown in Figure 12, a single bit position will suffice
 to forward traffic entering the ring at BFRa or BFRb all the way up
 to BFR1:

 On BFRa, BFRb, BFR30,... BFR3, the bit position is populated with a
 forward_connected() adjacency pointing to the clockwise neighbor on
 the ring and with DNC set. On BFR2, the adjacency also points to the
 clockwise neighbor BFR1, but without DNC set.

 Handling DNC this way ensures that copies forwarded from any BFR in
 the ring to a BFR outside the ring will not have the ring bit
 position set, therefore minimizing the chance to create loops.

 v v
 | |
 L1 | L2 | L3
 /-------- BFRa ---- BFRb --------------------\
 | |
 \- BFR1 - BFR2 - BFR3 - ... - BFR29 - BFR30 -/
 | | L4 | |
 p33| p15|
 BFRd BFRc

 Figure 12: Ring Example

 Note that this example only permits for packets intended to make it
 all the way around the ring to enter it at BFRa and BFRb, and that
 packets will always travel clockwise. If packets should be allowed
 to enter the ring at any ring BFR, then one would have to use two
 ring bit positions. One for each direction: clockwise and
 counterclockwise.

 Both would be set up to stop rotating on the same link, e.g. L1.
 When the ingress ring BFR creates the clockwise copy, it will clear
 the counterclockwise bit position because the DNC bit only applies to
 the bit for which the replication is done. Likewise for the
 clockwise bit position for the counterclockwise copy. As a result,
 the ring ingress BFR will send a copy in both directions, serving
 BFRs on either side of the ring up to L1.

Eckert, et al. Expires January 10, 2022 [Page 29]

Internet-Draft BIER-TE ARCH July 2021

5.1.7. Equal Cost MultiPath (ECMP)

 The ECMP adjacency allows to use just one BP per link bundle between
 two BFRs instead of one BP for each p2p member link of that link
 bundle. In Figure 13, one BP is used across L1,L2,L3.

 --L1-----
 BFR1 --L2----- BFR2
 --L3-----

 BIFT entry in BFR1:
 --
 | Index | Adjacencies |
 ==
 | 0:6 | ECMP({forward_connected(L1, BFR2), |
 | | forward_connected(L2, BFR2), |
 | | forward_connected(L3, BFR2)}, seed) |
 --

 BIFT entry in BFR2:
 --
 | Index | Adjacencies |
 ==
 | 0:6 | ECMP({forward_connected(L1, BFR1), |
 | | forward_connected(L2, BFR1), |
 | | forward_connected(L3, BFR1)}, seed) |
 --

 Figure 13: ECMP Example

 This document does not standardize any ECMP algorithm because it is
 sufficient for implementations to document their freely chosen ECMP
 algorithm. This allows the BIER-TE Controller to calculate ECMP
 paths and seeds. Figure 14 shows an example ECMP algorithm:

 forward(packet, ECMP(adj(0), adj(1),... adj(N-1), seed)):
 i = (packet(bier-header-entropy) XOR seed) % N
 forward packet to adj(i)

 Figure 14: ECMP algorithm Example

 In the following example, all traffic from BFR1 towards BFR10 is
 intended to be ECMP load split equally across the topology. This
 example is not meant as a likely setup, but to illustrate that ECMP
 can be used to share BPs not only across link bundles, but also

Eckert, et al. Expires January 10, 2022 [Page 30]

Internet-Draft BIER-TE ARCH July 2021

 across alternative paths across different transit BFR, and it
 explains the use of the seed parameter.

 BFR1 (BFIR)
 /L11 \L12
 / \
 BFR2 BFR3
 /L21 \L22 /L31 \L32
 / \ / \
 BFR4 BFR5 BFR6 BFR7
 \ / \ /
 \ / \ /
 BFR8 BFR9
 \ /
 \ /
 BFR10 (BFER)

 BIFT entry in BFR1:
 --
 | 0:6 | ECMP({forward_connected(L11, BFR2), |
 | | forward_connected(L12, BFR3)}, seed1) |
 --

 BIFT entry in BFR2:
 --
 | 0:7 | ECMP({forward_connected(L21, BFR4), |
 | | forward_connected(L22, BFR5)}, seed1) |
 --

 BIFT entry in BFR3:
 --
 | 0:7 | ECMP({forward_connected(L31, BFR6), |
 | | forward_connected(L32, BFR7)}, seed1) |
 --

 BIFT entry in BFR4, BFR5:
 --
 | 0:8 | forward_connected(Lxx, BFR8) |xx differs on BFR4/BFR5|
 --

 BIFT entry in BFR6, BFR7:
 --
 | 0:8 | forward_connected(Lxx, BFR9) |xx differs on BFR6/BFR7|
 --

 BIFT entry in BFR8, BFR9:
 --
 | 0:9 | forward_connected(Lxx, BFR10) |xx differs on BFR8/BFR9|

Eckert, et al. Expires January 10, 2022 [Page 31]

Internet-Draft BIER-TE ARCH July 2021

 --

 Figure 15: Polarization Example

 Note that for the following discussion of ECMP, only the BIFT ECMP
 adjacencies on BFR1, BFR2, BFR3 are relevant. The re-use of BP
 across BFR in this example is further explained in Section 5.1.9
 below.

 With the setup of ECMP in the topology above, traffic would not be
 equally load-split. Instead, links L22 and L31 would see no traffic
 at all: BFR2 will only see traffic from BFR1 for which the ECMP hash
 in BFR1 selected the first adjacency in the list of 2 adjacencies
 given as parameters to the ECMP. It is link L11-to-BFR2. BFR2
 performs again ECMP with two adjacencies on that subset of traffic
 using the same seed1, and will therefore again select the first of
 its two adjacencies: L21-to-BFR4. And therefore L22 and BFR5 sees no
 traffic. Likewise for L31 and BFR6.

 This issue in BFR2/BFR3 is called polarization. It results from the
 re-use of the same hash function across multiple consecutive hops in
 topologies like these. To resolve this issue, the ECMP adjacency on
 BFR1 can be set up with a different seed2 than the ECMP adjacencies
 on BFR2/BFR3. BFR2/BFR3 can use the same hash because packets will
 not sequentially pass across both of them. Therefore, they can also
 use the same BP 0:7.

 Note that ECMP solutions outside of BIER often hide the seed by auto-
 selecting it from local entropy such as unique local or next-hop
 identifiers. Allowing the BIER-TE Controller to explicitly set the
 seed gives the ability for it to control same/different path
 selection across multiple consecutive ECMP hops.

5.1.8. Forward_routed adjacencies

5.1.8.1. Reducing bit positions

 Forward_routed() adjacencies can reduce the number of bit positions
 required when the path steering requirement is not hop-by-hop
 explicit path selection, but loose-hop selection. Forward_routed()
 adjacencies can also allow to operate BIER-TE across intermediate hop
 routers that do not support BIER-TE.

Eckert, et al. Expires January 10, 2022 [Page 32]

Internet-Draft BIER-TE ARCH July 2021

 ...BFR1--... ...--L1-- BFR2...
 Routers. ...--L2--/
 ...BFR4--... ...------ BFR3...
 |
 LO
 Network Area 1

 Figure 16: Forward_routed Adjacencies Example

 Assume the requirement in Figure 16 is to explicitly steer traffic
 flows that have arrived at BFR1 or BFR4 via a shortest path in the
 routing underlay "Network Area 1" to one of the following three next
 segments: (1) BFR2 via link L1, (2) BFR2 via link L2, or (3) via
 BFR3.

 To enable this, both BFR1 and BFR4 are set up with a forward_routed
 adjacency bit position towards an address of BFR2 on link L1, another
 forward_routed() bit position towards an address of BFR2 on link L2
 and a third forward_routed() bit position towards a node address LO
 of BFR3.

5.1.8.2. Supporting nodes without BIER-TE

 Forward_routed() adjacencies also enable incremental deployment of
 BIER-TE. Only the nodes through which BIER-TE traffic needs to be
 steered - with or without replication - need to support BIER-TE.
 Where they are not directly connected to each other, forward_routed
 adjacencies are used to pass over non BIER-TE enabled nodes.

5.1.9. Reuse of bit positions (without DNC)

 bit positions can be re-used across multiple BFR to minimize the
 number of BP needed. This happens when adjacencies on multiple BFR
 use the DNC flag as described above, but it can also be done for non-
 DNC adjacencies. This section only discusses this non-DNC case.

 Because BP are cleared when passing a BFR with an adjacency for that
 BP, reuse of BP across multiple BFR does not introduce any problems
 with duplicates or loops that do not also exist when every adjacency
 has a unique BP. Instead, the challenge when reusing BP is whether
 it allows to still achieve the desired Tree Engineering goals.

 BP cannot be reused across two BFR that would need to be passed
 sequentially for some path: The first BFR will clear the BP, so those
 paths cannot be built. BP can be set across BFR that would (A) only
 occur across different paths or (B) across different branches of the
 same tree.

Eckert, et al. Expires January 10, 2022 [Page 33]

Internet-Draft BIER-TE ARCH July 2021

 An example of (A) was given in Figure 15, where BP 0:7, BP 0:8 and BP
 0:9 are each reused across multiple BFRs because a single packet/path
 would never be able to reach more than one BFR sharing the same BP.

 Assume the example was changed: BFR1 has no ECMP adjacency for BP
 0:6, but instead BP 0:5 with forward_connected() to BFR2 and BP 0:6
 with forward_connected() to BFR3. Packets with both BP 0:5 and BP
 0:6 would now be able to reach both BFR2 and BFR3 and the still
 existing re-use of BP 0:7 between BFR2 and BFR3 is a case of (B)
 where reuse of BP is perfect because it does not limit the set of
 useful path choices:

 If instead of reusing BP 0:7, BFR3 used a separate BP 0:10 for its
 ECMP adjacency, no useful additional path steering options would be
 enabled. If duplicates at BFR10 where undesirable, this would be
 done by not setting BP 0:5 and BP 0:6 for the same packet. If the
 duplicates where desirable (e.g.: resilient transmission), the
 additional BP 0:10 would also not render additional value.

 area1
 BFR1a BFR1b
 / \

 . Core .

 | / \ / \ |
 BFR2a BFR2b BFR3a BFR3b BFR6a BFR6b
 /-------\ /---------\ /--------\
 | area2 | | area3 | ... | area6 |
 | ring | | ring | | ring |
 \-------/ \---------/ \--------/
 more BFR more BFR more BFR

 Figure 17: Reuse of BP

 Reuse may also save BPs in larger topologies. Consider the topology
 shown in Figure 20. A BFIR/sender (e.g.: video headend) is attached
 to area 1, and area 2...6 contain receivers/BFER. Assume each area
 had a distribution ring, each with two BPs to indicate the direction
 (as explained before). These two BPs could be reused across the 5
 areas. Packets would be replicated through other BPs for the Core to
 the desired subset of areas, and once a packet copy reaches the ring
 of the area, the two ring BPs come into play. This reuse is a case
 of (B), but it limits the topology choices: Packets can only flow
 around the same direction in the rings of all areas. This may or may
 not be acceptable based on the desired path steering options: If
 resilient transmission is the path engineering goal, then it is

Eckert, et al. Expires January 10, 2022 [Page 34]

Internet-Draft BIER-TE ARCH July 2021

 likely a good optimization, if the bandwidth of each ring was to be
 optimized separately, it would not be a good limitation.

5.1.10. Summary of BP optimizations

 This section reviewed a range of techniques by which a BIER-TE
 Controller can create a BIER-TE topology in a way that minimizes the
 number of necessary BPs.

 Without any optimization, a BIER-TE Controller would attempt to map
 the network subnet topology 1:1 into the BIER-TE topology and every
 subnet adjacent neighbor requires a forward_connected() BP and every
 BFER requires a local_decap() BP.

 The optimizations described are then as follows:

 o P2P links require only one BP (Section 5.1.1).

 o All leaf-BFER can share a single local_decap() BP (Section 5.1.3).

 o A LAN with N BFR needs at most N BP (one for each BFR). It only
 needs one BP for all those BFR that are not redundantly connected
 to multiple LANs (Section 5.1.4).

 o A hub with p2p connections to multiple non-leaf-BFER spokes can
 share one BP to all spokes if traffic can be flooded to all
 spokes, e.g.: because of no bandwidth concerns or dense receiver
 sets (Section 5.1.5).

 o Rings of BFR can be built with just two BP (one for each
 direction) except for BFR with multiple ring connections - similar
 to LANs (Section 5.1.6).

 o ECMP adjacencies to N neighbors can replace N BP with 1 BP.
 Multihop ECMP can avoid polarization through different seeds of
 the ECMP algorithm (Section 5.1.7).

 o Forward_routed() adjacencies allow to "tunnel" across non-BIER-TE
 capable routers and across BIER-TE capable routers where no
 traffic-steering or replications are required (Section 5.1.8).

 o BP can generally be reused across nodes that do not need to be
 consecutive in paths, but depending on scenario, this may limit
 the feasible path steering options (Section 5.1.9).

 Note that the described list of optimizations is not exhaustive.
 Especially when the set of required path steering choices is limited
 and the set of possible subsets of BFERs that should be able to

Eckert, et al. Expires January 10, 2022 [Page 35]

Internet-Draft BIER-TE ARCH July 2021

 receive traffic is limited, further optimizations of BP are possible.
 The hub & spoke optimization is a simple example of such traffic
 pattern dependent optimizations.

5.2. Avoiding duplicates and loops

5.2.1. Loops

 Whenever BIER-TE creates a copy of a packet, the BitString of that
 copy will have all bit positions cleared that are associated with
 adjacencies on the BFR. This inhibits looping of packets. The only
 exception are adjacencies with DNC set.

 v v
 | |
 L1 | L2 | L3
 /-------- BFRa ---- BFRb ---------------------\
 | . |
 | Wrong link wiring |
 | . |
 \- BFR1 - BFR2 BFR3 - ... - BFR29 - BFR30 -/
 | | L4 | |
 p33| p15|
 BFRd BFRc

 Figure 18: Miswired Ring Example

 With DNC set, looping can happen. Consider in Figure 18 that link L4
 from BFR3 is (inadvertently) plugged into the L1 interface of BFRa
 (instead of BFR2). This creates a loop where the rings clockwise bit
 position is never cleared for copies of the packets traveling
 clockwise around the ring.

 To inhibit looping in the face of such physical misconfiguration,
 only forward_connected() adjacencies are permitted to have DNC set,
 and the link layer port unique unicast destination address of the
 adjacency (e.g. MAC address) protects against closing the loop.
 Link layers without port unique link layer addresses should not be
 used with the DNC flag set.

5.2.2. Duplicates

Eckert, et al. Expires January 10, 2022 [Page 36]

Internet-Draft BIER-TE ARCH July 2021

 BFIR1
 / \
 / p2 \ p3
 BFR2 BFR3
 \ p4 / p5
 \ /
 BFER4

 Figure 19: Duplicates Example

 Duplicates happen when the graph expressed by a BitString is not a
 tree but redundantly connecting BFRs with each other. In Figure 19,
 a BitString of p2,p3,p4,p5 would result in duplicate packets to
 arrive on BFER4. The BIER-TE Controller must therefore ensure to
 only create BitStrings that are trees.

 When links are incorrectly physically re-connected before the BIER-TE
 Controller updates BitStrings in BFIRs, duplicates can happen. Like
 loops, these can be inhibited by link layer addressing in
 forward_connected() adjacencies.

 If interface or loopback addresses used in forward_routed()
 adjacencies are moved from one BFR to another, duplicates can equally
 happen. Such re-addressing operations must be coordinated with the
 BIER-TE Controller.

5.3. Managing SI, sub-domains and BFR-ids

 When the number of bits required to represent the necessary hops in
 the topology and BFER exceeds the supported BitStringLength (BSL),
 multiple SIs and/or sub-domains must be used. This section discusses
 how.

 BIER-TE forwarding does not require the concept of BFR-id, but
 routing underlay, flow overlay and BIER headers may. This section
 also discusses how BFR-ids can be assigned to BFIR/BFER for BIER-TE.

5.3.1. Why SI and sub-domains

 For BIER and BIER-TE forwarding, the most important result of using
 multiple SI and/or sub-domains is the same: Packets that need to be
 sent to BFERs in different SIs or sub-domains require different BIER
 packets: each one with a BitString for a different (SI,sub-domain)
 combination. Each such BitString uses one BSL sized SI block in the
 BIFT of the sub-domain. We call this a BIFT:SI (block).

 For BIER and BIER-TE forwarding themselves there is also no
 difference whether different SIs and/or sub-domains are chosen, but

Eckert, et al. Expires January 10, 2022 [Page 37]

Internet-Draft BIER-TE ARCH July 2021

 SI and sub-domain have different purposes in the BIER architecture
 shared by BIER-TE. This impacts how operators are managing them and
 how especially flow overlays will likely use them.

 By default, every possible BFIR/BFER in a BIER network would likely
 be given a BFR-id in sub-domain 0 (unless there are > 64k BFIR/BFER).

 If there are different flow services (or service instances) requiring
 replication to different subsets of BFERs, then it will likely not be
 possible to achieve the best replication efficiency for all of these
 service instances via sub-domain 0. Ideal replication efficiency for
 N BFER exists in a sub-domain if they are split over not more than
 ceiling(N/BitStringLength) SI.

 If service instances justify additional BIER:SI state in the network,
 additional sub-domains will be used: BFIR/BFER are assigned BFR-id in
 those sub-domains and each service instance is configured to use the
 most appropriate sub-domain. This results in improved replication
 efficiency for different services.

 Even if creation of sub-domains and assignment of BFR-id to BFIR/BFER
 in those sub-domains is automated, it is not expected that individual
 service instances can deal with BFER in different sub-domains. A
 service instance may only support configuration of a single sub-
 domain it should rely on.

 To be able to easily reuse (and modify as little as possible)
 existing BIER procedures including flow-overlay and routing underlay,
 when BIER-TE forwarding is added, we therefore reuse SI and sub-
 domain logically in the same way as they are used in BIER: All
 necessary BFIR/BFER for a service use a single BIER-TE BIFT and are
 split across as many SIs as necessary (see Section 5.3.2). Different
 services may use different sub-domains that primarily exist to
 provide more efficient replication (and for BIER-TE desirable path
 steering) for different subsets of BFIR/BFER.

5.3.2. Assigning bits for the BIER-TE topology

 In BIER, BitStrings only need to carry bits for BFERs, which leads to
 the model that BFR-ids map 1:1 to each bit in a BitString.

 In BIER-TE, BitStrings need to carry bits to indicate not only the
 receiving BFER but also the intermediate hops/links across which the
 packet must be sent. The maximum number of BFER that can be
 supported in a single BitString or BIFT:SI depends on the number of
 bits necessary to represent the desired topology between them.

Eckert, et al. Expires January 10, 2022 [Page 38]

Internet-Draft BIER-TE ARCH July 2021

 "Desired" topology because it depends on the physical topology, and
 on the desire of the operator to allow for explicit path steering
 across every single hop (which requires more bits), or reducing the
 number of required bits by exploiting optimizations such as unicast
 (forward_routed), ECMP or flood (DNC) over "uninteresting" sub-parts
 of the topology - e.g. parts where different trees do not need to
 take different paths due to path steering reasons.

 The total number of bits to describe the topology vs. the number of
 BFERs in a BIFT:SI can range widely based on the size of the topology
 and the amount of alternative paths in it. The higher the percentage
 of non-BFER bits, the higher the likelihood, that those topology bits
 are not just BIER-TE overhead without additional benefit, but instead
 that they will allow to express desirable path steering alternatives.

5.3.3. Assigning BFR-id with BIER-TE

 BIER-TE forwarding does not use the BFR-id, not does it require for
 the BFR-id field of the BIER header to be set to a particular value.
 However, other parts of a BIER-TE deployment may need a BFR-id,
 specifically overlay signaling, and in that case BFR need to also
 have BFR-ids for BIER-TE SDs.

 For example, for BIER overlay signaling, BFIR need to have a BFR-id,
 because this BFIR BFR-id is carried in the BFR-id field of the BIER
 header to indicate to the overlay signaling on the receiving BFER
 which BFIR originated the packet.

 In BIER, BFR-id = BSL * SI + BP, such that the SI and BP of a BFER
 can be calculated from the BFR-id and vice versa. This also means
 that every BFR with a BFR-id has a reserved BP in an SI, even if that
 is not necessary for BIER forwarding, because the BFR may never be a
 BFER but only a BFIR.

 In BIER-TE, for a non-leaf BFER, there is usually a single BP for
 that BFER with a local_decap() adjacency on the BFER. The BFR-id for
 such a BFER can therefore equally be determined as in BIER: BFR-id =
 SI * BitStringLength + BP.

 As explained in Section 5.1.3, leaf BFERs do not need such a unique
 local_decap() adjacency, likewise, BFIR who are not also BFER may not
 have a unique local_decap() adjacency either. For all those BFIR and
 (leaf) BFER, the controller needs to determine unique BFR-ids that do
 not collide with the BFR-ids derived from the non-leaf BFER
 local_decap() BPs.

 While this document defines no requirements how to allocate such BFR-
 id, a simple option is to derive it from the (SI,BP) of an adjacency

Eckert, et al. Expires January 10, 2022 [Page 39]

Internet-Draft BIER-TE ARCH July 2021

 that is unique to the BFR in question. For a BFIR this can be he
 first adjacency only populated on this BFIR, for a leaf-BFER, this
 could be the first BP with an adjacency towards that BFER.

5.3.4. Mapping from BFR to BitStrings with BIER-TE

 In BIER, applications of the flow overlay on a BFIR can calculate the
 (SI,BP) of a BFER from the BFR-id of the BFER and can therefore
 easily determine the BitStrings for a BIER packet to a set of BFER
 with known BFR-ids.

 In BIER-TE this mapping needs to be equally supported for flow
 overlays. This section outlines two core options, based on how
 "complex" the Tree Engineering is that the BIER-TE controller
 performs for a particular application.

 "Independent branches": For a given flow overlay instance, the
 branches from a BFIR to every BFER are calculated by the BIER-TE
 controller to be independent of the branches to any other BFER.
 Shortest path trees are the most common examples of trees with
 independent branches.

 "Interdependent branches": When a BFER is added or deleted from a
 particular distribution tree, the BIER-TE controller has to
 recalculate the branches to other BFER, because they may need to
 change. Steiner trees are examples of interdependent branch trees.

 If "independent branches" are used, the BIER-TE Controller can signal
 to the BFIR flow overlay for every BFER an SI:BitString that
 represents the branch to that BFER. The flow overlay on the BIFR can
 then independently of the controller calculate the SI:BitString for
 all desired BFER by OR'ing their BitStrings. This allows for flow
 overlay applications to operate independently from the controller
 whenever it needs to determine which subset of BFERs need to receive
 a particular packet.

 If "interdependent branches" are required, the application would need
 to inquire the SI:BitString for a given set of BFER whenever the set
 changes.

 Note that in either case (unlike in BIER), the bits may need to
 change upon link/node failure/recovery, network expansion and network
 resource consumption by other traffic as part of traffic engineering
 goals (e.g.: re-optimization of lower priority traffic flows).
 Interactions between such BFIR applications and the BIER-TE
 Controller do therefore need to support dynamic updates to the
 SI:BitStrings.

Eckert, et al. Expires January 10, 2022 [Page 40]

Internet-Draft BIER-TE ARCH July 2021

 Communications between BFIR flow overlay and BIER-TE controller
 requires some way to identify BFER. If BFR-ids are used in the
 deployment, as outlined in Section 5.3.3, then those are the natural
 BFR identifier. If BFR-ids are not used, then any other unique
 identifier, such as the BFR-prefix of the BFR as of [RFC8279] could
 be used.

5.3.5. Assigning BFR-ids for BIER-TE

 It is not currently determined if a single sub-domain could or should
 be allowed to forward both BIER and BIER-TE packets. If this should
 be supported, there are two options:

 A. BIER and BIER-TE have different BFR-id in the same sub-domain.
 This allows higher replication efficiency for BIER because their BFR-
 id can be assigned sequentially, while the BitStrings for BIER-TE
 will have also the additional bits for the topology. There is no
 relationship between a BFR BIER BFR-id and BIER-TE BFR-id.

 B. BIER and BIER-TE share the same BFR-id. The BFR-ids are assigned
 as explained above for BIER-TE and simply reused for BIER. The
 replication efficiency for BIER will be as low as that for BIER-TE in
 this approach. Depending on topology, only the same 20%..80% of bits
 as possible for BIER-TE can be used for BIER.

5.3.6. Example bit allocations

5.3.6.1. With BIER

 Consider a network setup with a BSL of 256 for a network topology as
 shown in Figure 20. The network has 6 areas, each with 170 BFRs,
 connecting via a core with 4 (core) BFRs. To address all BFERs with
 BIER, 4 SIs are required. To send a BIER packet to all BFER in the
 network, 4 copies need to be sent by the BFIR. On the BFIR it does
 not make a difference how the BFR-ids are allocated to BFER in the
 network, but for efficiency further down in the network it does make
 a difference.

https://datatracker.ietf.org/doc/html/rfc8279

Eckert, et al. Expires January 10, 2022 [Page 41]

Internet-Draft BIER-TE ARCH July 2021

 area1 area2 area3
 BFR1a BFR1b BFR2a BFR2b BFR3a BFR3b
 | \ / \ / |

 . Core .

 | / \ / \ |
 BFR4a BFR4b BFR5a BFR5b BFR6a BFR6b
 area4 area5 area6

 Figure 20: Scaling BIER-TE bits by reuse

 With random allocation of BFR-id to BFER, each receiving area would
 (most likely) have to receive all 4 copies of the BIER packet because
 there would be BFR-id for each of the 4 SIs in each of the areas.
 Only further towards each BFER would this duplication subside - when
 each of the 4 trees runs out of branches.

 If BFR-ids are allocated intelligently, then all the BFER in an area
 would be given BFR-id with as few as possible different SIs. Each
 area would only have to forward one or two packets instead of 4.

 Given how networks can grow over time, replication efficiency in an
 area will also easily go down over time when BFR-ids are network wide
 allocated sequentially over time. An area that initially only has
 BFR-id in one SI might end up with many SIs over a longer period of
 growth. Allocating SIs to areas with initially sufficiently many
 spare bits for growths can help to alleviate this issue. Or renumber
 BFERs after network expansion. In this example one may consider to
 use 6 SIs and assign one to each area.

 This example shows that intelligent BFR-id allocation within at least
 sub-domain 0 can even be helpful or even necessary in BIER.

5.3.6.2. With BIER-TE

 In BIER-TE one needs to determine a subset of the physical topology
 and attached BFERs so that the "desired" representation of this
 topology and the BFER fit into a single BitString. This process
 needs to be repeated until the whole topology is covered.

 Once bits/SIs are assigned to topology and BFERs, BFR-id is just a
 derived set of identifiers from the operator/BIER-TE Controller as
 explained above.

 Every time that different sub-topologies have overlap, bits need to
 be repeated across the BitStrings, increasing the overall amount of
 bits required across all BitString/SIs. In the worst case, random

Eckert, et al. Expires January 10, 2022 [Page 42]

Internet-Draft BIER-TE ARCH July 2021

 subsets of BFERs are assigned to different SIs. This is much worse
 than in BIER because it not only reduces replication efficiency with
 the same number of overall bits, but even further - because more bits
 are required due to duplication of bits for topology across multiple
 SIs. Intelligent BFER to SI assignment and selecting specific
 "desired" subtopologies can minimize this problem.

 To set up BIER-TE efficiently for the above topology, the following
 bit allocation method can be used. This method can easily be
 expanded to other, similarly structured larger topologies.

 Each area is allocated one or more SIs depending on the number of
 future expected BFERs and number of bits required for the topology in
 the area. In this example, 6 SIs, one per area.

 In addition, we use 4 bits in each SI: bia, bib, bea, beb: bit
 ingress a, bit ingress b, bit egress a, bit egress b. These bits
 will be used to pass BIER packets from any BFIR via any combination
 of ingress area a/b BFR and egress area a/b BFR into a specific
 target area. These bits are then set up with the right
 forward_routed() adjacencies on the BFIR and area edge BFR:

 On all BFIRs in an area j|j=2...6, bia in each BIFT:SI is populated
 with the same forward_routed(BFRja), and bib with
 forward_routed(BFRjb). On all area edge BFR, bea in
 BIFT:SI=k|k=2...6 is populated with forward_routed(BFRka) and beb in
 BIFT:SI=k with forward_routed(BFRkb).

 For BIER-TE forwarding of a packet to a subset of BFERs across all
 areas, a BFIR would create at most 6 copies, with SI=1...SI=6, In
 each packet, the bits indicate bits for topology and BFER in that
 topology plus the four bits to indicate whether to pass this packet
 via the ingress area a or b border BFR and the egress area a or b
 border BFR, therefore allowing path steering for those two "unicast"
 legs: 1) BFIR to ingress are edge and 2) core to egress area edge.
 Replication only happens inside the egress areas. For BFER in the
 same area as in the BFIR, these four bits are not used.

5.3.7. Summary

 BIER-TE can, like BIER, support multiple SIs within a sub-domain to
 allow re-using the concept of BFR-id and therefore minimize BIER-TE
 specific functions in any possible BIER layer control plane used in
 conjunction with BIER-TE, flow overlay methods and BIER headers.

 The number of BFIR/BFER possible in a sub-domain is smaller than in
 BIER because BIER-TE uses additional bits for topology.

Eckert, et al. Expires January 10, 2022 [Page 43]

Internet-Draft BIER-TE ARCH July 2021

 Sub-domains (SDs) in BIER-TE can be used like in BIER to create more
 efficient replication to known subsets of BFERs.

 Assigning bits for BFERs intelligently into the right SI is more
 important in BIER-TE than in BIER because of replication efficiency
 and overall amount of bits required.

6. BIER-TE and Segment Routing

 SR aims to enable lightweight path steering via loose source routing.
 Compared to its more heavy-weight predecessor RSVP-TE, SR does for
 example not require per-path signaling to each of these hops.

 BIER-TE supports the same design philosophy for multicast. Like in
 SR, it relies on source-routing - via the definition of a BitString.
 Like SR, it only requires to consider the "hops" on which either
 replication has to happen, or across which the traffic should be
 steered (even without replication). Any other hops can be skipped
 via the use of routed adjacencies.

 BIER-TE bit position (BP) can be understood as the BIER-TE equivalent
 of "forwarding segments" in SR, but they have a different scope than
 SR forwarding segments. Whereas forwarding segments in SR are global
 or local, BPs in BIER-TE have a scope that is the group of BFR(s)
 that have adjacencies for this BP in their BIFT. This can be called
 "adjacency" scoped forwarding segments.

 Adjacency scope could be global, but then every BFR would need an
 adjacency for this BP, for example a forward_routed() adjacency with
 encapsulation to the global SR SID of the destination. Such a BP
 would always result in ingress replication though. The first BFR
 encountering this BP would directly replicate to it. Only by using
 non-global adjacency scope for BPs can traffic be steered and
 replicated on non-ingress BFR.

 SR can naturally be combined with BIER-TE and help to optimize it.
 For example, instead of defining bit positions for non-replicating
 hops, it is equally possible to use segment routing encapsulations
 (e.g. SR-MPLS label stacks) for the encapsulation of
 "forward_routed" adjacencies.

 Note that BIER itself can also be seen to be similar to SR. BIER BPs
 act as global destination Node-SIDs and the BIER BitString is simply
 a highly optimized mechanism to indicate multiple such SIDs and let
 the network take care of effectively replicating the packet hop-by-
 hop to each destination Node-SID. What BIER does not allow is to
 indicate intermediate hops, or terms of SR the ability to indicate a

Eckert, et al. Expires January 10, 2022 [Page 44]

Internet-Draft BIER-TE ARCH July 2021

 sequence of SID to reach the destination. This is what BIER-TE and
 its adjacency scoped BP enables.

 Both BIER and BIER-TE allow BFIR to "opportunistically" copy packets
 to a set of desired BFER on a packet-by-packet basis. In BIER, this
 is done by OR'ing the BP for the desired BFER. In BIER-TE this can
 be done by OR'ing for each desired BFER a BitString using the
 "independent branches" approach described in Section 5.3.3 and
 therefore also indicating the engineered path towards each desired
 BFER. This is the approach that
 [I-D.ietf-bier-multicast-http-response] relies on.

7. Security Considerations

 If [RFC8296] is used, BIER-TE shares its security considerations.

 BIER-TE shares the security considerations of BIER, [RFC8279], with
 the following overriding or additional considerations.

 In BIER, the standardized methods for the routing underlays as well
 as to distribute BFR-ids and BFR-prefixes are IGPs such as specified
 in [RFC8401] for IS-IS and in [RFC8444] for OSPF. Attacking the
 protocols for the BIER routing underlay or BIER layer control plane,
 or impairment of any BFR in a domain may lead to successful attacks
 against the results of the routing protocol, enabling DoS attacks
 against paths or addressing (BFR-id, BFR-prefixes) used by BIER.

 The reference model for the BIER-TE layer control plane is a BIER-TE
 controller. When such a controller is used, impairment of individual
 BFR in a domain causes no impairment of the BIER-TE control plane on
 other BFR. If a routing protocol is used to support forward_routed()
 adjacencies, then this is still an attack vector as in BIER, but only
 for BIER-TE forward_routed() adjacencies, and no other adjacencies.

 Whereas IGP routing protocols are most often not well secured through
 cryptographic authentication and confidentiality, communications
 between controllers and routers such as those to be considered for
 the BIER-TE controller/control-plane can and are much more commonly
 secured with those security properties, for example by using Secure
 SHell (SSH), [RFC4253] for NetConf ([RFC6241]), or via Transport
 Layer Security (TLS), such as [RFC8253] for PCEP, [RFC5440], or
 [RFC7589] for NetConf.

 For additional, BIER-TE independent security considerations for the
 use of a central BIER-TE controller, the security section of the
 protocols and security options in the previous paragraph apply. In
 addition, the security considerations of [RFC4655] apply.

https://datatracker.ietf.org/doc/html/rfc8296
https://datatracker.ietf.org/doc/html/rfc8279
https://datatracker.ietf.org/doc/html/rfc8401
https://datatracker.ietf.org/doc/html/rfc8444
https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8253
https://datatracker.ietf.org/doc/html/rfc5440
https://datatracker.ietf.org/doc/html/rfc7589
https://datatracker.ietf.org/doc/html/rfc4655

Eckert, et al. Expires January 10, 2022 [Page 45]

Internet-Draft BIER-TE ARCH July 2021

 The most important attack vector in BIER-TE is misconfiguration,
 either on the BFR themselves or via the BIER-TE controller.
 Forwarding entries with DNC could be set up to create persistent
 loops, in which packets only expire because of TTL. To minimize the
 impact of such attacks (or more likely unintentional misconfiguration
 by operators and/or bad BIER-TE controller software), the BIER-TE
 forwarding rules are defined to be as strict in clearing bits as they
 are. The clearing of all bits with an adjacency on a BFR prohibits
 that a looping packet creates additional packet amplification through
 the misconfigured loop on the packets second or further times around
 the loop, because all relevant adjacency bits would have been cleared
 on the first round through the loop. In result, BIER-TE has the same
 degree of looping packets as possible with unintentional or malicious
 loops in the routing underlay with BIER or even with unicast traffic.

 Deployments especially where BIER-TE would likely be beneficial may
 include operational models where actual configuration changes from
 the controller are only required during non-productive phases of the
 networks life-cycle, such as in embedded networks or in manufacturing
 networks during e.g. plant reworking/repairs. In these type of
 deployments, configuration changes could be locked out when the
 network is in production state and could only be (re-)enabled through
 reverting the network/installation into non-productive state. Such
 security designs would not only allow to provide additional layers of
 protection against configuration attacks, but would foremost protect
 the active production process from such configuration attacks.

8. IANA Considerations

 This document requests no action by IANA.

9. Acknowledgements

 The authors would like to thank Greg Shepherd, Ijsbrand Wijnands,
 Neale Ranns, Dirk Trossen, Sandy Zheng, Lou Berger, Jeffrey Zhang,
 Alvaro Retana and Wolfgang Braun for their reviews and suggestions.

10. Change log [RFC Editor: Please remove]

draft-ietf-bier-te-arch:

 10: AD review Alvaro Retana, summary:

 Note: rfcdiff shows more changes than actually exist because text
 moved around.

 Summary:

https://datatracker.ietf.org/doc/html/draft-ietf-bier-te-arch

Eckert, et al. Expires January 10, 2022 [Page 46]

Internet-Draft BIER-TE ARCH July 2021

 1. restructuring: merged all controller sections under common
 controller ops main section, moved unfitting stuff out to
 other parts of doc. Split Intro section into Overview and
 Intro. Shortened Abstract, moved text into Overview, added
 sections overview.

 2. enhanced/rewrote: 2.3 Comparison with -> Relationship to BIER-
 TE

 3. enhanced/rewrote: 3.2 BIER-TE controller -> BIER-TE control
 plane, 3.2.1 BIER-TE controller, for consistency with rfc8279

 4. additional subsections for Alvaros asks

 5. added to: 3.3 BIER-TE forwarding plane (consistency with
rfc8279)

 6. Enhanced description of 4.3/encap considerations to better
 explain how BIER/BIER-TE can run together.

 Notation: Markers (a),(b),... at end of points are references from
 the review discussion with Alvaro to the changes made.

 Details:.

 Throughout text: changed term spelling to rfc8279 - bit positions,
 sub-domain, ... (i).

 Reset changed to clear, also DNR changed to DNC (Do Not Clear)
 (q).

 Abstract: Shortened. Removed name explanation note (Tree
 Engineering), (a).

 1. Introduction -> Overview: Moved important explanation
 paragraph from abstract to Introduction. Fixed text, (a).

 Added bullet point list explanation of structure of document (e).

 Renamed to Overview because that is now more factually correct.

 1.1. Fixed bug in example adding bit p15.(l).

 2. (New - Introduction): Moved section 1.1 - 1.3 (examples,
 comparison with BIER-TE) from Introduction into new "Overview"
 section. Primarily so that "requirements language" section (at
 end of Introduction) is not in middle of document after all the
 Introduction.

https://datatracker.ietf.org/doc/html/rfc8279
https://datatracker.ietf.org/doc/html/rfc8279
https://datatracker.ietf.org/doc/html/rfc8279

Eckert, et al. Expires January 10, 2022 [Page 47]

Internet-Draft BIER-TE ARCH July 2021

 2.1 Removed discussion of encap, moved to 4.2.2 (m).

 2.2 enhanced paragraph suggesting native/overlay topology types,
 also sugest type hybrid (n).

 2.3 Overhauled comparison text BIER/BIER-TE, structured into
 common, different, not-required-by-te, integration-bier-bier-te.
 Changed title to "Relationship" to allow including last point.
 (f).

 2.4 moved Hardware forwarding comparison section into section 2 to
 allow coalescing of sections into section 5 about the controller
 operations (hardware forwarding was in the middle of it, wrong
 place). Shortened/improved third paragraph by pointing to BIFT as
 deciding element for selection between BIER/BIER-TE. Removed
 notion of experimentation (this now targets standard) (g).

 3. (Components): Aligned component name and descriptions better
 with RFC8279. Now describe exactly same three layers. BIER layer
 constituted from BIER-TE control plane and BIER-TE forwarding
 plane. BIER-TE controller is now simply component of BIER-TE
 control plane. (b).

 3.1. shortened/improved paragraph explaining use of SI:BP instead
 of also bfr-id as index into BIFT, rewrote paragraph talking about
 reuse of BPs(o).

 3.2. rewrote explanation of BIER-TE control plane in the style of
RFC8729 Section 4.2 (BIER layer) with numbered points. Note that
RFC8729 mixes control and forwarding plane bullet points (this doc

 does not). Merged text from old sections 2.2.1 and 2.2.3 into
 list. (b).

 3.2.1. Expanded/improved explanation of BIER-TE Controller (b).

 3.2.1.1. Added subsection for topology discovery and creation
 (d).

 3.2.1.2. Added subsection for engineered BitStrings as key novel
 aspect not found in BIER. (X).

 3.3. Added numbered list for components of BIER-TE forwarding
 plane (completing the comparable text from RFC8729 Section 4.2).

 3.4 Alvaro does not mind additional example, fixed bugs.

 3.5 Removed notion about using IGP BIER extensions for BIER-TE,
 such as BIFT address ranges. After -10 making use of BIFT

https://datatracker.ietf.org/doc/html/rfc8279
https://datatracker.ietf.org/doc/html/rfc8729#section-4.2
https://datatracker.ietf.org/doc/html/rfc8729
https://datatracker.ietf.org/doc/html/rfc8729#section-4.2

Eckert, et al. Expires January 10, 2022 [Page 48]

Internet-Draft BIER-TE ARCH July 2021

 clearer, it now looks to authors as if use of IGP extensions would
 not be beneficial, as long as we do need to use the BIER-TE
 controller, e.g. unlike in BIER, a BFR could not learn from the
 IGP information what traffic to send towards a particular BIFT-ID,
 but instead that is the core of what the controller needs to
 provide.

 4.2.2 Improved text to explain requirement to identify BIER-TE in
 the tunnel encap and compress description of use-cases (m).

 4.2.3 enhanced ECMP text (p).

 4.3. rewrote most of Encapsulation Considerations to better
 explain to Alvaros question re sharing or not sharing SD via BIER/
 BIER-TE. Added reference to I-D.ietf-bier-non-mpls-bift-encoding
 as a very helpful example. (f).

 4.3 Renamed title to "...Co-Existence with BIER" as this is what
 it is about and to help finding it from abstract/intro ("co-
 exist") (j).

 4.4. Moved BIER-TE Forwarding Pseudocode here to coalesce text
 logically. Changed text to better compare with BIER pseudo
 forwarding code. Numerical list of how F-BM works for BIER-TE.
 Removed efficiency comparison with BIER (too difficult to provide
 sufficient justification, derails from focus of section) (j).

 4.6. (Requirements) Restructured: Removed notion of "basic" BIER-
 TE forwarding, simply referring to it now as "mandatory" BIER-TE
 forwarding. Cleaned up text to have requirements for different
 adjacencies in different paragraphs. (c).

 5. Created new main section "BIER-TE Controller operational
 considerations", coalesced old sections 4., 5., 7. into this new
 main section. No text changes. (k).

 5.1.9 Added new separate picture instead of referring to a picture
 later in text, adjusted text (r).

 5.3.2 Changed title to not include word "comparison" to avoid this
 being accounted against Alvaros concern about scattering
 comparison (IMHO text already has little comparison, so title was
 misleading) (h).

 co-authors internal review:

 4.4 Added xref to Figure 5.

Eckert, et al. Expires January 10, 2022 [Page 49]

Internet-Draft BIER-TE ARCH July 2021

 5.2.1 Duplicated ring picture, added visuals for described
 miswiring (s).

 5.2.2 replace "topology" with graph (wrong word).

 5.3.3 rewrote explanation of how to map BFR-id to SI:BP and assign
 them, clarified BFR-id is option. Retitled to better explain
 scope of section.

 5.3.4 Removed considerations in 5.3.4 for sharing BFR-id across
 BIER/BIER-TE (t), changed title to explain how BFIR/BIER-TE
 controller interactions need some form of identifying BFR but this
 does not have to be BFR-id.

 7. Added new security considerations (u).

 09: Incorporated fixes for feedback from Shepherd (Xuesong Geng).

 Added references for Bloom Filters and Rate Controlled Service
 Disciplines.

 1.1 Fixed numbering of example 1 topology explanation. Improved
 language on second example (less abbreviating to avoid confusion
 about meaning).

 1.2 Improved explanation of BIER-TE topology, fixed terminology of
 graphs (BIER-TE topology is a directed graph where the edges are
 the adjacencies).

 2.4 Fixed and amended routing underlay explanations: detailed why
 no need for BFER routing underlay routing protocol extensions, but
 potential to re-use BIER routing underlay routing protocol
 extensions for non-BFER related extensions.

 3.1 Added explanation for VRF and its use in adjacencies.

 08: Incorporated (with hopefully acceptable fixes) for Lou
 suggested section 2.5, TE considerations.

 Fixes are primarily to the point to a) emphasize that BIER-TE does
 not depend on the routing underlay unless forward_routed()
 adjacencies are used, and b) that the allocation and tracking of
 resources does not explicitly have to be tied to BPs, because they
 are just steering labels. Instead, it would ideally come from
 per-hop resource management that can be maintained only via local
 accounting in the controller.

Eckert, et al. Expires January 10, 2022 [Page 50]

Internet-Draft BIER-TE ARCH July 2021

 07: Further reworking text for Lou.

 Renamed BIER-PE to BIER-TE standing for "Tree Engineering" after
 votes from BIER WG.

 Removed section 1.1 (introduced by version 06) because not
 considered necessary in this doc by Lou (for framework doc).

 Added [RFC editor pls. remove] Section to explain name change to
 future reviewers.

 06: Concern by Lou Berger re. BIER-TE as full traffic engineering
 solution.

 Changed title "Traffic Engineering" to "Path Engineering"

 Added intro section of relationship BIER-PE to traffic
 engineering.

 Changed "traffic engineering" term in text" to "path engineering",
 where appropriate

 Other:

 Shortened "BIER-TE Controller Host" to "BIER-TE Controller".
 Fixed up all instances of controller to do this.

 05: Review Jeffrey Zhang.

 Part 2:

 4.3 added note about leaf-BFER being also a propery of routing
 setup.

 4.7 Added missing details from example to avoid confusion with
 routed adjacencies, also compressed explanatory text and better
 justification why seed is explicitly configured by controller.

 4.9 added section discussing generic reuse of BP methods.

 4.10 added section summarizing BP optimizations of section 4.

 6. Rewrote/compressed explanation of comparison BIER/BIER-TE
 forwarding difference. Explained benefit of BIER-TE per-BP
 forwarding being independent of forwarding for other BPs.

 Part 1:

Eckert, et al. Expires January 10, 2022 [Page 51]

Internet-Draft BIER-TE ARCH July 2021

 Explicitly ue forwarded_connected adjcency in ECMP adjcency
 examples to avoid confusion.

 4.3 Add picture as example for leav vs. non-leaf BFR in topology.
 Improved description.

 4.5 Exampe for traffic that can be broadcast -> for single BP in
 hub&spoke.

 4.8.1 Simplified example picture for routed adjacency, explanatory
 text.

 Review from Dirk Trossen:

 Fixed up explanation of ICC paper vs. bloom filter.

 04: spell check run.

 Addded remaining fixes for Sandys (Zhang Zheng) review:

 4.7 Enhance ECMP explanations:

 example ECMP algorithm, highlight that doc does not standardize
 ECMP algorithm.

 Review from Dirk Trossen:

 1. Added mentioning of prior work for traffic engineered paths
 with bloom filters.

 2. Changed title from layers to components and added "BIER-TE
 control plane" to "BIER-TE Controller" to make it clearer, what it
 does.

 2.2.3. Added reference to I-D.ietf-bier-multicast-http-response
 as an example solution.

 2.3. clarified sentence about resetting BPs before sending copies
 (also forgot to mention DNR here).

 3.4. Added text saying this section will be removed unless IESG
 review finds enough redeeming value in this example given how -03
 introduced section 1.1 with basic examples.

 7.2. Removed explicit numbers 20%/80% for number of topology bits
 in BIER-TE, replaced with more vague (high/low) description,
 because we do not have good reference material Added text saying
 this section will be removed unless IESG review finds enough

Eckert, et al. Expires January 10, 2022 [Page 52]

Internet-Draft BIER-TE ARCH July 2021

 redeeming value in this example given how -03 introduced section
1.1 with basic examples.

 many typos fixed. Thanks a lot.

 03: Last call textual changes by authors to improve readability:

 removed Wolfgang Braun as co-authors (as requested).

 Improved abstract to be more explanatory. Removed mentioning of
 FRR (not concluded on so far).

 Added new text into Introduction section because the text was too
 difficult to jump into (too many forward pointers). This
 primarily consists of examples and the early introduction of the
 BIER-TE Topology concept enabled by these examples.

 Amended comparison to SR.

 Changed syntax from [VRF] to {VRF} to indicate its optional and to
 make idnits happy.

 Split references into normative / informative, added references.

 02: Refresh after IETF104 discussion: changed intended status back
 to standard. Reasoning:

 Tighter review of standards document == ensures arch will be
 better prepared for possible adoption by other WGs (e.g. DetNet)
 or std. bodies.

 Requirement against the degree of existing implementations is self
 defined by the WG. BIER WG seems to think it is not necessary to
 apply multiple interoperating implementations against an
 architecture level document at this time to make it qualify to go
 to standards track. Also, the levels of support introduced in -01
 rev. should allow all BIER forwarding engines to also be able to
 support the base level BIER-TE forwarding.

 01: Added note comparing BIER and SR to also hopefully clarify
 BIER-TE vs. BIER comparison re. SR.

 - added requirements section mandating only most basic BIER-TE
 forwarding features as MUST.

 - reworked comparison with BIER forwarding section to only
 summarize and point to pseudocode section.

Eckert, et al. Expires January 10, 2022 [Page 53]

Internet-Draft BIER-TE ARCH July 2021

 - reworked pseudocode section to have one pseudocode that mirrors
 the BIER forwarding pseudocode to make comparison easier and a
 second pseudocode that shows the complete set of BIER-TE
 forwarding options and simplification/optimization possible vs.
 BIER forwarding. Removed MyBitsOfInterest (was pure
 optimization).

 - Added captions to pictures.

 - Part of review feedback from Sandy (Zhang Zheng) integrated.

 00: Changed target state to experimental (WG conclusion), updated
 references, mod auth association.

 - Source now on http://www.github.com/toerless/bier-te-arch

 - Please open issues on the github for change/improvement requests
 to the document - in addition to posting them on the list
 (bier@ietf.). Thanks!.

draft-eckert-bier-te-arch:

 06: Added overview of forwarding differences between BIER, BIER-
 TE.

 05: Author affiliation change only.

 04: Added comparison to Live-Live and BFIR to FRR section
 (Eckert).

 04: Removed FRR content into the new FRR draft [I-D.eckert-bier-
 te-frr] (Braun).

 - Linked FRR information to new draft in Overview/Introduction

 - Removed BTAFT/FRR from "Changes in the network topology"

 - Linked new draft in "Link/Node Failures and Recovery"

 - Removed FRR from "The BIER-TE Forwarding Layer"

 - Moved FRR section to new draft

 - Moved FRR parts of Pseudocode into new draft

 - Left only non FRR parts

http://www.github.com/toerless/bier-te-arch
https://datatracker.ietf.org/doc/html/draft-eckert-bier-te-arch

Eckert, et al. Expires January 10, 2022 [Page 54]

Internet-Draft BIER-TE ARCH July 2021

 - removed FrrUpDown(..) and //FRR operations in
 ForwardBierTePacket(..)

 - New draft contains FrrUpDown(..) and ForwardBierTePacket(Packet)
 from bier-arch-03

 - Moved "BIER-TE and existing FRR to new draft

 - Moved "BIER-TE and Segment Routing" section one level up

 - Thus, removed "Further considerations" that only contained this
 section

 - Added Changes for version 04

 03: Updated the FRR section. Added examples for FRR key concepts.
 Added BIER-in-BIER tunneling as option for tunnels in backup
 paths. BIFT structure is expanded and contains an additional
 match field to support full node protection with BIER-TE FRR.

 03: Updated FRR section. Explanation how BIER-in-BIER
 encapsulation provides P2MP protection for node failures even
 though the routing underlay does not provide P2MP.

 02: Changed the definition of BIFT to be more inline with BIER.
 In revs. up to -01, the idea was that a BIFT has only entries for
 a single BitString, and every SI and sub-domain would be a
 separate BIFT. In BIER, each BIFT covers all SI. This is now
 also how we define it in BIER-TE.

 02: Added Section 5.3 to explain the use of SI, sub-domains and
 BFR-id in BIER-TE and to give an example how to efficiently assign
 bits for a large topology requiring multiple SI.

 02: Added further detailed for rings - how to support input from
 all ring nodes.

 01: Fixed BFIR -> BFER for section 4.3.

 01: Added explanation of SI, difference to BIER ECMP,
 consideration for Segment Routing, unicast FRR, considerations for
 encapsulation, explanations of BIER-TE Controller and CLI.

 00: Initial version.

Eckert, et al. Expires January 10, 2022 [Page 55]

Internet-Draft BIER-TE ARCH July 2021

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8279] Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,
 Przygienda, T., and S. Aldrin, "Multicast Using Bit Index
 Explicit Replication (BIER)", RFC 8279,
 DOI 10.17487/RFC8279, November 2017,
 <https://www.rfc-editor.org/info/rfc8279>.

11.2. Informative References

 [Bloom70] Bloom, B., "Space/time trade-offs in hash coding with
 allowable errors", Comm. ACM 13(7):422-6, July 1970.

 [I-D.eckert-bier-te-frr]
 Eckert, T., Cauchie, G., Braun, W., and M. Menth,
 "Protection Methods for BIER-TE", draft-eckert-bier-te-

frr-03 (work in progress), March 2018.

 [I-D.ietf-bier-multicast-http-response]
 Trossen, D., Rahman, A., Wang, C., and T. Eckert,
 "Applicability of BIER Multicast Overlay for Adaptive
 Streaming Services", draft-ietf-bier-multicast-http-

response-05 (work in progress), January 2021.

 [I-D.ietf-bier-non-mpls-bift-encoding]
 Wijnands, I., Mishra, M., Xu, X., and H. Bidgoli, "An
 Optional Encoding of the BIFT-id Field in the non-MPLS
 BIER Encapsulation", draft-ietf-bier-non-mpls-bift-

encoding-03 (work in progress), November 2020.

 [I-D.ietf-bier-te-yang]
 Zhang, Z., Wang, C., Chen, R., Hu, F., Sivakumar, M., and
 H. Chen, "A YANG data model for Traffic Engineering for
 Bit Index Explicit Replication (BIER-TE)", draft-ietf-

bier-te-yang-02 (work in progress), August 2020.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8279
https://www.rfc-editor.org/info/rfc8279
https://datatracker.ietf.org/doc/html/draft-eckert-bier-te-frr-03
https://datatracker.ietf.org/doc/html/draft-eckert-bier-te-frr-03
https://datatracker.ietf.org/doc/html/draft-ietf-bier-multicast-http-response-05
https://datatracker.ietf.org/doc/html/draft-ietf-bier-multicast-http-response-05
https://datatracker.ietf.org/doc/html/draft-ietf-bier-non-mpls-bift-encoding-03
https://datatracker.ietf.org/doc/html/draft-ietf-bier-non-mpls-bift-encoding-03
https://datatracker.ietf.org/doc/html/draft-ietf-bier-te-yang-02
https://datatracker.ietf.org/doc/html/draft-ietf-bier-te-yang-02

Eckert, et al. Expires January 10, 2022 [Page 56]

Internet-Draft BIER-TE ARCH July 2021

 [I-D.ietf-roll-ccast]
 Bergmann, O., Bormann, C., Gerdes, S., and H. Chen,
 "Constrained-Cast: Source-Routed Multicast for RPL",

draft-ietf-roll-ccast-01 (work in progress), October 2017.

 [I-D.ietf-teas-rfc3272bis]
 Farrel, A., "Overview and Principles of Internet Traffic
 Engineering", draft-ietf-teas-rfc3272bis-11 (work in
 progress), April 2021.

 [ICC] Reed, M., Al-Naday, M., Thomos, N., Trossen, D.,
 Petropoulos, G., and S. Spirou, "Stateless multicast
 switching in software defined networks", IEEE
 International Conference on Communications (ICC), Kuala
 Lumpur, Malaysia, 2016, May 2016,
 <https://ieeexplore.ieee.org/document/7511036>.

 [RCSD94] Zhang, H. and D. Domenico, "Rate-Controlled Service
 Disciplines", Journal of High-Speed Networks, 1994, May
 1994, <https://dl.acm.org/doi/10.5555/2692227.2692232>.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <https://www.rfc-editor.org/info/rfc4253>.

 [RFC4655] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
 Element (PCE)-Based Architecture", RFC 4655,
 DOI 10.17487/RFC4655, August 2006,
 <https://www.rfc-editor.org/info/rfc4655>.

 [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 DOI 10.17487/RFC5440, March 2009,
 <https://www.rfc-editor.org/info/rfc5440>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7589] Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <https://www.rfc-editor.org/info/rfc7589>.

https://datatracker.ietf.org/doc/html/draft-ietf-roll-ccast-01
https://datatracker.ietf.org/doc/html/draft-ietf-teas-rfc3272bis-11
https://ieeexplore.ieee.org/document/7511036
https://dl.acm.org/doi/10.5555/2692227.2692232
https://datatracker.ietf.org/doc/html/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://datatracker.ietf.org/doc/html/rfc4655
https://www.rfc-editor.org/info/rfc4655
https://datatracker.ietf.org/doc/html/rfc5440
https://www.rfc-editor.org/info/rfc5440
https://datatracker.ietf.org/doc/html/rfc6241
https://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/rfc7589
https://www.rfc-editor.org/info/rfc7589

Eckert, et al. Expires January 10, 2022 [Page 57]

Internet-Draft BIER-TE ARCH July 2021

 [RFC7752] Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
 S. Ray, "North-Bound Distribution of Link-State and
 Traffic Engineering (TE) Information Using BGP", RFC 7752,
 DOI 10.17487/RFC7752, March 2016,
 <https://www.rfc-editor.org/info/rfc7752>.

 [RFC8253] Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody,
 "PCEPS: Usage of TLS to Provide a Secure Transport for the
 Path Computation Element Communication Protocol (PCEP)",

RFC 8253, DOI 10.17487/RFC8253, October 2017,
 <https://www.rfc-editor.org/info/rfc8253>.

 [RFC8296] Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,
 Tantsura, J., Aldrin, S., and I. Meilik, "Encapsulation
 for Bit Index Explicit Replication (BIER) in MPLS and Non-
 MPLS Networks", RFC 8296, DOI 10.17487/RFC8296, January
 2018, <https://www.rfc-editor.org/info/rfc8296>.

 [RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
 2018, <https://www.rfc-editor.org/info/rfc8345>.

 [RFC8401] Ginsberg, L., Ed., Przygienda, T., Aldrin, S., and Z.
 Zhang, "Bit Index Explicit Replication (BIER) Support via
 IS-IS", RFC 8401, DOI 10.17487/RFC8401, June 2018,
 <https://www.rfc-editor.org/info/rfc8401>.

 [RFC8444] Psenak, P., Ed., Kumar, N., Wijnands, IJ., Dolganow, A.,
 Przygienda, T., Zhang, J., and S. Aldrin, "OSPFv2
 Extensions for Bit Index Explicit Replication (BIER)",

RFC 8444, DOI 10.17487/RFC8444, November 2018,
 <https://www.rfc-editor.org/info/rfc8444>.

Authors' Addresses

 Toerless Eckert (editor)
 Futurewei Technologies Inc.
 2330 Central Expy
 Santa Clara 95050
 USA

 Email: tte+ietf@cs.fau.de

https://datatracker.ietf.org/doc/html/rfc7752
https://www.rfc-editor.org/info/rfc7752
https://datatracker.ietf.org/doc/html/rfc8253
https://www.rfc-editor.org/info/rfc8253
https://datatracker.ietf.org/doc/html/rfc8296
https://www.rfc-editor.org/info/rfc8296
https://datatracker.ietf.org/doc/html/rfc8345
https://www.rfc-editor.org/info/rfc8345
https://datatracker.ietf.org/doc/html/rfc8401
https://www.rfc-editor.org/info/rfc8401
https://datatracker.ietf.org/doc/html/rfc8444
https://www.rfc-editor.org/info/rfc8444

Eckert, et al. Expires January 10, 2022 [Page 58]

Internet-Draft BIER-TE ARCH July 2021

 Gregory Cauchie
 Bouygues Telecom

 Email: GCAUCHIE@bouyguestelecom.fr

 Michael Menth
 University of Tuebingen

 Email: menth@uni-tuebingen.de

Eckert, et al. Expires January 10, 2022 [Page 59]

