BLISS WG J. Elwell T0C

Siemens Enterprise

Internet-Draft . .
Communications

Intended status:

April 30, 2010
BCP

Expires: November
1, 2010

An Analysis of Automatic Call Handling (ACH) Implementation Issues in
the Session Initiation Protocol (SIP)
draft-ietf-bliss-ach-analysis-06.txt

Abstract

This discusses problems associated with automatic call handling (ACH)
when using the Session Initiation Protocol (SIP) and specifies some
best practices to help achieve interoperability.

This work is being discussed on the bliss@ietf.org mailing list.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on November 1, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

1. 1Introduction
2. Terminology
3. Examples of ACH
4. Known problem areas with ACH
4.1. Conflict between proxy and UA
4.2. Conflict between UAs
4.3. Obtaining information from UA for ACH at proxy
4.4. Informing the calling UA
4.5. Scope of conditions
4.6. Configuring the proxy
5. Discussion
5.1. Proxy versus UA
5.2. Avoiding inconsistent configurations
5.3. Enterprise and carrier environments
6. Potential measures that could be taken
6.1. Conflict between proxy and UA
6.2. Conflict between UAs
6.3. Obtaining information from UA for ACH at proxy
6.3.1. Reason for rejection
6.3.2. Desired scope of rejection
6.4. Informing the calling UA
6.5. Scope of conditions
6.6. Configuring the proxy
7. Best practices for ACH
7.1. Avoiding conflict between ACH at proxy and ACH at UA
7.2. Use of response codes for reporting ACH-related conditions
7.3. UA configuration of ACH at the proxy
7.4. Notifying a UA of an ACH configuration change at the proxy
8. IANA considerations
9. Security considerations
Appendix A. Survey results
10. Acknowledgements
11. References

11.1. Normative References
11.2. Informative References
& Author's Address

1. Introduction TOC

The Session Initiation Protocol (SIP) [RFC3261] (Rosenberg, J.,
Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,

Handley, M., and E. Schooler, “SIP: Session Initiation Protocol,”
June 2002.) establishes calls or sessions for real-time communication

between users. When a call is targeted at a called user, often the call
is subject to some automatic treatment to determine whether to present
the call to the user or take some alternative action such as forwarding
to voicemail. Similarly, if some condition arises after presenting a
call to the called user but before answer, automatic treatment can lead
to some alternative action. Automatic treatment is in accordance with
policy determined in advance by the user or the user's organization.
This automatic treatment of incoming calls is referred to as automatic
call handling (ACH) in this document.

In order to encourage innovation, ACH is deliberately not specified in
RFC 3261 or in RFCs that specify extensions to SIP. However, the
flexibility that this affords has sometimes led to problems, where
different implementations have approached the issue in different ways,
leading to unexpected and often unwanted behavior when those
implementations are deployed together. This document analyses the
sources of problems with ACH and specifies some best practices to help
achieve interoperability.

A number of other Standards Development Organisations (SDO) (e.g.,
3GPP, ETSI) have specified specific features or "services" that involve
specific forms of ACH.

A survey was conducted prior to IETF70 to get a feeling for what are
common practices in this area. Although the number of responses was
disappointingly small (see results), in some cases it did give a clue
as to the most common practices. In the remainder of this document,
this is referred to as "the survey".

2. Terminology TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

3. Examples of ACH TOC

ACH can occur prior to or instead of presenting an incoming call to a
called user or after presentation but before the called user answers
the call. The particular treatment applied to a call is generally
dependent on a number of factors, examples of which are as follows:

*Whether there are other registered contacts that can handle the
call (e.g., a registered audio User Agent (UA) for an audio
call).

http://www.bliss-ietf.org/ach_survey.html

*Whether the user's UA (or UAs) is known to be busy on another
call.

*Whether the user has failed to answer the call within a given
number of seconds.

*Whether the user is known to be unwilling to receive calls at the
present time (a condition often known as Do Not Disturb, DND).

*Whether the user is known not to be available (e.g., on
vacation).

*Whether an alternative user (e.g., a colleague, an assistant,
another family member) is known to be available.

*Whether the Address Of Record (AOR) at which the call is targeted
represents a single user or a team or group of users.

*Time of day, day of the week, date, etc..

*The type of call (e.g., audio, audio plus video, messaging,
etc.).

*The source of the call (e.g., whether the caller is anonymous,
whether the caller is blacklisted or whitelisted, which
organization the caller belongs to, etc.).

The conditions above are detected though local information at the
entity performing ACH, by access to presence information or through
information received via SIP signalling (e.g., a UA's response to an
INVITE request).

Examples of particular treatment to be applied to a call if appropriate
conditions are met are as follows:

*Reject the call, with an appropriate indication to the caller.
This indication may or may not reveal the actual condition that
led to rejection.

*Forward the call to another UA serving that user (e.g.,
voicemail, a mobile UA, a UA at another location).

*Forward the call to another user, e.g., the next member of a
team, an assistant.

*Modify the nature of the call (e.g., downgrade from audio to
messaging).

*Any of the above, but impacting presentation of the call at a
given UA, without impacting presentation at other UAs serving the
user.

A user can specify quite complex sets of rules for ACH. For example,
"if presence indicates I am in a meeting, or if my desk phone is busy,
or if I do not reply within 15 seconds, forward calls to my assistant
between the hours of 09.00 and 17.00, Monday to Friday, but at other
times forward to my voicemail, unless the call is from my home or my
partner's mobile phone, in which case forward to my mobile phone".

4. Known problem areas with ACH TOC

4.1. Conflict between proxy and UA TOC

A significant problem area with ACH is interactions between proxies (or
Back-To-Back User Agents, B2BUAs) that perform ACH and UAs that perform
ACH. The domain proxy for a user is configured to treat incoming calls
in a certain way under certain conditions. One of the user's UAs is
configured to treat incoming calls in a different way under the same or
overlapping conditions. If the condition can be detected by the proxy
without presenting the call to the UA, the proxy will win and the user
may wonder why the action configured at the UA is not being taken. For
example, if the proxy detects a DND condition from a presence server
and forwards calls to voicemail, any script at the UA to forward
private calls to a mobile phone would never execute. This may or may
not be what the user (or his/her organization) desires to happen.
Alternatively, if a condition is detected by a UA before it is detected
at the proxy, the action determined by the UA will "win", unless the
proxy is somehow able to figure out what has happened and apply its own
action. For example, if a phone determines it is busy and returns a 302
response code to forward the call elsewhere or performs "call waiting"
action, this might prevent the proxy taking whatever action it would
have taken on receipt of a 486 response. This may or may not be what
the user (or his/her organization) desires to happen.

If a UA attempts ACH, it may be possible for the proxy to override it,
e.g., by taking account of the response code returned or, in the case
of a 3xx response code, whether the UA has provided further information
concerning the reason for redirection in accordance with RFC 4458
[REC4458] (Jennings, C., Audet, F., and J. Elwell, “Session Initiation
Protocol (SIP) URIs for Applications such as Voicemail and Interactive
Voice Response (IVR),” April 2006.).

The survey showed that the majority of proxies perform ACH without
first presenting the call to the UA, at least for certain types of ACH.
The survey also showed that the majority of UAs implement some form of
ACH. This does seem to confirm the potential for conflict between proxy
and UA. If, as a result of ACH at the UA, the call required

redirection, 302 was the response code used in the majority of
situations. Only a minority of such implementations used RFC 4458 to
provide more information about the reason for redirection.

4.2. Conflict between UAs TOC

Where an incoming call is forked to multiple UAs, there is potential
for different UAs to be configured to perform different ACH actions
under the same or overlapping conditions. With parallel forking (where
the INVITE request is sent to each UA at approximately the same time),
results can be indeterminate and might depend on which UA responds
first. With serial forking, this is likely to be more deterministic,
but UAs would need to be configured taking into account the order in
which the proxy presents calls to the UAs.

When a proxy forks a call, it can invoke ACH based on the first UA to
respond, can wait for all UAs to respond or behave in some other way
(e.g., act immediately on certain response codes). The survey did not
show a bias towards any one behavior.

4.3. Obtaining information from UA for ACH at proxy TOC

When ACH is performed at a proxy, it sometimes requires information
from the UA, in response to the INVITE request. If this information
does not arrive in the form expected by the proxy (e.g, a particular
response code), ACH will be adversely impacted. For example, if the
proxy is configured to perform forwarding on DND and relies on the DND
condition to be indicated in the INVITE response, it depends on the UA
indicating the condition in the form expected by the proxy. As there is
no standardized means of indicating DND in a response (see
[IT-D.elwell-bliss-dnd] (Elwell, J. and S. Srinivasan, “An Analysis of
Do Not Disturb (DND) Implementations in the Session Initiation Protocol
(SIP),” November 2007.)), this can be a problem. Furthermore, there
might be more than one flavour of DND (e.g., with/without forwarding to
voicemail), requiring different responses.

The survey showed that 486 (Busy Here) is the response code most
commonly expected by proxies for indicating DND, but that accounted for
less than half of the responses. Other known response codes in use
include 406 (Not Acceptable), 480 (Temporarily Unavailable), 600 (Busy
Everywhere) and 603 (Decline).

The survey also showed that even for the busy condition, proxies
expected different response codes. Although a small majority expected
486 (Busy Here), other expectations included 480 (Temporarily
Unavailable) and 600 (Busy Everywhere).

The survey did not yield significant information concerning response
codes issued by UAs.

4.4. Informing the calling UA TOC

A related problem is informing the calling UA, and hence the caller,
what has happened. In the case where ACH results in rejection of the
call, this might be just a case of sending back an appropriate response
code. Considerations are similar to those for a proxy in Section 4.3
(Obtaining information from UA for ACH at proxy), except that privacy
might require the proxy to send a different response code rather than
the one reflecting the condition encountered. For example, the user
might not wish the caller to know about his absence.

The choice of response code might not be an interoperability issue if
the calling UA is relatively dumb, but might be an issue if there is an
application that takes the response code into account. Where there is
forking proxy between the entity performing ACH and the calling UA,
information may be lost because of the Heterogeneous Error Response
Forking Problem (HERFP).

Where ACH results in forwarding (to a different AOR or a different
contact for the same AOR), this can be achieved by retargeting or
redirection. In the case of retargeting, the calling UA receives no
information, apart from a final response and perhaps identity from the
retargeted-to user. On the other hand, if redirection is used, the
calling UA will receive a 3xx response, the contact Universal Resource
Identifier (URI) in which could indicate the source of the redirection
and possibly the reason, in accordance with RFC 4458 [RFC4458
(Jennings, C., Audet, F., and J. Elwell, “Session Initiation Protocol
(SIP) URIs for Applications such as Voicemail and Interactive Voice
Response (IVR),” April 2006.).

4.5. Scope of conditions TOC

When an INVITE request is forked to multiple UAs, the user may or may
not require a condition at one UA to be considered as applying to other
branches. This includes branches already active (through parallel
forking) or branches yet to be activated (through serial forking). This
can impact when to invoke ACH at the proxy, i.e., whether to perform
ACH when one UA reports an appropriate condition (cancelling other
active branches if necessary) or to wait for the outcome on other
branches.

Although to a large extent this issue can be handled by appropriate
scripting at the proxy, an important consideration is how to treat the
6xx class of responses. For example, if a UA issues a 600 Busy

Everywhere response (as opposed to a 486 Busy response), what is the
scope of "everywhere"? A simple interpretation is that it literally
means "everywhere", and all other branches should be abandoned and the
6XX response passed back to the caller if no other ACH is prescribed
for this condition. However, other interpretations might seem
reasonable. If a user has several phones, it might be reasonable to
interpret a 600 response from one phone as meaning that all other
phones are busy, but if the user also has voicemail it is unlikely that
that too should be treated as busy. Also, if ACH requires forwarding to
a different user (different AOR) on busy, it might be expected that
this would take place even on receipt of a 600 response from a UA.
Another example is the 603 Decline response code. This is often
intended to be applied everywhere.

There is also a question of whether a proxy should trust a UA to decide
that all other branches need to be abandoned, particularly in
applications like call centres, where the different branches might be
different agents, rather than leading to different devices belonging to
the same user. It might be wise to consider this a policy matter.

The survey gave only a very small number of answers on the issue of
handling 6xx responses, with no conclusions to be drawn other than that
forwarding to voice mail is sometimes allowed following a 6xX response.

4.6. Configuring the proxy TOC
If ACH is performed at the proxy, the user needs a means to configure
the proxy with the required rules. There is no SIP means of doing this,

but a number of mechanisms can perform the basis for this task, e.g.:

*Via a web page.

*By uploading a CPL [RFC3880] (Lennox, J., Wu, X., and H.
Schulzrinne, “Call Processing Language (CPL): A Language for User

Control of Internet Telephony Services,” October 2004.) script.

*Via a web services interface based on SOAP.

*Via Computer Supported Telecommunication Applications (CSTA)
[CSTA] (, “International Standard ISO/IEC 18051 "Information
Technology - Telecommunications and information exchange between
systems - Services for Computer Supported Telecommunications
Applications (CSTA) Phase III",” .).

*Via XCAP [RFC4825] (Rosenberg, J., “The Extensible Markup
Language (XML) Configuration Access Protocol (XCAP),” May 2007.)

*Using standard Hyper-Text Transfer Protocol (HTTP) primitives, a
technique commonly known as REpresentational State Transfer
(REST).

The survey showed that web pages and SOAP-based web services were the
most common mechanisms supported by proxies, but the sample was very
small. The majority of UA implementations provided a web user
interface.

Related to this is the means by which a UA (and hence the user) can
discover how the proxy is configured. Most of the mechanisms listed
above are applicable, and also a SIP SUBSCRIBE/NOTIFY mechanism could
be used. The survey indicated that only a minority of proxies provided
support in this respect.

Some of the above mechanisms (e.g., a web page) are unsuitable for
automatic use by the UA (as opposed to direct interaction between the
user and the proxy). For example, suppose the UA has a button that can
be pressed to activate or deactivate forwarding, and an associated lamp
or icon to show that forwarding is active. In order to support ACH at
the proxy, the UA would need a means for instructing the proxy to
activate or deactivate forwarding, and also a means to obtain from the
proxy the current forwarding state for controlling the lamp or icon. A
web page would be unsuitable for this purpose, but most of the other
mechanisms might be suitable.

wWithout a single standardized way for a UA to configure a proxy for ACH
and obtain a proxy's ACH configuration, there is a danger that the UA
and proxy might not support a common method, requiring the user to
employ other means (e.g., using a different device, contacting a
support centre). Furthermore, it might lead the user to configuring ACH
at the UA when in practice ACH at the proxy would serve the user's
needs better.

5. Discussion TOC

5.1. Proxy versus UA TOC

The end-to-end principle of SIP would suggest that ACH at the UA is
more appropriate than ACH at the proxy. However, certain considerations
make ACH at the proxy more viable or even essential.

ACH in the event that there is no registered contact obviously can only
be performed by the proxy.

A proxy is more easily able to take account of the state of other UAs,
e.g., by waiting for all branches of a forked call to respond before
invoking ACH. Although a UA can use techniques such as the registration

event package [RFC3680] (Rosenberg, J., “A Session Initiation Protocol
(SIP) Event Package for Registrations,” March 2004.) in combination
with the dialog event package [RFC4235] (Rosenberg, J., Schulzrinne,
H., and R. Mahy, “An INVITE-Initiated Dialog Event Package for the
Session Initiation Protocol (SIP),” November 2005.) to determine the
state of other UAs, this is complex, may not yield the information
required, and may suffer from timing-related inconsistencies.

A proxy needs to be configured once and can perform ACH independently
of the number of UAs involved. Obtaining consistent behaviour using ACH
at the UA may involve configuring multiple UAs and keeping their
configurations aligned. The UA configuration framework
[I-D.ietf-sipping-config-framework] (Channabasappa, S., “A Framework
for Session Initiation Protocol User Agent Profile Delivery,”

February 2010.) may be a suitable mechanism for this and would require
a means for the user to configure the profile delivery server. However,
there can be no guarantee that all UAs will download a revised
configuration at the same time, so it can lead to a time window when
inconsistent behaviour may occur.

wWith these considerations in mind, a proxy will often turn out to be a
more suitable place for performing ACH.

On the other hand, there may be situations in which UA-specific ACH may
be required, and it may not be feasible to configure the proxy to
provide this level of granularity. For example, it may be required to
take one action if the desk UA is busy but a different action if the
mobile UA is busy. Convincing use cases for this are hard to find, but
it cannot be ruled out. A possible approach here is to use proxy-based
ACH as the default handling for all UAs and UA-based ACH for any UA-
specific exceptions.

5.2. Avoiding inconsistent configurations TOC

Given that there is frequently a need to perform ACH at the proxy,
problems can be avoided by turning off ACH at all UAs. There may be
exceptions to this, e.g., where there is need for a specific UA to
perform actions different from default actions carried out by the
proxy, or where there is a requirement for behavior not supported by
the proxy. Where ACH does need to be configured at one or more UAs,
care must be taken to avoid unintentional conflicts. Use of the SIP
configuration framework can help to ensure consistent handling at all
UAs. One consideration during the work on profiles for use with the SIP
configuration framework might be the downloading of policy relating to
ACH, such that ACH could be suppressed in order to ensure that proxy-
based ACH operates correctly.

T0C

5.3. Enterprise and carrier environments

Considerations for ACH will often differ between enterprise and carrier
environments. In enterprise environments, enterprise policy will often
govern what a user can and cannot do. This does not necessarily mean
that ACH will be done at a proxy, because the enterprise will probably
manage UAs too and ensure that they behave in line with policy,
although proxy-based ACH will often be easier to accomplish for other
reasons discussed in Section 5.1 (Proxy versus UA).

In a carrier environment, everything can be expected to be under the
control of the user. Proxy-based ACH is still relevant, however,
particularly for mobile devices that are often out of reach or turned
off.

Handling such as team calls (where any team member can be selected
according to availability) is perhaps more likely in enterprise,
although in a residential environment it could be used for finding any
family member.

Despite these different considerations, requirements are similar to a
large extent and the same solution should be sought for both
environments.

6. Potential measures that could be taken TOC

In this section we explore potential measures that can be taken to some
of the problems identified above.

6.1. Conflict between proxy and UA TOC

This appears to be an important problem to solve, in order to have
proxies and UAs from mixed vendors.

One approach is to specify particular features that must or must not be
implemented in a proxy and particular features that must or must not be
implemented in UA. This is likely to fail for a number of reasons:

*There are far too many possible features, and enumerating and
standardizing individual features is contrary to the philosophy
of SIP and likely to inhibit innovation.

*For a given feature, there will be some deployments where it
makes sense to do it at the proxy and other deployments where it
makes sense to do it at the UA. It will often be impracticable to
choose one.

*Proxy vendors and UA vendors will want to provide as many
features as possible on their products and are likely to ignore
any recommendation not to implement a particular feature.

Stipulating that ACH as a whole must always be done at the proxy or
must always be done at the UA is clearly out of the question, because
each has some advantages, depending on circumstances, and also because
vendors of one or the other will not be prepared to give up producing
features that play an important part in differentiating their products.
Therefore it has to be accepted that ACH will be implemented on proxies
and UAs, with feature overlap between the two. The challenge then is to
ensure that, when deployed, the two can co-exist in a sensible way.

It should be possible to control whether a proxy defers to a UA or vice
versa. For a proxy to defer to a UA, it requires the proxy to deliver
an INVITE request to a UA before taking any ACH action. Depending on
the response of the UA, the proxy may then perform its own ACH action.
For a UA to defer to a proxy, it should report any conditions back to
the proxy (e.g., by means of a suitable response to the INVITE request)
rather than taking unilateral action such as redirecting or placing the
call in a waiting state. In other words, it should be possible to turn
off ACH at a UA.

There are several ways to achieve this control:

*Configure the UA and proxy independently. The SIP configuration
framework [I-D.ietf-sipping-config-framework] (Channabasappa, S.,
“A Framework for Session Initiation Protocol User Agent Profile
Delivery,” February 2010.) is one possible means of configuring
the UA.

*Configure the UA (e.g., by means of the SIP configuration
framework [I-D.ietf-sipping-config-framework] (Channabasappa, S.,
“A Framework for Session Initiation Protocol User Agent Profile
Delivery,” February 2010.)) and use SIP to instruct the proxy
(e.g., by means of an indicator in REGISTER requests).

*Configure the proxy and use SIP to instruct the UA (e.g., by
means of an indicator in inbound INVITE requests or in the 200
response to a REGISTER request).

The configuration approach is the simplest and does not require any
enhancements to the SIP protocol. In general, positive action has to be
taken to configure any sort of ACH, i.e., ACH is turned off by default.
Therefore by default there should not be a problem, because ACH will be
turned off in both places. If the user is in control of ACH at the UA
and ACH at the proxy, it is the user's responsibility not to configure
conflicting behaviours.

The situation is slightly different where there is more than one
authority involved, e.g., if the user is able to configure the UA but
some other authority is responsible for configuring the proxy. This

might arise in an enterprise environment, where the enterprise
administration might configure the proxy. In this case, the UA user
could potentially configure the UA in a conflicting way. In such cases
it would be useful if the administration could prevent the user
configuring ACH at the UA, i.e., place ACH configuration under
administration control. Many UAs aimed at the enterprise market have
this form of control already. In future there might be a standardised
way of doing this based on the SIP configuration framework
[I-D.ietf-sipping-config-framework] (Channabasappa, S., “A Framework
for Session Initiation Protocol User Agent Profile Delivery,”

February 2010.) . There does not seem to be a need for BLISS to specify
anything further to address this issue at present.

6.2. Conflict between UAs TOC

This can really only be addressed by configuration. The SIP
configuration framework can help here. In fact, that would normally
configure all UAs having the same AOR with the same information.
Configuration outside this framework (e.g., local actions at the
device) might introduce differences (intentional or otherwise). There
seems little action that BLISS can take to address this issue.

6.3. Obtaining information from UA for ACH at proxy TOC

There seems to be a case for more precisely defining or at least
recommending information given to the proxy when rejecting an inbound
call, in order to assist the proxy in providing the most relevant ACH,
if any. Ideally this information needs to be given as a SIP response
code, although potentially a response code could be supplemented by a
header field. In choosing a particular response code, two factors need
to be taken into account:

*the reason for rejection;

*the desired scope of rejection.
The following sub-sections discuss these two factors. Best practices in
Section 7.2 (Use of response codes for reporting ACH-related

conditions) propose the use of existing response codes for the
conditions identified, avoiding the need to specify new response codes.

T0C

6.3.1. Reason for rejection

The most relevant reasons for rejection (from an ACH perspective) are
as follows:

*Busy. UA resources are busy as a result of another call and
further calls cannot be accepted until resources become free. The
condition may also be visible via a presence system.

*Explicit rejection. The user has indicated an unwillingness to
accept the call at the present time. The user may have indicated
this in advance, so that any incoming calls (or those fulfilling
certain conditions) would be rejected in this way (a feature
often known as "do not disturb"). The user may impose such a
condition during a meeting or while working on a critical task.
The user may indicate in advance a time at which she expects the
condition to be lifted. The condition may also be visible via a
presence system. Alternatively the user may indicate an
unwillingness to accept a particular call in response to being
alerted.

*Silent rejection. The user has responded to this call by
rejecting it, but does not wish the reason to be revealed to the
caller. A user would use this facility when not currently in a
position to answer a particular call or when she feels that it
would be better handled elsewhere (e.g., by voicemail, by an
assistant).

Note that silent rejection could also be achieved by returning a 180
response to the INVITE request, and then waiting (without alerting the
user) until the call is cleared or times out. In the meantime, the
proxy would be unaware of what is happening and would be unable to take
other action, such as cancelling other branches. On the other hand,
indicating silent rejection relies on the proxy to take alternative ACH
action (e.g., waiting for a certain time before forwarding to voice
mail or reporting to the caller that the call has timed out), rather
than revealing silent rejection to the caller. Therefore silent
rejection is suitable for use only when it is known that the proxy will
take appropriate action.

6.3.2. Desired scope of rejection TOC

When rejecting a call the user (or the UA on the user's behalf) may
desire the rejection to have one of the following scopes:

*Local. Rejection impacts only the branch concerned or any
branches to the user's other devices. Forwarding to voicemail or

to an assistant, for example, is not prevented and may be
instigated by the proxy as a result of receiving a local
rejection.

*Global. Rejection impacts all branches, including voicemail.

It is a matter for the proxy to determine what ACH to perform for a
local rejection or a global rejection (although this may be based on
per-user settings, which the user may have some control over, e.g., via
a web page, see Section 6.6 (Configuring the proxy)). For local
rejection the proxy might, for example, cancel other branches (to the
user's other devices) and forward immediately to voicemail or to an
assistant. On the other hand it may leave other branches unaffected.
For global rejection the proxy might reject the call outright,
cancelling all other branches, although policy might require a less
severe action to be taken. For example, in a call centre there might be
a requirement that all calls be answered.

4xx response codes are appropriate for local rejection and 6xx response
codes are appropriate for global rejection.

6.4. Informing the calling UA TOC

Whilst this might be interesting, it is unlikely to impact
interoperability and is not seen as a priority issue for BLISS.

6.5. Scope of conditions TOC

In view what is specified in [RFC3261] (Rosenberqg, J., Schulzrinne, H.,
Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and
E. Schooler, “SIP: Session Initjiation Protocol,” June 2002.) for 6xx
response codes and with some, but not all existing practice, it is
safest to regard 6xx response codes as impacting all branches of a
forked INVITE request. If this is not the desired behaviour when a
particular condition arises at the UA (e.g., if forwarding to voicemail
is desired), a 4xx response code should be used instead. The proposals
in Section 6.3 (Obtaining information from UA for ACH at proxy) take
this into account.

T0C

6.6. Configuring the proxy

General methods for configuring proxies (including synchronization of
multiple proxies serving a domain) are considered outside the scope of
BLISS work.

However, a means 1is required for a UA to view and modify ACH
configuration at a proxy. Although several methods are used in

practice, some of these being mentioned in Section 4.6 (Configuring the
roxy), the one that is perhaps simplest and in line with industry
trends is HTTP using a REST architecture. With this approach, different
URIs represent different resources, and standard HTTP methods such as
GET, PUT, POST and DELETE are used to manipulate those resources. More
information is available in [I-D.zourzouvillys-bliss-ach-http-api]
(Zourzouvillys, T., “Basic HTTP API interface for ACH,” March 2009.)
OPEN ISSUE. The above reference to be replaced by whatever is adopted
as work item for a framework for RESTful configuration.
Under some circumstances a setting can change other than by action of
the UA, and therefore if the UA relies on knowing the value of a
setting (e.g., to provide a continuous indication to the user), the UA
needs to be informed if the setting changes. One example is where there
are two or more UAs registered as contacts for an AOR. If one of the
UAs changes a setting, the other UAs might wish to know. Another
example is where a user or administrator changes a setting from a web
page. For such situations it would be useful to have an event package
whereby the UA can subscribe to receive notifications of changes to ACH
settings. The notification would only need to indicate that a change
has occurred, and the UA could then issue GET requests to pull down the
new settings. A possible solution to this is specified in
[I-D.roach-sip-http-subscribe] (Roach, A., “A SIP Event Package for
Subscribing to Changes to an HTTP Resource,” February 2010.).

7. Best practices for ACH TOC

7.1. Avoiding conflict between ACH at proxy and ACH at UA TOC

A UA MUST be able to be configured to operate when ACH is provided by
the proxy. Typically this means being able to be configured with all
ACH features turned off, which typically would be the default
configuration.

A proxy MUST be able to be configured to operate when ACH is provided
by the registered UA or UAs for a given address of record. Typically
this means being able to be configured with all ACH features turned off

for a given address of record, which typically would be the default
configuration.

7.2. Use of response codes for reporting ACH-related TOC
conditions

UAs and MUST use the following response codes for rejecting INVITE
requests encountering ACH-related conditions and proxies MUST interpret
these response codes accordingly.

The following response codes are for local rejection:

*Response code 486 for busy/local. As indicated in RFC 3261, this
can be accompanied by a Retry-After header field to indicate when
the user expects to be available again.

*Response code 480 for explicit rejection/local. As indicated in
RFC 3261, this can be accompanied by a Retry-After header field
to indicate when the user expects to be available again.

*Response code 487 for silent rejection/local. This is the same
response code that would be used if a proxy were to issue a
CANCEL request.

The following response codes are for global rejection:

*Response code 600 for busy/global. As indicated in RFC 3261, this
can be accompanied by a Retry-After header field to indicate when
the user expects to be available again.

*Response code 603 for explicit rejection/global. As indicated in
RFC 3261, this can be accompanied by a Retry-After header field
to indicate when the user expects to be available again.

No code is specified for silent rejection/global. It is not clear what
use cases exist for this. One possible use case, however, is for
dealing with SPIT, where the user can determine (e.g., from caller ID)
that the call is unwanted and does not wish the call to go to voicemail
even. In this case, other issues arise, such as indicating the SPIT
status to an entity responsible for handling SPIT. This should be
pursued as part of anti-SPIT measures and is outside the scope of
BLISS.

7.3. UA configuration of ACH at the proxy
OPEN ISSUE. To specify ACH-specific use of the REST framework, when

available, by specifying URL structures for forwarding, DND, etc. and
giving examples.

7.4. Notifying a UA of an ACH configuration change at the TOC

proxy

OPEN ISSUE. To specify ACH-specific use of event package, when
available.

8. IANA considerations TOC
None.
9. Security considerations TOC

This document just discusses interoperability issues relating to ACH.
It does not define any new protocol or practices and therefore does not
introduce any security issues, other than the possible user desire not
to disclose ACH actions to callers.

Appendix A. Survey results TOC

In the tables below, the "Question" column shows the questions that
were asked. In the case of multi-choice questions, the "Answer" column
indicates the choices and the "No." column indicates the number of
responses for the given choice. For other questions the "Answer" column
contains the free-text answers received.

Survey responses for proxy implementations are shown in Table 1.

Question Answer No.

Q1A Configuration mechanism
Web UI 7
that are supported

XCAP
FTP/FTPS/SFTP
SOAP

CPL

CSTA

Others

Not applicable

Q1B Most commonly supported

. , . Web UI
mechanism for configuration

SOAP

Not applicable

Q2A Status Code used for 406
Indicating DND
486
480
600
603
Others
Not applicable

Q2B Status Code used for

.) 486
Indicating Busy
480
600
Others
Q3 When does ACH initiates
when multiple contacts are
ASAP

registered for the target
AOR

When all responds
Others
Not applicable

- If a 302 or 603 response 1is
received, then all other contacts
are cancelled and the 302/603 is
handled. Such responses are

Q3A If indicated others for considered user initiated/

Q3 describe configured. On the other hand, if a
480, 486, 606 etc response is
received, then the B2BUA waits for
all the other contacts to respond.
And then takes a decision.

R A R RO B R

Q4 If two different
responses were received
which can initiate different
ACH what then?

Q5 Support for discovering
where to configure ACH?

Q5A How is it done?

Q6 Do Proxy/B2BUA execute
ACH without routing the call
first to the contact?

Q6A If you answered Yes to
Q6, when is it executed?

- Depending upon the service
instantiated, the UA may generate
no response but stop alerting,
generate a 486 response which would
kill that fork, or a 603 which
would kill all forks. 600 would
kill all forks and go to voicemail.

A priority list among the response
received is followed.

- Whichever response arrives first
- Priority list is used

- Priority on return codes will
lead to only one action

- The 3xx responses are redirected
The 4XX/5XX/6XX responses are
canceled

- Individual responses are followed
until one accepts the request. For
example, an INVITE that is 300
redirected by one contact and 180
ringing by another, the redirected
contact is handled internally and
attempted at the new contact.

- SIP response code order of
precedence and order of arrival are
considered. Upstream proxies may
normalize some response codes
generated by end clients or
gateways into a 480 response code.

Yes

No

- Depending on the manufacturer's
UA, at least two ways: IP phone
display client "toolbar" for the UA
using SOAP

- Device Configuration

Yes

No

Q7A How does it treat 6xx
response if there are
multiple contacts registered
for the target AoR?

Q7B How does it treat 6xx
response if other contact
outside the domain is
registered

- Call Forward Always.? Call
Forward Busy in some cases

- If the provisioned user
configuration in the database tells
this (the DB content is normally
adjustable via a web interface).

- Unconditional forward. Call
screening. Not available (not
registered) Forward

- The proxy (app server) is also a
B2BUA, if the automatic handling is
configured there, it will handle
the call.

- A contact can be behind another
proxy (address configured
statically) and hence will route to
that Proxy.

- For the Call Forward
unconditional case.

- Screening depending upon other
conditions such as time of day,
calling party ID, etc.

- A 6xx response is considered a
terminal failure, equivalent to all
other terminal failures. The
automatic handling continues as
configured (e.g. try another ITSP
or CO, forward to operator or
voicemail, etc).

- As Proxy:? Forward the message.
As B2BUA: Treated as final response
and no further action performed.

- The B2BUA follows configured re-
routing rules or have a specific
treatment?

- Will stop processing further
routes. May forward to voicemail
for 600 response, or not for 603
response.

- A 6xX response is considered a
terminal failure, equivalent to all
other terminal failures. The
automatic handling continues as
configured (e.g. try another ITSP
or CO, forward to operator or
voicemail, etc).

Q8 Is there a way to
communicate the current
setting of ACH to the UA?

Q9 Does it override the 302
response without considering
RFC 44587

- As Proxy:? Forward the message.
As B2BUA: Treated as final response
and no further action performed.

- The B2BUA follows configured re-
routing rules or have a specific
treatment?

- Certain features allow the proxy
to route the call to an alternate
endpoint. (e.g. backup SIP trunk on
a disaster recovery scenario)

- Will stop processing further
routes. May forward to voicemail
for 600 response, or not for 603
response.

- No, the B2BUA hides all of the
contact information from the UA and
performs all automatic handling
silently.

- Subscribe/Notify mechanism.
Synchronizes the call forward state
between the endpoint and the B2BUA
server. The phone subscribes for
the services it is interested in
(e.g., DND, CFA, CFB, CFNA).
Notifies are sent either way when
the service is modified.

- Yes, via uaCSTA

- Yes, in some cases. Mechanism
varies.

Yes

No

Table 1

Survey responses for UA implementations are shown in Table 2.

Question
Q1 Does UA implement ACH

Answer
Yes

No

No.

Q1A If 3xx used for ACH
which code?

Qlex: Does it use RFC 44587

Q1B If 4-6xx used which
code?

Q2 Can the UA configure the
proxy remotely via local UI?

Q3 How does UA indiate DND?

300

301
302
Not applicable
Yes

No
400

403
404
405
408
415
420
480
481
482
486
491
500
600
603
Not applicable

Web UI

SOAP

CSTA

Not applicable
480

486

Table 2

D N N N R =

N~ N R R R NBR B R R R R B RoR [y

(¢)]

N BN BN

T0C

10. Acknowledgements

The author would like to acknowledge the assistance of Francois Audet,
Martin Dolly, Jason Fischl, Jonathan Rosenberg, Shida Schubert,
Srivatsa Srinivasan and Theo Zourzouvillys in writing this draft, and
also input on specific implementations from various members of the
BLISS WG.

11. References TOC

11.1. Normative References
TOC
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).
[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and E.
Schooler, “SIP: Session Initiation Protocol,” RFC 3261,
June 2002 (TXT).

11.2. Informative References
TOC
[RFC3680] Rosenberg, J., “A Session Initiation Protocol
(SIP) Event Package for Registrations,”
RFC 3680, March 2004 (TXT).
[RFC3880] Lennox, J., Wu, X., and H. Schulzrinne, “Call
Processing Language (CPL): A Language for User

Control of Internet Telephony Services,”
RFC 3880, October 2004 (TXT).

[RFC4235] Rosenberg, J., Schulzrinne, H., and R. Mahy,
“An INVITE-Initiated Dialog Event Package for
the Session Initiation Protocol (SIP),”

RFC 4235, November 2005 (TXT).

[RFC4458] Jennings, C., Audet, F., and J. Elwell,
“Session Initiation Protocol (SIP) URIs for
Applications such as Voicemail and Interactive

Voice Response (IVR),” RFC 4458, April 2006
(TXT).
[RFC4825] Rosenberg, J., “The Extensible Markup Language

(XML) Configuration Access Protocol (XCAP),”
RFC 4825, May 2007 (TXT).

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc3261
http://www.rfc-editor.org/rfc/rfc3261.txt
http://tools.ietf.org/html/rfc3680
http://tools.ietf.org/html/rfc3680
http://www.rfc-editor.org/rfc/rfc3680.txt
http://tools.ietf.org/html/rfc3880
http://tools.ietf.org/html/rfc3880
http://tools.ietf.org/html/rfc3880
http://www.rfc-editor.org/rfc/rfc3880.txt
http://tools.ietf.org/html/rfc4235
http://tools.ietf.org/html/rfc4235
http://www.rfc-editor.org/rfc/rfc4235.txt
http://tools.ietf.org/html/rfc4458
http://tools.ietf.org/html/rfc4458
http://tools.ietf.org/html/rfc4458
http://www.rfc-editor.org/rfc/rfc4458.txt
http://tools.ietf.org/html/rfc4825
http://tools.ietf.org/html/rfc4825
http://www.rfc-editor.org/rfc/rfc4825.txt

[I-D.elwell-bliss-
dnd]

[I-D.ietf-sipping-
config-framework]

[I-D.zourzouvillys-
bliss-ach-http-api]

[I-D.roach-sip-

http-subscribe]

[CSTA]

Author's Address

Phone:
Email:

Elwell, J. and S. Srinivasan, “An Analysis of
Do Not Disturb (DND) Implementations in the
Session Initiation Protocol (SIP),” draft-
elwell-bliss-dnd-01 (work in progress),
November 2007 (TXT).

Channabasappa, S., “A Framework for Session
Initiation Protocol User Agent Profile
Delivery,” draft-ietf-sipping-config-
framework-17 (work in progress), February 2010
(TXT).

Zourzouvillys, T., “Basic HTTP API interface
for ACH,” draft-zourzouvillys-bliss-ach-http-
api-01 (work in progress), March 2009 (TXT).
Roach, A., “A SIP Event Package for Subscribing
to Changes to an HTTP Resource,” draft-roach-
sip-http-subscribe-07 (work in progress),
February 2010 (TXT).

“International Standard ISO/IEC 18051
"Information Technology - Telecommunications
and information exchange between systems -
Services for Computer Supported
Telecommunications Applications (CSTA) Phase
III".”

_T0C
John Elwell
Siemens Enterprise Communications
+44 1908 855608
john.elwell@siemens-enterprise.com

http://www.ietf.org/internet-drafts/draft-elwell-bliss-dnd-01.txt
http://www.ietf.org/internet-drafts/draft-elwell-bliss-dnd-01.txt
http://www.ietf.org/internet-drafts/draft-elwell-bliss-dnd-01.txt
http://www.ietf.org/internet-drafts/draft-elwell-bliss-dnd-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-sipping-config-framework-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-sipping-config-framework-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-sipping-config-framework-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-sipping-config-framework-17.txt
http://www.ietf.org/internet-drafts/draft-zourzouvillys-bliss-ach-http-api-01.txt
http://www.ietf.org/internet-drafts/draft-zourzouvillys-bliss-ach-http-api-01.txt
http://www.ietf.org/internet-drafts/draft-zourzouvillys-bliss-ach-http-api-01.txt
http://www.ietf.org/internet-drafts/draft-roach-sip-http-subscribe-07.txt
http://www.ietf.org/internet-drafts/draft-roach-sip-http-subscribe-07.txt
http://www.ietf.org/internet-drafts/draft-roach-sip-http-subscribe-07.txt
mailto:john.elwell@siemens-enterprise.com

	An Analysis of Automatic Call Handling (ACH) Implementation Issues in the Session Initiation Protocol (SIP)draft-ietf-bliss-ach-analysis-06.txt
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Examples of ACH
	4. Known problem areas with ACH
	4.1. Conflict between proxy and UA
	4.2. Conflict between UAs
	4.3. Obtaining information from UA for ACH at proxy
	4.4. Informing the calling UA
	4.5. Scope of conditions
	4.6. Configuring the proxy
	5. Discussion
	5.1. Proxy versus UA
	5.2. Avoiding inconsistent configurations
	5.3. Enterprise and carrier environments
	6. Potential measures that could be taken
	6.1. Conflict between proxy and UA
	6.2. Conflict between UAs
	6.3. Obtaining information from UA for ACH at proxy
	6.3.1. Reason for rejection
	6.3.2. Desired scope of rejection
	6.4. Informing the calling UA
	6.5. Scope of conditions
	6.6. Configuring the proxy
	7. Best practices for ACH
	7.1. Avoiding conflict between ACH at proxy and ACH at UA
	7.2. Use of response codes for reporting ACH-related conditions
	7.3. UA configuration of ACH at the proxy
	7.4. Notifying a UA of an ACH configuration change at the proxy
	8. IANA considerations
	9. Security considerations
	Appendix A. Survey results
	10. Acknowledgements
	11. References
	11.1. Normative References
	11.2. Informative References
	Author's Address

