
Workgroup:

Benchmarking Methodology Working Group

Internet-Draft:

draft-ietf-bmwg-benchmarking-stateful-02

Published: 14 February 2023

Intended Status: Informational

Expires: 18 August 2023

Authors: G. Lencse

Szechenyi Istvan University

K. Shima

SoftBank Corp.

Benchmarking Methodology for Stateful NATxy Gateways using RFC 4814

Pseudorandom Port Numbers

Abstract

RFC 2544 has defined a benchmarking methodology for network

interconnect devices. RFC 5180 addressed IPv6 specificities and it

also provided a technology update, but excluded IPv6 transition

technologies. RFC 8219 addressed IPv6 transition technologies,

including stateful NAT64. However, none of them discussed how to

apply RFC 4814 pseudorandom port numbers to any stateful NATxy

(NAT44, NAT64, NAT66) technologies. We discuss why using

pseudorandom port numbers with stateful NATxy gateways is a

difficult problem. We recommend a solution limiting the port number

ranges and using two phases: the preliminary test phase and the real

test phase. We show how the classic performance measurement

procedures (e.g. throughput, frame loss rate, latency, etc.) can be

carried out. We also define new performance metrics and measurement

procedures for maximum connection establishment rate, connection

tear down rate and connection tracking table capacity measurements.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 August 2023.

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

2. Pseudorandom Port Numbers and Stateful Translation

3. Test Setup and Terminology

3.1. When Testing with a Single IP Address Pair

3.2. When Testing with Multiple IP Addresses

4. Recommended Benchmarking Method

4.1. Restricted Number of Network Flows

4.2. Preliminary Test Phase

4.3. Consideration of the Cases of Stateful Operation

4.4. Control of the Connection Tracking Table Entries

4.5. Measurement of the Maximum Connection Establishment Rate

4.6. Validation of Connection Establishment

4.7. Real Test Phase

4.8. Measurement of the Connection Tear Down Rate

4.9. Measurement of the Connection Tracking Table Capacity

4.10. Writing and Reading Order of the State Table

5. Scalability Measurements

5.1. Scalability Against the Number of Network Flows

5.2. Scalability Against the Number of CPU Cores

6. Reporting Format

7. Implementation and Experience

8. Limitations of using UDP as Transport Layer Protocol

9. Acknowledgements

10. IANA Considerations

11. Security Considerations

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Change Log

A.1. 00

A.2. 01

¶

¶

https://trustee.ietf.org/license-info

A.3. 02

A.4. 03

A.5. 04

A.6. 00 - WG item

A.7. 01

A.8. 02

Authors' Addresses

1. Introduction

[RFC2544] has defined a comprehensive benchmarking methodology for

network interconnect devices, which is still in use. It was mainly

IP version independent, but it used IPv4 in its examples. [RFC5180]

addressed IPv6 specificities and also added technology updates, but

declared IPv6 transition technologies out of its scope. [RFC8219]

addressed the IPv6 transition technologies, including stateful

NAT64. It has reused several benchmarking procedures from [RFC2544]

(e.g. throughput, frame loss rate), it has redefined the latency

measurement, and added further ones, e.g. the PDV (packet delay

variation) measurement.

However, none of them discussed, how to apply [RFC4814] pseudorandom

port numbers, when benchmarking stateful NATxy (NAT44, NAT64, NAT66)

gateways. We are not aware of any other RFCs that address this

question.

First, we discuss why using pseudorandom port numbers with stateful

NATxy gateways is a hard problem.

Then we recommend a solution.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Pseudorandom Port Numbers and Stateful Translation

In its appendix, [RFC2544] has defined a frame format for test

frames including specific source and destination port numbers.

[RFC4814] recommends to use pseudorandom and uniformly distributed

values for both source and destination port numbers. However,

stateful NATxy (NAT44, NAT64, NAT66) solutions use the port numbers

¶

¶

¶

¶

¶

to identify connections. The usage of pseudorandom port numbers

causes different problems depending on the direction.

As for the client to server direction, pseudorandom source and

destination port numbers could be used, however, this approach

would be a denial of service attack against the stateful NATxy

gateway, because it would exhaust its connection tracking table

capacity. To that end, let us see some calculations using the

recommendations of RFC 4814:

The recommended source port range is: 1024-65535, thus its

size is: 64512.

The recommended destination port range is: 1-49151, thus its

size is: 49151.

The number of source and destination port number combinations

is: 3,170,829,312.

We note that the usage of different source and destination IP

addresses further increases the number of connection tracking

table entries.

As for the server to client direction, the stateful DUT (Device

Under Test) would drop any packets that do not belong to an

existing connection, therefore, the direct usage of pseudorandom

port numbers from the above-mentioned ranges is not feasible.

3. Test Setup and Terminology

Section 12 of [RFC2544] requires testing first using a single

protocol source and destination address pair an then also using

multiple protocol addresses. We follow the same approach: first, we

use a single source and destination IP address pair, and then we

explain how to use multiple IP addresses.

3.1. When Testing with a Single IP Address Pair

Our methodology works with any IP versions to benchmark stateful

NATxy gateways, where x and y are in {4, 6}. To facilitate an easy

understanding, we use two typical examples: stateful NAT44 and

stateful NAT64.

The Test Setup for the well-known stateful NAT44 (also called NAPT:

Network Address and Port Translation) solution is shown in Figure 1.

Note: We are fully aware of [RFC6890] special purpose IP address

ranges. The [RFC1918] private IP addresses are used to facilitate an

easy understanding of the example. And we consider the usage of the

IP addresses reserved for benchmarking absolutely legitimate.

¶

*

¶

-

¶

-

¶

-

¶

¶

*

¶

¶

¶

¶

¶

Figure 1: Test Setup for benchmarking stateful NAT44 gateways

The Test Setup for the also widely used stateful NAT64 [RFC6146]

solution is shown in Figure 2.

Figure 2: Test setup for benchmarking stateful NAT64 gateways

As for transport layer protocol, [RFC2544] recommended testing with

UDP, and it was kept also in [RFC8219]. For the general

recommendation, we also keep UDP, thus the port numbers in the

following text are to be understood as UDP port numbers. We discuss

the limitation of this approach in Section 8.

We define the most important elements of our proposed benchmarking

system as follows.

Connection tracking table: The stateful NATxy gateway uses a

connection tracking table to be able to perform the stateful

translation in the server to client direction. Its size, policy

and content are unknown for the Tester.

 +--------------------------------------+

 10.0.0.2 |Initiator Responder| 198.19.0.2

+-------------| Tester |<------------+

| private IPv4| [state table]| public IPv4 |

| +--------------------------------------+ |

| |

| +--------------------------------------+ |

| 10.0.0.1 | DUT: | 198.19.0.1 |

+------------>| Stateful NAT44 gateway |-------------+

 private IPv4| [connection tracking table] | public IPv4

 +--------------------------------------+

¶

 +--------------------------------------+

 2001:2::2 |Initiator Responder| 198.19.0.2

+-------------| Tester |<------------+

| IPv6 address| [state table]| IPv4 address|

| +--------------------------------------+ |

| |

| +--------------------------------------+ |

| 2001:2::1 | DUT: | 198.19.0.1 |

+------------>| Stateful NAT64 gateway |-------------+

 IPv6 address| [connection tracking table] | IPv4 address

 +--------------------------------------+

¶

¶

*

¶

Four tuple: The four numbers that identify a connection are

source IP address, source port number, destination IP address,

destination port number.

State table: The Responder of the Tester extracts the four tuple

from each received test frame and stores it in its state table.

Recommendation is given for writing and reading order of the

state table in Section 4.10.

Initiator: The port of the Tester that may initiate a connection

through the stateful DUT in the client to server direction.

Theoretically, it can use any source and destination port numbers

from the ranges recommended by [RFC4814]: if the used four tuple

does not belong to an existing connection, the DUT will register

a new connection into its connection tracking table.

Responder: The port of the Tester that may not initiate a

connection through the stateful DUT in the server to client

direction. It may send only frames that belong to an existing

connection. To that end, it uses four tuples that have been

previously extracted from the received test frames and stored in

its state table.

Preliminary test phase: Test frames are sent only by the

Initiator to the Responder through the DUT to fill both the

connection tracking table of the DUT and the state table of the

Responder. This is a newly introduced operation phase for

stateful NATxy benchmarking. The necessity of this phase is

explained in Section 4.2.

Real test phase: The measurement procedures defined by [RFC8219]

(e.g. throughput, latency, etc.) are performed in this phase

after the completion of the preliminary test phase. Test frames

are sent as required (e.g. bidirectional test or unidirectional

test in any of the two directions).

3.2. When Testing with Multiple IP Addresses

We make considerations regarding the necessary and the available IP

addresses.

In Figure 1, we used the single 198.19.0.1 IPv4 address on the WAN

side port of the stateful NAT44 gateway. However, in practice, not a

single IP address, but an IP address range is assigned to the WAN

side port of the stateful NAT44 gateways. Its required size depends

on the number of client nodes and on the type of the stateful NAT44

algorithm. (The traditional algorithm always replaces the source

port number, when a new connection is established. Thus it requires

a larger range than the extended algorithm, which replaces the

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

source port number only when it is necessary. Please refer to Table

1 and Table 2 of [LEN2015].)

When router testing is done, section 12 of [RFC2544] requires

testing first using a single source and destination IP address pair,

and then using destination IP addresses from 256 different networks.

The 16-23 bits of the 198.18.0.0/24 and 198.18.0.0/24 addresses can

be used to express the 256 networks. As we do not do router testing,

we do not need to use multiple destination networks, therefore,

these bits are available for expressing multiple IP addresses that

belong to the same "/16" network.

Figure 3: Test Setup for benchmarking stateful NAT44 gateways using

multiple IPv4 addresses

A possible solution for assigning multiple IPv4 addresses is shown

in Figure 3. On the left side, the private IP address range is

abundantly large. (We used the 8-23 bit to generate 64k potential

different source addresses, but the 24-30 bits are also available if

needed.) On the right side, the address range reserved for

benchmarking should be handled with caution. (We cut it into two

equal parts. Asymmetric division is also possible. And also the

24-30 bits are available, if needed.)

We note that these are the potential address ranges. We discuss the

actual address ranges to be used in Section 4.1.

In the case of stateful NAT64, a single "/64" IPv6 prefix contains a

high number of bits to express different IPv6 addresses. Figure 4

shows an example, where we used bits 96-111 for that purpose.

¶

¶

10.[0-255].[0-255].2/8 198.19.[128-255].1/16

 \ +--------------------------------------+ /

 \ |Initiator Responder| /

+-------------| Tester |<------------+

| private IPv4| [state table]| public IPv4 |

| +--------------------------------------+ |

| |

| +--------------------------------------+ |

| 10.0.0.1/8 | DUT: | public IPv4 |

+------------>| Stateful NAT44 gateway |-------------+

 private IPv4| [connection tracking table] | \

 +--------------------------------------+ \

 198.19.[0-127].1/16

¶

¶

¶

Figure 4: Test Setup for benchmarking stateful NAT64 gateways using

multiple IPv6 and IPv4 addresses

4. Recommended Benchmarking Method

4.1. Restricted Number of Network Flows

When a single IP address pair is used for testing then the number of

network flows is determined by the number of source port number

destination port number combinations.

The Initiator SHOULD use restricted ranges for source and

destination port numbers to avoid the denial of service attack like

event against the connection tracking table of the DUT described in

Section 2. If it is possible, the size of the source port number

range SHOULD be larger (e.g. in the order of a few times ten

thousand), whereas the size of the destination port number range

SHOULD be smaller (may vary from a few to several hundreds or

thousands as needed). The rationale is that source and destination

port numbers that can be observed in the Internet traffic are not

symmetrical. Whereas source port numbers may be random, there are a

few very popular destination port numbers (e.g. 443, 80, etc., see

[IIR2020]) and others hardly occur. And we have found that their

role is also asymmetric in the Linux kernel routing hash function

[LEN2020].

However, in some special cases the size of the source port range is

limited. E.g. when benchmarking the CE and BR of a MAP-T [RFC7599]

system together (as a compound system performing stateful NAT44),

then the source port range is limited to the number of source port

numbers assigned to each subscriber. (It could be as low as 2048

ports.)

When multiple IP addresses are used, then the port number ranges

should be even more restricted, as the number of potential network

2001:2::[0-ff][0-ff]:0002/64 198.19.[128-255].1/16

 \ +--------------------------------------+ /

 IPv6 \ |Initiator Responder| /

+-------------| Tester |<------------+

| addresses | [state table]| public IPv4 |

| +--------------------------------------+ |

| |

| +--------------------------------------+ |

| 2001:2::1/64| DUT: | public IPv4 |

+------------>| Stateful NAT64 gateway |-------------+

 IPv6 address | [connection tracking table] | \

 +--------------------------------------+ \

 198.19.[0-127].1/16

¶

¶

¶

flows is the product of the size of the source IP address range, the

size of the source port number range, the size of the destination IP

address range, and the size of the destination port number range.

And our method requires the enumeration of all their possible

combinations in the preliminary test phase as described in

Section 4.4.

The number of network flows can be used as a parameter. The

performance of the stateful NATxy gateway MAY be examined as a

function of this parameter as described in Section 5.1.

4.2. Preliminary Test Phase

The preliminary test phase serves two purposes:

The connection tracking table of the DUT is filled. It is

important, because its maximum connection establishment rate

may be lower than its maximum frame forwarding rate (that is

throughput).

The state table of the Responder is filled with valid four

tuples. It is a precondition for the Responder to be able to

transmit frames that belong to connections exist in the

connection tracking table of the DUT.

Whereas the above two things are always necessary before the real

test phase, the preliminary test phase can be used without the real

test phase. It is done so, when the maximum connection establishment

rate is measured (as described in Section 4.5).

A preliminary test phase MUST be performed before all tests

performed in the real test phase. The following things happen in the

preliminary test phase phase:

The Initiator sends test frames to the Responder through the

DUT at a specific frame rate.

The DUT performs the stateful translation of the test frames

and it also stores the new connections in its connection

tracking table.

The Responder receives the translated test frames and updates

its state table with the received four tuples. The responder

transmits no test frames during the preliminary test phase.

When the preliminary test phase is performed in preparation to the

real test phase, the applied frame rate SHOULD be safely lower than

the maximum connection establishment rate. (It implies that maximum

connection establishment rate measurement MUST be performed first.)

¶

¶

¶

1.

¶

2.

¶

¶

¶

1.

¶

2.

¶

3.

¶

Please refer to Section 4.4 for further conditions regarding timeout

and the enumeration of all possible port number combinations.

4.3. Consideration of the Cases of Stateful Operation

We consider the most important Events that may happen during the

operation of a stateful NATxy gateway, and the Actions of the

gateway as follows.

EVENT: A packet not belonging to an existing connection arrives

in the client to server direction. ACTION: A new connection is

registered into the connection tracking table and the packet is

translated and forwarded.

EVENT: A packet not belonging to an existing connection arrives

in the server to client direction. ACTION: The packet is

discarded.

EVENT: A packet belonging to an existing connection arrives (in

any dicection). ACTION: The packet is translated and forwarded

and the timeout counter of the corresponding connection

tracking table entry is reset.

EVENT: A connection tracking table entry times out. ACTION: The

entry is deleted from the connection tracking table.

Due to "black box" testing, the Tester is not able to directly

examine (or delete) the entries of the connection tracking table.

But the entires can be and MUST be controlled by setting an

appropriate timeout value and carefully selecting the port numbers

of the packets (as described in Section 4.4) to be able to produce

meaningful and repeatable measurement results.

We aim to support the measurement of the following performance

characteristics of a stateful NATxy gateway:

maximum connection establishment rate

all "classic" performance metrics like throughput, frame loss

rate, latency, etc.

connection tear down rate

connection tracking table capacity

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

¶

1. ¶

2.

¶

3. ¶

4. ¶

4.4. Control of the Connection Tracking Table Entries

It is necessary to control the connection tracking table entries of

the DUT in order to achieve clear conditions for the measurements.

We can simply achieve the following two extreme situations:

All frames create a new entry in the connection tracking table

of the DUT and no old entries are deleted during the test. This

is required for measuring the maximum connection establishment

rate.

No new entries are created in the connection tracking table of

the DUT and no old ones are deleted during the test. This is

ideal for the real test phase measurements, like throughput,

latency, etc.

From this point we use the following two assumptions:

The connection tracking table of the stateful NATxy is large

enough to store all connections defined by the different source

port number destination port number combinations.

Each experiment is started with an empty connection tracking

table. (It can be ensured by deleting its content before the

experiment.)

The first extreme situation can be achieved by

using different four tuples for every single test frame in the

preliminary test phase and

setting the UDP timeout of the NATxy gateway to a value higher

than the length of the preliminary test phase.

The second extreme situation can be achieved by

enumerating all possible four tuples in the preliminary test

phase and

setting the UDP timeout of the NATxy gateway to a value higher

than the length of the preliminary test phase plus the gap

between the two phases plus the length of the real test phase.

[RFC4814] REQUIRES pseudorandom port numbers, which we believe is a

good approximation of the distribution of the source port numbers a

NATxy gateway on the Internet may face with.

We note that although the enumeration of all possible four tuples is

not a requirement for the first extreme situation and the usage of

different four tuples in the preliminary test phase is not a

¶

1.

¶

2.

¶

¶

1.

¶

2.

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

requirement for the second extreme situation, pseudorandom

enumeration of all possible four tuples in the preliminary test

phase is a good solution in both cases. It may be computing

efficiently generated by preparing a random permutation of the

previously enumerated all possible four tuples using Dustenfeld's

random shuffle algorithm [DUST1964].

The enumeration of the four tuples in increasing or decreasing order

(or in any other specific order) MAY be used as an additional

measurement.

4.5. Measurement of the Maximum Connection Establishment Rate

The maximum connection establishment rate is an important

characteristic of the stateful NATxy gateway and its determination

is necessary for the safe execution of the preliminary test phase

(without frame loss) before the real test phase.

The measurement procedure of the maximum connection establishment

rate is very similar to the throughput measurement procedure defined

in [RFC2544].

Procedure: The Initiator sends a specific number of test frames

using all different four tuples at a specific rate through the DUT.

The Responder counts the frames that are successfully translated by

the DUT. If the count of offered frames is equal to the count of

received frames, the rate of the offered stream is raised and the

test is rerun. If fewer frames are received than were transmitted,

the rate of the offered stream is reduced and the test is rerun.

The maximum connection establishment rate is the fastest rate at

which the count of test frames successfully translated by the DUT is

equal to the number of test frames sent to it by the Initiator.

Note: In practice, we RECOMMEND the usage of binary search.

4.6. Validation of Connection Establishment

Due to "black box" testing, the entries of the connection tracking

table of the DUT may not be directly examined, but the presence of

the connections can be checked easily by sending frames from the

Responder to the Initiator in the real test phase using all four

tuples stored in the state table of the Tester (at a low enough

frame rate). The arrival of all test frames indicates that the

connections are really present.

Procedure: When all the desired N number of test frames were sent by

the Initiator to the Receiver at frame rate R in the preliminary

test phase for the maximum connection establishment rate

measurement, and the Receiver has successfully received all the N

¶

¶

¶

¶

¶

¶

¶

¶

frames, the establishment of the connections is checked in the real

test phase as follows:

The Responder sends test frames to the Initiator at frame rate:

r=R*alpha, for the duration of N/r using a different four tuple

from its state table for each test frame.

The Initiator counts the received frames, and if all N frames are

arrived then the R frame rate of the maximum connection

establishment rate measurement (performed in the preliminary test

phase) is raised for the next iteration, otherwise lowered (as

well as in the case if test frames were missing in the

preliminary test phase).

Notes:

The alpha is a kind of "safety factor", its aim is to make sure

that the frame rate used for the validation is not too high, and

test may fail only in the case if at least one connection is not

present in the connection tracking table of the DUT. (So alpha

should be typically less than 1, e.g. 0.8 or 0.5.)

The duration of N/r and the frame rate of r means that N frames

are sent for validation.

The order of four tuple selection is arbitrary provided that all

four tuples MUST be used.

Please refer to Section 4.9 for a short analysis of the operation

of the measurement and what problems may occur.

4.7. Real Test Phase

As for the traffic direction, there are three possible cases during

the real test phase:

bidirectional traffic: The Initiator sends test frames to the

Responder and the Responder sends test frames to the Initiator.

unidirectional traffic from the Initiator to the Responder: The

Initiator sends test frames to the Responder but the Responder

does not send test frames to the Initiator.

unidirectional traffic from the Responder to the Initiator: The

Responder sends test frames to the Initiator but the Initiator

does not send test frames to the Responder.

If the Initiator sends test frames, then it uses pseudorandom source

port numbers and destination port numbers from the restricted port

number ranges. (If it uses multiple source and/or destination IP

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

addresses, then their ranges are also limited.) The responder

receives the test frames, updates its state table and processes the

test frames as required by the given measurement procedure (e.g.

only counts them for throughput test, handles timestamps for latency

or PDV tests, etc.).

If the Responder sends test frames, then it uses the four tuples

from its state table. The reading order of the state table may

follow different policies (discussed in Section 4.10). The Initiator

receives the test frames, and processes them as required by the

given measurement procedure.

As for the actual measurement procedures, we RECOMMEND to use the

updated ones from Section 7 of [RFC8219].

4.8. Measurement of the Connection Tear Down Rate

Connection tear down can cause significant load for the NATxy

gateway. The connection tear down performance can be measured as

follows:

Load a certain number of connections (N) into the connection

tracking table of the DUT (in the same way as done to measure

the maximum connection establishment rate).

Record TimestampA.

Delete the content of the connection tracking table of the DUT.

Record TimestampB.

The connection tear down rate can be computed as:

connection tear down rate = N / (TimestampB - TimestampA)

The connection tear down rate SHOULD be measured for various values

of N.

We assume that the content of the connection tracking table may be

deleted by an out-of-band control mechanism specific to the given

NATxy gateway implementation. (E.g. by removing the appropriate

kernel module under Linux.)

We are aware that the performance of removing the entire content of

the connection tracking table at one time may be different from

removing all the entries one by one.

¶

¶

¶

¶

1.

¶

2. ¶

3. ¶

4. ¶

¶

¶

¶

¶

¶

4.9. Measurement of the Connection Tracking Table Capacity

The connection tracking table capacity is an important metric of

stateful NATxy gateways. Its measurement is not easy, because an

elementary step of a validated maximum connection establishment rate

measurement (defined in Section 4.6) may have only a few distinct

observable outcomes, but some of them they may have different root

causes:

During the preliminary test phase, the number of test frames

received by the Responder is less than the number of test

frames sent by the Initiator. It may have different root

causes, including:

The R frame sending rate was higher than the maximum

connection establishment rate. (Note that now the maximum

connection establishment rate is considered unknown,

because we can not measure the maximum connection

establishment without our assumption 1 in Section 4.4!)

This root cause may be eliminated by lowering the R rate

and re-executing the test. (This step may be performed

multiple times, while R>0.)

The capacity of the connection tracking table of the DUT

has been exhausted. (And either the DUT does not want to

delete connections or the deletion of the connections

makes it slower. This case is not investigated further in

the preliminary test phase.)

During the preliminary test phase, the number of test frames

received by the Responder equals the number of test frames sent

by the Initiator. In this case the connections are validated in

the real test phase. The validation may have two kinds of

observable results:

The number of validation frames received by the Initiator

equals the number of validation frames sent by the

Responder. (It proves that the capacity of the connection

tracking table of the DUT is enough and both R and r were

chosen properly.)

The number of validation frames received by the Initiator

is less than the number of validation frames sent by the

Responder. This phenomenon may have various root causes:

The capacity of the connection tracking table of the

DUT has been exhausted. (It does not matter, whether

some existing connections are discarded and new ones

are stored, or the new connections are discarded.

¶

1.

¶

1.

¶

2.

¶

2.

¶

1.

¶

2.

¶

1.

Some connections are lost anyway, and it makes

validation fail.)

The R frame sending rate used by the Initiator was

too high in the preliminary test phase and thus some

connections were not established, even though all

test frames arrived to the Responder. This root cause

may be eliminated by lowering the R rate and re-

executing the test. (This step may be performed

multiple times, while R>0.)

The r frame sending rate used by the Responder was

too high in the real test phase and thus some test

frames did not arrive to the Initiator, even though

all connections were present in the connection

tracking table of the DUT. This root cause may be

eliminated by lowering the r rate and re-executing

the test. (This step may be performed multiple times,

while r>0.)

And here is the problem: as the above three root causes

are indistinguishable, it is not easy to decide, whether R

or r should be decreased.

We have some experience with benchmarking stateful NATxy gateways.

When we tested iptables with very high number of connections, the

256GB RAM of the DUT was exhausted and it stopped responding. Such a

situation may make the connection tracking table capacity

measurements rather inconvenient. We include this possibility in our

recommended measurement procedure, but we do not address the

detection and elimination of such a situation. (E.g. how the

algorithm can reset the DUT.)

For the connection tracking table size measurement, fist we need a

safe number: C0. It is a precondition, that C0 number of connections

can surely be stored in the connection tracking table of the DUT.

Using C0, one can determine the maximum connection establishment

rate using C0 number of connections. It is done with a binary search

using validation. The result is: R0. The values C0 and R0 will serve

as "safe" starting values for the following two searches.

First, we perform an exponential search to find the order of

magnitude of the connection tracking table capacity. The search

stops if the DUT collapses OR the maximum connection establishment

rate severely drops (e.g. to its one tenth) due to doubling the

number of connections.

Then, the result of the exponential search gives the order of

magnitude of the size of the connection tracking table. Before

¶

2.

¶

3.

¶

¶

¶

¶

¶

disclosing the possible algorithms to determine the exact size of

the connection tracking table, we consider a three possible

replacement policies of the NATxy gateway:

The gateway does not delete any live connections until their

timeout expires.

The gateway replaces the live connections according to LRU

(least recently used) policy.

The gateway does a garbage collection, when its connection

tracking table is full and a frame with a new four tuple

arrives. During the garbage collection, it deletes the K least

recently used connections, where K is greater than 1.

Now, we examine, what happens and how many validation frames arrive

in the there cases. Let the size of the connection tracking table be

S, and the number of preliminary frames be N, where S is less than

N.

The connections defined by the first S test frames are

registered into the connection tracking table of the DUT, and

the last N-S connections are lost. (It is a another question if

the last N-S test frames are translated and forwarded in the

preliminary test phase or simply dropped.) During validation,

the validation frames with four tuples corresponding to the

first S test frames will arrive to the Initiator, and the other

N-S validation frames will be lost.

All connections are registered into the connection tracking

table of the DUT, but the first N-S connections are replaced

(and thus lost). During validation, the validation frames with

four tuples corresponding to the last S test frames will arrive

to the Initiator, and the other N-S validation frames will be

lost.

Depending on the values of K, S and N, maybe less than S

connections will survive. In the worst case, only S-K+1

validation frames arrive, even though, the size of the

connection tracking table is S.

If we know that the stateful NATxy gateway uses the first or second

replacement policy, and we also know that both R and r rates are low

enough, then the final step of determining the size of the

connection tracking table is simple. If Responder sent N validation

frames and the Initator received N' of them, then the size of the

connection tracking table is N'.

In the general case, we perform a binary search to find the exact

value of the connection tracking table capacity within E error. The

¶

1.

¶

2.

¶

3.

¶

¶

1.

¶

2.

¶

3.

¶

¶

search chooses the lower half of the interval if the DUT collapses

OR the maximum connection establishment rate severely drops (e.g. to

its half) otherwise it chooses the higher half. The search stops if

the size of the interval is less than the E error.

The algorithms for the general case are defined using C like

pseudocode in Figure 5. In practice, this algorithm may be made more

efficient in a way that the binary search for the maximum connection

establishment rate stops, if an elementary test fails at a rate

under RS*beta or RS*gamma during the external search or during the

final binary search for the capacity of the connection tracking

table, respectively. (This saves a lot a execution time by

eliminating the long lasting tests at low rates.)

¶

¶

Figure 5: Measurement of the Connection Tracking Table Capacity

4.10. Writing and Reading Order of the State Table

As for writing policy of the state table of the Responder, we

RECOMMEND round robin, because it ensures that its entries are

// The binary_search_for_maximum_connection_establishment_rate(c,r)

// function performs a binary search for the maximum connection

// establishment rate in the [0, r] interval using c number of

// connections.

// This is an exponential search for finding the order of magnitude

// of the connection tracking table capacity

// Variables:

// C0 and R0 are beginning safe values for connection tracking table

 size and connection establishment rate, respectively

// CS and RS are their currently used safe values

// CT and RT are their values for current examination

// beta is a factor expressing unacceptable drop of R (e.g. beta=0.1)

R0=binary_search_for_maximum_connection_establishment_rate(C0,maxrate);

for (CS=C0, RS=R0; 1; CS=CT, RS=RT)

{

 CT=2*CS;

 RT=binary_search_for_maximum_connection_establishment_rate(CT,RS);

 if (DUT_collapsed || RT < RS*beta)

 break;

}

// here the size of the connection tracking table is between CS and CT

// This the final binary search for finding the connection tracking

// table capacity within E error

// Variables:

// CS and RS are the safe values for connection tracking table size

// and connection establishment rate, respectively

// C and R are the values for current examination

// gamma is a factor expressing unacceptable drop of R

// (e.g. gamma=0.5)

for (D=CT-CS; D>E; D=CT-CS)

{

 C=(CS+CT)/2;

 R=binary_search_for_maximum_connection_establishment_rate(C,RS);

 if (DUT_collapsed || R < RS*gamma)

 CT=C; // take the lower half of the interval

 else

 CS=C,RS=R; // take the upper half of the interval

}

// here the size of the connection tracking table is CS within E error

automatically kept fresh and consistent with that of the connection

tracking table of the DUT.

The Responder can read its state table in various orders, for

example:

pseudorandom

round robin

We RECOMMEND pseudorandom to follow the spirit of [RFC4814]. Round

robin may be used as a computationally cheaper alternative.

5. Scalability Measurements

As for scalability measurements, we do not define any new type of

performance metrics, but we recommend to perform measurement series

through which the value of one or more parameter(s) is/are changed

to discover how the various values of the given parameter(s)

influence the performance of the DUT.

5.1. Scalability Against the Number of Network Flows

The aim of the scalability measurements is to quantify how the

performance of the stateful NATxy gateways degrades with the

increase of the number of network flows.

As for the actual values for the number of network flows to be used

during the measurement series, we RECOMMEND to use some

representative values from the range of the potential number of

network flows the DUT may be faced with during its intended usage.

It is important, how the given number of networks flows are

generated. The sizes of the ranges of the source and destination IP

addresses and port numbers are essential parameters to be reported

together with the results. Please see also Section 6 about the

reporting format.

If a single IP address pair is used, then we RECOMMEND to use

a fixed, larger source port number range (e.g., a few times

10,000)

a variable size destination port number range (e.g. 10; 100;

1,000; etc.), where its expedient granularity depends on the

purpose.

¶

¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

5.2. Scalability Against the Number of CPU Cores

Stateful NATxy gateways are often implemented in software that are

not bound to a specific hardware but can be executed by commodity

servers. To facilitate the comparison of their performance, it can

be useful to determine

the performance of the various implementations using a single

core of a well known CPU

the scale up of the performance of the various implementations

with the number of CPU cores.

If the number of the available CPU cores is a power of two, then we

recommend to perform the tests with 1, 2, 4, 8, 16, etc. number of

active CPU cores of the DUT.

6. Reporting Format

Measurements MUST be executed multiple times to achieve

statistically reliable results. The report of the results MUST

contain the number of the repetitions of the measurements. We

RECOMMEND median as the summarizing function of the results

complemented with the first percentile and the 99th percentile as

indices of the dispersion of the results. Average and standard

deviation MAY also be reported.

All parameters and settings that may influence the performance of

the DUT MUST be reported. Some of them may be specific to the given

NATxy gateway implementation, like the "hashsize" (hash table size)

and "nf_conntrack_max" (number of connection tracking table entries)

values for iptables or the limit of the number of states for OpenBSD

PF (set by the "set limit states number" command in the pf.conf

file).

Figure 6: Example table: Maximum connection establishment rate of

iptables against the number of sessions

¶

*

¶

*

¶

¶

¶

¶

number of sessions (req.) 0.4M 4M 40M 400M

source port numbers (req.) 40,000 40,000 40,000 40,000

destination port numbers (req.) 10 100 1,000 10,000

"hashsize" (i.s.) 2^17 2^20 2^23 2^27

"nf_conntrack_max" (i.s.) 2^20 2^23 2^26 2^30

num. sessions / "hashsize" (i.s.) 3.05 3.81 4.77 2.98

number of experiments (req.) 10 10 10 10

error of binary search (req.) 1,000 1,000 1,000 1,000

connections/s median (req.)

connections/s 1st perc. (req.)

connections/s 99th perc. (req.)

Figure 6 shows an example for table headings for reporting the

measurement results for the scalability of the iptables stateful

NAT44 implementation against the number of sessions. We have

indicated the always required fields (req.) and the implementation

specific ones (i.s.). In row 6, we also added a computed value, the

number of sessions per hashsize ratio, what helps the reader to

interpret the achieved maximum connection establishment rate. (A

lower value results in shorter linked lists hanging on the entries

of the hash table and thus facilitating higher performance. The

ratio is varying, because the number of sessions is always a power

of 10, whereas hash table size is a power of 2.) To reflect the

accuracy of the results, we have also added the value of the "error"

of the binary search, which expresses the stopping criterion for the

binary search. The binary search stops, when the difference of the

"higher limit" and "lower limit" of the binary search is less than

or equal to "error".

The table MUST be complemented with reporting the relevant

parameters of the DUT. If the DUT is a general purpose computer and

some software NATxy gateway implementation is tested, then hardware

description SHOULD include: computer type, CPU type and number of

active CPU cores, memory type, size and speed, network interface

card type (reflecting also the speed), the fact that direct cable

connections were used or the type of the switch used for

interconnecting the Tester and the DUT. Operating system type and

version, kernel version, and the version of the NATxy gateway

implementation (including last commit date and number if applicable)

SHOULD also be given.

7. Implementation and Experience

The "stateful" branch of siitperf [SIITPERF] is an implementation of

this concept. It is documented in this (open access) paper

[LEN2022].

Our experience with this methodology using siitperf for measuring

the scalability of the iptables stateful NAT44 and Jool stateful

NAT64 implementations is described in

[I-D.lencse-v6ops-transition-scalability].

8. Limitations of using UDP as Transport Layer Protocol

Stateful NATxy solutions handle TCP and UDP differently, e.g.

iptables uses 30s timeout for UDP and 60s timeout for TCP. Thus

benchmarking results produced using UDP do not necessarily

characterize the performance of a NATxy gateway well enough, when

they are used for forwarding Internet traffic. As for the given

example, timeout values of the DUT may be adjusted, but it requires

extra consideration.

¶

¶

¶

¶

¶

[RFC1918]

[RFC2119]

[RFC2544]

Other differences in handling UDP or TCP are also possible. Thus we

recommend that further investigations are to be performed in this

field.

As a mitigation of this problem, we recommend that testing with

protocols usig TCP (like HTTP and HTTPS) can be performed as

described in [I-D.ietf-bmwg-ngfw-performance]. This approach also

solves the potential problem of protocol helpers may be present in

the stateful DUT.

9. Acknowledgements

The authors would like to thank Al Morton, Sarah Banks, Edwin

Cordeiro, Lukasz Bromirski, Sandor Repas, Tamas Hetenyi, Timothy

Winters, and Eduard Vasilenko for their comments.

This work was supported by the Japan Trust International Research

Cooperation Program of the National Institute of Information and

Communications Technology (NICT), Japan.

10. IANA Considerations

This document does not make any request to IANA.

11. Security Considerations

We have no further security considerations beyond that of [RFC8219].

Perhaps they should be cited here so that they be applied not only

for the benchmarking of IPv6 transition technologies, but also for

the benchmarking of stateful NATxy gateways.

12. References

12.1. Normative References

Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.

J., and E. Lear, "Address Allocation for Private

Internets", BCP 5, RFC 1918, DOI 10.17487/RFC1918,

February 1996, <https://www.rfc-editor.org/rfc/rfc1918>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Bradner, S. and J. McQuaid, "Benchmarking Methodology for

Network Interconnect Devices", RFC 2544, DOI 10.17487/

RFC2544, March 1999, <https://www.rfc-editor.org/rfc/

rfc2544>.

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc1918
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/rfc/rfc2544
https://www.rfc-editor.org/rfc/rfc2544

[RFC4814]

[RFC5180]

[RFC6146]

[RFC6890]

[RFC7599]

[RFC8174]

[RFC8219]

[DUST1964]

[I-D.ietf-bmwg-ngfw-performance]

Newman, D. and T. Player, "Hash and Stuffing: Overlooked

Factors in Network Device Benchmarking", RFC 4814, DOI

10.17487/RFC4814, March 2007, <https://www.rfc-

editor.org/rfc/rfc4814>.

Popoviciu, C., Hamza, A., Van de Velde, G., and D.

Dugatkin, "IPv6 Benchmarking Methodology for Network

Interconnect Devices", RFC 5180, DOI 10.17487/RFC5180,

May 2008, <https://www.rfc-editor.org/rfc/rfc5180>.

Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful

NAT64: Network Address and Protocol Translation from IPv6

Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,

April 2011, <https://www.rfc-editor.org/rfc/rfc6146>.

Cotton, M., Vegoda, L., Bonica, R., Ed., and B. Haberman,

"Special-Purpose IP Address Registries", BCP 153, RFC

6890, DOI 10.17487/RFC6890, April 2013, <https://www.rfc-

editor.org/rfc/rfc6890>.

Li, X., Bao, C., Dec, W., Ed., Troan, O., Matsushima, S.,

and T. Murakami, "Mapping of Address and Port using

Translation (MAP-T)", RFC 7599, DOI 10.17487/RFC7599,

July 2015, <https://www.rfc-editor.org/rfc/rfc7599>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Georgescu, M., Pislaru, L., and G. Lencse, "Benchmarking

Methodology for IPv6 Transition Technologies", RFC 8219,

DOI 10.17487/RFC8219, August 2017, <https://www.rfc-

editor.org/rfc/rfc8219>.

12.2. Informative References

Durstenfeld, R., "Algorithm 235: Random permutation",

Communications of the ACM, vol. 7, no. 7, p.420., DOI

10.1145/364520.364540, July 1964, <https://dl.acm.org/

doi/10.1145/364520.364540>.

Balarajah, B., Rossenhoevel, C.,

and Monkman, "Benchmarking Methodology for Network

Security Device Performance", Work in Progress, Internet-

Draft, draft-ietf-bmwg-ngfw-performance-15, 22 October

2022, <https://datatracker.ietf.org/doc/html/draft-ietf-

bmwg-ngfw-performance-15>.

https://www.rfc-editor.org/rfc/rfc4814
https://www.rfc-editor.org/rfc/rfc4814
https://www.rfc-editor.org/rfc/rfc5180
https://www.rfc-editor.org/rfc/rfc6146
https://www.rfc-editor.org/rfc/rfc6890
https://www.rfc-editor.org/rfc/rfc6890
https://www.rfc-editor.org/rfc/rfc7599
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/rfc/rfc8219
https://www.rfc-editor.org/rfc/rfc8219
https://dl.acm.org/doi/10.1145/364520.364540
https://dl.acm.org/doi/10.1145/364520.364540
https://datatracker.ietf.org/doc/html/draft-ietf-bmwg-ngfw-performance-15
https://datatracker.ietf.org/doc/html/draft-ietf-bmwg-ngfw-performance-15

[I-D.lencse-v6ops-transition-scalability]

[IIR2020]

[LEN2015]

[LEN2020]

[LEN2022]

[SIITPERF]

Lencse, G., "Scalability of IPv6 Transition Technologies

for IPv4aaS", Work in Progress, Internet-Draft, draft-

lencse-v6ops-transition-scalability-04, 23 October 2022,

<https://datatracker.ietf.org/doc/html/draft-lencse-

v6ops-transition-scalability-04>.

Kurahashi, T., Matsuzaki, Y., Sasaki, T., Saito, T., and

F. Tsutsuji, "Periodic observation report: Internet

trends as seen from IIJ infrastructure - 2020", Internet

Infrastructure Review, vol. 49, December 2020, <https://

www.iij.ad.jp/en/dev/iir/pdf/iir_vol49_report_EN.pdf>.

Lencse, G., "Estimation of the Port Number Consumption of

Web Browsing", IEICE Transactions on Communications, vol.

E98-B, no. 8. pp. 1580-1588, DOI DOI: 10.1587/

transcom.E98.B.1580, 1 August 2015, <http://

www.hit.bme.hu/~lencse/publications/e98-b_8_1580.pdf>.

Lencse, G., "Adding RFC 4814 Random Port Feature to

Siitperf: Design, Implementation and Performance

Estimation", International Journal of Advances in

Telecommunications, Electrotechnics, Signals and Systems,

vol 9, no 3, pp. 18-26., DOI 10.11601/ijates.v9i3.291,

2020, <http://www.hit.bme.hu/~lencse/publications/

291-1113-1-PB.pdf>.

Lencse, G., "Design and Implementation of a Software

Tester for Benchmarking Stateful NAT64xy Gateways: Theory

and Practice of Extending Siitperf for Stateful Tests",

Computer Communications, vol. 172, no. 1, pp. 75-88,

August 1, 2022, DOI 10.1016/j.comcom.2022.05.028, 2022,

<http://www.hit.bme.hu/~lencse/publications/ECC-2022-

SFNAT64xy-Tester-published.pdf>.

Lencse, G., "Siitperf: An RFC 8219 compliant SIIT and

stateful NAT64/NAT44 tester written in C++ using DPDK",

source code, available from GitHub, 2019-2022, <https://

github.com/lencsegabor/siitperf>.

Appendix A. Change Log

A.1. 00

Initial version.

A.2. 01

Updates based on the comments received on the BMWG mailing list and

minor corrections.

¶

¶

https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scalability-04
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scalability-04
https://www.iij.ad.jp/en/dev/iir/pdf/iir_vol49_report_EN.pdf
https://www.iij.ad.jp/en/dev/iir/pdf/iir_vol49_report_EN.pdf
http://www.hit.bme.hu/~lencse/publications/e98-b_8_1580.pdf
http://www.hit.bme.hu/~lencse/publications/e98-b_8_1580.pdf
http://www.hit.bme.hu/~lencse/publications/291-1113-1-PB.pdf
http://www.hit.bme.hu/~lencse/publications/291-1113-1-PB.pdf
http://www.hit.bme.hu/~lencse/publications/ECC-2022-SFNAT64xy-Tester-published.pdf
http://www.hit.bme.hu/~lencse/publications/ECC-2022-SFNAT64xy-Tester-published.pdf
https://github.com/lencsegabor/siitperf
https://github.com/lencsegabor/siitperf

A.3. 02

Section 4.4 was completely re-written. As a consequence, the

occurrences of the now undefined "mostly different" source port

number destination port number combinations were deleted from

Section 4.5, too.

A.4. 03

Added Section 4.3 about the consideration of the cases of stateful

operation.

Consistency checking. Removal of some parts obsoleted by the

previous re-writing of Section 4.4.

Added Section 4.8 about the method for measuring connection tear

down rate.

Updates for Section 7 about the implementation and experience.

A.5. 04

Update of the abstract.

Added Section 4.6 about validation of connection establishment.

Added Section 4.9 about the method for measuring connection tracking

table capacity.

Consistency checking and corrections.

A.6. 00 - WG item

Added measurement setup for Stateful NAT64 gateways.

Consistency checking and corrections.

A.7. 01

Added Section 4.5.1 about typical types of measurement series and

reporting format.

A.8. 02

Added the usage of multiple IP addresses.

Section 4.5.1 was removed and split into two Sections: Section 5

about scalability measurements and Section 6 about reporting format.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Authors' Addresses

Gabor Lencse

Szechenyi Istvan University

Gyor

Egyetem ter 1.

H-9026

Hungary

Email: lencse@sze.hu

Keiichi Shima

SoftBank Corp.

1-7-1 Kaigan, Tokyo

105-7529

Japan

Email: shima@wide.ad.jp

URI: https://softbank.co.jp/

mailto:lencse@sze.hu
mailto:shima@wide.ad.jp
https://softbank.co.jp/

	Benchmarking Methodology for Stateful NATxy Gateways using RFC 4814 Pseudorandom Port Numbers
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Pseudorandom Port Numbers and Stateful Translation
	3. Test Setup and Terminology
	3.1. When Testing with a Single IP Address Pair
	3.2. When Testing with Multiple IP Addresses

	4. Recommended Benchmarking Method
	4.1. Restricted Number of Network Flows
	4.2. Preliminary Test Phase
	4.3. Consideration of the Cases of Stateful Operation
	4.4. Control of the Connection Tracking Table Entries
	4.5. Measurement of the Maximum Connection Establishment Rate
	4.6. Validation of Connection Establishment
	4.7. Real Test Phase
	4.8. Measurement of the Connection Tear Down Rate
	4.9. Measurement of the Connection Tracking Table Capacity
	4.10. Writing and Reading Order of the State Table

	5. Scalability Measurements
	5.1. Scalability Against the Number of Network Flows
	5.2. Scalability Against the Number of CPU Cores

	6. Reporting Format
	7. Implementation and Experience
	8. Limitations of using UDP as Transport Layer Protocol
	9. Acknowledgements
	10. IANA Considerations
	11. Security Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Change Log
	A.1. 00
	A.2. 01
	A.3. 02
	A.4. 03
	A.5. 04
	A.6. 00 - WG item
	A.7. 01
	A.8. 02

	Authors' Addresses

