
Network Working Group D. Newman
Internet-Draft Network Test
Expires: April 11, 2006 T. Player
 Spirent Communications
 October 8, 2005

Hash and Stuffing: Overlooked Factors in Network Device Benchmarking
draft-ietf-bmwg-hash-stuffing-04.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 11, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 Test engineers take pains to declare all factors that affect a given
 measurement, including offered load, packet length, test duration,
 and traffic orientation. However, current benchmarking practice
 overlooks two factors that have a profound impact on test results.
 First, existing methodologies do not require the reporting of
 addresses or other test traffic contents, even though these fields
 can affect test results. Second, "stuff" bits and bytes inserted in

Newman & Player Expires April 11, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Hash and Stuffing October 2005

 test traffic by some link-layer technologies add significant and
 variable overhead, which in turn affects test results. This document
 describes the effects of these factors; recommends guidelines for
 test traffic contents; and offers formulas for determining the
 probability of bit- and byte-stuffing in test traffic.

Table of Contents

1. Introduction . 3
2. Requirements . 4
3. General considerations . 5
3.1. Repeatability . 5
3.2. Randomness . 5

4. Address Pattern Variations 6
4.1. Problem Statement . 6
4.2. Ethernet MAC Addresses 7
4.2.1. Randomized Sets of MAC Addresses 8

4.3. MPLS Addressing . 10
4.4. Network-layer Addressing 10
4.5. Transport-layer Addressing 10

5. Control Character Stuffing 12
5.1. Problem Statement . 12
5.2. PPP Bit Stuffing . 12
5.2.1. Calculating Bit-Stuffing Probability 14
5.2.2. Bit Stuffing for Finite Strings 15
5.2.3. Applied Bit Stuffing 15

5.3. POS Byte Stuffing . 16
5.3.1. Nullifying ACCM 16
5.3.2. Other Stuffed Characters 17
5.3.3. Applied Byte Stuffing 17

6. Security Considerations 18
7. IANA Considerations . 19
8. References . 20
8.1. Normative References 20
8.2. Informative References 20

Appendix A. Acknowledgements 21
 Authors' Addresses . 22
 Intellectual Property and Copyright Statements 23

Newman & Player Expires April 11, 2006 [Page 2]

Internet-Draft Hash and Stuffing October 2005

1. Introduction

 Experience in benchmarking networking devices suggests that the
 contents of test traffic can have a profound impact on test results.
 For example, some devices may forward randomly addressed traffic
 without loss, but drop significant numbers of packets when offered
 packets containing nonrandom addresses.

 Methodologies such as [RFC2544] and [RFC2889] do not require any
 declaration of packet contents. These methodologies do require the
 declaration of test parameters such as traffic distribution and
 traffic orientation, and yet packet contents can have at least as
 great an impact on test results as the other factors. Variations in
 packet contents also can lead to non-repeatability of test results:
 Two individuals may follow methodology procedures to the letter, and
 still obtain very different results.

 A related issue is the insertion of stuff bits or bytes by link-layer
 technologies using PPP with HDLC-like framing. This stuffing is done
 to ensure sequences in test traffic will not be confused with flag or
 control characters.

 Stuffing adds significant and variable overhead. Currently there is
 no standard method for determining the probability that stuffing will
 occur for a given pattern, and thus no way to determine what impact
 stuffing will have on test results.

 This document covers two areas. First, we discuss strategies for
 dealing with randomness and nonrandomness in test traffic. Second,
 we present formulas to determine the probability of bit- and byte-
 stuffing on PPP and POS circuits. In both areas, we provide
 recommendations for obtaining more repeatability in test results.

https://datatracker.ietf.org/doc/html/rfc2544
https://datatracker.ietf.org/doc/html/rfc2889

Newman & Player Expires April 11, 2006 [Page 3]

Internet-Draft Hash and Stuffing October 2005

2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Newman & Player Expires April 11, 2006 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Hash and Stuffing October 2005

3. General considerations

3.1. Repeatability

 Repeatability is a desirable trait in benchmarking, but it can be an
 elusive goal. It is a common but mistaken belief that test results
 can always be reproduced provided the device under test and test
 instrument are configured identically for each test iteration. In
 fact, even identical configurations may introduce some variations in
 test traffic, such as changes in timestamps, TCP sequence numbers, or
 other naturally occurring phenomena.

 While this variability does not necessarily invalidate test results,
 it is important to recognize such variation exists. Exact bit-for-
 bit reproduction of test traffic in all cases is a hard problem. A
 simpler approach is to acknowledge that some variation exists,
 characterize that variation, and describe it when analyzing test
 results.

3.2. Randomness

 This document recommends the use of pseudorandom patterns in test
 traffic under controlled lab conditions. The rand() functions
 available in many programming languages produce output that is
 pseudorandom rather than truly random. Pseudorandom patterns are
 sufficient for the recommendations given in this document, provided
 they produce output that is uniformly distributed across the pattern
 space.

 Specifically, for any random bit pattern of length L, the probability
 of generating that specific pattern SHOULD equal 1 over 2 to the Lth
 power.

Newman & Player Expires April 11, 2006 [Page 5]

Internet-Draft Hash and Stuffing October 2005

4. Address Pattern Variations

4.1. Problem Statement

 The addresses and port numbers used in a test can have a significant
 impact on metrics such as throughput, jitter, latency, and loss.
 This is because many network devices feed such addresses into hashing
 algorithms to determine which path upon which to forward a given
 packet.

 Consider the simple example of an Ethernet switch with eight network
 processors (NPs) in its switching fabric:

 ingress
 ||
 \/
 +-+
 | ___ ___ ___ ___ ___ ___ ___ ___ |
 || | | | | | | | | | | | | | | | |
 ||NP0| |NP1| |NP2| |NP3| |NP4| |NP5| |NP6| |NP7| |
 ||___| |___| |___| |___| |___| |___| |___| |___| |
 | |
 +-+
 ||
 \/
 egress

 To assign incoming traffic to the various NPs, suppose a hashing
 algorithm performs an exclusive-or (XOR) operation on the least
 significant 3 bits of the source and destination MAC addresses in
 each frame. (This is an actual example the authors have observed in
 multiple devices from multiple manufacturers.)

 In theory, a random distribution of source and destination MAC
 addresses should result in traffic being uniformly distributed across
 all eight NPs. (Instances of the term "random" in this document
 refer to a random uniform distribution across a given address space.

Section 3.2 describes random uniform distributions in more detail.)
 In practice, the actual outcome of the hash (and thus any test
 results) will be very different depending on the degree of randomness
 in test traffic.

 Suppose the traffic is nonrandom so that every interface of the test
 instrument uses this pattern in its source MAC addresses:

 00:00:PP:00:00:01

Newman & Player Expires April 11, 2006 [Page 6]

Internet-Draft Hash and Stuffing October 2005

 where PP is the source interface number of the test instrument.

 In this case, the least significant 3 bits of every source and
 destination MAC address are 001, regardless of interface number.
 Thus, the outcome of the XOR operation will always be 0, given the
 same three least significant bits:

 001 ^ 001 = 000

 Thus, the switch will assign all traffic to NP0, leaving the other
 seven NPs idle. Given a heavy enough load, NP0 and the switch will
 become congested, even though seven other NPs are available. At
 most, this device will be able to utilize approximately 12.5 percent
 of its total capacity, with the remaining 87.5 percent of capacity
 unused.

 Now consider the same example with randomly distributed addresses.
 In this case, the test instrument offers traffic using MAC addresses
 with this pattern:

 00:00:PP:00:00:RR

 where PP is the source interface number of the test instrument and RR
 is a pseudorandom number. In this case, there should be an equal
 probability of the least significant 3 bits of the MAC address having
 any value from 000 to 111 inclusive. Thus, the outcome of XOR
 operations should be equally distributed from 0 to 7, and
 distribution across NPs should also be equal (at least for this
 particular 3-bit hashing algorithm). Absent other impediments, the
 device should be able to utilize 100 percent of available bandwidth.

 This simple example presumes knowledge on the tester's part of the
 hashing algorithm used by the device under test. Knowledge of such
 algorithms is not always possible beforehand, and in any event
 violates the "black box" spirit of many documents produced by the
 IETF BMWG.

 The balance of this section offers recommendations for test traffic
 patterns, starting at the link layer and working up to the transport
 layer. These patterns should overcome the effects of nonrandomness
 regardless of the hashing algorithms in use.

4.2. Ethernet MAC Addresses

 Test traffic SHOULD use pseudorandom patterns in Ethernet addresses.
 The following source and destination Ethernet address pattern is
 RECOMMENDED for use when benchmarking Ethernet devices:

Newman & Player Expires April 11, 2006 [Page 7]

Internet-Draft Hash and Stuffing October 2005

 (RR & 0xFE):PP:PP:RR:RR:RR

 where (RR & 0xFE) is a pseudorandom number bitwise ANDed with 0xFE,
 PP:PP is the 1-indexed interface number of the test instrument and
 RR:RR:RR is a pseudorandom number.

 The bitwise ANDing of the high-order byte in the MAC address with
 0xFE guarantees a non multicast address.

 Test traffic SHOULD use PP:PP to identify the source interface number
 of the test instrument. Such identification can be useful in
 troubleshooting. Allocating 2 bytes of the MAC address for interface
 identification allows for tests of up to 65,536 interfaces. A 2-byte
 space allows for tests much larger than those currently used in
 device benchmarking; however, tests involving more than 256
 interfaces (fully utilizing a 1-byte space) are fairly common.

 Further, source interface numbers SHOULD be 1-indexed and SHOULD NOT
 be 0-indexed. This avoids the low but nonzero probability of an
 all-0s Ethernet address. Some devices will drop frames with all-0s
 Ethernet addresses.

 It is RECOMMENDED to use pseudorandom patterns in the least
 significant 3 bytes of the MAC address. Using pseudorandom values
 for the low-order 3 bytes means choosing one of 16.7 million unique
 addresses. While this address space is vastly larger than is
 currently required in lab benchmarking, it does assure more realistic
 test traffic.

 Note also that since only 31 of 48 bits in the MAC address have
 pseudorandom values, there is no possibility of randomly generating a
 broadcast or multicast value by accident.

4.2.1. Randomized Sets of MAC Addresses

 It is common benchmarking practice for a test instrument to emulate
 multiple hosts, even on a single interface. This is desirable in
 assessing DUT/SUT scalability.

 However, test instruments may emulate multiple MAC addresses by
 incrementing and/or decrementing addresses from a fixed starting
 point. This leads to situations as described above in "Address
 Pattern Variations" where hashing algorithms produce nonoptimal
 outcomes.

Newman & Player Expires April 11, 2006 [Page 8]

Internet-Draft Hash and Stuffing October 2005

 The outcome can be nonoptimal even if the set of addresses begins
 with a pseudorandom number. For example, the following source/
 destination pairs will not be equally distributed by the 3-bit
 hashing algorithm discussed above:

 Source Destination
 00:00:01:FC:B3:45 00:00:19:38:8C:80
 00:00:01:FC:B3:46 00:00:19:38:8C:81
 00:00:01:FC:B3:47 00:00:19:38:8C:82
 00:00:01:FC:B3:48 00:00:19:38:8C:83
 00:00:01:FC:B3:49 00:00:19:38:8C:84
 00:00:01:FC:B3:4A 00:00:19:38:8C:85
 00:00:01:FC:B3:4B 00:00:19:38:8C:86
 00:00:01:FC:B3:4C 00:00:19:38:8C:87

 Again working with our 3-bit XOR hashing algorithm, we get the
 following outcomes:

 101 ^ 000 = 101
 110 ^ 001 = 111
 111 ^ 010 = 101
 000 ^ 011 = 011
 001 ^ 100 = 101
 010 ^ 101 = 111
 011 ^ 110 = 101
 100 ^ 111 = 011

 Note that only three of eight possible outcomes are achieved when
 incrementing addresses. This is actually the best case.
 Incrementing from other combinations of pseudorandom address pairs
 produces only one or two out of eight possible outcomes.

 Every MAC address SHOULD be pseudorandom, not just the starting one.

 When generating traffic with multiple addresses, it is RECOMMENDED
 that all addresses use pseudorandom values. There are multiple ways
 to use sets of pseudorandom numbers. One strategy would be for the
 test instrument to iterate over an array of pseudorandom values
 rather than incrementing/decrementing from a starting address. The
 actual method is an implementation detail; in the end, any method
 that uses multiple addresses and avoids hash table collisions will be
 sufficient.

Newman & Player Expires April 11, 2006 [Page 9]

Internet-Draft Hash and Stuffing October 2005

4.3. MPLS Addressing

 Similiar to L2 switches, MPLS routers make forwarding decisions based
 on a 20 bit MPLS label. Unless specific labels are required, it is
 RECOMMENDED that uniformly random values between 0 and 1,048,575 be
 used for all labels assigned by test equipment.

4.4. Network-layer Addressing

 Routers make forwarding decisions based on destination network
 address. Since there is no hashing of source and destination
 addresses, the requirement for pseudorandom patterns at the network
 layer is far less critical than in the Ethernet MAC address case.

 However, there are cases where randomly distributed IPv4 and/or IPv6
 addresses are desirable. For example, the equal cost multipath
 (ECMP) feature performs load-sharing across multiple links. Routers
 implementing ECMP may perform a hash of source and destination IP
 addresses in assigning flows.

 Since multiple ECMP routes by definition have the same metric,
 routers use some other "tiebreaker" mechanism to assign traffic to
 each link. As far as the authors are aware, there is no standard
 algorithm for ECMP link assignment. Some implementations perform a
 hash of all bits of the source and destination IP addresses for this
 purpose.

 Just as in the case of MAC addresses, nonrandom IP addresses can have
 an adverse effect on the outcome of ECMP link assignment decisions.

 When benchmarking devices that implement ECMP or any other form of
 Layer 3 aggregation, it is RECOMMENDED to use a randomly distributed
 range of IP addresses.

4.5. Transport-layer Addressing

 Some devices with transport- or application-layer awareness use TCP
 or UDP port numbers in making forwarding decisions. Examples of such
 devices include load balancers and application-layer firewalls.

 Test instruments have the capability of generating packets with
 random TCP and UDP source and destination port numbers. Known
 destination port numbers are often required for testing application-
 layer devices. However, unless known port numbers are specifically
 required for a test, it is RECOMMENDED to use randomly distributed
 values for both source and destination port numbers.

 In addition, it may be desirable to pick pseudorandom values from a

Newman & Player Expires April 11, 2006 [Page 10]

Internet-Draft Hash and Stuffing October 2005

 selected pool of numbers. Many services identify themselves through
 use of reserved destination port numbers between 1 and 1023
 inclusive. Unless specific port numbers are required, it is
 RECOMMENDED to pick randomly distributed destination port numbers
 between these lower and upper boundaries.

 Similarly, clients typically choose source port numbers in the space
 between 1024 and 65535 inclusive. Unless specific port numbers are
 required, it is RECOMMENDED to pick randomly distributed source port
 numbers between these lower and upper boundaries.

Newman & Player Expires April 11, 2006 [Page 11]

Internet-Draft Hash and Stuffing October 2005

5. Control Character Stuffing

5.1. Problem Statement

 Link-layer technologies that use HDLC-like framing may insert an
 extra bit or byte before each instance of a control character in
 traffic. These insertions prevent confusion with control characters,
 but they may also introduce significant overhead.

 The overhead of these escape sequences is problematic for two
 reasons. First, the amount of overhead is non-deterministic. The
 best testers can do is to characterize the probability that an escape
 sequence will occur for a given pattern. This greatly complicates
 the requirement of declaring exactly how much traffic is offered to a
 DUT/SUT.

 Second, in the absence of characterization and compensation for this
 overhead, the tester may unwittingly congest the DUT/SUT. For
 example, if a tester intends to offer traffic to a DUT at 95 percent
 of line rate, but the link-layer protocol introduces an additional 1
 percent of overhead to escape control characters, then the aggregate
 offered load will be 96 percent of line rate. If the DUT's actual
 channel capacity is only 95 percent, congestion will occur and the
 DUT will drop traffic even though the tester did not intend this
 outcome.

 As described in [RFC1661] and [RFC1662], PPP and HDLC-like framing
 introduce two kinds of escape sequences: bit and byte stuffing. Bit
 stuffing refers to the insertion of an escape bit on bit-synchronous
 links. Byte stuffing refers to the insertion of an escape byte on
 byte-synchronous links. We discuss each in turn.

5.2. PPP Bit Stuffing

[RFC1662], section 5.2 specifies that any sequence of five contiguous
 "1" bits within a frame must be escaped by inserting a "0" bit prior
 to the sequence. This escaping is necessary to avoid confusion with
 the HDLC control character 0x7D, which contains six "1" bits.

 Consider the following PPP frame containing a TCP/IP packet. Not
 shown is the 1-byte flag sequence (0x7D), at least one of which must
 occur between frames.

 The contents of the various frame fields can be described one of two
 ways:

https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/rfc1662
https://datatracker.ietf.org/doc/html/rfc1662#section-5.2

Newman & Player Expires April 11, 2006 [Page 12]

Internet-Draft Hash and Stuffing October 2005

 1. Field contents never change over the test duration. An example
 would be the IP version number.

 2. Field contents change over the test duration. Some of these
 changes are known prior to the test duration. An example would
 be the use of incrementing IP addresses. Some of these changes
 are unknown. An example would be a dynamically calculated field
 such as the TCP checksum.

 In the diagram below, 30 out of 48 total bytes are subject to change
 over the test duration. The fields containing the changeable bytes
 are given in ((double parentheses)).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Address | Control | Protocol |
 +-+
 |Version| IHL |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Protocol | ((Header Checksum)) |
 +-+
 | ((Source Address)) |
 +-+
 | ((Destination Address)) |
 +-+
 | ((Source Port)) | ((Destination Port)) |
 +-+
 | ((Sequence Number)) |
 +-+
 | ((Acknowledgment Number)) |
 +-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	((Window))
		G	K	H	T	N	N	
+-+								
((Checksum))	Urgent Pointer							
+-+								
((FCS (4 bytes)))								
 +-+

 None of the other fields are known to contain sequences subject to
 bit-stuffing, at least not in their entirety.

Newman & Player Expires April 11, 2006 [Page 13]

Internet-Draft Hash and Stuffing October 2005

 Given the information at hand, and assuming static contents for the
 rest of the fields, the challenge is to determine the probability
 that bit-stuffing will occur.

5.2.1. Calculating Bit-Stuffing Probability

 In order to calculate bit-stuffing probabilities, we assume that for
 any string of length L, the probability of the Lth + 1 bit equalling
 1 is 0.5 and the probability of the Lth + 1 bit equalling 0 is 0.5.
 Additionally, the value of the Lth + 1 bit is independant of any
 previous bits.

 We can calculate the probability of bit stuffing for both infinite
 and finite strings of random bits. We begin with the infinite-string
 case, which is required to prove the finite-string case. For an
 infinitely long string of random bits, we will need to insert a stuff
 bit if and only if state 5 is reached in the following state table.

 |--------------------<----------------------|
 | |1
 _______ __|__ _____ _____ _____ __|__
	1		1		1		1		1	
start	--->	1	--->	2	--->	3	--->	4	--->	5
_______		_____		_____		_____		_____		_____
 | | | | | | |
 | |0 |0 |0 |0 |0 |0
 |-<-|----<----|----<-----|----<-----|----<-----|----<-----|

 Initially, we begin in the "start" state. A 1 bit moves us into the
 next highest state, and a 0 bit returns us to the start state. From
 state 5, a 1 bit takes us back to the 1 state and a 0 bit returns us
 to "start." From this state table we can build the following
 transition matrix:

 | start 1 2 3 4 5
 ______|___
 start | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5
 1 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5
 2 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0
 3 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0
 4 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0
 5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0

 With this transition matrix we can build the following system of

Newman & Player Expires April 11, 2006 [Page 14]

Internet-Draft Hash and Stuffing October 2005

 equations. If P(x) represents the probability of reaching state x,
 then:

 P(start) = 0.5 * P(start) + 0.5 * P(1) + 0.5 * P(2) + 0.5 * P(3) +
 0.5 * P(4) + 0.5 * P(5)

 P(1) = 0.5 * P(start) + 0.5 * P(5)
 P(2) = 0.5 * P(1)
 P(3) = 0.5 * P(2)
 P(4) = 0.5 * P(3)
 P(5) = 0.5 * P(4)

 P(start) + P(1) + P(2) + P(3) + P(4) + P(5) = 1

 Solving this system of equations yields:

 P(start) = 0.5
 P(1) = 8/31
 P(2) = 4/31
 P(3) = 2/31
 P(4) = 1/31
 P(5) = 1/62

 Thus, for an infinitely long string of random bits, the probability
 of 5 sequential 1 bits is 1/62. Put another way, we expect to add
 one stuff bit for every 62 bits of random uniform data.

5.2.2. Bit Stuffing for Finite Strings

 The above result indicates that for any string of uniformly
 distributed random bits, we expect a stuffing event to occur every 62
 bits. So, given a string of some finite length L, where L >= 5, the
 expected number of stuffs is simply L * 1/62.

5.2.3. Applied Bit Stuffing

 The amount of overhead attributable to bit stuffing may be calculated
 explicitly as long as the total number of random bits per frame,
 L_rand-bits, and the probability of stuffing, P(stuff), is known.

 % overhead = (P(stuff) * L_rand-bits) / framesize (in bits)

 Note that if the entire frame contains random bits, then the
 percentage overhead is simply the probability of stuffing expressed

Newman & Player Expires April 11, 2006 [Page 15]

Internet-Draft Hash and Stuffing October 2005

 as a percentage.

 Given that the overhead added by bit-stuffing is at most 1 in 62, or
 approximately 1.6 percent, it is RECOMMENDED that testers reduce the
 maximum offered load by 1.6 percent to avoid introducing congestion
 when testing devices using bit-synchronous interfaces (such as T1/E1,
 DS-3, and the like).

 The percentage given above is an approximation. For greatest
 precision, the actual offered load SHOULD be calculated using the
 percentage overhead formula above and then expressed in frames per
 second, rounded down to the nearest integer.

 Note that the DUT/SUT may be able to forward offered loads higher
 than the calculated theoretical maximum rate without packet loss.
 Such results are the result of queuing on the part of the DUT/SUT.
 While a device's throughput may be above this level, delay-related
 measurements may be affected. Accordingly, it is RECOMMENDED to
 reduce offered levels by the amount of bit-stuffing overhead when
 testing devices using bit-synchronous links. This recommendation
 applies for all measurements, including throughput.

5.3. POS Byte Stuffing

 [RFC1662] requires that "Each Flag Sequence, Control Escape octet,
 and any octet which is flagged in the sending Async-Control-
 Character-Map (ACCM), is replaced by a two octet sequence consisting
 of the Control Escape octet followed by the original octet exclusive-
 or'd with hexadecimal 0x20." The practical effect of this is to
 insert a stuff byte for instances of up to 34 characters: 0x7E, 0x7D,
 or any of 32 ACCM values.

 A common implementation of PPP in HDLC-like framing is in PPP over
 Sonet/SDH (POS), as defined in [RFC2615].

 As with the bit-stuffing case, the requirement in characterizing POS
 test traffic is to determine the probability that byte-stuffing will
 occur for a given sequence. This is much simpler to do than with
 bit-synchronous links, since there is no possibility of overlap
 across byte boundaries.

5.3.1. Nullifying ACCM

 Testers can greatly reduce the probability of byte-stuffing by
 configuring link partners to negotiate an ACCM value of 0x00. It is
 RECOMMENDED that testers configure the test instrument(s) and DUT/SUT
 to negotiate an ACCM value of 0x00 unless specific ACCM values are
 required.

https://datatracker.ietf.org/doc/html/rfc2615

Newman & Player Expires April 11, 2006 [Page 16]

Internet-Draft Hash and Stuffing October 2005

 One instance where nonzero ACCM values are used is in the layer 2
 tunneling protocol (L2TP), as defined in [RFC2661], section 4.4.6.
 When the default ACCM values are used, the probability of stuffing
 for any given random byte is 34 in 256, or approximately 13.3
 percent.

5.3.2. Other Stuffed Characters

 If an ACCM value of 0x00 is negotiated, the only characters subject
 to stuffing are the flag and control escape characters. Thus, we can
 say that without ACCM the probability of stuffing for any given
 random byte is 2 in 256, or approximately 0.8 percent.

5.3.3. Applied Byte Stuffing

 The amount of overhead attributable to bit or byte stuffing may be
 calculated explicitly as long as the total number of random bytes per
 frame, L_rand-bytes, and the probability of stuffing, P(stuff), is
 known.

 % overhead = (P(stuff) * L_rand-bytes) / framesize (in bytes)

 Note that if the entire frame contains random bytes, then the
 percentage overhead is simply the probability of stuffing expressed
 as a percentage.

 When testing a DUT/SUT that implements PPP in HDLC-like framing and
 L2TP (or any other technology that uses nonzero ACCM values), it is
 RECOMMENDED that testers reduce the maximum offered load by 13.3
 percent to avoid introducing congestion.

 When testing a DUT/SUT that implements PPP in HDLC-like framing and
 an ACCM value of 0x00, it is RECOMMENDED that testers reduce the
 maximum offered load by 0.8 percent to avoid introducing congestion.

 Note that the percentages given above are approximations. For
 greatest precision, the actual offered load SHOULD be calculated
 using the percentage overhead formula above and then expressed in
 frames per second (rounded down to the nearest integer).

 Note also that the DUT/SUT may be able to forward offered loads
 higher than the calculated theoretical maximum rate without packet
 loss. Such results are the result of queuing on the part of the DUT/
 SUT. While a device's throughput may be above this level, delay-
 related measurements may be affected. Accordingly, it is RECOMMENDED
 to reduce offered levels by the amount of byte-stuffing overhead when
 testing devices using byte-synchronous links. This recommendation
 applies for all measurements, including throughput.

https://datatracker.ietf.org/doc/html/rfc2661#section-4.4.6

Newman & Player Expires April 11, 2006 [Page 17]

Internet-Draft Hash and Stuffing October 2005

6. Security Considerations

 This document recommends the use of pseudorandom patterns in test
 traffic. The rand() functions of many programming languages produce
 output that is pseudorandom rather than truly random. As far as the
 authors are aware, pseudorandom patterns are sufficient for
 generating test traffic in lab conditions.

[RFC2615], section 6, discusses a denial-of-service attack involving
 the intentional transmission of characters that require stuffing.
 This attack could consume up to 100 percent of available bandwidth.
 However, the test networks described in BMWG documents generally
 SHOULD NOT be reachable by anyone other than the tester(s).

https://datatracker.ietf.org/doc/html/rfc2615#section-6

Newman & Player Expires April 11, 2006 [Page 18]

Internet-Draft Hash and Stuffing October 2005

7. IANA Considerations

 This document has no actions for IANA.

Newman & Player Expires April 11, 2006 [Page 19]

Internet-Draft Hash and Stuffing October 2005

8. References

8.1. Normative References

 [RFC1661] Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51,
RFC 1661, July 1994.

 [RFC1662] Simpson, W., "PPP in HDLC-like Framing", STD 51, RFC 1662,
 July 1994.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2544] Bradner, S. and J. McQuaid, "Benchmarking Methodology for
 Network Interconnect Devices", RFC 2544, March 1999.

 [RFC2615] Malis, A. and W. Simpson, "PPP over SONET/SDH", RFC 2615,
 June 1999.

 [RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,
 G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",

RFC 2661, August 1999.

 [RFC2889] Mandeville, R. and J. Perser, "Benchmarking Methodology
 for LAN Switching Devices", RFC 2889, August 2000.

8.2. Informative References

 [Ca63] Campbell, D. and J. Stanley, "Experimental and Quasi-
 Experimental Designs for Research", 1963.

 [Go97] Goralski, W., "SONET: A Guide to Synchronous Optical
 Networks", 1997.

 [Kn97] Knuth, D., "The Art of Computer Programming, Volume 2, Third
 Edition", 1997.

https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/rfc1662
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2544
https://datatracker.ietf.org/doc/html/rfc2615
https://datatracker.ietf.org/doc/html/rfc2661
https://datatracker.ietf.org/doc/html/rfc2889

Newman & Player Expires April 11, 2006 [Page 20]

Internet-Draft Hash and Stuffing October 2005

Appendix A. Acknowledgements

 The authors gratefully acknowledge reviews and contributions by Neil
 Carter, Glenn Chagnot, Rafael Francis, Paul Hoffman, David Joyner,
 Joe Perches, and Scott Poretsky.

Newman & Player Expires April 11, 2006 [Page 21]

Internet-Draft Hash and Stuffing October 2005

Authors' Addresses

 David Newman
 Network Test

 Email: dnewman@networktest.com

 Timmons C. Player
 Spirent Communications

 Email: timmons.player@spirentcom.com

Newman & Player Expires April 11, 2006 [Page 22]

Internet-Draft Hash and Stuffing October 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Newman & Player Expires April 11, 2006 [Page 23]

