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Abstract

   Test engineers take pains to declare all factors that affect a given
   measurement, including offered load, packet length, test duration,
   and traffic orientation.  However, current benchmarking practice
   overlooks two factors that have a profound impact on test results.
   First, existing methodologies do not require the reporting of
   addresses or other test traffic contents, even though these fields
   can affect test results.  Second, "stuff" bits and bytes inserted in
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   test traffic by some link-layer technologies add significant and
   variable overhead, which in turn affects test results.  This document
   describes the effects of these factors; recommends guidelines for
   test traffic contents; and offers formulas for determining the
   probability of bit- and byte-stuffing in test traffic.
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1.  Introduction

   Experience in benchmarking networking devices suggests that the
   contents of test traffic can have a profound impact on test results.
   For example, some devices may forward randomly addressed traffic
   without loss, but drop significant numbers of packets when offered
   packets containing nonrandom addresses.

   Methodologies such as [RFC2544] and [RFC2889] do not require any
   declaration of packet contents.  These methodologies do require the
   declaration of test parameters such as traffic distribution and
   traffic orientation, and yet packet contents can have at least as
   great an impact on test results as the other factors.  Variations in
   packet contents also can lead to non-repeatability of test results:
   Two individuals may follow methodology procedures to the letter, and
   still obtain very different results.

   A related issue is the insertion of stuff bits or bytes by link-layer
   technologies using PPP with HDLC-like framing.  This stuffing is done
   to ensure sequences in test traffic will not be confused with flag or
   control characters.

   Stuffing adds significant and variable overhead.  Currently there is
   no standard method for determining the probability that stuffing will
   occur for a given pattern, and thus no way to determine what impact
   stuffing will have on test results.

   This document covers two areas.  First, we discuss strategies for
   dealing with randomness and nonrandomness in test traffic.  Second,
   we present formulas to determine the probability of bit- and byte-
   stuffing on PPP and POS circuits.  In both areas, we provide
   recommendations for obtaining more repeatability in test results.

https://datatracker.ietf.org/doc/html/rfc2544
https://datatracker.ietf.org/doc/html/rfc2889
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2.  Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].
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3.  General considerations

3.1.  Repeatability

   Repeatability is a desirable trait in benchmarking, but it can be an
   elusive goal.  It is a common but mistaken belief that test results
   can always be reproduced provided the device under test and test
   instrument are configured identically for each test iteration.  In
   fact, even identical configurations may introduce some variations in
   test traffic, such as changes in timestamps, TCP sequence numbers, or
   other naturally occurring phenomena.

   While this variability does not necessarily invalidate test results,
   it is important to recognize such variation exists.  Exact bit-for-
   bit reproduction of test traffic in all cases is a hard problem.  A
   simpler approach is to acknowledge that some variation exists,
   characterize that variation, and describe it when analyzing test
   results.

3.2.  Randomness

   This document recommends the use of pseudorandom patterns in test
   traffic under controlled lab conditions.  The rand() functions
   available in many programming languages produce output that is
   pseudorandom rather than truly random.  Pseudorandom patterns are
   sufficient for the recommendations given in this document, provided
   they produce output that is uniformly distributed across the pattern
   space.

   Specifically, for any random bit pattern of length L, the probability
   of generating that specific pattern SHOULD equal 1 over 2 to the Lth
   power.
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4.  Address Pattern Variations

4.1.  Problem Statement

   The addresses and port numbers used in a test can have a significant
   impact on metrics such as throughput, jitter, latency, and loss.
   This is because many network devices feed such addresses into hashing
   algorithms to determine which path upon which to forward a given
   packet.

   Consider the simple example of an Ethernet switch with eight network
   processors (NPs) in its switching fabric:

                               ingress
                                  ||
                                  \/
          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
          | ___   ___   ___   ___   ___   ___   ___   ___  |
          ||   | |   | |   | |   | |   | |   | |   | |   | |
          ||NP0| |NP1| |NP2| |NP3| |NP4| |NP5| |NP6| |NP7| |
          ||___| |___| |___| |___| |___| |___| |___| |___| |
          |                                                |
          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  ||
                                  \/
                                egress

   To assign incoming traffic to the various NPs, suppose a hashing
   algorithm performs an exclusive-or (XOR) operation on the least
   significant 3 bits of the source and destination MAC addresses in
   each frame.  (This is an actual example the authors have observed in
   multiple devices from multiple manufacturers.)

   In theory, a random distribution of source and destination MAC
   addresses should result in traffic being uniformly distributed across
   all eight NPs.  (Instances of the term "random" in this document
   refer to a random uniform distribution across a given address space.

Section 3.2 describes random uniform distributions in more detail.)
   In practice, the actual outcome of the hash (and thus any test
   results) will be very different depending on the degree of randomness
   in test traffic.

   Suppose the traffic is nonrandom so that every interface of the test
   instrument uses this pattern in its source MAC addresses:

   00:00:PP:00:00:01
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   where PP is the source interface number of the test instrument.

   In this case, the least significant 3 bits of every source and
   destination MAC address are 001, regardless of interface number.
   Thus, the outcome of the XOR operation will always be 0, given the
   same three least significant bits:

   001 ^ 001 = 000

   Thus, the switch will assign all traffic to NP0, leaving the other
   seven NPs idle.  Given a heavy enough load, NP0 and the switch will
   become congested, even though seven other NPs are available.  At
   most, this device will be able to utilize approximately 12.5 percent
   of its total capacity, with the remaining 87.5 percent of capacity
   unused.

   Now consider the same example with randomly distributed addresses.
   In this case, the test instrument offers traffic using MAC addresses
   with this pattern:

   00:00:PP:00:00:RR

   where PP is the source interface number of the test instrument and RR
   is a pseudorandom number.  In this case, there should be an equal
   probability of the least significant 3 bits of the MAC address having
   any value from 000 to 111 inclusive.  Thus, the outcome of XOR
   operations should be equally distributed from 0 to 7, and
   distribution across NPs should also be equal (at least for this
   particular 3-bit hashing algorithm).  Absent other impediments, the
   device should be able to utilize 100 percent of available bandwidth.

   This simple example presumes knowledge on the tester's part of the
   hashing algorithm used by the device under test.  Knowledge of such
   algorithms is not always possible beforehand, and in any event
   violates the "black box" spirit of many documents produced by the
   IETF BMWG.

   The balance of this section offers recommendations for test traffic
   patterns, starting at the link layer and working up to the transport
   layer.  These patterns should overcome the effects of nonrandomness
   regardless of the hashing algorithms in use.

4.2.  Ethernet MAC Addresses

   Test traffic SHOULD use pseudorandom patterns in Ethernet addresses.
   The following source and destination Ethernet address pattern is
   RECOMMENDED for use when benchmarking Ethernet devices:
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   (RR & 0xFE):PP:PP:RR:RR:RR

   where (RR & 0xFE) is a pseudorandom number bitwise ANDed with 0xFE,
   PP:PP is the 1-indexed interface number of the test instrument and
   RR:RR:RR is a pseudorandom number.

   The bitwise ANDing of the high-order byte in the MAC address with
   0xFE guarantees a non multicast address.

   Test traffic SHOULD use PP:PP to identify the source interface number
   of the test instrument.  Such identification can be useful in
   troubleshooting.  Allocating 2 bytes of the MAC address for interface
   identification allows for tests of up to 65,536 interfaces.  A 2-byte
   space allows for tests much larger than those currently used in
   device benchmarking; however, tests involving more than 256
   interfaces (fully utilizing a 1-byte space) are fairly common.

   Further, source interface numbers SHOULD be 1-indexed and SHOULD NOT
   be 0-indexed.  This avoids the low but nonzero probability of an
   all-0s Ethernet address.  Some devices will drop frames with all-0s
   Ethernet addresses.

   It is RECOMMENDED to use pseudorandom patterns in the least
   significant 3 bytes of the MAC address.  Using pseudorandom values
   for the low-order 3 bytes means choosing one of 16.7 million unique
   addresses.  While this address space is vastly larger than is
   currently required in lab benchmarking, it does assure more realistic
   test traffic.

   Note also that since only 31 of 48 bits in the MAC address have
   pseudorandom values, there is no possibility of randomly generating a
   broadcast or multicast value by accident.

4.2.1.  Randomized Sets of MAC Addresses

   It is common benchmarking practice for a test instrument to emulate
   multiple hosts, even on a single interface.  This is desirable in
   assessing DUT/SUT scalability.

   However, test instruments may emulate multiple MAC addresses by
   incrementing and/or decrementing addresses from a fixed starting
   point.  This leads to situations as described above in "Address
   Pattern Variations" where hashing algorithms produce nonoptimal
   outcomes.
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   The outcome can be nonoptimal even if the set of addresses begins
   with a pseudorandom number.  For example, the following source/
   destination pairs will not be equally distributed by the 3-bit
   hashing algorithm discussed above:

   Source                   Destination
   00:00:01:FC:B3:45        00:00:19:38:8C:80
   00:00:01:FC:B3:46        00:00:19:38:8C:81
   00:00:01:FC:B3:47        00:00:19:38:8C:82
   00:00:01:FC:B3:48        00:00:19:38:8C:83
   00:00:01:FC:B3:49        00:00:19:38:8C:84
   00:00:01:FC:B3:4A        00:00:19:38:8C:85
   00:00:01:FC:B3:4B        00:00:19:38:8C:86
   00:00:01:FC:B3:4C        00:00:19:38:8C:87

   Again working with our 3-bit XOR hashing algorithm, we get the
   following outcomes:

   101 ^ 000 = 101
   110 ^ 001 = 111
   111 ^ 010 = 101
   000 ^ 011 = 011
   001 ^ 100 = 101
   010 ^ 101 = 111
   011 ^ 110 = 101
   100 ^ 111 = 011

   Note that only three of eight possible outcomes are achieved when
   incrementing addresses.  This is actually the best case.
   Incrementing from other combinations of pseudorandom address pairs
   produces only one or two out of eight possible outcomes.

   Every MAC address SHOULD be pseudorandom, not just the starting one.

   When generating traffic with multiple addresses, it is RECOMMENDED
   that all addresses use pseudorandom values.  There are multiple ways
   to use sets of pseudorandom numbers.  One strategy would be for the
   test instrument to iterate over an array of pseudorandom values
   rather than incrementing/decrementing from a starting address.  The
   actual method is an implementation detail; in the end, any method
   that uses multiple addresses and avoids hash table collisions will be
   sufficient.
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4.3.  MPLS Addressing

   Similiar to L2 switches, MPLS routers make forwarding decisions based
   on a 20 bit MPLS label.  Unless specific labels are required, it is
   RECOMMENDED that uniformly random values between 0 and 1,048,575 be
   used for all labels assigned by test equipment.

4.4.  Network-layer Addressing

   Routers make forwarding decisions based on destination network
   address.  Since there is no hashing of source and destination
   addresses, the requirement for pseudorandom patterns at the network
   layer is far less critical than in the Ethernet MAC address case.

   However, there are cases where randomly distributed IPv4 and/or IPv6
   addresses are desirable.  For example, the equal cost multipath
   (ECMP) feature performs load-sharing across multiple links.  Routers
   implementing ECMP may perform a hash of source and destination IP
   addresses in assigning flows.

   Since multiple ECMP routes by definition have the same metric,
   routers use some other "tiebreaker" mechanism to assign traffic to
   each link.  As far as the authors are aware, there is no standard
   algorithm for ECMP link assignment.  Some implementations perform a
   hash of all bits of the source and destination IP addresses for this
   purpose.

   Just as in the case of MAC addresses, nonrandom IP addresses can have
   an adverse effect on the outcome of ECMP link assignment decisions.

   When benchmarking devices that implement ECMP or any other form of
   Layer 3 aggregation, it is RECOMMENDED to use a randomly distributed
   range of IP addresses.

4.5.  Transport-layer Addressing

   Some devices with transport- or application-layer awareness use TCP
   or UDP port numbers in making forwarding decisions.  Examples of such
   devices include load balancers and application-layer firewalls.

   Test instruments have the capability of generating packets with
   random TCP and UDP source and destination port numbers.  Known
   destination port numbers are often required for testing application-
   layer devices.  However, unless known port numbers are specifically
   required for a test, it is RECOMMENDED to use randomly distributed
   values for both source and destination port numbers.

   In addition, it may be desirable to pick pseudorandom values from a
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   selected pool of numbers.  Many services identify themselves through
   use of reserved destination port numbers between 1 and 1023
   inclusive.  Unless specific port numbers are required, it is
   RECOMMENDED to pick randomly distributed destination port numbers
   between these lower and upper boundaries.

   Similarly, clients typically choose source port numbers in the space
   between 1024 and 65535 inclusive.  Unless specific port numbers are
   required, it is RECOMMENDED to pick randomly distributed source port
   numbers between these lower and upper boundaries.
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5.  Control Character Stuffing

5.1.  Problem Statement

   Link-layer technologies that use HDLC-like framing may insert an
   extra bit or byte before each instance of a control character in
   traffic.  These insertions prevent confusion with control characters,
   but they may also introduce significant overhead.

   The overhead of these escape sequences is problematic for two
   reasons.  First, the amount of overhead is non-deterministic.  The
   best testers can do is to characterize the probability that an escape
   sequence will occur for a given pattern.  This greatly complicates
   the requirement of declaring exactly how much traffic is offered to a
   DUT/SUT.

   Second, in the absence of characterization and compensation for this
   overhead, the tester may unwittingly congest the DUT/SUT.  For
   example, if a tester intends to offer traffic to a DUT at 95 percent
   of line rate, but the link-layer protocol introduces an additional 1
   percent of overhead to escape control characters, then the aggregate
   offered load will be 96 percent of line rate.  If the DUT's actual
   channel capacity is only 95 percent, congestion will occur and the
   DUT will drop traffic even though the tester did not intend this
   outcome.

   As described in [RFC1661] and [RFC1662], PPP and HDLC-like framing
   introduce two kinds of escape sequences: bit and byte stuffing.  Bit
   stuffing refers to the insertion of an escape bit on bit-synchronous
   links.  Byte stuffing refers to the insertion of an escape byte on
   byte-synchronous links.  We discuss each in turn.

5.2.  PPP Bit Stuffing

[RFC1662], section 5.2 specifies that any sequence of five contiguous
   "1" bits within a frame must be escaped by inserting a "0" bit prior
   to the sequence.  This escaping is necessary to avoid confusion with
   the HDLC control character 0x7D, which contains six "1" bits.

   Consider the following PPP frame containing a TCP/IP packet.  Not
   shown is the 1-byte flag sequence (0x7D), at least one of which must
   occur between frames.

   The contents of the various frame fields can be described one of two
   ways:

https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/rfc1662
https://datatracker.ietf.org/doc/html/rfc1662#section-5.2
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   1.  Field contents never change over the test duration.  An example
       would be the IP version number.

   2.  Field contents change over the test duration.  Some of these
       changes are known prior to the test duration.  An example would
       be the use of incrementing IP addresses.  Some of these changes
       are unknown.  An example would be a dynamically calculated field
       such as the TCP checksum.

   In the diagram below, 30 out of 48 total bytes are subject to change
   over the test duration.  The fields containing the changeable bytes
   are given in ((double parentheses)).

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Address    |    Control    |           Protocol            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Version|  IHL  |Type of Service|          Total Length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Identification        |Flags|      Fragment Offset    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Time to Live |    Protocol   |       ((Header Checksum))     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     ((Source Address))                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  ((Destination Address))                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        ((Source Port))        |     ((Destination Port))      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      ((Sequence Number))                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  ((Acknowledgment Number))                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Data |           |U|A|P|R|S|F|                               |
   | Offset| Reserved  |R|C|S|S|Y|I|          ((Window))           |
   |       |           |G|K|H|T|N|N|                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         ((Checksum))          |         Urgent Pointer        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       ((FCS (4 bytes) ))                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   None of the other fields are known to contain sequences subject to
   bit-stuffing, at least not in their entirety.
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   Given the information at hand, and assuming static contents for the
   rest of the fields, the challenge is to determine the probability
   that bit-stuffing will occur.

5.2.1.  Calculating Bit-Stuffing Probability

   In order to calculate bit-stuffing probabilities, we assume that for
   any string of length L, the probability of the Lth + 1 bit equalling
   1 is 0.5 and the probability of the Lth + 1 bit equalling 0 is 0.5.
   Additionally, the value of the Lth + 1 bit is independant of any
   previous bits.

   We can calculate the probability of bit stuffing for both infinite
   and finite strings of random bits.  We begin with the infinite-string
   case, which is required to prove the finite-string case.  For an
   infinitely long string of random bits, we will need to insert a stuff
   bit if and only if state 5 is reached in the following state table.

                   |--------------------<----------------------|
                   |                                           |1
    _______      __|__      _____      _____      _____      __|__
   |       | 1  |     | 1  |     | 1  |     | 1  |     | 1  |     |
   | start |--->|  1  |--->|  2  |--->|  3  |--->|  4  |--->|  5  |
   |_______|    |_____|    |_____|    |_____|    |_____|    |_____|
     |   |         |          |          |          |          |
     |   |0        |0         |0         |0         |0         |0
     |-<-|----<----|----<-----|----<-----|----<-----|----<-----|

   Initially, we begin in the "start" state.  A 1 bit moves us into the
   next highest state, and a 0 bit returns us to the start state.  From
   state 5, a 1 bit takes us back to the 1 state and a 0 bit returns us
   to "start."  From this state table we can build the following
   transition matrix:

         | start     1       2       3       4       5
   ______|_________________________________________________
   start |  0.5  |  0.5  |  0.5  |  0.5  |  0.5  |  0.5
       1 |  0.5  |  0.0  |  0.0  |  0.0  |  0.0  |  0.5
       2 |  0.0  |  0.5  |  0.0  |  0.0  |  0.0  |  0.0
       3 |  0.0  |  0.0  |  0.5  |  0.0  |  0.0  |  0.0
       4 |  0.0  |  0.0  |  0.0  |  0.5  |  0.0  |  0.0
       5 |  0.0  |  0.0  |  0.0  |  0.0  |  0.5  |  0.0

   With this transition matrix we can build the following system of
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   equations.  If P(x) represents the probability of reaching state x,
   then:

   P(start) = 0.5 * P(start) + 0.5 * P(1) + 0.5 * P(2) + 0.5 * P(3) +
   0.5 * P(4) + 0.5 * P(5)

   P(1) = 0.5 * P(start) + 0.5 * P(5)
   P(2) = 0.5 * P(1)
   P(3) = 0.5 * P(2)
   P(4) = 0.5 * P(3)
   P(5) = 0.5 * P(4)

   P(start) + P(1) + P(2) + P(3) + P(4) + P(5) = 1

   Solving this system of equations yields:

   P(start) = 0.5
   P(1) = 8/31
   P(2) = 4/31
   P(3) = 2/31
   P(4) = 1/31
   P(5) = 1/62

   Thus, for an infinitely long string of random bits, the probability
   of 5 sequential 1 bits is 1/62.  Put another way, we expect to add
   one stuff bit for every 62 bits of random uniform data.

5.2.2.  Bit Stuffing for Finite Strings

   The above result indicates that for any string of uniformly
   distributed random bits, we expect a stuffing event to occur every 62
   bits.  So, given a string of some finite length L, where L >= 5, the
   expected number of stuffs is simply L * 1/62.

5.2.3.  Applied Bit Stuffing

   The amount of overhead attributable to bit stuffing may be calculated
   explicitly as long as the total number of random bits per frame,
   L_rand-bits, and the probability of stuffing, P(stuff), is known.

   % overhead = ( P(stuff) * L_rand-bits ) / framesize (in bits)

   Note that if the entire frame contains random bits, then the
   percentage overhead is simply the probability of stuffing expressed
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   as a percentage.

   Given that the overhead added by bit-stuffing is at most 1 in 62, or
   approximately 1.6 percent, it is RECOMMENDED that testers reduce the
   maximum offered load by 1.6 percent to avoid introducing congestion
   when testing devices using bit-synchronous interfaces (such as T1/E1,
   DS-3, and the like).

   The percentage given above is an approximation.  For greatest
   precision, the actual offered load SHOULD be calculated using the
   percentage overhead formula above and then expressed in frames per
   second, rounded down to the nearest integer.

   Note that the DUT/SUT may be able to forward offered loads higher
   than the calculated theoretical maximum rate without packet loss.
   Such results are the result of queuing on the part of the DUT/SUT.
   While a device's throughput may be above this level, delay-related
   measurements may be affected.  Accordingly, it is RECOMMENDED to
   reduce offered levels by the amount of bit-stuffing overhead when
   testing devices using bit-synchronous links.  This recommendation
   applies for all measurements, including throughput.

5.3.  POS Byte Stuffing

   [RFC1662] requires that "Each Flag Sequence, Control Escape octet,
   and any octet which is flagged in the sending Async-Control-
   Character-Map (ACCM), is replaced by a two octet sequence consisting
   of the Control Escape octet followed by the original octet exclusive-
   or'd with hexadecimal 0x20."  The practical effect of this is to
   insert a stuff byte for instances of up to 34 characters: 0x7E, 0x7D,
   or any of 32 ACCM values.

   A common implementation of PPP in HDLC-like framing is in PPP over
   Sonet/SDH (POS), as defined in [RFC2615].

   As with the bit-stuffing case, the requirement in characterizing POS
   test traffic is to determine the probability that byte-stuffing will
   occur for a given sequence.  This is much simpler to do than with
   bit-synchronous links, since there is no possibility of overlap
   across byte boundaries.

5.3.1.  Nullifying ACCM

   Testers can greatly reduce the probability of byte-stuffing by
   configuring link partners to negotiate an ACCM value of 0x00.  It is
   RECOMMENDED that testers configure the test instrument(s) and DUT/SUT
   to negotiate an ACCM value of 0x00 unless specific ACCM values are
   required.

https://datatracker.ietf.org/doc/html/rfc2615
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   One instance where nonzero ACCM values are used is in the layer 2
   tunneling protocol (L2TP), as defined in [RFC2661], section 4.4.6.
   When the default ACCM values are used, the probability of stuffing
   for any given random byte is 34 in 256, or approximately 13.3
   percent.

5.3.2.  Other Stuffed Characters

   If an ACCM value of 0x00 is negotiated, the only characters subject
   to stuffing are the flag and control escape characters.  Thus, we can
   say that without ACCM the probability of stuffing for any given
   random byte is 2 in 256, or approximately 0.8 percent.

5.3.3.  Applied Byte Stuffing

   The amount of overhead attributable to bit or byte stuffing may be
   calculated explicitly as long as the total number of random bytes per
   frame, L_rand-bytes, and the probability of stuffing, P(stuff), is
   known.

   % overhead = ( P(stuff) * L_rand-bytes ) / framesize (in bytes)

   Note that if the entire frame contains random bytes, then the
   percentage overhead is simply the probability of stuffing expressed
   as a percentage.

   When testing a DUT/SUT that implements PPP in HDLC-like framing and
   L2TP (or any other technology that uses nonzero ACCM values), it is
   RECOMMENDED that testers reduce the maximum offered load by 13.3
   percent to avoid introducing congestion.

   When testing a DUT/SUT that implements PPP in HDLC-like framing and
   an ACCM value of 0x00, it is RECOMMENDED that testers reduce the
   maximum offered load by 0.8 percent to avoid introducing congestion.

   Note that the percentages given above are approximations.  For
   greatest precision, the actual offered load SHOULD be calculated
   using the percentage overhead formula above and then expressed in
   frames per second (rounded down to the nearest integer).

   Note also that the DUT/SUT may be able to forward offered loads
   higher than the calculated theoretical maximum rate without packet
   loss.  Such results are the result of queuing on the part of the DUT/
   SUT.  While a device's throughput may be above this level, delay-
   related measurements may be affected.  Accordingly, it is RECOMMENDED
   to reduce offered levels by the amount of byte-stuffing overhead when
   testing devices using byte-synchronous links.  This recommendation
   applies for all measurements, including throughput.

https://datatracker.ietf.org/doc/html/rfc2661#section-4.4.6
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6.  Security Considerations

   This document recommends the use of pseudorandom patterns in test
   traffic.  The rand() functions of many programming languages produce
   output that is pseudorandom rather than truly random.  As far as the
   authors are aware, pseudorandom patterns are sufficient for
   generating test traffic in lab conditions.

[RFC2615], section 6, discusses a denial-of-service attack involving
   the intentional transmission of characters that require stuffing.
   This attack could consume up to 100 percent of available bandwidth.
   However, the test networks described in BMWG documents generally
   SHOULD NOT be reachable by anyone other than the tester(s).

https://datatracker.ietf.org/doc/html/rfc2615#section-6
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7.  IANA Considerations

   This document has no actions for IANA.
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