
Network Working Group D. Newman
Internet-Draft Network Test
Expires: May 24, 2007 T. Player
 Spirent Communications
 November 20, 2006

Hash and Stuffing: Overlooked Factors in Network Device Benchmarking
draft-ietf-bmwg-hash-stuffing-07.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 24, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2006).

Newman & Player Expires May 24, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Hash and Stuffing November 2006

Abstract

 Test engineers take pains to declare all factors that affect a given
 measurement, including intended load, packet length, test duration,
 and traffic orientation. However, current benchmarking practice
 overlooks two factors that have a profound impact on test results.
 First, existing methodologies do not require the reporting of
 addresses or other test traffic contents, even though these fields
 can affect test results. Second, "stuff" bits and bytes inserted in
 test traffic by some link-layer technologies add significant and
 variable overhead, which in turn affects test results. This document
 describes the effects of these factors; recommends guidelines for
 test traffic contents; and offers formulas for determining the
 probability of bit- and byte-stuffing in test traffic.

Newman & Player Expires May 24, 2007 [Page 2]

Internet-Draft Hash and Stuffing November 2006

Table of Contents

1. Introduction . 4
2. Requirements . 5
3. General considerations . 6
3.1. Repeatability . 6
3.2. Randomness . 6

4. Packet Content Variations 8
4.1. Problem Statement . 8
4.2. IEEE 802 MAC Addresses 9
4.2.1. Randomized Sets of MAC Addresses 10

4.3. MPLS Addressing . 12
4.4. Network-layer Addressing 12
4.5. Transport-layer Addressing 13
4.6. Application-layer Patterns 13

5. Control Character Stuffing 15
5.1. Problem Statement . 15
5.2. PPP Bit Stuffing . 15
5.2.1. Calculating Bit-Stuffing Probability 18
5.2.2. Bit Stuffing for Finite Strings 20
5.2.3. Applied Bit Stuffing 20

5.3. POS Byte Stuffing . 21
5.3.1. Nullifying ACCM 21
5.3.2. Other Stuffed Characters 21
5.3.3. Applied Byte Stuffing 22

6. Security Considerations 23
7. IANA Considerations . 24
8. References . 25
8.1. Normative References 25
8.2. Informative References 25

Appendix A. Acknowledgements 26
Appendix B. Proof of Formula for Finite Bit Stuffing 27
Appendix C. Explicit Calculation of Bit Stuffing Overhead for

 IPv4 . 28
Appendix D. Explicit Calculation of Bit Stuffing Overhead for

 IPv6 . 30
Appendix E. Terminology . 32

 Authors' Addresses . 33
 Intellectual Property and Copyright Statements 34

Newman & Player Expires May 24, 2007 [Page 3]

Internet-Draft Hash and Stuffing November 2006

1. Introduction

 Experience in benchmarking networking devices suggests that the
 contents of test traffic can have a profound impact on test results.
 For example, some devices may forward randomly addressed traffic
 without loss, but drop significant numbers of packets when offered
 packets containing nonrandom addresses.

 Methodologies such as [RFC2544] and [RFC2889] do not require any
 declaration of packet contents. These methodologies do require the
 declaration of test parameters such as traffic distribution and
 traffic orientation, and yet packet contents can have at least as
 great an impact on test results as the other factors. Variations in
 packet contents also can lead to non-repeatability of test results:
 Two individuals may follow methodology procedures to the letter, and
 still obtain very different results.

 A related issue is the insertion of stuff bits or bytes by link-layer
 technologies using PPP with HDLC-like framing. This stuffing is done
 to ensure sequences in test traffic will not be confused with control
 characters.

 Stuffing adds significant and variable overhead. Currently there is
 no standard method for determining the probability that stuffing will
 occur for a given pattern, and thus no way to determine what impact
 stuffing will have on test results.

 This document covers two areas. First, we discuss strategies for
 dealing with randomness and nonrandomness in test traffic. Second,
 we present formulas to determine the probability of bit- and byte-
 stuffing on point-to-point protocol (PPP) and packet over Sonet (POS)
 circuits. In both areas, we provide recommendations for obtaining
 better repeatability in test results.

 Benchmarking activities as described in this memo are limited to
 technology characterization using controlled stimuli in a laboratory
 environment, using dedicated address space.

 The benchmarking network topology will be an independent test setup
 and MUST NOT be connected to devices that may forward the test
 traffic into a production network, or misroute traffic to the test
 management network.

https://datatracker.ietf.org/doc/html/rfc2544
https://datatracker.ietf.org/doc/html/rfc2889

Newman & Player Expires May 24, 2007 [Page 4]

Internet-Draft Hash and Stuffing November 2006

2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Newman & Player Expires May 24, 2007 [Page 5]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Hash and Stuffing November 2006

3. General considerations

3.1. Repeatability

 Repeatability is a desirable trait in benchmarking, but it can be an
 elusive goal. It is a common but mistaken belief that test results
 can always be recreated provided the device under test and test
 instrument are configured identically for each test iteration. In
 fact, even identical configurations may introduce some variations in
 test traffic, such as changes in timestamps, TCP sequence numbers, or
 other common phenomena.

 While this variability does not necessarily invalidate test results,
 it is important to recognize the existing variation. Exact bit-for-
 bit repeatability of test traffic is a hard problem. A simpler
 approach is to acknowledge that some variation exists, characterize
 that variation, and describe it when analyzing test results.

 Another issue related to repeatability is the avoidance of randomness
 in test traffic. For example, benchmarking experience with some IEEE
 802.11 devices suggests that nonrandom media access control (MAC) and
 IP addresses must be used across multiple trials. Although this
 would seem to contradict some recommendations made in this document,
 in fact either nonrandom or pseudorandom patterns may be more
 desirable depending on the test setup. There are also situations
 where it may be desirable to use combinations of the two, for example
 by generating pseudorandom traffic patterns for one test trial and
 then re-using the same pattern across all trials. The keywords in
 this document are RECOMMENDs and not MUSTs with regard to the use of
 pseudorandom test traffic patterns.

 Note also that this discussion covers only repeatability, which is
 concerned with variability of test results from trial to trial on the
 same test bed. A separate concern is reproducibility, which refers
 to the precision of test results obtained from different test beds.
 Clearly, reproducibility across multiple test beds requires
 repeatability on a single test bed.

3.2. Randomness

 This document recommends the use of pseudorandom patterns in test
 traffic under controlled lab conditions. The rand() functions
 available in many programming languages produce output that is
 pseudorandom rather than truly random. Pseudorandom patterns are
 sufficient for the recommendations given in this document, provided
 they produce output that is uniformly distributed across the pattern
 space.

Newman & Player Expires May 24, 2007 [Page 6]

Internet-Draft Hash and Stuffing November 2006

 Specifically, for any random bit pattern of length L, the probability
 of generating that specific pattern SHOULD equal 1 over 2 to the Lth
 power.

Newman & Player Expires May 24, 2007 [Page 7]

Internet-Draft Hash and Stuffing November 2006

4. Packet Content Variations

4.1. Problem Statement

 The contents of test traffic can have a significant impact on metrics
 such as throughput, jitter, latency, and loss. For example, many
 network devices feed addresses into a hashing algorithm to determine
 which path upon which to forward a given packet.

 Consider the simple case of an Ethernet switch with eight network
 processors (NPs) in its switching fabric:

 ingress
 ||
 \/
 +-+
 | ___ ___ ___ ___ ___ ___ ___ ___ |
 || | | | | | | | | | | | | | | | |
 ||NP0| |NP1| |NP2| |NP3| |NP4| |NP5| |NP6| |NP7| |
 ||___| |___| |___| |___| |___| |___| |___| |___| |
 | |
 +-+
 ||
 \/
 egress

 To assign incoming traffic to the various NPs, suppose a hashing
 algorithm performs an exclusive-or (XOR) operation on the least
 significant 3 bits of the source and destination MAC addresses in
 each frame. (This is an actual example the authors have observed in
 multiple devices from multiple manufacturers.)

 In theory, a random distribution of source and destination MAC
 addresses should result in traffic being uniformly distributed across
 all eight NPs. (Instances of the term "random" in this document
 refer to a random uniform distribution across a given address space.

Section 3.2 describes random uniform distributions in more detail.)
 In practice, the actual outcome of the hash (and thus any test
 results) will be very different depending on the degree of randomness
 in test traffic.

 Suppose the traffic is nonrandom so that every interface of the test
 instrument uses this pattern in its source MAC addresses:

 00:00:PP:00:00:01

Newman & Player Expires May 24, 2007 [Page 8]

Internet-Draft Hash and Stuffing November 2006

 where PP is the source interface number of the test instrument.

 In this case, the least significant 3 bits of every source and
 destination MAC address are 001, regardless of interface number.
 Thus, the outcome of the XOR operation will always be 0, given the
 same three least significant bits:

 001 ^ 001 = 000

 Thus, the switch will assign all traffic to NP0, leaving the other
 seven NPs idle. Given a heavy enough load, NP0 and the switch will
 become congested, even though seven other NPs are available. At
 most, this device will be able to utilize approximately 12.5 percent
 of its total capacity, with the remaining 87.5 percent of capacity
 unused.

 Now consider the same example with randomly distributed addresses.
 In this case, the test instrument offers traffic using MAC addresses
 with this pattern:

 00:00:PP:00:00:RR

 where PP is the source interface number of the test instrument and RR
 is a pseudorandom number. In this case, there should be an equal
 probability of the least significant 3 bits of the MAC address having
 any value from 000 to 111 inclusive. Thus, the outcome of XOR
 operations should be equally distributed from 0 to 7, and
 distribution across NPs should also be equal (at least for this
 particular 3-bit hashing algorithm). Absent other impediments, the
 device should be able to utilize 100 percent of available capacity.

 This simple example presumes knowledge on the tester's part of the
 hashing algorithm used by the device under test. Knowledge of such
 algorithms is not always possible beforehand, and in any event
 violates the "black box" spirit of many documents produced by the
 IETF Benchmarking Working Group (BMWG).

 Therefore, this memo adds a new consideration for benchmarking
 methodologies, to select traffic patterns that overcome the effects
 of non-randomness regardless of the hashing algorithms in use. The
 balance of this section offers recommendations for test traffic
 patterns to avoid these effects, starting at the link layer and
 working up to the application layer.

4.2. IEEE 802 MAC Addresses

 Test traffic SHOULD use pseudorandom patterns in IEEE 802 MAC
 addresses. The following source and destination MAC address pattern

Newman & Player Expires May 24, 2007 [Page 9]

Internet-Draft Hash and Stuffing November 2006

 is RECOMMENDED:

 (RR & 0xFC):PP:PP:RR:RR:RR

 where (RR & 0xFC) is a pseudorandom number bitwise ANDed with 0xFC,
 PP:PP is the 1-indexed interface number of the test instrument and
 RR:RR:RR is a pseudorandom number.

 The bitwise ANDing of the high-order byte in the MAC address with
 0xFC sets the high-order two bits of that byte to 0, guaranteeing a
 non multicast address and a non locally administered address.

 Test traffic SHOULD use PP:PP to identify the source interface number
 of the test instrument. Such identification can be useful in
 troubleshooting. Allocating 2 bytes of the MAC address for interface
 identification allows for tests of up to 65,536 interfaces. A 2-byte
 space allows for tests much larger than those currently used in
 device benchmarking; however, tests involving more than 256
 interfaces (fully utilizing a 1-byte space) are fairly common.

 Note that the "PP:PP" designation refers to the source interface of
 the test instrument, not the device under test/system under test
 (DUT/SUT). There are situations where the DUT/SUT interface number
 may change during the test; one example would be a test of wireless
 LAN roaming. By referring to the (presumably static) source
 interface number of the test instrument, test engineers can keep
 track of test traffic regardless of any possible DUT/SUT changes.

 Further, source interface numbers SHOULD be 1-indexed and SHOULD NOT
 be 0-indexed. This avoids the low but nonzero probability of an
 all-0s MAC address. Some devices will drop frames with all-0s MAC
 addresses.

 It is RECOMMENDED to use pseudorandom patterns in the least
 significant 3 bytes of the MAC address. Using pseudorandom values
 for the low-order 3 bytes means choosing one of 16.7 million unique
 addresses. While this address space is vastly larger than is
 currently required in lab benchmarking, it does assure more realistic
 test traffic.

 Note also that since only 30 of 48 bits in the MAC address have
 pseudorandom values, there is no possibility of randomly generating a
 broadcast or multicast value by accident.

4.2.1. Randomized Sets of MAC Addresses

 It is common benchmarking practice for a test instrument to emulate
 multiple hosts, even on a single interface. This is desirable in

Newman & Player Expires May 24, 2007 [Page 10]

Internet-Draft Hash and Stuffing November 2006

 assessing DUT/SUT scalability.

 However, test instruments may emulate multiple MAC addresses by
 incrementing and/or decrementing addresses from a fixed starting
 point. This leads to situations as described above in "Address
 Pattern Variations" where hashing algorithms produce nonoptimal
 outcomes.

 The outcome can be nonoptimal even if the set of addresses begins
 with a pseudorandom number. For example, the following source/
 destination pairs will not be equally distributed by the 3-bit
 hashing algorithm discussed above:

 Source Destination
 00:00:01:FC:B3:45 00:00:19:38:8C:80
 00:00:01:FC:B3:46 00:00:19:38:8C:81
 00:00:01:FC:B3:47 00:00:19:38:8C:82
 00:00:01:FC:B3:48 00:00:19:38:8C:83
 00:00:01:FC:B3:49 00:00:19:38:8C:84
 00:00:01:FC:B3:4A 00:00:19:38:8C:85
 00:00:01:FC:B3:4B 00:00:19:38:8C:86
 00:00:01:FC:B3:4C 00:00:19:38:8C:87

 Again working with our 3-bit XOR hashing algorithm, we get the
 following outcomes:

 101 ^ 000 = 101
 110 ^ 001 = 111
 111 ^ 010 = 101
 000 ^ 011 = 011
 001 ^ 100 = 101
 010 ^ 101 = 111
 011 ^ 110 = 101
 100 ^ 111 = 011

 Note that only three of eight possible outcomes are achieved when
 incrementing addresses. This is actually the best case.
 Incrementing from other combinations of pseudorandom address pairs
 produces only one or two out of eight possible outcomes.

 Every MAC address SHOULD be pseudorandom, not just the starting one.

 When generating traffic with multiple addresses, it is RECOMMENDED
 that all addresses use pseudorandom values. There are multiple ways

Newman & Player Expires May 24, 2007 [Page 11]

Internet-Draft Hash and Stuffing November 2006

 to use sets of pseudorandom numbers. One strategy would be for the
 test instrument to iterate over an array of pseudorandom values
 rather than incrementing/decrementing from a starting address. The
 actual method is an implementation detail; in the end, any method
 that uses multiple addresses with pseudorandom patterns will be
 sufficient.

 Experience with benchmarking of IEEE 802.11 devices suggests
 suboptimal test outcomes may result if different pseudorandom MAC and
 IP addresses are used from trial to trial. In such cases (not just
 for 802.11 but for any device using IEEE 802 MAC and IP addresses),
 testers MAY generate a pseudorandom set of MAC and IP addresses once,
 or MAY generate a nonrandom set of MAC and IP addresses once. In
 either case, the same MAC and IP addresses MUST be used in all
 trials.

4.3. MPLS Addressing

 Similar to L2 switches, multiprotocol label switching (MPLS) devices
 make forwarding decisions based on a 20 bit MPLS label. Unless
 specific labels are required, it is RECOMMENDED that uniformly random
 values between 0 and 1,048,575 be used for all labels assigned by
 test equipment.

4.4. Network-layer Addressing

 When routers make forwarding decisions based solely on destination
 network address, there may be no potential for hashing collision of
 source and destination addresses, as in the case of Ethernet
 switching discussed earlier. However, the potential still exists for
 hashing collisions to exist at the network layer, and testers SHOULD
 take this potential into consideration when crafting the network-
 layer contents of test traffic.

 For example, the equal cost multipath (ECMP) feature performs load-
 sharing across multiple links. Routers implementing ECMP may perform
 a hash of source and destination IP addresses in assigning flows.

 Since multiple ECMP routes by definition have the same metric,
 routers use some other "tiebreaker" mechanism to assign traffic to
 each link. As far as the authors are aware, there is no standard
 algorithm for ECMP link assignment. Some implementations perform a
 hash of all bits of the source and destination IP addresses for this
 purpose. Others may perform a hash on one or more bytes in the
 source and destination IP addresses.

 Just as in the case of MAC addresses, nonrandom IP addresses can have
 an adverse effect on the outcome of ECMP link assignment decisions.

Newman & Player Expires May 24, 2007 [Page 12]

Internet-Draft Hash and Stuffing November 2006

 When benchmarking devices that implement ECMP or any other form of
 Layer 3 aggregation, it is RECOMMENDED to use a randomly distributed
 range of IP addresses. In particular, testers SHOULD NOT use
 addresses that produce the undesired effects of address processing.
 If, for example, a DUT can be observed to exhibit high packet loss
 when offered IPv4 network addresses that take the form x.x.1.x/24,
 and relatively low packet loss when the source and destination
 network addresses take the form of x.x.R.x/24 (where R is some random
 value between 0 and 9), test engineers SHOULD use the random pattern.

4.5. Transport-layer Addressing

 Some devices with transport- or application-layer awareness use TCP
 or UDP port numbers in making forwarding decisions. Examples of such
 devices include load balancers and application-layer firewalls.

 Test instruments have the capability of generating packets with
 random TCP and UDP source and destination port numbers. Known
 destination port numbers are often required for testing application-
 layer devices. However, unless known port numbers are specifically
 required for a test, it is RECOMMENDED to use pseudorandom and
 uniformly distributed values for both source and destination port
 numbers.

 In addition, it may be desirable to pick pseudorandom values from a
 selected pool of numbers. Many services identify themselves through
 use of reserved destination port numbers between 1 and 1023
 inclusive. Unless specific port numbers are required, it is
 RECOMMENDED to pick randomly distributed destination port numbers
 between these lower and upper boundaries.

 Similarly, clients typically choose source port numbers in the space
 between 1024 and 65535 inclusive. Unless specific port numbers are
 required, it is RECOMMENDED to pick randomly distributed source port
 numbers between these lower and upper boundaries.

4.6. Application-layer Patterns

 Many measurements require the insertion of application-layer
 header(s) and payload into test traffic. Application-layer packet
 contents offer additional opportunities for stuffing to occur, and
 may also present nonrandom outcomes when fed through application
 layer-aware hashing algorithms. Given the vast number of
 application-layer protocols in use, we make no recommendation for
 specific test traffic patterns to be used; however, test engineers
 SHOULD be aware that application-layer traffic contents MAY produce
 nonrandom outcomes with some hashing algorithms. The same issues
 that apply with lower-layer traffic patterns also apply at the

Newman & Player Expires May 24, 2007 [Page 13]

Internet-Draft Hash and Stuffing November 2006

 application layer. As discussed in section 5, the potential for
 stuffing exists with any part of a test packet, including
 application-layer contents. For example, some traffic generators
 insert fields into packet payloads to distinguish test traffic.
 These fields may contain a transmission timestamp; sequence number;
 test equipment interface identifier and/or "stream" number; and a CRC
 over the contents of the test payload or test packet. All these
 fields are potential candidates for stuffing.

Newman & Player Expires May 24, 2007 [Page 14]

Internet-Draft Hash and Stuffing November 2006

5. Control Character Stuffing

5.1. Problem Statement

 Link-layer technologies that use high-level data link control (HDLC)-
 like framing may insert an extra bit or byte before each instance of
 a control character in traffic. These "stuffing" insertions prevent
 confusion with control characters, but they may also introduce
 significant overhead. Stuffing is data-dependent; thus selection of
 different payload patterns will result in frames transmitted on the
 media that vary in length, even though the original frames may all be
 of the same length.

 The overhead of these escape sequences is problematic for two
 reasons. First, explicitly calculating the amount of overhead can be
 non-trivial or even impossible for certain types of test traffic. In
 such cases, the best testers can do is to characterize the
 probability that an escape sequence will occur for a given pattern.
 This greatly complicates the requirement of declaring exactly how
 much traffic is offered to a DUT/SUT.

 Second, in the absence of characterization and compensation for this
 overhead, the tester may unwittingly congest the DUT/SUT. For
 example, if a tester intends to offer traffic to a DUT at 95 percent
 of line rate, but the link-layer protocol introduces an additional 1
 percent of overhead to escape control characters, then the aggregate
 offered load will be 96 percent of line rate. If the DUT's actual
 channel capacity is only 95 percent, congestion will occur and the
 DUT will drop traffic even though the tester did not intend this
 outcome.

 As described in [RFC1661] and [RFC1662], PPP and HDLC-like framing
 introduce two kinds of escape sequences: bit and byte stuffing. Bit
 stuffing refers to the insertion of an escape bit on bit-synchronous
 links. Byte stuffing refers to the insertion of an escape byte on
 byte-synchronous links. We discuss each in turn.

5.2. PPP Bit Stuffing

[RFC1662], section 5.2 specifies that any sequence of five contiguous
 "1" bits within a frame must be escaped by inserting a "0" bit prior
 to the sequence. This escaping is necessary to avoid confusion with
 the HDLC control character 0x7E, which contains six "1" bits.

 Consider the following PPP frame containing a TCP/IP packet. Not
 shown is the 1-byte flag sequence (0x7E), at least one of which must
 occur between frames.

https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/rfc1662
https://datatracker.ietf.org/doc/html/rfc1662#section-5.2

Newman & Player Expires May 24, 2007 [Page 15]

Internet-Draft Hash and Stuffing November 2006

 The contents of the various frame fields can be described one of
 three ways:

 1. Field contents never change over the test duration. An example
 would be the IP version number.

 2. Field contents change over the test duration. Some of these
 changes are known prior to the test duration. An example would
 be the use of incrementing IP addresses. Some of these changes
 are unknown. An example would be a dynamically calculated field
 such as the TCP checksum.

 3. Field contents may not be known. An example would be proprietary
 payload fields in test packets.

Newman & Player Expires May 24, 2007 [Page 16]

Internet-Draft Hash and Stuffing November 2006

 In the diagram below, 30 out of 48 total bytes in the packet headers
 are subject to change over the test duration. Additionally, the
 payload field could be subject to change both content and size. The
 fields containing the changeable bytes are given in ((double
 parentheses)).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Address | Control | Protocol |
 +-+
 |Version| IHL |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Protocol | ((Header Checksum)) |
 +-+
 | ((Source Address)) |
 +-+
 | ((Destination Address)) |
 +-+
 | ((Source Port)) | ((Destination Port)) |
 +-+
 | ((Sequence Number)) |
 +-+
 | ((Acknowledgment Number)) |
 +-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	((Window))
		G	K	H	T	N	N	
+-+								
((Checksum))	Urgent Pointer							
+-+								
((payload))								
+-+								
((FCS (4 bytes)))								
 +-+

 None of the other fields are known to contain sequences subject to
 bit-stuffing, at least not in their entirety. Note that there is no
 payload in this simple example; as noted in section 4.6, the payload
 contents of test traffic often will present additional opportunities
 for stuffing to occur, and MUST be taken into account when

Newman & Player Expires May 24, 2007 [Page 17]

Internet-Draft Hash and Stuffing November 2006

 calculating stuff probability.

 Given the information at hand, and assuming static contents for the
 rest of the fields, the challenge is to determine the probability
 that bit-stuffing will occur.

5.2.1. Calculating Bit-Stuffing Probability

 In order to calculate bit-stuffing probabilities, we assume that for
 any string of length L, where b_n represents the "n"th bit of the
 string and 1 <= n <= L, the probability of b_n equalling "1" is 0.5
 and the probability of b_n equalling "0" is 0.5. Additionally, the
 value of b_n is independent of any other bits.

 We can calculate the probability of bit-stuffing for both infinite
 and finite strings of random bits. We begin with the infinite-string
 case. For an infinitely long string of uniformly random bits, we
 will need to insert a stuff bit if and only if state 5 is reached in
 the following state table.

 |--------------------<----------------------|
 | |1
 _______ __|__ _____ _____ _____ __|__
	1		1		1		1		1	
start	--->	1	--->	2	--->	3	--->	4	--->	5
_______		_____		_____		_____		_____		_____
 | | | | | | |
 | |0 |0 |0 |0 |0 |0
 |-<-|----<----|----<-----|----<-----|----<-----|----<-----|

 Initially, we begin in the "start" state. A "1" bit moves us into
 the next highest state, and a "0" bit returns us to the start state.
 From state 5, a "1" bit takes us back to the 1 state and a "0" bit
 returns us to "start."

Newman & Player Expires May 24, 2007 [Page 18]

Internet-Draft Hash and Stuffing November 2006

 From this state diagram we can build the following transition matrix:

 \ To |
 \ |
 \ |
 From \ | start 1 2 3 4 5
 ______\|___
 start | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0
 1 | 0.5 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0
 2 | 0.5 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0
 3 | 0.5 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0
 4 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5
 5 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0

 With this transition matrix we can build the following system of
 equations. If P(x) represents the probability of reaching state x,
 then:

 P(start) = 0.5 * P(start) + 0.5 * P(1) + 0.5 * P(2) + 0.5 * P(3) +
 0.5 * P(4) + 0.5 * P(5)

 P(1) = 0.5 * P(start) + 0.5 * P(5)
 P(2) = 0.5 * P(1)
 P(3) = 0.5 * P(2)
 P(4) = 0.5 * P(3)
 P(5) = 0.5 * P(4)

 P(start) + P(1) + P(2) + P(3) + P(4) + P(5) = 1

 Solving this system of equations yields:

 P(start) = 0.5
 P(1) = 8/31
 P(2) = 4/31
 P(3) = 2/31
 P(4) = 1/31
 P(5) = 1/62

 Thus, for an infinitely long string of uniformly random bits, the
 probability of any individual bit causing a transition to state 5,
 and thus causing a stuff, is 1/62.

Newman & Player Expires May 24, 2007 [Page 19]

Internet-Draft Hash and Stuffing November 2006

5.2.2. Bit Stuffing for Finite Strings

 For a uniformly random finite bit string of length L, we can
 explicitly count the number of bit-stuffs in the set of all possible
 strings of length L. This count can then be used to calculate the
 expected number of stuffs for the string.

 Let f(L) represent the number of bit-stuffs in the set of all
 possible strings of length L. Clearly, for 0 <= L <= 4, f(L) = 0 as
 there are no strings of length 5. For L >= 5, f(L) = 2^(L-5) + (L-5)
 * 2^(L-6) + f(L-5).

 A proof of this formula can be found in Appendix B.

 Now, the expected number of stuffing events, E[stuffs], can be found
 by dividing the total number of stuffs in all possible strings by the
 total number of strings. Thus for any L, E[stuffs] = f(L) / 2^L.

 Similarly, the probability that any particular bit is the cause of a
 bit-stuff can be calculated by dividing the total number of stuffs in
 the set of all strings of length L by the total number of bits in the
 set of all strings of length L. Hence for any L, the probability that
 L_n, where 5 <= n <= L, caused a stuff is f(L) / (L * 2^L).

5.2.3. Applied Bit Stuffing

 The amount of overhead attributable to bit-stuffing may be calculated
 explicitly as long as the expected number of stuff bits per frame,
 E[bit-stuffs] is known. For long uniformly random bit-strings,
 E[bit-stuffs] may be approximated by multiplying the length of the
 string by 1/62.

 % overhead = E[bit-stuffs] / framesize (in bits)

 Given that the overhead added by bit-stuffing is approximately 1 in
 62, or 1.6 percent, it is RECOMMENDED that testers reduce the maximum
 intended load by 1.6 percent to avoid introducing congestion when
 testing devices using bit-synchronous interfaces (such as T1/E1,
 DS-3, and the like).

 The percentage given above is an approximation. For greatest
 precision, the actual intended load SHOULD be explicitly calculated
 from the test traffic.

 Note that the DUT/SUT may be able to forward intended loads higher
 than the calculated theoretical maximum rate without packet loss.
 Such results are the result of queuing on the part of the DUT/SUT.
 While a device's throughput may be above this level, delay-related

Newman & Player Expires May 24, 2007 [Page 20]

Internet-Draft Hash and Stuffing November 2006

 measurements may be affected. Accordingly, it is RECOMMENDED to
 reduce offered levels by the amount of bit-stuffing overhead when
 testing devices using bit-synchronous links. This recommendation
 applies for all measurements, including throughput.

5.3. POS Byte Stuffing

 [RFC1662] requires that "Each Flag Sequence, Control Escape octet,
 and any octet which is flagged in the sending Async-Control-
 Character-Map (ACCM), is replaced by a two octet sequence consisting
 of the Control Escape octet followed by the original octet exclusive-
 or'd with hexadecimal 0x20." The practical effect of this is to
 insert a stuff byte for instances of up to 34 characters: 0x7E, 0x7D,
 or any of 32 ACCM values.

 A common implementation of PPP in HDLC-like framing is in PPP over
 Sonet/SDH (POS), as defined in [RFC2615].

 As with the bit-stuffing case, the requirement in characterizing POS
 test traffic is to determine the probability that byte-stuffing will
 occur for a given sequence. This is much simpler to do than with
 bit-synchronous links, since there is no possibility of overlap
 across byte boundaries.

5.3.1. Nullifying ACCM

 Testers can greatly reduce the probability of byte-stuffing by
 configuring link partners to negotiate an ACCM value of 0x00. It is
 RECOMMENDED that testers configure the test instrument(s) and DUT/SUT
 to negotiate an ACCM value of 0x00 unless specific ACCM values are
 required.

 One instance where nonzero ACCM values are used is in the layer 2
 tunneling protocol (L2TP), as defined in [RFC2661], section 4.4.6.
 When the default ACCM values are used, the probability of stuffing
 for any given random byte is 34 in 256, or approximately 13.3
 percent.

5.3.2. Other Stuffed Characters

 If an ACCM value of 0x00 is negotiated, the only characters subject
 to stuffing are the flag and control escape characters. Thus, we can
 say that without ACCM the probability of stuffing for any given
 random byte is 2 in 256, or approximately 0.8 percent.

https://datatracker.ietf.org/doc/html/rfc2615
https://datatracker.ietf.org/doc/html/rfc2661#section-4.4.6

Newman & Player Expires May 24, 2007 [Page 21]

Internet-Draft Hash and Stuffing November 2006

5.3.3. Applied Byte Stuffing

 The amount of overhead attributable to byte stuffing may be
 calculated explicitly as long as the expected number of stuff bytes
 per frame, E[byte-stuffs], is known. For long uniformly random byte-
 strings, E[byte-stuffs] may be approximated by multiplying the length
 of the string by the probability that any single byte is a stuff
 byte.

 % overhead = E[byte-stuffs] / framesize (in bytes)

 When testing a DUT/SUT that implements PPP in HDLC-like framing and
 L2TP (or any other technology that uses nonzero ACCM values), it is
 RECOMMENDED that testers reduce the maximum intended load by 13.3
 percent to avoid introducing congestion.

 When testing a DUT/SUT that implements PPP in HDLC-like framing and
 an ACCM value of 0x00, it is RECOMMENDED that testers reduce the
 maximum intended load by 0.8 percent to avoid introducing congestion.

 Note that the percentages given above are approximations. For
 greatest precision, the actual intended load SHOULD be explicitly
 calculated from the test traffic

 Note also that the DUT/SUT may be able to forward intended loads
 higher than the calculated theoretical maximum rate without packet
 loss. Such results are the result of queuing on the part of the DUT/
 SUT. While a device's throughput may be above this level, delay-
 related measurements may be affected. Accordingly, it is RECOMMENDED
 to reduce offered levels by the amount of byte-stuffing overhead when
 testing devices using byte-synchronous links. This recommendation
 applies for all measurements, including throughput.

Newman & Player Expires May 24, 2007 [Page 22]

Internet-Draft Hash and Stuffing November 2006

6. Security Considerations

 This document recommends the use of pseudorandom patterns in test
 traffic. This usage requires a uniform distribution, but does not
 have strict predictability requirements. Although it is not
 sufficient for security applications, the rand() function of many
 programming languages may provide a uniform distribution that is
 usable for testing purposes in lab conditions. Implementations of
 rand() may vary and provide different properties so test designers
 SHOULD understand the distribution created by the underlying function
 and how seeding the initial state affects its behavior.

[RFC2615], section 6, discusses a denial-of-service attack involving
 the intentional transmission of characters that require stuffing.
 This attack could consume up to 100 percent of available bandwidth.
 However, the test networks described in BMWG documents generally
 SHOULD NOT be reachable by anyone other than the tester(s).

https://datatracker.ietf.org/doc/html/rfc2615#section-6

Newman & Player Expires May 24, 2007 [Page 23]

Internet-Draft Hash and Stuffing November 2006

7. IANA Considerations

 This document has no actions for IANA.

Newman & Player Expires May 24, 2007 [Page 24]

Internet-Draft Hash and Stuffing November 2006

8. References

8.1. Normative References

 [RFC1661] Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51,
RFC 1661, July 1994.

 [RFC1662] Simpson, W., "PPP in HDLC-like Framing", STD 51, RFC 1662,
 July 1994.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2544] Bradner, S. and J. McQuaid, "Benchmarking Methodology for
 Network Interconnect Devices", RFC 2544, March 1999.

 [RFC2615] Malis, A. and W. Simpson, "PPP over SONET/SDH", RFC 2615,
 June 1999.

 [RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,
 G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",

RFC 2661, August 1999.

 [RFC2889] Mandeville, R. and J. Perser, "Benchmarking Methodology
 for LAN Switching Devices", RFC 2889, August 2000.

8.2. Informative References

 [Ca63] Campbell, D. and J. Stanley, "Experimental and Quasi-
 Experimental Designs for Research", 1963.

 [Go97] Goralski, W., "SONET: A Guide to Synchronous Optical
 Networks", 1997.

 [Kn97] Knuth, D., "The Art of Computer Programming, Volume 2,
 Third Edition", 1997.

https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/rfc1662
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2544
https://datatracker.ietf.org/doc/html/rfc2615
https://datatracker.ietf.org/doc/html/rfc2661
https://datatracker.ietf.org/doc/html/rfc2889

Newman & Player Expires May 24, 2007 [Page 25]

Internet-Draft Hash and Stuffing November 2006

Appendix A. Acknowledgements

 The authors gratefully acknowledge reviews and contributions by Tom
 Alexander, Len Ciavattone, Robert Craig, John Dawson, Neil Carter,
 Glenn Chagnot, Kevin Dubray, Diego Dugatkin, Rafael Francis, Paul
 Hoffman, David Joyner, Al Morton, Joe Perches, Jerry Perser, Scott
 Poretsky, Dan Romanescu, and Kris Rousey.

Newman & Player Expires May 24, 2007 [Page 26]

Internet-Draft Hash and Stuffing November 2006

Appendix B. Proof of Formula for Finite Bit Stuffing

 We would like to construct a function, f(L), that allows us to
 explicitly count the total number of bit-stuffs in the set of all
 strings of length L. Let S represent a bit string of length L.
 Additionally, let b_n be the nth bit of string S where 1 <= n <= L.

 Clearly, when 0 <= L <= 4, f(L) = 0, as there can be no possible bit-
 stuff if there are < 5 bits.

 Suppose L >= 5, then there are some number of strings that will cause
 stuffing events. Let us count them.

 We begin by counting the number of strings that will cause at least
 one bit-stuff. Let us suppose that the first 5 bits, b_1,...,b_5,
 cause a stuffing event. Then, there are (L-5) bits that could have
 any value, i.e. the bits in position b_6 to b_L. So, there must be
 2^(L-5) strings where the first 5 bits cause a stuff.

 Now suppose that some other sequence of bits cause a stuff, b_n to
 b_(n+4) for some 1 < n <= L-4. In order to guarantee that b_n starts
 a stuff sequence, b_(n-1) must be 0, otherwise a stuff could occur at
 b_(n+3). Thus, there are a total of 6 bits which must have fixed
 values in the string, S, and a total of L-6 bits which do not have
 fixed values. Hence, for each value of n, there are 2^(L-6) possible
 strings with at least one bit-stuff for a total of (L-5) * 2^(L-6)

 So, given a string of length L, where L >= 5, we know that there are
 2^(L-5) + (L-5) * 2^(L-6) strings which will be transmitted with at
 least one stuffed bit. However, if L >= 10, then there could be more
 than one bit-stuff within the string S. Let Z represent a sequence of
 5 sequential ones bits. Consider the bit string ..., b_n, b_(n+1),
 b_(n+2), Z, b_(n+8), b_(n+9), ... where 1 <= n <= L-9. For the above
 sequence of bits to generate two stuffing events, there must be at
 least one run of five sequential one's bits in ..., b_n, b_(n+1),
 b_(n+2), b_(n+8), b_(n+9), ... Note that the position of Z in the
 above sequence is irrelevant when looking for bit-stuffs.
 Additionally, we've already determined that the number of strings
 with at least one stuff in a bit string of length L is 2^(L-5) +
 (L-5) * 2^(L-6). Thus, the total number of stuffing events in the
 set of all bit strings of length L can be represented as f(L) =
 2^(L-5) + (L-5) * 2^(L-6) + f(L-5) for all L >= 5.

Newman & Player Expires May 24, 2007 [Page 27]

Internet-Draft Hash and Stuffing November 2006

Appendix C. Explicit Calculation of Bit Stuffing Overhead for IPv4

 Consider a scenario where a tester is transmitting IPv4 test packets
 across a bit synchronous link. The test traffic has the following
 parameters (values are in decimal):

 +-----------------------+-----------------------------+
 | Field | Value |
 +-----------------------+-----------------------------+
 | IP Version | 4 |
 | | |
 | IP Header Length | 5 |
 | | |
 | Type of service (TOS) | 0 |
 | | |
 | Datagram Length | 1028 |
 | | |
 | ID | 0 |
 | | |
 | Flags/Fragments | 0 |
 | | |
 | Time to live (TTL) | 64 |
 | | |
 | Protocol | 17 |
 | | |
 | Source IP | 192.168.13.1-192.168.13.254 |
 | | |
 | Destination IP | 192.168.1.10 |
 | | |
 | Source UDP Port | pseudorandom port |
 | | |
 | Destination UDP Port | pseudorandom port |
 | | |
 | UDP Length | 1008 |
 | | |
 | Payload | 1000 pseudorandom bytes |
 +-----------------------+-----------------------------+

 We want to calculate the expected number of stuffs per packet, or
 E[packet stuffs].

 First, we observe that we have 254 different IP headers to consider,
 and secondly, that the changing 4th octet in the IP source addresses
 will produce occasional bit-stuffing events, so we must enumerate
 these occurrences. Additionally, we must take into account that the
 3rd octet of the source IP and the first octet of the destination IP
 will affect stuffing occurrences.

Newman & Player Expires May 24, 2007 [Page 28]

Internet-Draft Hash and Stuffing November 2006

 An exhaustive search shows that cycling through all 254 headers
 produces 51 bit stuffs for the destination IP address. This gives us
 an expectation of 51/254 stuffs per packet due to the changing source
 IP address.

 For the IP CRC, we observe that the value will decrement as the
 source IP is incremented. A little calculation shows that the CRC
 values for these headers will fall in the range of 0xE790 to 0xE88F.
 Additionally, both the protocol and source IP address must be
 considered, as they provide a source of extra leading and trailing
 ones bits.

 An exhaustive search shows that cycling through all 254 headers will
 produce 102 bit stuffs for the CRC. This gives us an expectation of
 102/254 stuffs per packet due to the CRC.

 Since our destination IP address is even and the UDP length is less
 than 32768, the random source and destination ports provide 32 bits
 of sequential random data without forcing us to consider the boundary
 bits. Additionally, we will assume that since our payload is
 pseudorandom, our UDP CRC will be too. The even UDP length field
 again allows us to only consider the bits explicitly contained within
 the CRC and data fields. So, using the formula for the expected
 number of stuffs in a finite string from section 5.2.2, we determine
 that E[UDP stuffs] = f(32)/2^32 + f(8000+16)/2^(8000+16). Now,
 f(32)/2^32 is calculable without too much difficulty and is
 approximately 0.465. However, f(8016)/2^8016 is a little large to
 calculate easily, so we will approximate this value by using the
 probability value obtained in section 5.2.1. Thus, E[UDP] ~ 0.465 +
 8016/62 ~ 129.755.

 Hence, E[packet stuffs] = 51/254 + 102/254 + 129.755 = 130.357.
 However, since we cannot have a fractional stuff, we round down to
 130. Thus, we expect 130 stuffs per packet.

 Finally, we can calculate bit-stuffing overhead by dividing the
 expected number of stuff bits by the total number of bits in the IP
 datagram. So, this example traffic would generate 1.58% overhead.
 If our payload had consisted exclusively of zero bits, our overhead
 would have been 0.012%. An all ones payload would produce 19.47%
 overhead.

Newman & Player Expires May 24, 2007 [Page 29]

Internet-Draft Hash and Stuffing November 2006

Appendix D. Explicit Calculation of Bit Stuffing Overhead for IPv6

 Consider a scenario where a tester is transmitting IPv6 test packets
 across a bit synchronous link. The test traffic has the following
 parameters (values are in decimal except for IPv6 addresses, which
 are in hexadecimal):

 +----------------------+------------------------------+
 | Field | Value |
 +----------------------+------------------------------+
 | IP Version | 6 |
 | | |
 | Traffic Class | 0 |
 | | |
 | Flow Label | pseudorandom label |
 | | |
 | Payload Length | 1008 |
 | | |
 | Next Header | 17 |
 | | |
 | Hop Limit | 64 |
 | | |
 | Source IP | DEAD:0:0:1::1-DEAD:0:0:1::FF |
 | | |
 | Destination IP | DEAD:0:0:2::10 |
 | | |
 | Source UDP Port | pseudorandom port |
 | | |
 | Destination UDP Port | pseudorandom port |
 | | |
 | UDP Length | 1008 |
 | | |
 | Payload | 1000 pseudorandom bytes |
 +----------------------+------------------------------+

 We want to calculate the expected number of stuffs per packet, or
 E[packet stuffs].

 First, we observe that we have 255 different IP headers to consider,
 and secondly, that the changing 4th quad in the IP source addresses
 will produce occasional bit-stuffing events, so we must enumerate
 these occurrences. Additionally, we must take into account that the
 first quad of the destination IP address will affect stuffing
 occurrences, since binary representation of the address provides
 leading 1's bits.

 An exhaustive search shows that cycling through all 255 headers
 produces 36 bit stuffs for the destination IP address. This gives us

Newman & Player Expires May 24, 2007 [Page 30]

Internet-Draft Hash and Stuffing November 2006

 an expectation of 36/255 stuffs per packet due to the changing source
 IP address.

 We also have to consider our pseudorandomly generated flow label.
 However, since our Traffic Class field is 0 and our Payload Length
 field is less than 32768 (and thus the leading bit of the Payload
 Length field is 0), we may consider the flow label as 20 bits of
 random data. Thus the expectation of a stuff in the flow label is
 f(20)/2^20 ~ .272.

 Similar to the flow label case above, the fourth quad of our
 destination IP address is even and the UDP length field is less than
 32768, so the random source and destination ports provide 32 bits of
 sequential random data without forcing us to consider the boundary
 bits. Additionally, we will assume that since our payload is
 pseudorandom, our UDP CRC will be too. The even UDP length field
 again allows us to only consider the bits explicitly contained within
 the CRC and data fields. So, using the formula for the expected
 number of stuffs in a finite string from section 5.2.2, we determine
 that E[UDP stuffs] = f(32)/2^32 + f(8000+16)/2^(8000+16). Now,
 f(32)/2^32 is calculable without too much difficulty and is
 approximately 0.465. However, f(8016)/2^8016 is a little large to
 calculate easily, so we will approximate this value by using the
 probability value obtained in section 5.2.1. Thus, E[UDP stuffs] ~
 0.465 + 8016/62 ~ 129.755.

 Now we may explicitly calculate that E[packet stuffs] = 36/255 +
 0.272 + 129.755 = 130.168. However, since we cannot have a
 fractional stuff, we round down to 130. Thus, we expect 130 stuffs
 per packet.

 Finally, we can calculate bit-stuffing overhead by dividing the
 expected number of stuff bits by the total number of bits in the IP
 datagram. So, this example traffic would generate 1.55% overhead.
 If our payload had consisted exclusively of zero bits, our overhead
 would have been 0.010%. An all ones payload would produce 19.09%
 overhead.

Newman & Player Expires May 24, 2007 [Page 31]

Internet-Draft Hash and Stuffing November 2006

Appendix E. Terminology

 Hashing

 Also known as a hash function. In the context of this document, an
 algorithm for transforming data for use in path selection by a
 networking device. For example, an Ethernet switch with multiple
 processing elements might use the source and destination MAC
 addresses of an incoming frame as input for a hash function. The
 hash function produces numeric output that tells the switch which
 processing element to use in forwarding the frame.

 Randomness

 In the context of this document, the quality of having an equal
 probability of any possible outcome for a given pattern space. For
 example, if an experiment has N randomly distributed outcomes, then
 any individual outcome has a 1 in N probability of occurrence.

 Repeatability

 The precision of test results obtained on a single test bed, but from
 trial to trial. See also "reproducibility."

 Reproducibility

 The precision of test results between different setups, possibly at
 different locations. See also "repeatability."

 Stuffing

 The insertion of a bit or byte within a frame to avoid confusion with
 control characters. For example, RFC 1662 requires the insertion of
 a 0 bit prior to any sequence of five contiguous 1 bits within a
 frame to avoid confusion with the HDLC control character 0x7E.

https://datatracker.ietf.org/doc/html/rfc1662

Newman & Player Expires May 24, 2007 [Page 32]

Internet-Draft Hash and Stuffing November 2006

Authors' Addresses

 David Newman
 Network Test

 Email: dnewman@networktest.com

 Timmons C. Player
 Spirent Communications

 Email: timmons.player@spirent.com

Newman & Player Expires May 24, 2007 [Page 33]

Internet-Draft Hash and Stuffing November 2006

Full Copyright Statement

 Copyright (C) The IETF Trust (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Newman & Player Expires May 24, 2007 [Page 34]

