Internet Engineering Task Force Internet-Draft Intended status: Informational Expires: 15 October, 2011 Jan Novak Cisco Systems, Inc.

15 April 2011

IP Flow Information Accounting and Export Benchmarking Methodology draft-ietf-bmwg-ipflow-meth-01.txt

Abstract

This document provides methodology and framework for quantifying performance impact of monitoring of IP flows on a network device and export of this information to a collector. It identifies the rate at which the IP flows are created, expired and successfully exported as a new performance metric in combination with traditional throughput. The metric is only applicable to the devices compliant with the Architecture for IP Flow Information Export [RFC5470].

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of $\underline{BCP 78}$ and $\underline{BCP 79}$.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on 15 October, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to <u>BCP 78</u> and the IETF Trust's Legal Provisions Relating to IETF Documents (<u>http://trustee.ietf.org/license-info</u>) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Novak Expires October, 2011

[Page 1]

Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in <u>RFC 2119</u> [<u>RFC2119</u>].

Table of Contents

<u>1</u> . Introduction
2. Terminology
<u>2.1</u> Existing Terminology
<u>2.2</u> New Terminology
3. Flow Monitoring Performance Metric.
<u>3.1</u> The Definition
3.2 Device Applicability.
3.3 Measurement Concept
3.4 The Measurement Procedure Overview
4. Measurement Set Up
<u>4.1</u> Measurement Topology
<u>4.2</u> Base DUT Set Up
$\frac{4.2}{4.3}$ Flow Monitoring Configuration.
$\frac{4.3}{4.4}$ Collector
<u>4.4</u> Collector
$\frac{4.6}{4.6}$ Frame Formats
$\frac{4.0}{4.7}$ Frame Sizes
4.7 Flame Sizes
4.9 Illustrative Test Set-up Examples
5. Flow Monitoring Throughput Measurement Methodology 18
5.1 Flow Monitoring Configuration
5.2 Traffic Configuration
5.3 Cache Population
5.4 Measurement Time Interval
5.5 Flow Export Rate Measurement
5.6 The Measurement Procedure
6. <u>RFC2544</u> Measurements
6.1 Flow Monitoring Configuration
6.2 Measurements With the Flow Monitoring Throughput Set-up. 23
6.3 Measurements With Fixed Flow Expiration Rate
6.4 Measurements With Single Traffic Component
6.5 Measurements With Two Traffic Components
7. Flow Monitoring Accuracy
8. Evaluating Flow Monitoring Applicability
<u>9</u> . Acknowledgements
<u>10</u> . IANA Considerations
$\frac{10}{11}$. Security Considerations
12. References
<u>12.1</u> Normative References
$\frac{1}{2}$

<u>12.2</u> Informative References	<u>27</u>
Appendix A: Recommended Report Format	<u>28</u>

Novak

[Page 2]

Appendix B: Miscellaneous Tests					<u>29</u>
B.1 DUT Under Traffic Load					<u>29</u>
<u>B.2</u> In-band Flow Export					<u>29</u>
<u>B.3</u> Variable Packet Rate					<u>30</u>
<u>B.4</u> Bursty Traffic					<u>30</u>
<u>B.5</u> Various Flow Monitoring Configurations .					<u>30</u>
<u>B.6</u> Tests With Bidirectional Traffic					<u>31</u>
<u>B.7</u> Instantaneous Flow Export Rate					<u>31</u>

1. Introduction

Monitoring of IP flows (Flow monitoring) on network devices is a widely deployed application that has numerous uses in both service provider and enterprise segments as detailed in the Requirements for IP Flow Information Export [RFC3917]. This document provides a methodology for measuring Flow monitoring performance so that network operators have a framework for considering measurement impact on the network and network equipment.

Flow monitoring is defined in the Architecture for IP Flow Information Export [RFC5470] and related IPFIX documents.

What is the cost of enabling the IP Flow monitoring and export to a collector ? This is the basic question that this methodology is designed to answer.

This document goal is a series of methodology specifications for the measurement of Flow monitoring performance, in a way that is comparable amongst various implementations, platforms, and vendor's devices.

Since Flow monitoring will in most cases run on network devices also forwarding packets, the methodology for <u>RFC2544</u> measurements (with IPv6 and MPLS specifics defined in [<u>RFC5180</u>] and [<u>RFC5695</u>] respectively) in the presence of Flow monitoring is also employed here.

The most significant performance parameter is the rate at which IP flows are created and expired in the network devices memory and exported to a collector. Therefore, this document focuses on a methodology on how to measure the maximum IP flow rate that a network device can sustain without impacting the forwarding plane, without losing any IP flow information, and without compromising the IP flow accuracy.

[RFC2544], [RFC5180] and [RFC5695] specify benchmarking of network devices forwarding IPv4, IPv6 and MPLS [RFC3031] traffic, respectively. The methodology specified here stays the same for any traffic type. The only restriction is the actual Flow monitoring

support for the particular traffic type.

A variety of different network device architectures exist that are capable of Flow monitoring and export. As such, this document does Novak Expires October, 2011

[Page 3]

April 2011

not attempt to list the various white box variables (CPU load, memory utilization, TCAM utilization etc) that could be gathered as they do always help in comparison evaluations. A more complete understanding of the stress points of a particular device can be attained using this internal information and the tester MAY choose to gather this information during the measurement iterations.

2. Terminology

The terminology used in this document is mostly based on [RFC5470], [RFC2285] and [RFC1242] as summarised in the section 2.1. The only new terms needed for this methodology are defined in the following section 2.2.

<u>2.1</u> Existing Terminology

Device Under Test (DUT)	[RFC2285, <u>section 3.1.1</u>]
Flow	[RFC5470, <u>section 2</u>]
Flow Key	[RFC5470, <u>section 2</u>]
Flow Record	[RFC5470, <u>section 2</u>]
Observation Point	[RFC5470, <u>section 2</u>]
Metering Process	[RFC5470, <u>section 2</u>]
Exporting Process	[RFC5470, <u>section 2</u>]
Exporter	[RFC5470, <u>section 2</u>]
Collector	[RFC5470, <u>section 2</u>]
Control Information	[RFC5470, <u>section 2</u>]
Data Stream	[RFC5470, <u>section 2</u>]
Flow Expiration	[RFC5470, <u>section 5.1.1</u>]
Flow Export	[RFC5470, <u>section 5.1.2</u>]
Throughput	[RFC1242, <u>section 3.17]</u>
Packet Sampling	[RFC5476, <u>section 2</u>]

2.2 New Terminology

2.2.1 Cache

Definition:

Memory area held and dedicated by the DUT to store Flow Record information prior Flow Expiration

Novak

Expires October, 2011

[Page 4]

Internet-Draft

2.2.2 Cache Size

Definition:

The size of the Cache in terms of how many entries of Flow Records the Cache can hold

Discussion:

This term is typically represented as a configurable option in the particular Flow monitoring implementation. Its highest value will depend on the memory available in the network device.

Measurement units: Number of Flow Records

2.2.3 Active Timeout

Definition:

For long-running Flows, the time interval after which the Metering Process expires a Flow Record from the Cache so that only regular Flow updates are exported.

Discussion:

This term is typically represented as a configurable option in the particular Flow monitoring implementation. See <u>section 5.1.1 of</u> [RFC5470] for more detailed discussion.

Flows are considered long-running when they last longer than several multiples of the Active Timeout or contain larger amount of packets (in the case of Active Timeout is zero) than usual for a single transaction based Flows, in the order of tens of packets and higher.

Measurement units: Seconds

2.2.4 Inactive Timeout

Definition:

The time interval used by the Metering Process to expire a Flow Record from the Cache, when no more packets belonging to that specific Flow are observed during the interval.

Discussion:

This term is typically represented as a configurable option in the particular Flow monitoring implementation. See <u>section 5.1.1 of</u> [RFC5470] for more detailed discussion.

Measurement units: Seconds Novak

[Page 5]

2.2.5 Flow Export Rate

Definition:

Number of Flow Records that expire from the Cache (as defined by the Flow Expiration term) and are exported to the Collector within a measurement time interval.

The measured Flow Export Rate MUST include BOTH the Data Stream and the Control Information, as defined in <u>section 2 of [RFC5470]</u>.

Discussion:

The Flow Export Rate is measured using Flow Export data observed at the Collector by counting the exported Flow Records during the measurement time interval (see <u>section 5.4</u>). The value obtained is an average of the instantaneous export rates observed during the measurement time interval. The smallest possible measurement interval (if attempting to measure nearly instantaneous export rate rather than average export rate on the DUT) is limited by the export capabilities of the particular Flow monitoring implementation.

Measurement units: Number of Flow Records per second

3. Flow Monitoring Performance Metric

3.1 The Definition

Flow Monitoring Throughput

Definition:

The maximum Flow Export Rate the DUT can sustain without losing a single Flow Record expired from the Cache. Additionally, for the packet forwarding devices, also the maximum Flow Export Rate the DUT can sustain without dropping packets in the Forwarding Plane (see Figure 1).

Measurement units: Number of Flow Records per second

3.2 Device Applicability

The Flow monitoring performance metric is applicable to network devices that implement <u>RFC5470</u> [<u>RFC5470</u>] architecture. These devices can be network packet forwarding devices or appliances which analyze the traffic but do not forward traffic (probes, sniffers, replicators).

The Collector performance is out of scope of this document.

Novak

[Page 6]

3.3 Measurement Concept

The traffic in the Figure 1 represents the test traffic sent to the DUT and forwarded by the DUT. When testing devices which do not act as network packet forwarding devices (appliances - probes, sniffers, replicators) the forwarding plane is simply an Observation Point as defined in <u>section 2 of [RFC5470]</u>. The <u>RFC2544</u> Throughput of such devices will simply be always zero and the only applicable performance metrics is Flow Monitoring Throughput.

The Flow monitoring enabled (see <u>section 4.3</u>) on the DUT (and represented in the Figure 1 by the Flow Monitoring Plane) uses the traffic information provided by the Forwarding Plane and configured Flow Keys to create the Flow Records representing the traffic forwarded (or observed) by the DUT. The Flow Records are stored in the Flow monitoring Cache and expired from there depending on the Cache configuration (Active and Inactive Timeouts, number of Flow Records and the Cache Size) and the traffic pattern. The expired Flow Records are exported from the DUT to the Collector (see Figure 2 in <u>section 4</u>).

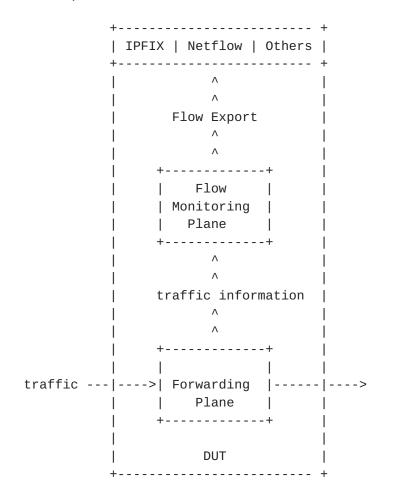


Figure 1. The functional block diagram of the DUT

The Forwarding Plane and Flow Monitoring Plane represent two separate functional blocks, each with it's own performance capability. The Forwarding Plane handles user data packets and is fully characterised by the metrics defined by [<u>RFC2544</u>]. Novak

[Page 7]

Internet-Draft

The Flow Monitoring Plane handles Flow Records which reflect the forwarded traffic. The metric that measures the Flow Monitoring Plane performance is Flow Export Rate, and the benchmark is the Flow Monitoring Throughput.

3.4 The Measurement Procedure Overview

The measurement procedure is fully specified in sections $\underline{4}$, $\underline{5}$ and $\underline{6}$. This section provides an overview of principles for the measurements.

The basic measurement procedure of performance characteristics of a DUT with Flow monitoring enabled is a conventional Throughput measurement using a search algorithm to determine the maximum packet rate at which none of the offered packets and corresponding Flow Records are dropped by the DUT as described in [RFC1242] and section 26.1 of [RFC2544].

The Device Under Test (DUT) with Flow monitoring enabled contains two functional blocks which need to be measured using characteristics applicable to one or both blocks (see Figure 1). See sections 3.4.1 and 3.4.2 for further discussion.

On one hand the Flow Monitoring Plane and Forwarding Plane (see Figure 1) need to be looked at as two independent blocks (and the performance of each of them measured independently) but on the other hand when measuring the performance of one of them the status and performance of the other MUST be known and benchmarked when both are present.

3.4.1 Flow Monitoring Plane Performance Measurement

The Flow Monitoring Throughput MUST be (and can only be) measured with one packet per Flow as specified in the <u>section 5</u>. This traffic type represents the most demanding traffic from the Flow monitoring point of view and will exercise the Flow Monitoring Plane (see Figure 1) of the DUT most. The exit criteria for the Flow Monitoring Throughput measurement are one of the following (e.g. if any of the conditions is reached):

- a. The Flow Export Rate at which the DUT starts to drop Flow Records or the Flow information gets corrupted
- b. The Flow Export Rate at which the Forwarding Plane starts to drop or corrupt packets (if the Forwarding Plane is present)

<u>3.4.2</u> Forwarding Plane Performance Measurement

The Forwarding Plane (see Figure 1) performance metrics are fully specified by [<u>RFC2544</u>] and MUST be measured accordingly. A detailed traffic analysis (see below) with relation to Flow monitoring MUST be performed prior of any <u>RFC2544</u> measurements. Mainly the Flow Export

Rate caused by the test traffic during an $\underline{\mathsf{RFC2544}}$ measurement MUST be known and reported.

Novak

[Page 8]

The required traffic analysis mainly involves the following:

- a. Which packet header parameters are incremented or changed during traffic generation
- b. Which Flow Keys the Flow monitoring configuration uses to generate Flow Records

The <u>RFC2544</u> performance metrics can be measured in one of the three modes:

- a. As a baseline of forwarding performance without Flow monitoring
- b. At certain level of Flow monitoring activity specified by a Flow Expiration Rate lower than Flow Monitoring Throughput
- c. At the maximum of Flow monitoring performance, e.g. using traffic conditions representing a measurement of Flow Monitoring Throughput

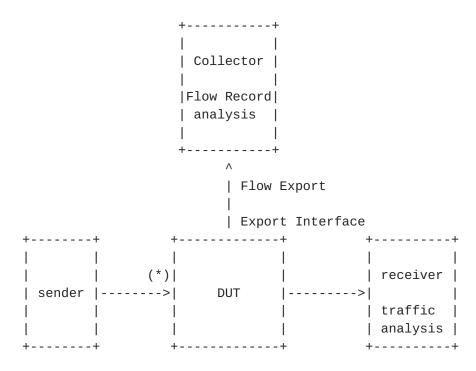
The above mentioned measurement mode in point a. represents an ordinary Throughput measurement specified in $\frac{\text{RFC2544}}{\text{RFC2544}}$. The details how to setup the measurements in points b. and c. are in the section 6.

4. Measurement Set Up

This section concentrates on the set-up of all components necessary to perform Flow monitoring performance measurement. The recommended reporting format can be found in Appendix A.

4.1 Measurement Topology

The measurement topology described in this section is applicable only to the measurements with packet forwarding network devices. The possible architectures and implementation of the traffic monitoring appliances (see <u>section 3.2</u>) are too various to be covered in this document. Generally, those appliances instead of the Forwarding Plane will have some kind of feed (an optical splitter, an interface sniffing traffic on a shared media or an internal channel on the DUT providing a copy of the traffic) providing the information about the traffic necessary for Flow monitoring analysis. The measurement topology then needs to be adjusted to the appliance architecture.


The measurement set-up is identical to the one used by [<u>RFC2544</u>], with the addition of a Collector to analyze the Flow Export (see Figure 2).

In the measurement topology with unidirectional traffic, the traffic is generated from the sender to the receiver, where the received traffic is analyzed to check it is identical to the generated traffic.

The ideal way to implement the measurement is using one traffic generator (device providing the sender and receiver capabilities) with a sending port and a receiving port. This allows for an easy check if all the traffic sent by the sender was transmitted by the DUT and received at the receiver. Novak

Expires October, 2011

[Page 9]

The export interface (connecting the Collector) MUST NOT be used for forwarding the test traffic but only for the Flow Export data containing the Flow Records. In all measurements, the export interface MUST have enough bandwidth to transmit Flow Export data without congestion. In other words, the export interface MUST NOT be a bottleneck during the measurement.

Note that more complex topologies might be required. For example, if the effects of enabling Flow monitoring on several interfaces are of concern or the media maximum speed is less than the DUT throughput, the topology can be expanded with several input and output ports. However, the topology MUST be clearly written in the measurement report.

4.2 Baseline DUT Set Up

The baseline DUT set-up and the way the set-up is reported in the measurement results is fully specified in <u>Section 7 of [RFC2544]</u>.

The base DUT configuration might include other features like packet filters or quality of service on the input and/or output interfaces if there is the need to study Flow monitoring in the presence of those features. The Flow monitoring measurement procedures do not change in this case. Consideration needs to be made when evaluating measurements results to take into account the possible change of packets rates offered to the DUT and Flow monitoring after application of the features to the configuration. Any such feature configuration MUST be part of the measurement report.

The DUT export interface (see Figure 2) MUST be configured with sufficient output buffers to avoid dropping the Flow Export data due to a simple lack of resources in the interface hardware. Novak Expires October, 2011

[Page 10]

Internet-Draft Flow Monitoring Benchmarking

<u>4.3</u> Flow Monitoring Configuration

This section covers all the aspects of the Flow monitoring configuration necessary on the DUT in order to perform Flow monitoring performance measurement. The necessary configuration has number of components (see [RFC5470]), namely Observation Points, Metering Process and Exporting Process as detailed below.

The DUT MUST support Flow monitoring architecture as specified by [<u>RFC5470</u>]. The DUT SHOULD support IPFIX [<u>RFC5101</u>] for easier results comparison.

The DUT configuration and any existing Cache MUST be erased before application of any new configuration for the currently executed measurement.

4.3.1 Observation Points

The Observation Points specify the interfaces and direction where the Flow monitoring traffic analysis is performed.

The (*) in Figure 2 designates the Observation Points in the default configuration. Other DUT Observation Points might be configured depending on the specific measurement needs as follows:

- a. ingress port/ports(s) only
- b. egress port(s) /ports only
- c. both ingress and egress

Generally, the placement of Observation Points depends upon the position of the DUT in the deployed network and the purpose of Flow monitoring deployment. See [RFC3917] for detailed discussion. The measurement procedures are otherwise same for all these possible configurations.

In the case when both ingress and egress Flow monitoring is enabled on one DUT the results analysis needs to take into account that each Flow will be represented in the DUT Cache by two Flow Records (one for each direction) and therefore also the Flow Export will contain those two Flow Records.

If more than one Observation Point for one direction is defined on the DUT the traffic passing through each of the Observation Points MUST be configured in such a way that it creates Flows and Flow Records which do not overlap, e.g. each packet (or set of packets if measuring with more than one packet per Flow) sent to the DUT on different ports still creates one unique Flow Record.

The specific Observation Points and associated monitoring direction MUST be included as part of the report of the results.

Novak

[Page 11]

Page 11]

4.3.2 Metering Process

Metering Process MUST be enabled in order to create the Cache in the DUT and configure the Cache related parameters.

Cache Size available to the DUT operation MUST be known and taken into account when designing the measurement as specified in the <u>section 5</u>.

Inactive and Active Timeouts MUST be known and taken into account when designing the measurement as specified in the <u>section 5</u>.

The Cache Size, the Inactive and Active Timeouts, and if present, the specific Packet Sampling techniques and associated parameters MUST be included as part of the results report.

4.3.3 Exporting Process

Exporting Process MUST be configured in order to export the Flow Record data to the Collector.

Exporting Process MUST be configured in such a way that all Flow Records from all configured Observation Points are exported towards the Collector, after the expiration policy composed of the Inactive and Active Timeouts and Cache Size.

The Exporting Process SHOULD be configured with IPFIX [<u>RFC5101</u>] as the protocol to use to format the Flow Export data. If the Flow monitoring implementation does not support it, proprietary protocols MAY be used.

Various Flow monitoring implementations might use different default values regarding the export of Control Information. The Flow Export corresponding to Control Information SHOULD be analyzed and reported as a separate item on the measurement report. Preferably, the export of Control Information SHOULD always be configured same.

IPFIX documents [RFC5101] in section 10 and [RFC5470] in section 8.1 discuss the possibility to deploy various transport layer protocols to deliver Flow Export data from the DUT to the Collector. The selected protocol MUST be included in the measurement report. Only benchmarks with same transport layer protocol SHOULD be compared. If the Flow monitoring implementation allows to use all of UDP, TCP and SCTP as the transport layer protocols, each of the protocols SHOULD be measured in a separate measurement run.

If reliable transport protocol is used for the transmission of the

Flow Export data from DUT, the configuration of the transport session MUST allow for non-blocking data transmission. An example of parameters to look at would be TCP window size or maximum segment size (MSS).

Novak

[Page 12]

4.3.4 Flow Records

Flow Record defines the traffic parameters which Flow monitoring uses to analyze the traffic and MUST be configured in order to perform the analysis. The Flow Key fields of the Flow Record define the traffic parameters which will be used to create new Flow Records in the DUT Cache.

The Flow Record definition is implementation specific. A Flow monitoring implementation might allow for only fixed Flow Record definition, based on the most common IP parameters in the IPv4 or IPv6 headers - like source and destination IP addresses, IP protocol numbers or transport level port numbers. Another implementation might allow the user to actually define his own completely arbitrary Flow Record to monitor the traffic. The requirement for the measurements defined in this document is only the need for a large number of Flow Records in the Cache. The Flow Keys needed to achieve that will typically be source and destinations IP addresses and transport level port numbers.

Recommended full IPv4, IPv6 or MPLS Flow Record: Flow Keys Source IP address Destination IP address MPLS label (for MPLS traffic type only)

> Transport layer source port Transport layer destination port IP protocol number (IPv6 next header) IP type of service (IPv6 traffic class)

Other fields Packet counter Byte counter

If the Flow monitoring allows for user defined Flow Records the minimal Flow Record configurations allowing to achieve large numbers of Cache entries for example are:

Flow Keys Source IP address Destination IP address

Other fields Packet counter

or:

Flow Key fields Transport layer source port Transport layer destination port

Other fields Packet counter

Novak

[Page 13]

Internet-Draft F

Flow Monitoring Benchmarking

The Flow Record configuration MUST be clearly noted in the measurement report. The Flow Monitoring Throughput measurements on different DUTs or different Flow monitoring implementations can and MUST be compared only for exactly same Flow Record configuration.

4.3.5 MPLS Measurement Specifics

The Flow Record configuration for measurements with MPLS encapsulated traffic SHOULD contain MPLS label or any other field which is part of the MPLS header.

The DUT Cache SHOULD be checked prior the performance measurement to contain the correct MPLS related information.

The captured export data at the Collector SHOULD be checked for the presence of MPLS labels or the monitored MPLS parameters. MPLS forwarding performance document [RFC5695] specifies number of possible MPLS label operations to test. The Observation Points SHOULD be placed on all the DUT test interfaces where the particular MPLS label operation takes place. The performance measurements SHOULD be performed with only one MPLS label operation at the time.

The DUT SHOULD be configured in such a way, that all the traffic is subject of the measured MPLS label operation.

4.4 Collector

The Collector is needed in order to capture the Flow Export data which allow the Flow Monitoring Throughput to be measured.

The Collector can be used as exclusively capture device providing just hexadecimal format of the Flow Export data. In such a case it does not need to have any additional Flow Export decoding capabilities.

However if the Collector is also used to decode the Flow Export data then it SHOULD support IPFIX [<u>RFC5101</u>] for easier results analysis. If proprietary Flow Export is deployed, the Collector MUST support it otherwise the Flow Export data analysis is not possible.

The Collector MUST be capable to capture at the full rate the export packets sent from the DUT without losing any of them. In the case of the use of reliable transport protocols (see also <u>section 4.3.3</u>) to transmit Flow Export data, the Collector MUST have sufficient resources to guarantee non-blocking data transmission on the transport layer session.

During the analysis, the Flow Export data needs to be decoded and the received Flow Records counted.

The Collector SHOULD support Ethernet type of interface to connect to the DUT but any media which allows data capturing and analysis can be used.

Novak

[Page 14]

Internet-Draft

The capture buffer MUST be cleared at the beginning of each measurement.

4.5 Packet Sampling

A Flow monitoring implementation might provide the capability to analyze the Flows after Packet Sampling is performed. The possible procedures and ways of Packet Sampling are described in [<u>RFC5476</u>] and [<u>RFC5475</u>] and only those SHOULD be used for measurements.

If the DUT is configured with one of the sampling techniques as specified in [<u>RFC5475</u>] the measurement report MUST include this sampling technique along with its parameters. The presence of the configured sampling technique on the DUT and its parameters SHOULD be verified in the Flow Export data as received on the Collector.

Packet Sampling will affect the measured Flow Export Rate. If systematic sampling (see <u>section 6.5 of [RFC5476]</u>) is in use, the Flow Export Rate can be derived from the packet rates (see <u>section 5</u> of this document) using the configured sampling parameters. If random sampling is in use the Flow Export Rate can be derived from the traffic rates as obtained on the receiver side of the traffic generator, provided that packet losses can be excluded by monitoring the DUT forwarding statistics.

If measurements are performed with Flows containing more than one packet per Flow (see <u>section 6.4</u> of this document) the sampling ratio SHOULD always be higher than the number of packets in the Flows (for small number of packets per Flow). This significantly decreases the probability of erasing a whole Flow to a minimum and the measured Flow Expiration Rate stays unaffected by sampling.

If Flow accuracy analysis (see <u>section 7</u>) is performed, the results will be always affected by Packet Sampling and the complete check of data cannot be performed.

This document does not intend to study the effects of Packet Sampling itself on the network devices but Packet Sampling can simply be applied as part of the Flow monitoring configuration on the DUT and perform the measurements as specified in the later sections. Consideration needs to be made when evaluating measurements results to take into account the change of packet rates offered to the DUT and especially to Flow monitoring after Packet Sampling is applied.

4.6 Frame Formats

Flow monitoring itself is not dependent in any way on the media used on the input and output ports. Any media can be used as supported by the DUT and the test equipment. The most common transmission media and corresponding frame formats (Ethernet, Packet over SONET) for IPv4, IPv6 and MPLS traffic are specified within [<u>RFC2544</u>], [<u>RFC5180</u>] and [<u>RFC5695</u>].

Novak

[Page 15]

Internet-Draft

Flow Monitoring Benchmarking

4.7 Frame Sizes

Frame sizes of the traffic analyzed by the to use are specified in [RFC2544] section 9 for Ethernet type interfaces (64, 128, 256, 1024, 1280, 1518 bytes) and in [RFC5180] section 5 for Packet over SONET interfaces (47, 64, 128, 256, 1024, 1280, 1518, 2048, 4096 bytes).

When measuring with large frame sizes care needs to be taken to avoid any packet fragmentation on the DUT interfaces which could negatively affect measured performance values.

4.8 Flow Export Data Packet Sizes

The Flow monitoring performance will be affected by the packet size the particular implementation uses to transmit Flow Export data to the Collector. The used packet size SHOULD be part of the test report and only measurements with same packet sizes SHOULD be compared.

The DUT export interface (see Figure 2) maximum transmission unit (MTU) SHOULD be configured to the media largest available value.

4.9 Illustrative Test Set-up Examples

The below examples represent only hypothetical test set-up to clarify the use of Flow monitoring parameters and configuration together with traffic parameters to test Flow monitoring. The actual benchmarking specifications are in the sections 5 and 6.

4.9.1 Example 1 - Inactive Timeout Flow Expiration

The traffic generator sends 1000 packets per second in 10000 defined streams, each stream identified by an unique destination IP address. Each stream has then packet rate 0.1 packets per second. The packets are sent in a round robin fashion (stream 1 to 10000) while incrementing the destination IP address with each sent packet.

The configured Cache Size is 20000 Flow Records. The configured Active Timeout is 100 seconds, the Inactive Timeout is 5 seconds.

Flow monitoring on the DUT uses the destination IP address as Flow Key.

A packet with destination IP address equal to A is sent every 10 seconds, so it means that the Flow Record is refreshed in the Cache every 10 seconds, while the Inactive Timeout is 5 seconds. In this case the Flow Records will expire from the Cache due to the Inactive Timeout and when a new packet is sent with the same IP address A it will create a new Flow Record in the Cache.

The measured Flow Export Rate in this case will be 1000 Flow

Records per second since every single sent packet will always create a new Flow Record and we send 1000 packets per second.

Novak

Expires October, 2011

[Page 16]

The expected number of Flow Record entries in the Cache during the whole measurement is around 5000. It corresponds to the Inactive Timeout being 5 seconds and during those five seconds 5000 entries are created. This expectation might change in real measurement set-ups witch large Cache Sizes and high packet rates where the export rate might be limited and lower than the offered Flow Export Rate. This behaviour is entirely implementation specific.

4.9.2 Example 2 - Active Timeout Flow Expiration

The traffic generator sends 1000 packets per second in 100 defined streams, each stream identified by an unique destination IP address. Each stream has then packet rate 10 packets per second. The packets are sent in a round robin fashion while incrementing (stream 1 to 100) the destination IP address with each sent packet.

The configured Cache Size is 1000 Flow Records. The configured Active Timeout is 100 seconds, the Inactive Timeout is 10 seconds.

Flow monitoring on the DUT uses as Flow Key the destination IP address.

After first 100 packets sent, 100 Flow Records are created and placed in the Flow monitoring Cache. The subsequent packets will be counted against the already created Flow Records since the destination IP address (Flow Key) has already been seen by the DUT (provided the Flow Record did not expire yet as described below).

A packet with destination IP address equal to A is sent every 0.1 second, so it means that the Flow Record is refreshed in the Cache every 0.1 second, while the Inactive Timeout is 10 seconds. In this case the Flow Records will not expire from the Cache until the Active Timeout, e.g. they will expire every 100 seconds and then the Flow Records will be created again.

If the test measurement time is 50 seconds from the start of the traffic generator then the measured Flow Export Rate is 0 since during this period no Flow Records expired from the Cache.

If the test measurement time is 100 seconds from the start of the traffic generator then the measured Flow Export Rate is 1 Flow Record per second.

If the test measurement time is 290 seconds from the start of the traffic generator then the measured Flow Export Rate is 2/3 of Flow Record per second since during the 290 seconds period we expired 2 times the same 100 of Flows.

Novak

[Page 17]

5. Flow Monitoring Throughput Measurement Methodology

Objective:

To measure the Flow monitoring performance in a manner comparable between different Flow monitoring implementations.

Metric definition:

Flow Monitoring Throughput - see section 3.

Discussion:

The Flow monitoring implementations might chose to handle differently Flow Export from a partially empty Cache or in the situation when the Cache is fully occupied by the Flow Records. Similarly software and hardware based DUTs can handle the same situation as stated above differently. The purpose of the benchmark measurement in this section is to abstract from all the possible behaviours and define one measurement procedure covering all the possibilities. The only criteria is to measure as defined here until Flow Record or packet losses are seen. The decision whether to dive deeper into the conditions under which the packet losses happen is left to the tester.

5.1 Flow Monitoring Configuration

Cache Size

Cache Size configuration is dictated by the expected position of the DUT in the network and by the chosen Flow Keys of the Flow Record. The number of unique Flow Keys sets that the traffic generator (sender) provides should be multiple times larger than the Cache Size. This way the Flow Records in the Cache never get updated before Flow Expiration and Flow Export. The Cache Size MUST be known in order to define the measurements circumstances properly.

Inactive Timeout

Inactive Timeout is set (if configurable) to the minimum possible value on the network device. This makes sure the Flow Records are expired as soon as possible and exported out of the DUT Cache. It MUST be known in order to define the measurements circumstances completely and equally across implementations.

Active Timeout

Active Timeout is set (if configurable) to equal or higher value than the Inactive Timeout. It MUST be known in order to define the measurements circumstances completely and equally across implementations. Novak

[Page 18]

Flow Keys Definition:

Needs to allow for large numbers of unique Flow Records to be created in the Cache by incrementing values of one or several Flow Keys. The number of unique combinations of Flow Keys values SHOULD be several times larger than the DUT Cache Size. This makes sure that any incoming packet will never refresh any already existing Flow Record in the Cache.

5.2 Traffic Configuration

Traffic Generation

The traffic generator needs to increment the Flow Keys values with each sent packet, this way each packet represents one Flow Record in the DUT Cache.

If the used test traffic rate is below the maximum media rate for the particular packet size the traffic generator is expected to send the packets in equidistant time intervals. The traffic generators which do not fulfil this condition MUST NOT and cannot be used for the Flow Monitoring Throughput measurement. An example of this behaviour is if the test traffic rate is one half of the media rate and the traffic generator achieves this by sending each half of the second at the full media rate and then sending nothing for the second half of the second. In such conditions it would be impossible to distinguish if the DUT failed to handle the Flows due to the input buffers shortage during the burst or due to the limits in the Flow Monitoring performance.

Measurement Duration

The measurement duration MUST be at least two times longer than the Inactive Timeout otherwise no Flow Export would be seen. The measurement duration SHOULD guarantee that the number of Flow Records created during the measurement exceeds the available Cache Size on the DUT.

5.3 Cache Population

The product of Inactive Timeout and the packet rate offered to the DUT (cache population) during the measurements determines the total number of Flow Record entries in the DUT Cache during one particular measurement (while taking into account some margin for dynamic behaviour during high DUT loads when processing the Flows).

The Flow monitoring implementation might behave differently depending on the relation of cache population to the available Cache Size during the measurement. This behaviour is fully implementation specific and will also be influenced if the DUT is software based or hardware based architecture.

The cache population (if it is lower than the available Cache Size or higher than the available Cache Size) during a particular benchmark measurement SHOULD be noted and mainly only measurements with same cache population SHOULD be compared.

Novak

Expires October, 2011

[Page 19]

Internet-Draft

Flow Monitoring Benchmarking

<u>5.4</u> Measurement Time Interval

The measurement time interval is the time value which is used to calculate the measured Flow Expiration Rate from the captured Flow Export data. It is obtained as specified below.

<u>RFC2544</u> specifies with the precision of the packet beginning and end the time intervals to be used to measure the DUT time characteristics. In the case of a Flow Monitoring Throughput measurement the start and stop time needs to be clearly defined but the granularity of this definition can be limited to just marking the time start and stop with the start and stop of the traffic generator. This assumes that the traffic generator and DUT are collocated and the variance in transmission delay from the generator to the DUT is negligible as compared to the total time of traffic generation.

The measurement start time: the time when the traffic generator is started

The measurement stop time: the time when the traffic generator is stopped

The measurement time interval is then calculated as the difference (stop time) - (start time) - (Inactive Timeout).

This supposes that the Cache Size is large enough so that the time to fill it up with Flow Records is longer than Inactive Timeout. Otherwise the time to fill up the Cache needs to be used for calculation of the measurement time interval in the place of the Inactive Timeout.

Instead of measuring the absolute values of stop and start time it is possible to setup the traffic generator to send traffic for certain pre-defined time interval which is then used in the above definition instead of the difference (stop time) - (start time).

The Collector MUST stop collecting the Flow Export data at the measurement stop time.

The Inactive Timeout (or the time needed to fill up the Cache) causes delay of the Flow Export data behind the test traffic which is forwarded by the DUT. E.g. if the traffic starts at time point X Flow Export will start only at the time point X + Inactive Timeout (or X + time to fill up the Cache). Since Flow Export capture needs to stop with the traffic (because that's when the DUT stops to process the Flow Records at the given rate) the time interval during which the DUT kept exporting data is by Inactive Timeout shorter than the time interval when the test traffic was sent from the traffic generator to the DUT. Novak

[Page 20]

Internet-Draft

5.5 Flow Export Rate Measurement

The Flow Export Rate needs to be measured in two consequent steps. The purpose of the first step (point a. below) is to gain the actual value for the rate, the second step (point b. below) needs to be done in order to verify Flow Record drops during the measurement:

- a. In the first step the captured Flow Export data MUST be analyzed only for the capturing interval (measurement time interval) as specified in <u>section 5.4</u>. During this period the DUT is forced to process Flow Records at the rate the packets are sent. When traffic generation finishes, the behaviour when emptying the Cache is completely implementation specific and the Flow Export data from this period cannot be therefore used for the benchmarking.
- b. In the second step all the Flow Export data from the DUT MUST be captured in order to be capable to determine the Flow Record losses. It needs to be taken into account that especially when large Cache Sizes (in order of magnitude of hundreds of thousands and higher) are in use the Flow Export can take many multiples of Inactive Timeout to empty the Cache after the measurement. This behaviour is completely implementation specific.

If the Collector has the capability to redirect the Flow Export data after the measurement time interval into different capture buffer (or time stamp the received Flow Export data after that) this can be done in one step. Otherwise each Flow Monitoring Throughput measurement at certain packet rate needs to be executed twice - once to capture the Flow Export data just for the measurement time interval (to determine the actual Flow Expiration Rate) and second time to capture all Flow Export data in order to determine Flow Record losses at that packet rate.

This Flow Export Rate procedure is fully applicable to all measurement set-ups but can be simplified for the cases with high cache population (see <u>section 5.3</u>) when the Cache is filled up with Flow Records within first few seconds of the measurement. In such a case the DUT has no choice but to process all the Flows at the incoming packet rate and the Flow Export Rate is numerically equal to the packet rate. Thus only step b. really needs to be performed.

<u>5.6</u> The Measurement Procedure

The measurement procedure is same as the Throughput measurement in the section 26.1 of [RFC2544] for the traffic sending side. The DUT output analysis is done on the traffic generator receiving side for the test traffic the same way as for RFC2544 measurements.

An additional analysis is performed using data captured by the Collector. The purpose of this analysis is to establish the value of Flow Export Rate during the current measurement step and to verify

Novak

[Page 21]

Expires October, 2011

Internet-Draft

that no Flow Records were dropped during the measurement. The procedure to measure Flow Export Rate is described in the section 5.5.

The Flow Export performance can be significantly affected by the way the Flow monitoring implementation formats the Flow Records into the Flow Export packets in terms of ordering and frequency of Control Information export and mainly the number of Flow Records in one Flow Export packet. The worst case scenario here is just one Flow Record in every Flow Export packet.

Flow Export data should be sanity checked during the benchmark measurement for:

- a. the number of Flow Records per packet by simply calculating the ratio of exported Flow Records and the number of Flow Export packets captured during the measurement (which should be available as a counter on the Collector capture buffer)
- b. the number of Control Information Flow Records per Flow Export packet (calculated as the ratio of the total number of such Flow Records in the Flow Export data and the number of Flow Export packets). It should be several orders of magnitude less than one Flow Record per Flow Export packet or at most in some special configuration one unique set of Control Data in each Flow Export packet.

6. <u>RFC2544</u> Measurements

<u>RFC2544</u> measurements can be performed under two Flow Monitoring setups (see also <u>section 3.4.2</u>). This section details both of them and specifies the ways how to construct the test traffic so that <u>RFC2544</u> measurements can be performed in a controlled environment also from the Flow monitoring point of view. Controlled Flow monitoring environment means that the tester always knows what Flow monitoring activity (Flow Export Rate) the traffic offered to the DUT causes.

This section is applicable mainly for the <u>RFC2544</u> throughput (<u>RFC2544</u> section 26.1) and latency (<u>RFC2544 section 26.2</u>) measurement. It could be used also to measure frame loss rate (<u>RFC2544 section 26.3</u>) and back-to-back frames (<u>RFC2544 section 26.4</u>). It is irrelevant for the rest of <u>RFC2544</u> network interconnect devices characteristics.

Objective:

Provide <u>RFC2544</u> network device characteristics in the presence of Flow monitoring on the DUT. The <u>RFC2544</u> studies numerous characteristics of network devices. The DUT forwarding and time characteristics without Flow monitoring present on the DUT can vary significantly when Flow monitoring starts to be deployed on the network device.

Novak

[Page 22]

Expires October, 2011

Metric definition:

Metric as specified in [RFC2544].

The measured RFC2544 Throughput MUST NOT include the packet rate corresponding to the Flow Export data, because it is control type traffic, generated by the DUT as a result of enabling Flow monitoring and does not contribute to the test traffic which the DUT can handle. It requires DUT resources to be generated and transmitted and therefore the RFC2544 Throughput will be in most cases much lower when Flow monitoring is enabled on the DUT than without it.

6.1 Flow Monitoring Configuration

Flow monitoring configuration (as detailed in the section 4.3) needs to be applied the same way as discussed in the section 5 with the exception of Active Timeout configuration.

The Active Timeout SHOULD be configured to exceed several times the measurement time interval (see section 5.4). This makes sure that if the measurements with two traffic components are performed (see section 6.5) there is no Flow monitoring activity related to the second traffic component.

The Flow monitoring configuration does not change in any other way for the measurement performed in this section, what changes and makes the difference is the traffic configurations as specified in the sections below.

6.2 Measurements with the Flow Monitoring Throughput Set-up

The major requirement to perform a measurement with Flow Monitoring Throughput set-up is that the traffic and Flow monitoring is configured in such a way that each sent packet creates one Flow Record in the DUT Cache. This restricts the possible set-ups only to the measurement with two traffic components as specified in the section 6.5.

Note that for software based platforms (as already discussed in <u>Section 3.5</u>) the two traffic components set-up might not be necessary. This is to certain extent implementation specific. The two traffic components set-up on software based platforms can still be used to perform the type of measurements as discussed in the section B.1.

6.3 Measurements With Fixed Flow Expiration Rate

This section covers the measurements where the RFC2544 metrics need

to be measured with Flow monitoring enabled but at certain Flow Export Rate lower than Flow Monitoring Throughput.

The tester here has both options as specified in the $\underline{\text{section 6.4}}$ and 6.5.

Novak

Expires October, 2011

[Page 23]

6.4 Measurements With Single Traffic Component

<u>Section 12 of [RFC2544]</u> discusses the use of protocol source and destination addresses for defined measurements. To perform all the <u>RFC2544</u> type measurements with Flow monitoring enabled the defined Flow Keys SHOULD contain IP source and destination address. The <u>RFC2544</u> type measurements with Flow monitoring enabled then can be executed under these additional conditions:

- a. the test traffic is not limited to single unique pair of source and destination address
- b. the traffic generator defines test traffic as follows: allow for a parameter to say send N (where N is an integer number starting at 1 and incremented in small steps) packets with source IP address A and destination IP address B before changing both IP addresses to the next value

This test traffic definition allows execution of the Flow monitoring measurements with fixed Flow Export Rate while measuring the DUT <u>RFC2544</u> characteristics. This set-up is the better option since it best simulates the live network traffic scenario with Flows containing more than just one packet.

The initial packet rate at N equal to 1 defines the Flow Expiration Rate for the whole measurement procedure. The consequent increases of N will not change Flow Expiration Rate as the time and Cache characteristics of the test traffic stay the same. This set-up is suitable for measurements with Flow Export Rates below the Flow Monitoring Throughput.

6.5 Measurements With Two Traffic Components

The test traffic set-up in the <u>section 6.4</u> might be difficult to achieve with commercial traffic generators or the granularity of the traffic rates as defined by the initial packet rate at N equal to 1 might not be suitable for the required measurement. An alternate mechanism is to define two traffic components in the test traffic. One to populate Flow monitoring Cache and the second one to execute the <u>RFC2544</u> measurements.

- a. Flow monitoring test traffic component the exact traffic definition as specified in the section 5.2.
- b. <u>RFC2544</u> Test Traffic Component test traffic as specified by <u>RFC2544</u> MUST create just one Flow Record in the DUT Cache. In the particular set-up discussed here this would mean a traffic stream with just one pair of unique source and destination IP addresses (but could be avoided if Flow Keys were for example UDP/TCP source and destination ports and Flow Keys did not contain the addresses).

Novak

Expires October, 2011

[Page 24]

The measured <u>RFC2544</u> Throughput is the sum of the packet rates of both traffic components, the definition of other <u>RFC2544</u> metrics remains unchanged.

7. Flow Monitoring Accuracy

The pure Flow monitoring measurement in <u>section 5</u> provides the capability to verify the Flow monitoring accuracy in terms of the exported Flow Record data. Since every Flow Record created in the Cache is populated by just one packet, the full set of captured data on the Collector can be parsed (e.g. providing the values of all Flow Keys and other Flow Record fields not only the overall Flow Record count in the exported data) and each set of parameters from each Flow Record can be checked against the parameters as configured on the traffic generator and set in packet sent to the DUT. The exported Flow Record is considered accurate if:

- a. all the Flow Record fields are present in each exported Flow Record
- b. all the Flow Record fields values match the value ranges as set by the traffic generator (for example an IP address falls within the range of the IP addresses increments on the traffic generator)
- c. all the possible Flow Record fields values as defined at the traffic generator have been found in the captured export data on the Collector. This check needs to be offset to potential detected packet losses at the DUT during the measurement

If Packet Sampling is deployed then only verifications in point a. and b. above can be performed.

8. Evaluating Flow Monitoring Applicability

The measurement results as discussed in this document and obtained for certain DUTs allow for a preliminary analysis of a Flow monitoring deployment based on the traffic analysis data from the providers network.

An example of such traffic analysis in the Internet is provided by [CAIDA] and the way it can be used is discussed below. The data needed to make an estimate if a certain network device can manage the particular amount of live traffic with Flow monitoring enabled is:

Average packet size: 350 bytes Number of packets per IP Flow: 20

Expected data rate on the network device: 1 Gbit/s

This results in:

Expected packet rate: 357 000 pps

being (1 Gbit/s divided by 350 bytes/packet)

Novak

[Page 25]

Expires October, 2011

Internet-Draft Flow Monitoring Benchmarking

Flows per second: 18 000

being (packet rate 357 000 pps divided by 20 packets per IP Flow)

It needs to be kept in mind that the above is a very rough and averaged Flow activity estimate which cannot account for traffic anomalies like large number of for example DNS request packets which are typically small packets coming from many different sources and represent mostly just one packet per Flow.

9. Acknowledgements

This work could have been performed thanks to the patience and support of Cisco Systems Netflow development team, namely Paul Aitken, Paul Atkins and Andrew Johnson. Thanks belong to Benoit Claise for numerous detailed reviews and presentations of the document and Aamer Akhter for initiating this work.

10. IANA Considerations

This document makes no requests of IANA.

<u>11</u>. Security Considerations

Documents of this type do not directly affect the security of the Internet or corporate networks as long as benchmarking is not performed on devices or systems connected to operating networks.

Benchmarking activities as described in this memo are limited to technology characterization using controlled stimuli in a laboratory environment, with dedicated address space and the constraints specified in the sections above.

The benchmarking network topology will be an independent test setup and MUST NOT be connected to devices that may forward the test traffic into a production network, or misroute traffic to the test management network.

Further, benchmarking is performed on a "black-box" basis, relying solely on measurements observable external to the DUT.

Special capabilities SHOULD NOT exist in the DUT specifically for benchmarking purposes. Any implications for network security arising from the DUT SHOULD be identical in the lab and in production networks.

12. References

12.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", <u>BCP 14</u>, <u>RFC 2119</u>, April 1997

Novak

[Page 26]

Expires October, 2011

Internet-Draft Flow Monitoring Benchmarking

- [RFC2544] Bradner, S., "Benchmarking Methodology for Network Interconnect Devices", Informational, <u>RFC 2544</u>, April 1999
- [RFC5470] Sadasivan, G., Brownlee, N., Claise, B., and J. Quittek, "Architecture Model for IP Flow Information Export", <u>RFC 5470</u>, April 2011

<u>12.2</u>. Informative References

- [RFC1242] Bradner, S., "Benchmarking Terminology for Network Interconnection Devices", <u>RFC 1242</u>, July 1991
- [RFC2285] Mandeville R., "Benchmarking Terminology for LAN Switching Devices", Informational, <u>RFC 2285</u>, November 1998
- [RFC3031] E. Rosen, A. Viswanathan, R. Callon, "Multiprotocol Label Switching Architecture", Standards Track, <u>RFC 3031</u>, January 2001
- [RFC3917] Quittek J., "Requirements for IP Flow Information Export (IPFIX)", Informational, <u>RFC 3917</u>, October 2004.
- [RFC5101] Claise B., "Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of IP Traffic Flow Information", Standards Track, <u>RFC 5101</u>, January 2008
- [RFC5180] C. Popoviciu, A. Hamza, D. Dugatkin, G. Van de Velde, "IPv6 Benchmarking Methodology for Network Interconnect Devices", Informational, <u>RFC 5180</u>, May 2008
- [RFC5475] T. Zseby, M. Molina, N. Duffield, F. Raspall, "Sampling and Filtering Techniques for IP Packet Selection" <u>RFC 5475</u>, March 2009
- [RFC5476] Claise, B., Quittek, J., and A. Johnson, "Packet Sampling (PSAMP) Protocol Specifications", <u>RFC 5476</u>, March 2009
- [RFC5695] Akhter A. "MPLS Forwarding Benchmarking Methodology", <u>RFC 5695</u>, November 2009
 - [CAIDA] Claffy, K., "The nature of the beast: recent traffic measurements from an Internet backbone", <u>http://www.caida.org/publications/papers/1998/Inet98/ Inet98.html</u>

Author's Addresses

Jan Novak (editor) Cisco Systems Edinburgh, United Kingdom Email: janovak@cisco.com

Novak

[Page 27]

Expires October, 2011

Internet-Draft

Appendix A: Recommended Report Format Parameter Units _____ Test Case test case name (<u>section 5</u> and 6) Test Topology Figure 2, other Traffic Type IPv4, IPv6, MPLS, other Test Results Flow Monitoring Throughput Flow Records per second or Not Applicable Flow Records per second or Not Flow Export Rate Applicable Control Information Export Rate Flow Records per second RFC2544 Throughput packets per second (Other <u>RFC2544</u> Metrics) (as appropriate) General Parameters Traffic Direction unidirectional, bidirectional DUT Interface Type Ethernet, POS, ATM, other DUT Interface Bandwidth MegaBits per second Traffic Specifications Number of Traffic Components (see section 6.4 and 6.5) For each traffic component: Packet Size bytes Traffic Packet Rate packets per second Traffic Bit Rate MegaBits per second Number of Packets Sent number of entries Incremented Packet Header Fields list of fields Number of Unique Header Values number of entries Number of Packets per Flow number of entries Flow monitoring Specifications Direction ingress, egress, both Observation Points DUT interface names Cache Size number of entries Active Timeout seconds Inactive Timeout seconds Flow Keys list of fields Flow Record Fields total number of fields Number of Flows Created number of entries Flow Export Transport Protocol UDP, TCP, SCTP, other Flow Export Protocol IPFIX, Netflow, other Flow Export data packet size bytes Packet Sampling Specifications Sampling Method [RFC5475] systematic, random or none Sampling Interval milliseconds or not applicable Sampling Rate number of packets or not applicable

MPLS Specifications	(for traffic type MPLS only)
Tested Label Operation	imposition, swap, disposition

Novak

Expires October, 2011

[Page 28]

Appendix B: Miscellaneous Tests

This section lists the tests which could be useful to asses a proper Flow monitoring operation under various operational or stress conditions. These tests are not deemed suitable for any benchmarking for various reasons.

B.1 DUT Under Traffic Load

The Flow Monitoring Throughput SHOULD be measured under different levels of static traffic load through the DUT. This can be achieved only by using two traffic components as discussed in the section 6.5, where one traffic component exercises the Flow Monitoring Plane and the second traffic component loads only Forwarding Plane without affecting Flow monitoring (e.g. it creates just one and static Flow Record in the Cache).

The variance in Flow Monitoring Throughput as function of the traffic load should be noted for comparison purposes between two DUTs of similar architecture and capability.

B.2 In-band Flow Export

The test topology in section 4.1 mandates the use of separate Flow Export interface to avoid the Flow Export data generated by the DUT to mix with the test traffic from the traffic generator. This is necessary in order to create clear and reproducible test conditions for the benchmark measurement.

The real network deployment of Flow monitoring might not allow for such a luxury - for example on a very geographically large network. In such a case, Flow Export will use an ordinary traffic forwarding interface e.g. in-band Flow Export.

The Flow monitoring operation should be verified with in-band Flow Export configuration while following these test steps:

- a. Perform benchmark test as specified in section 5
- b. One of the results will be how much bandwidth Flow Export used on the dedicated Flow Export interface
- c. Change Flow Export configuration to use the test interface
- d. Repeat the benchmark test while the receiver filters out the Flow Export data from analysis

The expected result is that the <u>RFC2544</u> Throughput achieved in step a. is same as the Throughput achieved in step d. provided that the bandwidth of the output DUT interface is not the bottleneck (in other words it must have enough capacity to forward both test and Flow Export traffic).

Novak

[Page 29]

B.3 Variable Packet Size

The Flow monitoring measurements specified in this document would be interesting to repeat with variable packet sizes within one particular test (e.g. test traffic containing mix of packet sizes). The packet forwarding tests specified mainly in [RFC2544] do not recommend and perform such tests. Flow monitoring is not dependent on packet sizes so such a test could be performed during the Flow Monitoring Throughput measurement and verify its value does not depend on the offered traffic packet sizes. The tests must be carefully designed in order to avoid measurement errors due to physical bandwidth limitations and changes of base forwarding performance with packet size.

B.4 Bursty Traffic

RFC2544 section 21 discusses and defines the use of bursty traffic. It can be used for Flow monitoring testing as well to gauge some short term overload DUT capabilities in terms of Flow monitoring. The tests benchmark here would not be the Flow Expiration Rate the DUT can sustain but the absolute number of Flow Records the DUT can process without dropping any single Flow Record. The traffic set-up to be used for this test is as follows:

- a. each sent packet creates a new Flow Record
- b. the packet rate is set to the maximum transmission speed of the DUT interface used for the test

B.5 Various Flow Monitoring Configurations

This section translates the terminology used in the IPFIX documents [RFC5470], [RFC5101] and others into the terminology used in this document. Section B.5.2 proposes another measurement which is not possible to verify in a black box test manner.

B.5.1 RFC2544 Throughput without Metering Process

If Metering Process is not defined on the DUT it means no Flow Monitoring Cache exists and no Flow analysis occurs. The performance measurement of the DUT in such a case is just pure [<u>RFC2544</u>] measurement.

B.5.2 <u>RFC2544</u> Throughput with Metering Process

If only Metering Process is enabled it means that Flow analysis on the DUT is enabled and operational but no Flow Export happens. The performance measurement of a DUT in such a configuration represents an useful test of the DUT capabilities (this

corresponds to the case when the network operator uses Flow Monitoring for example for manual denial of service attacks detection and does not wish to use Flow Export).

Novak

Expires October, 2011

[Page 30]

The performance testing on this DUT can be performed as discussed in this document but it is not possible to verify the operation and results without interrogating the DUT.

B.5.3 <u>RFC2544</u> Throughput with Metering and Exporting Process

This test represents the performance testing as discussed in $\frac{1}{2}$ section 6.

B.6 Tests With Bidirectional Traffic

The test topology on Figure 2 can be expanded to verify Flow monitoring functionality with bidirectional traffic in two possible ways:

- a. use two sets of interfaces, one for Flow monitoring for ingress traffic and one for Flow monitoring egress traffic
- b. use exactly same set-up as in Figure 2 but use the interfaces in full duplex mode e.g. sending and receiving simultaneously on each of them

The set-up in point a. above is in fact equivalent to the set-up with several Observation Points as already discussed in the <u>section 4.1</u> and 4.3.1.

For the set-up in point b. same rules should be applied (as per <u>section 4.1</u> and 4.3.1) - traffic passing through each Observation Point SHOULD always create a new Flow Record in the Cache e.g. the same traffic SHOULD NOT be just looped back on the receiving interfaces to create the bidirectional traffic flow.

B.7 Instantaneous Flow Export Rate

An additional useful information when analysing the Flow Export data for the Flow Expiration Rate is the time distribution of the instantaneous Flow Export Rate. It can be derived during the measurements in two ways:

- a. The Collector might provide the capability to decode Flow Export during capturing and at the same time counting the Flow Records and provide the instantaneous (or simply an average over shorter time interval than specified in the <u>section 5.4</u>) Flow Export Rate
- b. The Flow Export protocol (like IPFIX [<u>RFC5101</u>]) can provide time stamps in the Flow Export packets which would allow time based analysis and calculate the Flow Export Rate as an average over much shorter time interval than specified in the <u>section 5.4</u>

The accuracy and shortest time average will always be limited by the precision of the time stamps (1 second for IPFIX) or by the

capabilities of the DUT and the Collector.

Novak

Expires October, 2011

[Page 31]