
Workgroup: Benchmarking Working Group

Internet-Draft: draft-ietf-bmwg-mlrsearch-02

Published: 7 March 2022

Intended Status: Informational

Expires: 8 September 2022

Authors: M. Konstantynowicz, Ed.

Cisco Systems

V. Polak

Cisco Systems

Multiple Loss Ratio Search for Packet Throughput (MLRsearch)

Abstract

TODO: Update after all sections are ready.

This document proposes changes to [RFC2544], specifically to packet

throughput search methodology, by defining a new search algorithm

referred to as Multiple Loss Ratio search (MLRsearch for short).

Instead of relying on binary search with pre-set starting offered

load, it proposes a novel approach discovering the starting point in

the initial phase, and then searching for packet throughput based on

defined packet loss ratio (PLR) input criteria and defined final

trial duration time. One of the key design principles behind

MLRsearch is minimizing the total test duration and searching for

multiple packet throughput rates (each with a corresponding PLR)

concurrently, instead of doing it sequentially.

The main motivation behind MLRsearch is the new set of challenges

and requirements posed by NFV (Network Function Virtualization),

specifically software based implementations of NFV data planes.

Using [RFC2544] in the experience of the authors yields often not

repetitive and not replicable end results due to a large number of

factors that are out of scope for this draft. MLRsearch aims to

address this challenge in a simple way of getting the same result

sooner, so more repetitions can be done to describe the

replicability.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 8 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Terminology

2. Intentions of this document

3. RFC2544

3.1. Throughput search

4. Problems

4.1. Repeatability and Comparability

4.2. Non-Zero Target Loss Ratios

5. Solution ideas

5.1. Short duration trials

5.2. FRMOL as reasonable start

5.3. Non-zero loss ratios

5.4. Concurrent ratio search

5.5. Load selection heuristics and shortcuts

6. Non-compliance with RFC2544

7. Additional Requirements

7.1. TODO: Search Stop Criteria

7.2. Reliability of Test Equipment

7.2.1. Very late frames

8. MLRsearch Background

9. MLRsearch Overview

10. Sample Implementation

10.1. Input Parameters

10.2. Initial Phase

10.3. Non-Initial Phases

11. FD.io CSIT Implementation

11.1. Additional details

11.1.1. FD.io CSIT Input Parameters

11.2. Example MLRsearch Run

12. IANA Considerations

13. Security Considerations

¶

¶

¶

https://trustee.ietf.org/license-info

14. Acknowledgements

15. References

15.1. Normative References

15.2. Informative References

Authors' Addresses

1. Terminology

TODO: Update after most other sections are updated.

TODO: The current text uses Throughput for the zero loss ratio

load. Is the capital T needed/useful?

DUT and SUT: see the definitions in https://gerrit.fd.io/r/c/

csit/+/35545

Traffic Generator (TG) and Traffic Analyzer (TA): see https://

datatracker.ietf.org/doc/html/rfc6894#section-4 TODO: Maybe there

is an earlier RFC?

Overall search time: the time it takes to find all required loads

within their precision goals, starting from zero trials measured

at given DUT configuration and traffic profile.

TODO: traffic profile?

Intended load: https://datatracker.ietf.org/doc/html/

rfc2285#section-3.5.1

Offered load: https://datatracker.ietf.org/doc/html/

rfc2285#section-3.5.2

Maximum offered load (MOL): see https://datatracker.ietf.org/doc/

html/rfc2285#section-3.5.3

Forwarding rate at maximum offered load (FRMOL) https://

datatracker.ietf.org/doc/html/rfc2285#section-3.6.2

Trial Loss Count: the number of frames transmitted minus the

number of frames received. Negative count is possible, e.g. when

SUT duplicates some frames.

Trial Loss Ratio: ratio of frames received relative to frames

transmitted over the trial duration. For bi-directional

throughput tests, the aggregate ratio is calculated, based on the

aggregate number of frames transmitted and received. If the trial

loss count is negative, its absolute value MUST be used to keep

compliance with RFC2544.

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Safe load: any value, such that trial measurement at this (or

lower) intended load is correcrly handled by both TG and TA,

regardless of SUT behavior. Frequently, it is not known what the

safe load is.

Max load (TODO rename?): Maximal intended load to be used during

search. Benchmarking team decides which value is low enough to

guarantee values reported by TG and TA are reliable. It has to be

a safe load, but it can be lower than a safe load estimate for

added safety. See the subsection on unreliable test equipment

below. This value MUST NOT be higher than MOL, which itself MUST

NOT be higher than Maximum Frame Rate https://

datatracker.ietf.org/doc/html/rfc2544#section-20

Min load: Minimal intended load to be used during search.

Benchmarking team decides which value is high enough to guarantee

the trial measurement results are valid. E.g. considerable

overall search time can be saved by declaring SUT faulty if min

load trial shows too high loss rate. Zero frames per second is a

valid min load value

Effective loss ratio: a corrected value of trial loss ratio

chosen to avoid difficulties if SUT exhibits decreasing loss

ratio with increasing load. It is the maximum of trial loss

ratios measured at the same duration on all loads smaller than

(and including) the current one.

Target loss ratio: a loss ratio value acting as an input for the

search. The search is finding tight enough lower and upper bounds

in intended load, so that the measurement at the lower bound has

smaller or equal trial loss ratio, and upper bound has strictly

larger trial loss ratio. For the tightest upper bound, the

effective loss ratio is the same as trial loss ratio at that

upper bound load. For the tightest lower bound, the effective

loss ratio can be higher than the trial loss ratio at that lower

bound, but still not larger than the target loss ratio.

TODO: Search algorithm.

TODO: Precision goal.

TODO: Define a "benchmarking group".

TODO: Upper and lower bound.

TODO: Valid and invalid bound?

TODO: Interval and interval width?

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

TODO: Mention NIC/PCI bandwidth/pps limits can be lower than

bandwidth of medium.

2. Intentions of this document

The intention of this document is to provide recommendations for: *

optimizing search for multiple target loss ratios at once, *

speeding up the overall search time, * improve search results

repeatability and comparability.

No part of RFC2544 is intended to be obsoleted by this document.

3. RFC2544

3.1. Throughput search

It is useful to restate the key requirements of RFC2544 using the

new terminology (see section Terminology).

The following sections of RFC2544 are of interest for this document.

https://datatracker.ietf.org/doc/html/rfc2544#section-20 Mentions

the max load SHOULD not be larget than the theoretical maximum

rate for the frame size on the media.

https://datatracker.ietf.org/doc/html/rfc2544#section-23 Lists

the actions to be done for each trial measurement, it also

mentions loss rate as an example of trial measurement results.

This document uses loss count instead, as that is the quantity

that is easier for the current test equipment to measure, e.g. it

is not affected by the real traffic duration. TODO: Time

uncertainty again.

https://datatracker.ietf.org/doc/html/rfc2544#section-24 Mentions

"full length trials" leading to the Throughput found, as opposed

to shorter trial durations, allowed in an attempt to "minimize

the length of search procedure". This document talks about "final

trial duration" and aims to "optimize overal search time".

https://datatracker.ietf.org/doc/html/rfc2544#section-26.1 with

https://www.rfc-editor.org/errata/eid422 finaly states

requirements for the search procedure. It boils down to "increase

intended load upon zero trial loss and decrease intended load

upon non-zero trial loss".

No additional constraints are placed on the load selection, and

there is no mention of an exit condition, e.g. when there is enough

trial measurements to proclaim the largest load with zero trial loss

(and final trial duration) to be the Throughput found.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

4. Problems

4.1. Repeatability and Comparability

RFC2544 does not suggest to repeat Throughput search, and from just

one Throughput value, it cannot be determined how repeatable that

value is (how likely it is for a repeated Throughput search to end

up with a value less then the precision goal away from the first

value).

Depending on SUT behavior, different benchmark groups can report

significantly different Througput values, even when using identical

SUT and test equipment, just because of minor differences in their

search algorithm (e.g. different max load value).

While repeatability can be addressed by repeating the search several

times, the differences in the comparability scenario may be

systematic, e.g. seeming like a bias in one or both benchmark

groups.

MLRsearch algorithm does not really help with the repeatability

problem. This document RECOMMENDS to repeat a selection of

"important" tests ten times, so users can ascertain the

repeatability of the results.

TODO: How to report? Average and standard deviation?

Following MLRsearch algorithm leaves less freedom for the benchmark

groups to encounter the comparability problem, alghough more

research is needed to determine the effect of MLRsearch's tweakable

parameters.

4.2. Non-Zero Target Loss Ratios

https://datatracker.ietf.org/doc/html/rfc1242#section-3.17 defines

Throughput as: The maximum rate at which none of the offered frames

are dropped by the device.

and then it says: Since even the loss of one frame in a data stream

can cause significant delays while waiting for the higher level

protocols to time out, it is useful to know the actual maximum data

rate that the device can support.

New "software DUTs" (traffic forwarding programs running on

commercial-off-the-shelf compute server hardware) frequently exhibit

quite low repeatability of Throughput results per above definition.

This is due to, in general, throughput rates of software DUTs

(programs) being sensitive to server resource allocation by OS

¶

¶

¶

¶

¶

¶

¶

¶

¶

during runtime, as well as any interrupts or blocking of software

threads involved in packet processing.

To deal with this, this document recommends discovery of multiple

throughput rates of interest for software DUTs that run on general

purpose COTS servers (with x86, AArch64 Instruction Set

Architectures): * throughput rate with target of zero packet loss

ratio. * at least one throughput rate with target of non-zero packet

loss ratio.

In our experience, the higher the target loss ratio is, the better

is the repeatability of the corresponding load found.

TODO: Define a good name for a load corresponding to a specific non-

zero target loss ration, while keeping Throughput for the load

corresponding to zero target loss ratio.

This document RECOMMENDS the benchmark groups to search for

corresponding loads to at least one non-zero target loss ratio. This

document does not suggest any particular non-zero target loss ratio

value to search the corresponding load for.

5. Solution ideas

This document gives several independent ideas on how to lower the

(average) overall search time, while remaining unconditionally

compliant with RFC2544 (and adding some of extensions).

This document also specifies one particular way to combine all the

ideas into a single search algorithm class (single logic with few

tweakable parameters).

Little to no research has been done into the question of which

combination of ideas achieves the best compromise with respect to

overal search time, high repeatability and high comparability.

TODO: How important it is to discuss particular implementation

choices, especially when motivated by non-deterministic SUT

behavior?

5.1. Short duration trials

https://datatracker.ietf.org/doc/html/rfc2544#section-24 already

mentions the possibity of using shorter duration for trials that are

not part of "final determination".

Obviously, the upper and lower bound from a smaller duration trial

can be used as the initial upper and lower bound for the final

determination.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

MLRsearch makes it clear a re-measurement is always needed (new

trial measurement with the same load but longer duration). It also

specifes what to do if the longer trial is no longer a valid bound

(TODO define?), e.g. start an external search. Additionaly one

halving can be saved during the shorter duration search.

5.2. FRMOL as reasonable start

TODO expand: Overal search ends with "final determination" search,

preceded by "shorter duration search" preceded by "bound

initialization", where the bounds can be considerably different from

min and max load.

For SUTs with high repeatability, the FRMOL is usually a good

approximation of Throughput. But for less repeatable SUTs,

forwarding rate (TODO define) is frequently a bad approximation to

Throughput, therefore halving and other robust-to-worst-case

approaches have to be used. Still, forwarding rate at FRMOL load can

be a good initial bound.

5.3. Non-zero loss ratios

See the "Popularity of non-zero target loss ratios" section above.

TODO: Define "trial measurement result classification criteria", or

keep reusing long phrases without definitions?

A search for a load corresponding to a non-zero target loss rate is

very similar to a search for Throughput, just the criterion when to

increase or decrease the intended load for the next trial

measurement uses the comparison of trial loss ratio to the target

loss ratio (instead of comparing loss count to zero) Any search

algorithm that works for Throughput can be easily used also for non-

zero target loss rates, perhaps with small modifications in places

where the measured forwarding rate is used.

Note that it is possible to search for multiple loss ratio goals if

needed.

5.4. Concurrent ratio search

A single trial measurement result can act as an upper bound for a

lower target loss ratio, and as a lower bound for a higher target

loss ratio at the same time. This is an example of how it can be

advantageous to search for all loss ratio goals "at once", or at

least "reuse" trial measurement result done so far.

Even when a search algorithm is fully deterministic in load

selection while focusing on a single loss ratio and trial duration,

the choice of iteration order between target loss ratios and trial

¶

¶

¶

¶

¶

¶

¶

¶

durations can affect the obtained results in subtle ways. MLRsearch

offers one particular ordering.

5.5. Load selection heuristics and shortcuts

Aside of the two heuristics already mentioned (FRMOL based initial

bounds and saving one halving when increasing trial duration), there

are other tricks that can save some overall search time at the cost

of keeping the difference between final lower and upper bound

intentionally large (but still within the precision goal).

TODO: Refer implementation subsections on: * Uneven splits. *

Rounding the interval width up. * Using old invalid bounds for

interval width guessing.

The impact on overall duration is probably small, and the effect on

result distribution maybe even smaller. TODO: Is the two-liner above

useful at all?

6. Non-compliance with RFC2544

It is possible to achieve even faster search times by abandoning

some requirements and suggestions of RFC2544, mainly by reducing the

wait times at start and end of trial.

Such results are therefore no longer compliant with RFC2544 (or at

least not unconditionally), but they may still be useful for

internal usage, or for comparing results of different DUTs achieved

with an identical non-compliant algorithm.

TODO: Refer to the subsection with CSIT customizations.

7. Additional Requirements

RFC2544 can be understood as having a number of implicit

requirements. They are made explicit in this section (as

requirements for this document, not for RFC2544).

Recommendations on how to properly address the implicit requirements

are out of scope of this document.

7.1. TODO: Search Stop Criteria

TODO: Mention the timeout parameter?

7.2. Reliability of Test Equipment

Both TG and TA MUST be able to handle correctly every intended load

used during the search.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

On TG side, the difference between Intended Load and Offered Load

MUST be small.

TODO: How small? Difference of one packet may not be measurable due

to time uncertainties.

TODO expand: time uncertainty.

To ensure that, max load (see Terminology) has to be set to low

enough value. Benchmark groups MAY list the max load value used,

especially if the Throughput value is equal (or close) to the max

load.

Solutions (even problem formulations) for the following open

problems are outside of the scope of this document: * Detecting when

the test equipment operates above its safe load. * Finding a large

but safe load value. * Correcting any result affected by max load

value not being a safe load.

7.2.1. Very late frames

RFC2544 requires quite conservative time delays see https://

datatracker.ietf.org/doc/html/rfc2544#section-23 to prevent frames

buffered in one trial measurement to be counted as received in a

subsequent trial measurement.

However, for some SUTs it may still be possible to buffer enough

frames, so they are still sending them (perhaps in bursts) when the

next trial measurement starts. Sometimes, this can be detected as a

negative trial loss count, e.g. TA receiving more frames than TG has

sent during this trial measurement. Frame duplication is another way

of causing the negative trial loss count.

https://datatracker.ietf.org/doc/html/rfc2544#section-10 recommends

to use sequence numbers in frame payloads, but generating and

verifying them requires test equipment resources, which may be not

plenty enough to suport at high loads. (Using low enough max load

would work, but frequently that would be smaller than SUT's sctual

Throughput.)

RFC2544 does not offer any solution to the negative loss problem,

except implicitly treating negative trial loss counts the same way

as positive trial loss counts.

This document also does not offer any practical solution.

Instead, this document SUGGESTS the search algorithm to take any

precaution necessary to avoid very late frames.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

This document also REQUIRES any detected duplicate frames to be

counted as additional lost frames. This document also REQUIRES, any

negative trial loss ratio to be treated as positive trial loss ratio

of the same absolute value.

!!! Nothing below is up-to-date with draft v02. !!!

8. MLRsearch Background

TODO: Old section, probably obsoleted by preceding section(s).

Multiple Loss Ratio search (MLRsearch) is a packet throughput search

algorithm suitable for deterministic systems (as opposed to

probabilistic systems). MLRsearch discovers multiple packet

throughput rates in a single search, each rate is associated with a

distinct Packet Loss Ratio (PLR) criterion.

For cases when multiple rates need to be found, this property makes

MLRsearch more efficient in terms of time execution, compared to

traditional throughput search algorithms that discover a single

packet rate per defined search criteria (e.g. a binary search

specified by [RFC2544]). MLRsearch reduces execution time even

further by relying on shorter trial durations of intermediate steps,

with only the final measurements conducted at the specified final

trial duration. This results in the shorter overall search execution

time when compared to a traditional binary search, while

guaranteeing the same results for deterministic systems.

In practice, two rates with distinct PLRs are commonly used for

packet throughput measurements of NFV systems: Non Drop Rate (NDR)

with PLR=0 and Partial Drop Rate (PDR) with PLR>0. The rest of this

document describes MLRsearch with NDR and PDR pair as an example.

Similarly to other throughput search approaches like binary search,

MLRsearch is effective for SUTs/DUTs with PLR curve that is non-

decreasing with growing offered load. It may not be as effective for

SUTs/DUTs with abnormal PLR curves, although it will always converge

to some value.

MLRsearch relies on traffic generator to qualify the received packet

stream as error-free, and invalidate the results if any

disqualifying errors are present e.g. out-of-sequence frames.

MLRsearch can be applied to both uni-directional and bi-directional

throughput tests.

¶

¶

¶

¶

¶

¶

¶

¶

¶

For bi-directional tests, MLRsearch rates and ratios are aggregates

of both directions, based on the following assumptions:

Traffic transmitted by traffic generator and received by SUT/DUT

has the same packet rate in each direction, in other words the

offered load is symmetric.

SUT/DUT packet processing capacity is the same in both

directions, resulting in the same packet loss under load.

MLRsearch can be applied even without those assumptions, but in that

case the aggregate loss ratio is less useful as a metric.

MLRsearch can be used for network transactions consisting of more

than just one packet, or anything else that has intended load as

input and loss ratio as output (duration as input is optional). This

text uses mostly packet-centric language.

9. MLRsearch Overview

The main properties of MLRsearch:

MLRsearch is a duration aware multi-phase multi-rate search

algorithm:

Initial Phase determines promising starting interval for the

search.

Intermediate Phases progress towards defined final search

criteria.

Final Phase executes measurements according to the final

search criteria.

Final search criteria are defined by following inputs:

Target PLRs (e.g. 0.0 and 0.005 when searching for NDR and

PDR).

Final trial duration.

Measurement resolution.

Initial Phase:

Measure MRR over initial trial duration.

Measured MRR is used as an input to the first intermediate

phase.

¶

*

¶

*

¶

¶

¶

¶

*

¶

-

¶

-

¶

-

¶

- ¶

o

¶

o ¶

o ¶

* ¶

- ¶

-

¶

Multiple Intermediate Phases:

Trial duration:

Start with initial trial duration in the first intermediate

phase.

Converge geometrically towards the final trial duration.

Track all previous trial measurement results:

Duration, offered load and loss ratio are tracked.

Effective loss ratios are tracked.

While in practice, real loss ratios can decrease with

increasing load, effective loss ratios never decrease.

This is achieved by sorting results by load, and using

the effective loss ratio of the previous load if the

current loss ratio is smaller than that.

The algorithm queries the results to find best lower and

upper bounds.

Effective loss ratios are always used.

The phase ends if all target loss ratios have tight enough

bounds.

Search:

Iterate over target loss ratios in increasing order.

If both upper and lower bound are in measurement results

for this duration, apply bisect until the bounds are tight

enough, and continue with next loss ratio.

If a bound is missing for this duration, but there exists a

bound from the previous duration (compatible with the other

bound at this duration), re-measure at the current

duration.

If a bound in one direction (upper or lower) is missing for

this duration, and the previous duration does not have a

compatible bound, compute the current "interval size" from

the second tightest bound in the other direction (lower or

upper respectively) for the current duration, and choose

next offered load for external search.

* ¶

- ¶

o

¶

o ¶

- ¶

o ¶

o ¶

o

¶

o

¶

o ¶

o

¶

- ¶

o ¶

o

¶

o

¶

o

¶

The logic guarantees that a measurement is never repeated

with both duration and offered load being the same.

The logic guarantees that measurements for higher target

loss ratio iterations (still within the same phase

duration) do not affect validity and tightness of bounds

for previous target loss ratio iterations (at the same

duration).

Use of internal and external searches:

External search:

It is a variant of "exponential search".

The "interval size" is multiplied by a configurable

constant (powers of two work well with the subsequent

internal search).

Internal search:

A variant of binary search that measures at offered load

between the previously found bounds.

The interval does not need to be split into exact

halves, if other split can get to the target width goal

faster.

The idea is to avoid returning interval narrower than

the current width goal. See sample implementation

details, below.

Final Phase:

Executed with the final test trial duration, and the final

width goal that determines resolution of the overall search.

Intermediate Phases together with the Final Phase are called Non-

Initial Phases.

The returned bounds stay within prescribed min_rate and max_rate.

When returning min_rate or max_rate, the returned bounds may

be invalid.

E.g. upper bound at max_rate may come from a measurement

with loss ratio still not higher than the target loss

ratio.

o

¶

o

¶

- ¶

o ¶

o ¶

o

¶

o ¶

o

¶

o

¶

o

¶

* ¶

-

¶

*

¶

* ¶

-

¶

o

¶

The main benefits of MLRsearch vs. binary search include:

In general, MLRsearch is likely to execute more trials overall,

but likely less trials at a set final trial duration.

In well behaving cases, e.g. when results do not depend on trial

duration, it greatly reduces (>50%) the overall duration compared

to a single PDR (or NDR) binary search over duration, while

finding multiple drop rates.

In all cases MLRsearch yields the same or similar results to

binary search.

Note: both binary search and MLRsearch are susceptible to

reporting non-repeatable results across multiple runs for very

bad behaving cases.

Caveats:

Worst case MLRsearch can take longer than a binary search, e.g.

in case of drastic changes in behaviour for trials at varying

durations.

Re-measurement at higher duration can trigger a long external

search. That never happens in binary search, which uses the

final duration from the start.

10. Sample Implementation

Following is a brief description of a sample MLRsearch

implementation, which is a simplified version of the existing

implementation.

10.1. Input Parameters

max_rate - Maximum Transmit Rate (MTR) of packets to be used by

external traffic generator implementing MLRsearch, limited by

the actual Ethernet link(s) rate, NIC model or traffic

generator capabilities.

min_rate - minimum packet transmit rate to be used for

measurements. MLRsearch fails if lower transmit rate needs to

be used to meet search criteria.

final_trial_duration - required trial duration for final rate

measurements.

initial_trial_duration - trial duration for initial MLRsearch

phase.

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

-

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

final_relative_width - required measurement resolution

expressed as (lower_bound, upper_bound) interval width relative

to upper_bound.

packet_loss_ratios - list of maximum acceptable PLR search

criteria.

number_of_intermediate_phases - number of phases between the

initial phase and the final phase. Impacts the overall

MLRsearch duration. Less phases are required for well behaving

cases, more phases may be needed to reduce the overall search

duration for worse behaving cases.

10.2. Initial Phase

First trial measures at configured maximum transmit rate (MTR)

and discovers maximum receive rate (MRR).

IN: trial_duration = initial_trial_duration.

IN: offered_transmit_rate = maximum_transmit_rate.

DO: single trial.

OUT: measured loss ratio.

OUT: MRR = measured receive rate. Received rate is computed

as intended load multiplied by pass ratio (which is one

minus loss ratio). This is useful when loss ratio is

computed from a different metric than intended load. For

example, intended load can be in transactions (multiple

packets each), but loss ratio is computed on level of

packets, not transactions.

Example: If MTR is 10 transactions per second, and each

transaction has 10 packets, and receive rate is 90 packets

per second, then loss rate is 10%, and MRR is computed to be

9 transactions per second.

If MRR is too close to MTR, MRR is set below MTR so that

interval width is equal to the width goal of the first

intermediate phase. If MRR is less than min_rate, min_rate is

used.

Second trial measures at MRR and discovers MRR2.

IN: trial_duration = initial_trial_duration.

IN: offered_transmit_rate = MRR.

5.

¶

6.

¶

7.

¶

1.

¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

¶

2. ¶

* ¶

* ¶

DO: single trial.

OUT: measured loss ratio.

OUT: MRR2 = measured receive rate. If MRR2 is less than

min_rate, min_rate is used. If loss ratio is less or equal

to the smallest target loss ratio, MRR2 is set to a value

above MRR, so that interval width is equal to the width goal

of the first intermediate phase. MRR2 could end up being

equal to MTR (for example if both measurements so far had

zero loss), which was already measured, step 3 is skipped in

that case.

Third trial measures at MRR2.

IN: trial_duration = initial_trial_duration.

IN: offered_transmit_rate = MRR2.

DO: single trial.

OUT: measured loss ratio.

OUT: MRR3 = measured receive rate. If MRR3 is less than

min_rate, min_rate is used. If step 3 is not skipped, the

first trial measurement is forgotten. This is done because

in practice (if MRR2 is above MRR), external search from MRR

and MRR2 is likely to lead to a faster intermediate phase

than a bisect between MRR2 and MTR.

10.3. Non-Initial Phases

Main phase loop:

IN: trial_duration for the current phase. Set to

initial_trial_duration for the first intermediate phase;

to final_trial_duration for the final phase; or to the

element of interpolating geometric sequence for other

intermediate phases. For example with two intermediate

phases, trial_duration of the second intermediate phase is

the geometric average of initial_trial_duration and

final_trial_duration.

IN: relative_width_goal for the current phase. Set to

final_relative_width for the final phase; doubled for each

preceding phase. For example with two intermediate phases,

the first intermediate phase uses quadruple of

final_relative_width and the second intermediate phase

uses double of final_relative_width.

* ¶

* ¶

*

¶

3. ¶

* ¶

* ¶

* ¶

* ¶

*

¶

1. ¶

1.

¶

2.

¶

IN: Measurement results from the previous phase (previous

duration).

Internal target ratio loop:

IN: Target loss ratio for this iteration of ratio

loop.

IN: Measurement results from all previous ratio loop

iterations of current phase (current duration).

DO: According to the procedure described in point 2:

either exit the phase (by jumping to 1.5),

or exit loop iteration (by continuing with next

target loss ratio, jumping to 1.4.1),

or calculate new transmit rate to measure with.

DO: Perform the trial measurement at the new transmit

rate and current trial duration, compute its loss

ratio.

DO: Add the result and go to next iteration (1.4.1),

including the added trial result in 1.4.2.

OUT: Measurement results from this phase.

OUT: In the final phase, bounds for each target loss ratio

are extracted and returned.

If a valid bound does not exist, use min_rate or

max_rate.

New transmit rate (or exit) calculation (for point 1.4.3):

If the previous duration has the best upper and lower

bound, select the middle point as the new transmit rate.

See 2.5.3. below for the exact splitting logic.

This can be a no-op if interval is narrow enough

already, in that case continue with 2.2.

3.

¶

4. ¶

1.

¶

2.

¶

3. ¶

1. ¶

2.

¶

3. ¶

4.

¶

5.

¶

5. ¶

6.

¶

1.

¶

2. ¶

1.

¶

1. ¶

2.

¶

Discussion, assuming the middle point is selected and

measured:

Regardless of loss rate measured, the result

becomes either best upper or best lower bound at

current duration.

So this condition is satisfied at most once per

iteration.

This also explains why previous phase has double

width goal:

We avoid one more bisection at previous

phase.

At most one bound (per iteration) is re-

measured with current duration.

Each re-measurement can trigger an external

search.

Such surprising external searches are the

main hurdle in achieving low overall search

durations.

Even without 1.1, there is at most one

external search per phase and target loss

ratio.

But without 1.1 there can be two re-

measurements, each coming with a risk of

triggering external search.

If the previous duration has one bound best, select its

transmit rate. In deterministic case this is the last

measurement needed this iteration.

If only upper bound exists in current duration results:

This can only happen for the smallest target loss

ratio.

If the upper bound was measured at min_rate, exit the

whole phase early (not investigating other target

loss ratios).

3.

¶

1.

¶

2.

¶

3.

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

2.

¶

3. ¶

1.

¶

2.

¶

Select new transmit rate using external search:

For computing previous interval size, use:

second tightest bound at current duration,

or tightest bound of previous duration, if

compatible and giving a more narrow

interval,

or target interval width if none of the

above is available.

In any case increase to target interval

width if smaller.

Quadruple the interval width.

Use min_rate if the new transmit rate is lower.

If only lower bound exists in current duration results:

If the lower bound was measured at max_rate, exit

this iteration (continue with next lowest target loss

ratio).

Select new transmit rate using external search:

For computing previous interval size, use:

second tightest bound at current duration,

or tightest bound of previous duration, if

compatible and giving a more narrow

interval,

or target interval width if none of the

above is available.

In any case increase to target interval

width if smaller.

Quadruple the interval width.

Use max_rate if the new transmit rate is higher.

3. ¶

1. ¶

1. ¶

2.

¶

3.

¶

4.

¶

2. ¶

3. ¶

4. ¶

1.

¶

2. ¶

1. ¶

1. ¶

2.

¶

3.

¶

4.

¶

2. ¶

3. ¶

The only remaining option is both bounds in current

duration results.

This can happen in two ways, depending on how the

lower bound was chosen.

It could have been selected for the current loss

ratio, e.g. in re-measurement (2.2) or in

initial bisect (2.1).

It could have been found as an upper bound for

the previous smaller target loss ratio, in which

case it might be too low.

The algorithm does not track which one is the

case, as the decision logic works well

regardless.

Compute "extending down" candidate transmit rate

exactly as in 2.3.

Compute "bisecting" candidate transmit rate:

Compute the current interval width from the two

bounds.

Express the width as a (float) multiple of the

target width goal for this phase.

If the multiple is not higher than one, it means

the width goal is met. Exit this iteration and

continue with next higher target loss ratio.

If the multiple is two or less, use half of that

for new width if the lower subinterval.

Round the multiple up to nearest even integer.

Use half of that for new width if the lower

subinterval.

Example: If lower bound is 2.0 and upper bound

is 5.0, and width goal is 1.0, the new candidate

transmit rate will be 4.0. This can save a

measurement when 4.0 has small loss. Selecting

the average (3.5) would never save a

measurement, giving more narrow bounds instead.

5.

¶

1.

¶

1.

¶

2.

¶

3.

¶

2.

¶

3. ¶

1.

¶

2.

¶

3.

¶

4.

¶

5. ¶

6.

¶

7.

¶

If either candidate computation want to exit the

iteration, do as bisecting candidate computation

says.

The remaining case is both candidates wanting to

measure at some rate. Use the higher rate. This

prefers external search down narrow enough interval,

competing with perfectly sized lower bisect

subinterval.

11. FD.io CSIT Implementation

The only known working implementation of MLRsearch is in the open-

source code running in Linux Foundation FD.io CSIT project [FDio-

CSIT-MLRsearch] as part of a Continuous Integration / Continuous

Development (CI/CD) framework.

MLRsearch is also available as a Python package in [PyPI-MLRsearch].

11.1. Additional details

This document so far has been describing a simplified version of

MLRsearch algorithm. The full algorithm as implemented in CSIT

contains additional logic, which makes some of the details (but not

general ideas) above incorrect. Here is a short description of the

additional logic as a list of principles, explaining their main

differences from (or additions to) the simplified description, but

without detailing their mutual interaction.

Logarithmic transmit rate.

In order to better fit the relative width goal, the interval

doubling and halving is done differently.

For example, the middle of 2 and 8 is 4, not 5.

Timeout for bad cases.

The worst case for MLRsearch is when each phase converges to

intervals way different than the results of the previous

phase.

Rather than suffer total search time several times larger

than pure binary search, the implemented tests fail

themselves when the search takes too long (given by argument

timeout).

4.

¶

5.

¶

¶

¶

¶

1. ¶

*

¶

* ¶

2. ¶

*

¶

*

¶

Intended count.

The number of packets to send during the trial should be

equal to the intended load multiplied by the duration.

Also multiplied by a coefficient, if loss ratio is

calculated from a different metric.

Example: If a successful transaction uses 10 packets,

load is given in transactions per second, but loss

ratio is calculated from packets, so the coefficient

to get intended count of packets is 10.

But in practice that does not work.

It could result in a fractional number of packets,

so it has to be rounded in a way traffic generator

chooses,

which may depend on the number of traffic flows and

traffic generator worker threads.

Attempted count. As the real number of intended packets is not

known exactly, the computation uses the number of packets

traffic generator reports as sent. Unless overridden by the

next point.

Duration stretching.

In some cases, traffic generator may get overloaded, causing

it to take significantly longer (than duration) to send all

packets.

The implementation uses an explicit stop,

causing lower attempted count in those cases.

The implementation tolerates some small difference between

attempted count and intended count.

10 microseconds worth of traffic is sufficient for our

tests.

If the difference is higher, the unsent packets are counted

as lost.

This forces the search to avoid the regions of high

duration stretching.

3. ¶

*

¶

-

¶

o

¶

* ¶

- ¶

-

¶

-

¶

4.

¶

5. ¶

*

¶

* ¶

- ¶

*

¶

-

¶

*

¶

-

¶

The final bounds describe the performance of not just

SUT, but of the whole system, including the traffic

generator.

Excess packets.

In some test (e.g. using TCP flows) Traffic generator reacts

to packet loss by retransmission. Usually, such packet loss

is already affecting loss ratio. If a test also wants to

treat retransmissions due to heavily delayed packets also as

a failure, this is once again visible as a mismatch between

the intended count and the attempted count.

The CSIT implementation simply looks at absolute value of

the difference, so it offers the same small tolerance before

it starts marking a "loss".

For result processing, we use lower bounds and ignore upper

bounds.

11.1.1. FD.io CSIT Input Parameters

max_rate - Typical values: 2 * 14.88 Mpps for 64B 10GE link

rate, 2 * 18.75 Mpps for 64B 40GE NIC (specific model).

min_rate - Value: 2 * 9001 pps (we reserve 9000 pps for latency

measurements).

final_trial_duration - Value: 30.0 seconds.

initial_trial_duration - Value: 1.0 second.

final_relative_width - Value: 0.005 (0.5%).

packet_loss_ratios - Value: 0.0, 0.005 (0.0% for NDR, 0.5% for

PDR).

number_of_intermediate_phases - Value: 2. The value has been

chosen based on limited experimentation to date. More

experimentation needed to arrive to clearer guidelines.

timeout - Limit for the overall search duration (for one

search). If MLRsearch oversteps this limit, it immediately

declares the test failed, to avoid wasting even more time on a

misbehaving SUT. Value: 600.0 (seconds).

expansion_coefficient - Width multiplier for external search.

Value: 4.0 (interval width is quadroupled). Value of 2.0 is

best for well-behaved SUTs, but value of 4.0 has been found to

decrease overall search time for worse-behaved SUT

-

¶

6. ¶

*

¶

*

¶

7.

¶

1.

¶

2.

¶

3. ¶

4. ¶

5. ¶

6.

¶

7.

¶

8.

¶

9.

configurations, contributing more to the overall set of

different SUT configurations tested.

11.2. Example MLRsearch Run

The following list describes a search from a real test run in CSIT

(using the default input values as above).

Initial phase, trial duration 1.0 second.

Measurement 1, intended load 18750000.0 pps (MTR), measured loss

ratio 0.7089514628479618 (valid upper bound for both NDR and PDR).

Measurement 2, intended load 5457160.071600716 pps (MRR), measured

loss ratio 0.018650817320118702 (new tightest upper bounds).

Measurement 3, intended load 5348832.933500009 pps (slightly less

than MRR2 in preparation for first intermediate phase target

interval width), measured loss ratio 0.00964383362905351 (new

tightest upper bounds).

First intermediate phase starts, trial duration still 1.0

seconds.

Measurement 4, intended load 4936605.579021453 pps (no lower bound,

performing external search downwards, for NDR), measured loss ratio

0.0 (valid lower bound for both NDR and PDR).

Measurement 5, intended load 5138587.208637197 pps (bisecting for

NDR), measured loss ratio 0.0 (new tightest lower bounds).

Measurement 6, intended load 5242656.244044665 pps (bisecting),

measured loss ratio 0.013523745379347257 (new tightest upper

bounds).

Both intervals are narrow enough.

Second intermediate phase starts, trial duration

5.477225575051661 seconds.

Measurement 7, intended load 5190360.904111567 pps (initial bisect

for NDR), measured loss ratio 0.0023533920869969953 (NDR upper

bound, PDR lower bound).

Measurement 8, intended load 5138587.208637197 pps (re-measuring NDR

lower bound), measured loss ratio 1.2080222912800403e-06 (new

tightest NDR upper bound).

The two intervals have separate bounds from now on.

¶

¶

* ¶

¶

¶

¶

*

¶

¶

¶

¶

* ¶

*

¶

¶

¶

* ¶

Measurement 9, intended load 4936605.381062318 pps (external NDR

search down), measured loss ratio 0.0 (new valid NDR lower bound).

Measurement 10, intended load 5036583.888432355 pps (NDR bisect),

measured loss ratio 0.0 (new tightest NDR lower bound).

Measurement 11, intended load 5087329.903232804 pps (NDR bisect),

measured loss ratio 0.0 (new tightest NDR lower bound).

NDR interval is narrow enough, PDR interval not ready yet.

Measurement 12, intended load 5242656.244044665 pps (re-measuring

PDR upper bound), measured loss ratio 0.0101174866190136 (still

valid PDR upper bound).

Also PDR interval is narrow enough, with valid bounds for this

duration.

Final phase starts, trial duration 30.0 seconds.

Measurement 13, intended load 5112894.3238511775 pps (initial bisect

for NDR), measured loss ratio 0.0 (new tightest NDR lower bound).

Measurement 14, intended load 5138587.208637197 (re-measuring NDR

upper bound), measured loss ratio 2.030389804256833e-06 (still valid

PDR upper bound).

NDR interval is narrow enough, PDR interval not yet.

Measurement 15, intended load 5216443.04126728 pps (initial bisect

for PDR), measured loss ratio 0.005620871287975237 (new tightest PDR

upper bound).

Measurement 16, intended load 5190360.904111567 (re-measuring PDR

lower bound), measured loss ratio 0.0027629971184465604 (still valid

PDR lower bound).

PDR interval is also narrow enough.

Returning bounds:

NDR_LOWER = 5112894.3238511775 pps; NDR_UPPER = 5138587.208637197

pps;

PDR_LOWER = 5190360.904111567 pps; PDR_UPPER = 5216443.04126728

pps.

12. IANA Considerations

No requests of IANA.

¶

¶

¶

* ¶

¶

*

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

* ¶

*

¶

*

¶

¶

[RFC2544]

[FDio-CSIT-MLRsearch]

[PyPI-MLRsearch]

13. Security Considerations

Benchmarking activities as described in this memo are limited to

technology characterization of a DUT/SUT using controlled stimuli in

a laboratory environment, with dedicated address space and the

constraints specified in the sections above.

The benchmarking network topology will be an independent test setup

and MUST NOT be connected to devices that may forward the test

traffic into a production network or misroute traffic to the test

management network.

Further, benchmarking is performed on a "black-box" basis, relying

solely on measurements observable external to the DUT/SUT.

Special capabilities SHOULD NOT exist in the DUT/SUT specifically

for benchmarking purposes. Any implications for network security

arising from the DUT/SUT SHOULD be identical in the lab and in

production networks.

14. Acknowledgements

Many thanks to Alec Hothan of OPNFV NFVbench project for thorough

review and numerous useful comments and suggestions.

15. References

15.1. Normative References

Bradner, S. and J. McQuaid, "Benchmarking Methodology for

Network Interconnect Devices", RFC 2544, DOI 10.17487/

RFC2544, March 1999, <https://www.rfc-editor.org/info/

rfc2544>.

15.2. Informative References

"FD.io CSIT Test Methodology - MLRsearch",

November 2021, <https://s3-docs.fd.io/csit/rls2110/

report/introduction/methodology_data_plane_throughput/

methodology_data_plane_throughput.html#mlrsearch-tests>.

"MLRsearch 0.4.0, Python Package Index", April

2021, <https://pypi.org/project/MLRsearch/0.4.0/>.

Authors' Addresses

Maciek Konstantynowicz (editor)

Cisco Systems

Email: mkonstan@cisco.com

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2544
https://www.rfc-editor.org/info/rfc2544
https://s3-docs.fd.io/csit/rls2110/report/introduction/methodology_data_plane_throughput/methodology_data_plane_throughput.html#mlrsearch-tests
https://s3-docs.fd.io/csit/rls2110/report/introduction/methodology_data_plane_throughput/methodology_data_plane_throughput.html#mlrsearch-tests
https://s3-docs.fd.io/csit/rls2110/report/introduction/methodology_data_plane_throughput/methodology_data_plane_throughput.html#mlrsearch-tests
https://pypi.org/project/MLRsearch/0.4.0/
mailto:mkonstan@cisco.com

Vratko Polak

Cisco Systems

Email: vrpolak@cisco.com

mailto:vrpolak@cisco.com

	Multiple Loss Ratio Search for Packet Throughput (MLRsearch)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Terminology
	2. Intentions of this document
	3. RFC2544
	3.1. Throughput search

	4. Problems
	4.1. Repeatability and Comparability
	4.2. Non-Zero Target Loss Ratios

	5. Solution ideas
	5.1. Short duration trials
	5.2. FRMOL as reasonable start
	5.3. Non-zero loss ratios
	5.4. Concurrent ratio search
	5.5. Load selection heuristics and shortcuts

	6. Non-compliance with RFC2544
	7. Additional Requirements
	7.1. TODO: Search Stop Criteria
	7.2. Reliability of Test Equipment
	7.2.1. Very late frames

	8. MLRsearch Background
	9. MLRsearch Overview
	10. Sample Implementation
	10.1. Input Parameters
	10.2. Initial Phase
	10.3. Non-Initial Phases

	11. FD.io CSIT Implementation
	11.1. Additional details
	11.1.1. FD.io CSIT Input Parameters

	11.2. Example MLRsearch Run

	12. IANA Considerations
	13. Security Considerations
	14. Acknowledgements
	15. References
	15.1. Normative References
	15.2. Informative References

	Authors' Addresses

