Better than Nothing T0C

M. Richardson

Security
Internet-Draft williams
Intended status:
. SSw

Informational
Expires: September 25,

M. Komu
2009

Tarkoma

Helsinki Institute for
Information

Technology
March 24, 2009

C-Bindings for IPsec Application Programming Interfaces
draft-ietf-btns-c-api-04

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79. This document may not be modified, and
derivative works of it may not be created, except to format it for
publication as an RFC or to translate it into languages other than
English.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The 1list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 25, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).


http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

IPsec based security is usually transparent for applications and they
have no standard APIs for gathering information on connection security
properties. This document specifies an API that increases the
visibility of IPsec to applications. The API allows applications to
allow BTNS extensions, control the channel bindings, and control also
other security properties related to IPsec. This document presents C-
bindings to the abstract BTNS API.

Table of Contents

1. Introduction
2. 1IPsec APIs
2.1. Identity Tokens
2.1.1. Creation of Identity Tokens
2.1.2. Attributes of Identity Tokens
2.2. Token Attributes
2.3. Protection Tokens
2.3.1. Creation of Protection Tokens
2.3.2. Attributes of Protection Tokens
2.3.3. Connection Oriented Communications
2.3.4. Datagram Oriented Communications
2.3.5. Equivalency of Protection Tokens
2.3.6. Duplication of Protection Tokens
3. Security Considerations
4. TIANA Considerations
5. Acknowledgements
6. References

6.1. Normative References
6.2. Informative References
8 Authors' Addresses

1. Introduction TOC

The "better than nothing" (BTNS) extensions for IKE
[I-D.ietf-btns-core] (Williams, N. and M. Richardson, “Better-Than-
Nothing-Security: An Unauthenticated Mode of IPsec,” August 2008.) are
intended to protect network traffic on their own (Stand Alone BTNS, or
SAB), and may be useful in providing network layer security that can be
authenticated by higher layers in the protocol stack, called Channel




Bound BTNS (CBB). The motivation for SAB is to remove the need to
deploy authentication information altogether. The motivation for CBB 1is
to remove the need for redundant authentication at multiple layers.
This document defines APIs for these purposes. The APIs can also be
used by other protocols such as the Host Identity Protocol (HIP)
[RFC5201] (Moskowitz, R., Nikander, P., Jokela, P., and T. Henderson,
“Host Identity Protocol,” April 2008.) and Session Initiation Protocol
(SIP) [RFC3261] (Rosenberg, J., Schulzrinne, H., Camarillo, G.,
Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler,
“SIP: Session Initiation Protocol,” June 2002.). For example, a SIP
user agent can use the presented APIs for determining whether or not
required integrity and confidentiality protection is already in use.
For certain networks and configuration this is expected to reduce
overhead associated with the security mechanisms.

The network communications of applications are usually secured
explicitly with TLS on transport layer [RFC4346] (Dierks, T. and E.
Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.1,”
April 2006.), or using even higher layer interfaces such as GSS
[REC2744] (Wray, J., “Generic Security Service API Version 2 : C-
bindings,” January 2000.) or SASL [RFC4422] (Melnikov, A. and K.
Zeilenga, “Simple Authentication and Security Layer (SASL),”

June 2006.) APIs. However, such interfaces do not exist for IPsec
because it operates on lower layers and is mostly transparent to
applications. Using IPsec to protect existing applications is therefore
easier than with, for example, TLS because IPsec does not require
changes in the application. However, it is difficult for an application
to detect when network connections are secured using IPsec. IPsec can
be used as an "all or nothing" security measure, which can be
problematic especially in deployments where the number of IPsec enabled
machines is small. An alternative approach is to use IPsec when peer
supports it. However, the application or the user may not have any
knowledge that the communications was actually protected by IPsec in
this case. In addition, it is more efficient to remove redundant
authentications when IPsec and TLS are being used for the same
connection.

In this document, we define APIs that increase the visibility of the
IPsec layer to the applications. This document fulfills the BTNS
requirements presented in [I-D.ietf-btns-ipsec-apireq] (Richardson, M.
and B. Sommerfeld, “Requirements for an IPsec API,” April 2006.) and
present C-bindings to the abstract APIs [I-D.ietf-btns-abstract-api]
(Richardson, M., “An abstract interface between applications and
IPsec,” November 2008.). The APIs defined in this document are based on
the sockets API [POSIX] (Institute of Electrical and Electronics
Engineers, “IEEE Std. 1003.1-2001 Standard for Information Technology -

Portable Operating System Interface (POSIX),” Dec 2001.). For related
API work, please refer to [I-D.ietf-hip-native-api] (Komu, M. and T.
Henderson, “Basic Socket Interface Extensions for Host Identity
Protocol (HIP),” January 2010.), [mcdonald] (Internet Engineering Task
Force, “A Simple IP Security API Extension to BSD Sockets,” Mar 1997.)




and [atkinson] (USENIX 1996 Annual Technical Conference,
“Implementation of IPv6 in 4.4 BSD,” Jan 1996.).

The documents defines an explicit way of enabling IPsec in
applications. This API allows the dual use of both IPsec and higher
layer security mechanisms (TLS, GSS or SASL) simultaneously. The
security and performance related benefits of this are described in more
detail in [I-D.ietf-btns-prob-and-applic] (Touch, J., Black, D., and Y.
wWang, “Problem and Applicability Statement for Better Than Nothing
Security (BTNS),” July 2008.).

Fom e e e oo . Fomm e oo o [ +
| App # 1 | App # 2 | App # 3 | App #4 |
+-o--- S B B T
I I I I
I R AREEEEE V-t |
| | TLS/GSS/SASL | |
Fo---- V----- Fomm - - Fomm o - - + |
Appl. Layer | IPsec APIs | | |
+----- Fommmm e +---+ | |
I I I I
+o---- T V------- R V---+
Sockets Layer | IPv4 and IPv6 APIs |
o m e e e o m e e o - Fomm e e oo +
Transport Layer | SCTP | TCP | uDP |
S S Y +
IPsec Layer | IPsec |
ommm e e eaaaa T +
Network Layer | IPv4 | IPV6 |
Fom e e e e oo - Fom e oo +
Link Layer | Ethernet | Etc |
B Y R +

Figure 1: API Layering

Figure 1 (API lLayering) illustrates four different applications. The
first application is using only the IPsec APIs based on either IKE
based authentication or Stand-alone BTNS. The second application is
using both TLS (or other similar APIs) and IPsec APIs. In this case,
the application can skip IKE authentication because of it is already
provided by TLS. On the other hand, the application can avoid the use
of TLS altogether when IKE authentication is available. The third
application is using only TLS and the fourth one is using neither IPsec
or TLS APIs.

In the first three cases, the application is explicitly modified to use
either TLS or IPsec. In contrast, the fourth application is not using




either TLS or IPsec explicitly, but it may be using IPsec implicitly.
This document covers the use of applications one and two.

2. IPsec APIs TOC

The IPSec APIs are accessed by using tokens. The pToken has a per-
process scope and is used to access the IPSec API. This token can be
obtained, for example, from a connected socket, a received datagram, or
a file descriptor. This token cannot be serialized. The iToken is a
serializable token and represents the identity of a remote system.

This section defines constants, data structures and functions for
manipulating IPsec related data structures. The definitions are based
on C-language. The integer values are always in host byte order.

2.1. Identity Tokens TOC

Application can use identity tokes for querying the peer identity and
for requiring certain channel bindings for a socket to implement ACLsS
or for logging purposes. Then, the application can communicate with a
peer through the socket and the communication succeeds only when
channel bindings are acceptable to the application. The application can
also communicate with an peer of unknown identity, and to store and
require the same peer identity in subsequent communications.

2.1.1. Creation of Identity Tokens TOC
Identity tokens, iTokens, are machine-readable, opaque data structures.

They can present either the local or remote identity, such as a public
key. The iToken has a typedef which is illustrated Figure 2.

typedef struct ipsec_iToken * ipsec_iToken_t;

Figure 2

Operating environments that support the IPSec API will provide
appropriate constructor and destructor for the iToken objects. Because
applications will often not be aware of the byte-representation of the



iToken object, nor will they know which attributes to initialize upon
construction, applications MUST only use the provided constructor to
create an iToken object. When an iToken object is no longer needed,
applications MUST use the provided destructor to destroy it. Figure 3
illustrates this API.

ipsec_iToken_t ipsec_create_iToken();
int ipsec_free_iToken(ipsec_iToken_t p);

Figure 3

Function ipsec_create_iToken() allocates memory for a iToken and
initializes it. The function returns the created iToken, or NULL upon
failure.

Function ipsec_free_iToken() deinitializes and frees the memory
allocated to an iToken. It returns zero on success, and non-zero upon
failure.

2.1.2. Attributes of Identity Tokens TOC

This section describes the c-language bindings to section 8 in
[I-D.ietf-btns-abstract-api] (Richardson, M., “An abstract interface
between applications and IPsec,” November 2008.). Identity token
attributes are shown in Figure 4. They are accessed using the functions
defined in Section 2.2 (Token Attributes).




enum {
IPSEC_API_ATTR_auditString,
IPSEC_API_ATTR_authenticationMethod,
IPSEC_API_ATTR_certificateAuthorityDN,
IPSEC_API_ATTR_certificateDN,
IPSEC_API_ATTR_pubKeyID,
IPSEC_API_ATTR_channelBinding

} iToken_attribute;

enum {
IPSEC_API_ATTR_authMeth_NONE,
IPSEC_API_ATTR_authMeth_BTNS,
IPSEC_API_ATTR_authMeth_LEAPOFFAITH,
IPSEC_API_ATTR_authMeth_PRESHAREDKEY,
IPSEC_API_ATTR_authMeth_GROUPKEY,
IPSEC_API_ATTR_authMeth_XAUTH,
IPSEC_API_ATTR_authMeth_EAP,
IPSEC_API_ATTR_authMeth_PKIX_TRUSTED,
IPSEC_API_ATTR_authMeth_PKIX_INLINE,
IPSEC_API_ATTR_authMeth_PKIX_OFFLINE

} iToken_auth_meth;

Figure 4

The group of attributes defined in iToken_attribute enumeration cannot
be modified. The auditString attribute is a character array ending with
a zero byte. It contains a human-readable description of the peer
identity. The authenticationMethod attribute defines the key manager
authentication method in an unsigned integer of two octets.

The certificateAuthorityDN attribute is a character array ending with a
zero byte and contains a human-readable description of the peer
certificate authority. The pubKeyID attribute contains a binary
presentation of the peer public key. The channelBinding attribute is a
character array ending with a zero byte. It contains a human-readable
description of the channel binding. Two channel bindings can be
compared with the memcmp() function.

The group of attributes in iToken_auth_meth enumeration contains a list
of authentication methods. These attributes are both writable before
network communications and readable after network communications. Here
the use of the attributes is described only from the point of view of
writing.

The attributes in this group are 2-octet unsigned integer values, with
values IPSEC_API_ATTR_ENABLE, IPSEC_API_ATTR_DISABLE and
IPSEC_API_ATTR_ANY. The first two of the values enable or disable the
attribute, and third one refers that the application relies on the
system defaults.



The attributes of the iToken_auth_meth are defined in
[I-D.ietf-btns-abstract-api] (Richardson, M., “An abstract interface
between applications and IPsec,” November 2008.).

The first NONE attribute describes that no authentication should be
used. The BTNS attribute enables or disables the extensions defined in
[I-D.ietf-btns-core] (Williams, N. and M. Richardson, “Better-Than-
Nothing-Security: An Unauthenticated Mode of IPsec,” August 2008.)

The LEAPOFFAITH attribute declares that the peer was authenticated
using a key which was previously cached, but was previously received
inline, and was not verified in anyway.

The PRESHAREDKEY attribute denotes that a unique preshared key should
be used and GROUPKEY correspondingly refers to a non-unique group Kkey.
The XAUTH, EAP, and PKIX attributes refer to the respective
authentication methods.

2.2. Token Attributes TOC

IPsec properties are handled indirectly using objects called tokens.
They are are opaque data structures that must not be manipulated
directly. Instead, the application uses accessor functions shown in

Figure 5.

int ipsec_get_token_attr(const void *token,
uint32_t attr_type,
uint32_t *attr_len,
void *attr_val);

int ipsec_set_token_attr(const void *token,
uint32_t attr_type,
uint32_t attr_len,
const void *attr_val);

Figure 5

Both of the functions can be applied both to policy and identity tokens
to retrieve or change the low-level attributes.

Function ipsec_token_attr_get() searches for the given attribute type
(attr_type) from the token and writes it to attr_val. Parameter
attr_len defines the size of attr_val structure in bytes.

Function ipsec_set_token_attr() writes the attribute (attr_val) to the
token. The type and length of the attribute must be set in attr_type
and attr_len. The attr_val must not be NULL and attr_len must have the
size of the allocated object.



Both of the functions return zero on success. They return -1 on error
and set errno accordingly.

2.3. Protection Tokens TOC

An application creates a "protection token" and attaches some
attributes for it. For example, the application can define in the
attributes of protection token that it accepts BTNS extensions for a
certain socket.

2.3.1. Creation of Protection Tokens TOC

Application uses protection tokens, or pTokens, as "handles" to the key
management or the IPsec module of the host. The application uses pToken
attributes to e.g. enabled the BTNS extensions and to control iTokens.
The former allows the use of IPSec without authentication, and the
latter allows e.g. querying of channel bindings.

The data structure that represents a pToken is contained in an opaque
ipsec_pToken structure. The application must not alter the data
structure contents directly, but rather use the accessor functions
introduced in the following sections. The application can use
ipsec_pToken_t typedef as a short hand for the policy structure. The
typedef is shown in Figure 6.

typedef struct ipsec_pToken * ipsec_pToken_t;

Figure 6

The size of a policy is variable and applications MUST NOT declare them
directly. Instead, the application uses the constructor and destructor
functions shown in Figure 7.

ipsec_pToken_t ipsec_create_pToken(void);
int ipsec_free_pToken(ipsec_pToken_t p);

Figure 7



Function ipsec_create_pToken() allocates memory for a pToken and
initializes it. The function returns the created pToken, or NULL upon
failure.

Function ipsec_free_pToken() deinitializes and frees the memory
allocated to a pToken. It returns zero on success, and non-zero upon
failure.

2.3.2. Attributes of Protection Tokens TOC

This section defines c-bindings for section 7 in
[I-D.ietf-btns-abstract-api] (Richardson, M., “An abstract interface
between applications and IPsec,” November 2008.). Protection token
attributes are shown in Figure 8. They are get or set using the
functions defined in Section 2.2 (Token Attributes).

enum {
IPSEC_API_ATTR_privacyProtected,
IPSEC_API_ATTR_integrityProtected,
IPSEC_API_ATTR_compressionAvailable,
IPSEC_API_ATTR_policyName,
IPSEC_API_ATTR_iToken,
IPSEC_API_ATTR_remote_iToken,
IPSEC_API_ATTR_tunnelMode,
IPSEC_API_ATTR_ipoptionsProtected,
IPSEC_API_ATTR_auditString,
IPSEC_API_ATTR_informationString

} pToken_attribute;

Figure 8

The attributes of the pToken_attribute structure are defined in
[I-D.ietf-btns-abstract-api] (Richardson, M., “An abstract interface
between applications and IPsec,” November 2008.).

Here the use of the attributes is described only from writing point of
view. Attribute value IPSEC_API_ATTR_DISABLE defines that the attribute
should not be used. Value IPSEC_API_ATTR_ENABLE describes that the
corresponding attribute should be used.

It is possible to enable an attribute by declaring the "level" of the
attribute with IPSEC_API_ATTR_LEVEL_LOW, IPSEC_API_ATTR_LEVEL_MEDIUM or
IPSEC_API_ATTR_LEVEL_HIGH.




The privacy, integrity and compression attributes are 2-octet unsigned
integer values. These attributes are writable before network
communication and readable after network communications. They can be
used to enforce and negotiate required attribute values.
privacyProtection - unsigned integer. Set to IPSEC_API_ATTR_DISABLE if
the connection has either no privacy configured (AH, ESP-null), or if
the privacy configured is known to be untrustworthy by the
administrator.

integrityProtection - unsigned integer. Set to IPSEC_API_ATTR_DISABLE
if there is no data integrity protection other than the UDP/TCP
checksum.

compressionAvailable - unsigned integer. Set to IPSEC_API_ATTR_DISABLE
if data count sent/ received from socket maps directly to data sent/
received on wire.

policyName - string. A handle which describes the system policy which
was used (or is desired), to establish the connection.

iToken - object. Set to iToken object which represents identity of
remote system.

remote_iToken - object. Set to iToken object which was used to
represent our identity to the remote system.

tunnelMode - unsigned integer. Set if tunnel mode was used, or if it is
desired.

ipoptionsProtected - unsigned integer. Set if ip options (and IPv6
header extensions), are protected.

auditString - string. The auditString is a character array ending in
zero byte and contains a human readable description of the protection
token.

informationString - string. Readonly. Not part of a template. Valid
only after connection establishment. Contains a string which can be
displayed to a user, informing them of what kind of security
association was established for this connection. This string may be
localized. No session keys are disclosed by this string.

2.3.3. Connection Oriented Communications TOC

Declaring a pToken does not affect the networking communications of an
application. For connection oriented communications, the application
must first attach the pToken to the socket before the pToken is
effective. It is also possible to query for the pToken attached to a
socket as shown in Figure 9.

int ipsec_set_socket_pToken(int fd, const ipsec_pToken_t pToken);
int ipsec_get_socket_pToken(int fd, ipsec_pToken_t pToken);



Figure 9

Both functions input an socket descriptor as the first argument and a
pToken as the second argument. Function ipsec_set_socket_pToken()
attaches the given pToken to the socket descriptor fd. Function
ipsec_get_socket_pToken() assumes that the application has allocated
the policy token beforehand with ipsec_create_pToken().

Both functions return zero upon success, and non-zero upon failure.

2.3.4. Datagram Oriented Communications TOC

The previous section covered the use of connected sockets. Datagram
oriented communications based on sendmsg() and recvmsg() functions are
supported in the API. Datagram related functions are applicable both to
incoming and outgoing packets. The IPsec API functions related
sendmsg() and recvmsg() are shown in Figure 10.

int ipsec_set_msg_pToken(struct msghdr *msg,
const ipsec_pToken_t pToken);
int ipsec_get_msg_pToken(const struct msghdr *msg,
ipsec_pToken_t pToken);

Figure 10

Function ipsec_set_msg_pToken() attaches the given pToken to the
ancillary data of msg. The pToken of a msg can be queried using
ipsec_get_msg_pToken() that assumes the application has allocated the
policy token beforehand with ipsec_create_pToken.

Both functions return zero on success. The functions return -1 on error
and set errno accordingly.

It should be noticed that these functions can be applied only to
sendto() and recvmsg() as they support per packet anchillary data.
Applications using sendto() and recvfrom() can apply the "stream-based"
functions described in the other sections of the document with certain
restrictions. TBD: discuss.

TOC



2.3.5. Equivalency of Protection Tokens

An application is not allowed to read or write to pTokens directly. The
same restriction applies also to comparison of pTokens. The function
for comparing two pTokens is shown in Figure 11.

int ipsec_cmp_pToken(ipsec_pToken_t p1,
ipsec_pToken_t p2);

Figure 11

Function ipsec_cmp_pToken() inputs two policies, pl1 and p2, and returns
zero if they represent two SAs that cover identical SPD ranges, and
have equivalent cryptographic security properties. The function returns
a nonzero value if p1 is not equal to p2. The two SAs need not
represent SAs that identical --- they might vary in many different
ways, including, but not limited to:

*Time: One SA may have been created later, but both are valid.

*Jitter/performance properties: One SA may be on hardware and the
other on software, and have different properties about what kind
of latency or jitter a packet might experience

*Algorithm: one SA might use AES128-CBC while the other uses
AES128-CTR (DISCUSS) for performance reasons.

*IPsec SA endpoints. The two SAs may cover the same inner IP
packets, but might connect using differing outer IP addresses,
and be used in some kind of multipath IPsec (such as MOBIKE).

2.3.6. Duplication of Protection Tokens TOC

Byte-wise copying of pTokens is not allowed e.g. with memcpy().
Function ipsec_dup_pToken() duplicates given pToken p and writes it to
p_dup. The function allocates the memory for duplicated pToken that the
caller is responsible of freeing. Return value is zero on success and
non-zero on failure.



int ipsec_dup_pToken(const ipsec_pToken_t p,
ipsec_pToken_t *p_dup);

Figure 12

3. Security Considerations TOC

The BTNS Stand Alone mode allows applications to omit network layer
authentication. In this case, an application is using a higher level
security mechanism, such as TLS, and thus the required level of
security is maintained. Thus, the application avoids applying duplicate
security measures on the network connection.

The channel bindings allow applications to create and manage security
channels. Given that applications omit higher layer security techniques
based on information in an existing pToken and the corresponding
channel binding, there is a possibility for a security channel
downgrade attack. In this attack, another application modifies the
current application's channel binding in such a way that the
application believes that an authenticated IPsec security channel to be
active even though there is no such channel. If the application omits
TLS or other higher level security mechanism, then there will not be a
secured channel and transmitted data is exposed.

4. IANA Considerations TOC

There are no registries created by this document. The names (and
language specific enum) of the pToken and iToken properties are
internal to a single system, and therefore do not need standardization.

5. Acknowledgements TOC
Thanks for Love Hornquist Atrand, Julien Laganier and Vijay Gurbani for

feedback, ideas and discussion on the topic. The authors wish to thank
also Simon Josefsson and Daniel McDonald for comments on the draft.

TOC



1.

.2.

References

Normative References

[I-D.ietf-
btns-
abstract-api]
[I-D.ietf-
btns-core]

[I-D.ietf-
btns-ipsec-
apireq]
[I-D.ietf-
btns-prob-
and-applic]

[POSIX]

TOC
Richardson, M., “An abstract interface between
applications and IPsec,” draft-ietf-btns-abstract-
api-02 (work in progress), November 2008 (TXT).
wWilliams, N. and M. Richardson, “Better-Than-
Nothing-Security: An Unauthenticated Mode of IPsec,”
draft-ietf-btns-core-07 (work in progress),
August 2008 (TXT).
Richardson, M. and B. Sommerfeld, “Requirements for
an IPsec API,” draft-ietf-btns-ipsec-apireq-00 (work
in progress), April 2006 (TXT).
Touch, J., Black, D., and Y. Wang, “Problem and
Applicability Statement for Better Than Nothing
Security (BTNS),” draft-ietf-btns-prob-and-applic-07
(work in progress), July 2008 (TXT).
Institute of Electrical and Electronics Engineers,
“IEEE Std. 1003.1-2001 Standard for Information
Technology - Portable Operating System Interface
(POSIX),” Dec 2001.

Informative References

[I-D.ietf-
hip-native-
api]

[RFC2744]

[RFC3261]

[RFC4346]

[RFC4422]

[RFC5201]

TOC
Komu, M. and T. Henderson, “Basic Socket Interface
Extensions for Host Identity Protocol (HIP),” draft-
ietf-hip-native-api-12 (work in progress),
January 2010 (TXT).
Wray, J., “Generic Security Service API Version 2
C-bindings,” RFC 2744, January 2000 (TXT).
Rosenberg, J., Schulzrinne, H., Camarillo, G.,
Johnston, A., Peterson, J., Sparks, R., Handley, M.,
and E. Schooler, “SIP: Session Initiation Protocol,”
RFC 3261, June 2002 (TXT).
Dierks, T. and E. Rescorla, “The Transport Layer
Security (TLS) Protocol Version 1.1,” RFC 4346,
April 2006 (TXT).
Melnikov, A. and K. Zeilenga, “Simple Authentication
and Security Layer (SASL),” RFC 4422, June 2006
(TXT).
Moskowitz, R., Nikander, P., Jokela, P., and T.
Henderson, “Host Identity Protocol,” RFC 5201,
April 2008 (TXT).



http://www.ietf.org/internet-drafts/draft-ietf-btns-abstract-api-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-btns-abstract-api-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-btns-abstract-api-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-btns-core-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-btns-core-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-btns-core-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-btns-ipsec-apireq-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-btns-ipsec-apireq-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-btns-ipsec-apireq-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-btns-prob-and-applic-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-btns-prob-and-applic-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-btns-prob-and-applic-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-btns-prob-and-applic-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-hip-native-api-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-hip-native-api-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-hip-native-api-12.txt
mailto:John_Wray@Iris.com
http://tools.ietf.org/html/rfc2744
http://tools.ietf.org/html/rfc2744
http://www.rfc-editor.org/rfc/rfc2744.txt
http://tools.ietf.org/html/rfc3261
http://www.rfc-editor.org/rfc/rfc3261.txt
http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc4346
http://www.rfc-editor.org/rfc/rfc4346.txt
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4422
http://www.rfc-editor.org/rfc/rfc4422.txt
http://tools.ietf.org/html/rfc5201
http://www.rfc-editor.org/rfc/rfc5201.txt

[atkinson]

[mcdonald]

Authors' Addresses

Email:
URT:

Email:

Phone:
Fax:
Email:
URI:

Phone:
Fax:
Email:
URI:

USENIX 1996 Annual Technical Conference,
“Implementation of IPv6 in 4.4 BSD,” Jan 1996.
Internet Engineering Task Force, “A Simple IP
Security API Extension to BSD Sockets,” Mar 1997.

_T0C
Michael C. Richardson
Sandelman Software Works
470 Dawson Avenue
Ottawa, ON K1z 5V7
CA
mcr@sandelman.ottawa.on.ca
http://www.sandelman.ottawa.on.ca/

Nicolas Williams

SUN Microsystems

5300 Riata Trace Ct
Austin, TX TX 78727

us
Nicolas.Williams@sun.com

Miika Komu

Helsinki Institute for Information Technology
Metsanneidonkuja 4

Espoo

Finland

+358503841531

+35896949768

miika@iki.fi

http://www.iki.fi/miika/

Sasu Tarkoma

Helsinki Institute for Information Technology
Metsanneidonkuja 4

Espoo

Finland

+358503841517

+35896949768

sasu.tarkoma@hiit.fi
http://www.cs.helsinki.fi/u/starkoma/



mailto:mcr@sandelman.ottawa.on.ca
http://www.sandelman.ottawa.on.ca/
mailto:Nicolas.Williams@sun.com
mailto:miika@iki.fi
http://www.iki.fi/miika/
mailto:sasu.tarkoma@hiit.fi
http://www.cs.helsinki.fi/u/starkoma/

	C-Bindings for IPsec Application Programming Interfacesdraft-ietf-btns-c-api-04
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1.  Introduction
	2.  IPsec APIs
	2.1.  Identity Tokens
	2.1.1.  Creation of Identity Tokens
	2.1.2.  Attributes of Identity Tokens
	2.2.  Token Attributes
	2.3.  Protection Tokens
	2.3.1.  Creation of Protection Tokens
	2.3.2.  Attributes of Protection Tokens
	2.3.3.  Connection Oriented Communications
	2.3.4.  Datagram Oriented Communications
	2.3.5.  Equivalency of Protection Tokens
	2.3.6.  Duplication of Protection Tokens
	3.  Security Considerations
	4.  IANA Considerations
	5.  Acknowledgements
	6.  References
	6.1. Normative References
	6.2. Informative References
	Authors' Addresses


