
NETWORK WORKING GROUP N. Williams
Internet-Draft Sun
Expires: August 27, 2008 February 24, 2008

IPsec Channels: Connection Latching
draft-ietf-btns-connection-latching-06.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 27, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Williams Expires August 27, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft IPsec Connection Latching February 2008

Abstract

 This document specifies, abstractly, how to interface applications
 and transport protocols with IPsec so as to create "channels" by
 "latching" "connections" (packet flows) to certain IPsec Security
 Association (SA) parameters for the lifetime of the connections.
 This can be used to protect applications against accidentally
 exposing live packet flows to unintended peers, whether as the result
 of a reconfiguration of IPsec or as the result of using weak peer
 identity to peer address associations.

 Weak association of peer ID and peer addresses is at the core of
 Better Than Nothing Security (BTNS), thus connection latching can add
 a significant measure of protection to BTNS IPsec nodes. A model of
 of connection latching is given.

Table of Contents

1. Introduction . 3
1.1. Conventions used in this document 4
2. Connection Latching . 5
2.1. Connection latch state machine 8
2.2. Normative Model: ULP interfaces to the key manager 9
2.3. Informative model: local packet tagging 13
2.4. Non-native mode IPsec 14
2.5. Conflict Resolution . 15
3. Optional protection . 16
4. Simulataneous latch establishment 17
5. Security Considerations 18
6. IANA Considerations . 19
7. Acknowledgements . 20
8. References . 21
8.1. Normative References . 21
8.2. Informative References 21

 Author's Address . 23
 Intellectual Property and Copyright Statements 24

Williams Expires August 27, 2008 [Page 2]

Internet-Draft IPsec Connection Latching February 2008

1. Introduction

 IPsec protects packets with little or no regard for stateful packet
 flows associated with upper layer protocols (ULPs). This exposes
 applications that rely on IPsec for session protection to risks
 associated with changing IPsec configurations, configurations that
 allow multiple peers access to the same addresses, and/or weak
 association of peer IDs and their addresses. The latter can occur as
 a result of "wildcard" matching in the IPsec Peer Authorization
 Database (PAD), particularly when BTNS
 [I-D.ietf-btns-prob-and-applic] is used.

 Applications that wish to use IPsec may have to ensure that local
 policy on the various end-points is configured appropriately
 [I-D.bellovin-useipsec] [I-D.dondeti-useipsec-430x]. There are no
 standard Application Programming Interfaces (APIs) to do this -- a
 major consequence of which, for example, is that applications must
 still use hostnames (and, e.g., the Domain Name System [RFC1034]) and
 IP addresses in existing APIs and must depend on an IPsec
 configuration that they may not be able to verify. In addition to
 specifying aspects of required SPD configuration, application
 specifications must also address PAD/SPD configuration to strongly
 bind individual addresses to individual IPsec identities and
 credentials (certificates, public keys, ...).

 IPsec is, then, quite cumbersome for use by applications. To address
 this we need APIs to IPsec. Not merely APIs for configuring IPsec,
 but also APIs that are similar to the existing IP APIs (e.g., "BSD
 sockets"), so that typical applications making use of UDP and TCP can
 make use of IPsec with minimal changes.

 This document describes the foundation for IPsec APIs that UDP and
 TCP applications can use: a way to bind the traffic flows for, e.g.,
 TCP connections to security properties desired by the application.
 We call these "connection latches" (and, in some contexts, "IPsec
 channels"). The methods outlined below achieve this by interfacing
 ULPs and applications to IPsec.

 If widely adopted, connection latching could make application use of
 IPsec much simpler, at least for certain classes of applications.

 Note: the terms "connection latch" and "IPsec channel" are used
 interchangeably below. The latter term relates to "channel binding"
 [RFC5056]. Connection latching is suitable for use in channel
 binding applications, or will be, at any rate, when the channel
 bindings for IPsec channels are defined (the specification of IPsec
 channel bindings is out of scope for this document).

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc5056

Williams Expires August 27, 2008 [Page 3]

Internet-Draft IPsec Connection Latching February 2008

1.1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Williams Expires August 27, 2008 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft IPsec Connection Latching February 2008

2. Connection Latching

 An "IPsec channel" is a packet flow associated with a ULP control
 block, such as a TCP connection, where all the packets are protected
 by IPsec SAs such that:

 o the peer's identity is the same for the lifetime of the packet
 flow

 o the quality of IPsec protection used for the packet flow's
 individual packets is the same for all of them for the lifetime of
 the packet flow

 An IPsec channel is created when the associated packet flow is
 created. This can be the result of a local operation (e.g., a
 connect()) that causes the initial outgoing packet for that flow to
 be sent, or it can be the result of receiving the first/initiating
 packet for that flow (e.g., a TCP SYN packet).

 IPsec channels are created by "latching" various parameters listed
 below to a ULP connection when the connections are created. The
 REQUIRED set of parameters bound in IPsec channels is:

 o Type of protection: confidentiality and/or integrity protection;

 o Transport mode vs. tunnel mode;

 o Quality of protection: cryptographic algorithm suites, key
 lengths, and replay protection;

 o Peer identity: peers' asserted and authorized IDs, as per the
 IPsec processing model [RFC4301] and BTNS [I-D.ietf-btns-core].

 Additionally, there SHOULD be an optional way for applications to
 specify the conflict resolution behaviour of an IPsec channel (see
 description of the SUSPENDED and BROKEN connection latch states in

Section 2.1): whether to wait for the conflict to disappear, or
 whether to break the channel. The default for this option SHOULD be
 "break the channel", and MAY be configurable through local policy.

 The SAs that protect an IPsec channel's packets need not be related
 by anything other than the fact that they must be congruent to the
 channel (i.e, the SAs' parameters must match those that are latched
 into the channel). In particular, it is desirable that IPsec
 channels survive the expiration of IKE_SAs and child SAs -- new ones
 can be negotiated as necessary without compromising the security
 guarantees of the channel -- because operational considerations of
 the various key exchange protocols then cannot affect the design and

https://datatracker.ietf.org/doc/html/rfc4301

Williams Expires August 27, 2008 [Page 5]

Internet-Draft IPsec Connection Latching February 2008

 features of connection latching.

 Implementations SHOULD provide applications with APIs for inquiring
 whether a connection is latched and what the latched parameters are.
 Implementations SHOULD provide applications with some control,
 through application programming interfaces (APIs)
 [I-D.ietf-btns-abstract-api], over what quality of protection, or the
 expected identity of a peer. If an application does not use such
 interfaces then it will obtain default quality of protection derived
 from system policy. Implementations MAY create IPsec channels
 automatically by default when the application does not request an
 IPsec channel.

 Requirements and recommendations:

 o If an IPsec channel is desired then packets for a given connection
 MUST NOT be sent until the channel is established.

 o If an IPsec channel is desired then inbound packets for a given
 connection MUST NOT be accepted until the channel is established.
 I.e., inbound packets for a given connection arriving prior to the
 establishment of the corresponding IPsec channel must be dropped
 or the channel establishment must fail.

 o Once an IPsec channel is established packets for the latched
 connection MUST NOT be sent unprotected nor protected by an SA
 that does not match the latched parameters.

 o Once an IPsec channel is established packets for the latched
 connection MUST NOT be accepted unprotected nor protected by an SA
 that does not match the latched parameters. I.e., such packets
 either must be dropped or must cause the channel to be terminated
 and the application to be informed before data from such a packet
 can be delivered to the application.

 o Native implementations SHOULD provide programming interfaces for
 inquiring the values of the parameters latched in a connection.

 o Implementations that provide such programming interfaces MUST make
 available to applications all relevant information about a peer's
 ID, including authentication information. This includes the peer
 certificate, when one is used, and the trust anchor that it was
 validated to.

 o Implementations that provide such programming interfaces SHOULD
 make available to applications any available NAT-related
 information about the peer: whether it is behind a NAT and, if it
 is, the inner and outer tunnel addresses of the peer.

Williams Expires August 27, 2008 [Page 6]

Internet-Draft IPsec Connection Latching February 2008

 o Native implementations SHOULD provide programming interfaces for
 setting the values of the parameters to be latched in a connection
 that will be initiated or accepted, but these interfaces MUST
 limit what values applications may request according to system
 policy (i.e., the IPsec PAD and SPD) and the application's
 privilege.

 (Typical system policy may not allow applications any freedom
 here. Policy extensions allowing for optional protection are
 described in Section 3.)

 o The parameters latched in an IPsec channel MUST remain unchanged
 once the channel is established.

 o Timeouts while establishing an SA with parameters that match a
 those latched into an IPsec channel MUST be treated as packet loss
 (as happens, for example, when a network partitions); normal ULP
 and/or application timeout handling and retransmission
 considerations apply. Failure to establish an appropriate SA for
 an IPsec channel SHOULD be communicated to the ULP and
 application, and MAY cause the IPsec channel to be broken (which
 MUST be communicated to the ULP and application).

 o Implementations that have a restartable key management process (or
 "daemon") MUST arrange for existing latched connections to either
 be broken and disconnected, or for them to survive the restart of
 key exchange processes. (This is implied by the above
 requirements.) For example, if such an implementation relies on
 keeping some aspects of connection latch state in the restartable
 key management process (e.g., potentially large values, such as
 BTNS peer IDs), then either such state must be restored on restart
 of such a process, or outstanding connection latches must be
 transitioned to the CLOSED state.

 o Dynamic IPsec policy related to connection latches MUST be torn
 down when latched connections are torn down, even when the latter
 is implied, such as at crash/halt/reboot time.

 We describe two models (one normative) of IPsec channels for native
 IPsec implementations. Both models should suffice for all-software
 native implementations of IPsec. One, the other or both models
 should be workable for most native implementations where part of the
 IPsec stack is implemented in hardware. The normative model is based
 on abstract programming interfaces between ULPs and the key
 management component of IPsec. The second model is based on abstract
 programming interfaces between ULPs and the IPsec (ESP/AH) layer in
 the IP stack.

Williams Expires August 27, 2008 [Page 7]

Internet-Draft IPsec Connection Latching February 2008

 The two models given below are not, however, entirely equivalent.
 One model cannot be implemented with NICs that offload ESP/AH but
 which do not tag incoming packets passed to the host processor with
 SA information, nor allow the host processor to so tag outgoing
 packets. That same model can be extended to support connection
 latching with unconnected datagram sockets, while the other model
 cannot be so extended. There may be other minor differences between
 the two models; rather than seek to prove equivalency for some set of
 security guarantees we instead choose one model to be the normative
 one.

 We also provide a model for non-native implementations, such as bump-
 in-the-stack (BITS) and SG implementations. The connection latching
 model for non-native implementations is not full-featured as it
 depends on estimating packet flow state, which may not always be
 possible. Nor can non-native IPsec implementations be expected to
 provide APIs related to connection latching (implementations that do
 could be said to be native). As such this third model is not
 suitable for channel binding applications [RFC5056].

2.1. Connection latch state machine

 Connection latches can exist in any of the following five states:

 o LISTENER

 o ESTABLISHED

 o SUSPENDED (there exist conflicting SAs, waiting for them to expire
 or be removed)

 o BROKEN (conflicting SAs were created)

 o CLOSED (by the ULP, the application or administratively)

 and always have an associated owner, or holder, such as a ULP
 transmission control block (TCB).

 A connection latch can be born in the LISTENER state, which can
 transition only to the CLOSED state. The LISTENER state corresponds
 to LISTEN state of TCP sockets and is associated with IP 3-tuples,
 and can give rise to new connection latches in the ESTABLISHED state.

 A connection latch can also be born in the ESTABLISHED state, either
 through the direct initiative of a ULP or when an event occurs that
 causes a LISTENER latch to create an ESTABLISHED latch. This state
 represents an active connection latch for a traffic flow's 5-tuple.
 ESTABLISHED connection latches can transition to the SUSPENDED,

https://datatracker.ietf.org/doc/html/rfc5056

Williams Expires August 27, 2008 [Page 8]

Internet-Draft IPsec Connection Latching February 2008

 BROKEN, and CLOSED states.

 Connection latches remain in the CLOSED state until their owners are
 informed except where the ownser caused the transition, in which case
 this state is fleeting. Transitions to the CLOSED state should
 typically be initiated by latch owners, but implementations MAY
 provide administrative interfaces through which to close active
 latches.

 Connection latches transition to either the SUSPENDED or BROKEN
 states, according to application preference (or system policy), when
 there exist SAs in the SAD whose traffic selectors encompass the
 5-tuple bound by the latch, and whose peer and/or parameters conflict
 with those bound by the latch. Transitions to the SUSPENDED always
 cause the associated owner to be informed. Connection latches in the
 SUSPENDED state may transition back to ESTABLISHED when the conflict
 is cleared. Transitions to either state always cause the associated
 owner to be notified. BROKEN connection latches can only transition
 to CLOSED, but SUSPENDED latches can transition to either ESTABLISHED
 or CLOSED (see above).

 Most state transitions are the result of local actions of the latch
 owners (ULPs). The only exceptions are: birth into the ESTABLISHED
 state from a LISTENER latch, transitions to the SUSPENDED and BROKEN
 states, and administrative transitions to the CLOSED state.
 (Additionally, see the implementation note about restartable key
 management processes in Section 2.)

 The details of the transitions depend on the model of connection
 latching followed by any given implementation. See the following
 sections.

2.2. Normative Model: ULP interfaces to the key manager

 This section is NORMATIVE.

 In this section we describe connection latching in terms of an
 interface between ULPs and the key manager component of a native
 IPsec implementation. Abstract interfaces for creating, inquiring
 about, and releasing IPsec channels are described.

 This model adds a service to the IPsec key manager (i.e., the
 component that manages the SAD and interfaces with, or implements,
 key exchange protocols): management of connection latches. There is
 also a new IPsec database, the Latch Database (LD), that contains all
 connection latch objects.

 The traditional IPsec processing model allows the concurrent

Williams Expires August 27, 2008 [Page 9]

Internet-Draft IPsec Connection Latching February 2008

 existence of SAs with different peers but overlapping traffic
 selectors. Such behaviour, in this model, directly violates the
 requirements for connection latching. We address this problem by
 requiring that connection latches be broken (and holders informed)
 when such conflicts arise.

 The ULP interfaces to the IPsec PAD database are as follows:

 o CREATE_LISTENER_LATCH(3-tuple, [type and quality of protection
 parameters]) -> latch handle

 If there is no conflicting connection latch object in the
 LISTENER state for the given 3-tuple (local address, protocol
 and local port number), and local policy permits it, then this
 operation atomically creates a connection latch object in the
 LISTENER state for the given 3-tuple.

 When a child SA is negotiated that would match a listener
 latch's 3-tuple then the key manager SHOULD narrow the child SA
 so that its local address and port ranges do not include the
 3-tuple or so that the SA has only one local address and port
 number: the one from the tuple.

 When a child SA is created that matches a listener latch's
 3-tuple, but not any ESTABLISHED connection latch's 5-tuple
 (local address, remote address, protocol, local port number and
 remote port number), then the key manager creates a new
 connection latch object in the ESTABLISHED state. The key
 manager MUST inform the holder of the listener latch of
 connection latches created as a result of the listener latch.

 o CREATE_CONNECTION_LATCH(5-tuple, [type and quality of protection
 parameters], [peer ID], [local ID]) -> latch handle

 If no connection latch exists in the ESTABLISHED states with
 the same 5-tuple, and if there exist no child SAs that match
 the given 5-tuple, or all such SAs share the same type and
 quality of protection parameters and the same peer then this
 operation creates a connection latch object in the ESTABLISHED
 state for the given 5-tuple. If the caller provided all the
 optional arguments to this operation then the resulting
 connection latch can be created in the ESTABLISHED state
 directly.

 If there exist no child SAs matching the given 5-tuple then the
 key manager SHOULD try to create a pair of child SAs for that
 5-tuple. In any case, the key manager can expect that the ULP
 will send a packet that would trigger the creation of such SAs.

Williams Expires August 27, 2008 [Page 10]

Internet-Draft IPsec Connection Latching February 2008

 When the key manager tries to create child SAs it should narrow
 the proposals so that their traffic selector match no
 connection latches in the ESTABLISHED states, or so that they
 match only the 5-tuple of a single such connection latch.

 o RELEASE_LATCH(latch object handle)

 Changes the state of the given connection latch to CLOSED; the
 connection latch is then deleted.

 The key manager SHOULD delete any existing child SAs that match
 the given latch if it had been in the ESTABLISHED states. If
 the key manager does delete such SAs then it SHOULD inform the
 peer with an informational Delete payload (see IKEv2
 [RFC4306]).

 o INQUIRE_LATCH(latch object handle) -> latch state, latched
 parameters

 Returns all available information about the given latch.

 Needless to say, the LD is updated whenever a connection latch object
 is created, deleted or broken.

 The API described above is a new service of the IPsec key manager.
 In particular the IPsec key manager MUST prevent conflicts amongst
 latches, and it MUST prevent conflicts between any latch and existing
 or proposed child SAs as follows:

 o Non-listener connection latches MUST NOT be created if there exist
 conflicting SAs in the SAD at the time the connection latch is
 requested or would be created (from a listener latch). A child SA
 conflicts with another, in view of a latch, if and only if: a) its
 traffic selectors and the conflicting SA's match the give latch's,
 b) its peer, type of protection, or quality of protection
 parameters differ from the conflicting SA.

 o Child SA proposals that would conflict with an extant connection
 latch and whose traffic selectors can be narrowed to avoid the
 conflict MUST be narrowed (see section 2.9 of [RFC4306]);

 o Where child SA proposals that would conflict with an extant
 connection latch cannot be narrowed to avoid the conflict the key
 manager MUST break the connection latch and inform the holder
 (i.e., the ULP) prior to accepting the conflicting SAs.

 Additionally, the key manager MUST protect latched connections
 against SPD changes that would change the quality of protection

https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc4306#section-2.9

Williams Expires August 27, 2008 [Page 11]

Internet-Draft IPsec Connection Latching February 2008

 afforded to a latched connection's traffic, or which would bypass it.
 When such a configuration change takes place the key manager MUST
 either preserve a logical SPD entry such that the latched connection
 continues to obtain the required protection, or the key manager MUST
 break the latch and inform the latch holder (ULP) before the change
 takes place. To do this the key manager can logically update the SPD
 as if a PROTECT entry had been added at the head of the SPD-S with
 traffic selectors matching only the latched connection's 5-tuple, and
 with processing information taken from the actual SPD entry matched
 by the connection (possibly augmented by the application's request
 for additional protection). Such updates of the SPD MUST NOT survive
 system crashes or reboots.

 ULPs create latched connections by interfacing with IPsec below as
 follows:

 o For listening end-points the ULP will request a connection latch
 listener object for the ULP listener's 3-tuple. Any latching
 parameters requested by the application should be passed along.

 o When the ULP receives a packet initiating a connection for a
 5-tuple matching a 3-tuple listener latch, then the ULP will ask
 the key manager whether a 5-tuple connection latch was created.
 If not then the ULP will either reject the new connection or
 accept it and inform the application that the new connection is
 not latched (that it does not represent an IPsec channel).

 o When initiating a connection the ULP will request a connection
 latch object for the connection's 5-tuple. Any latching
 parameters requested by the application should be passed along.
 If no latch can be created then the ULP will either return an
 error to the application or continue with the new connection and
 inform the application that the new connection is not latched.

 o When a latched connection is torn down and no further packets are
 expected for it then the ULP will request that the connection
 latch object be destroyed.

 o When tearing down a listener the ULP will request that the
 connection latch listener object be destroyed.

 o When a ULP listener rejects connections the ULP will request the
 destruction of any connection latch objects that may have been
 created as a result of the peer's attempt to open the connection.

 o When the key manager informs a ULP that a connection latch is no
 longer valid then the ULP SHOULD reset or otherwise terminate the
 connection and MUST inform the application.

Williams Expires August 27, 2008 [Page 12]

Internet-Draft IPsec Connection Latching February 2008

 The main benefit of this model of connection latching is that it
 accommodates IPsec implementations where ESP/AH handling is
 implemented in hardware (for all or a subset of the host's SAD), but
 where the hardware does not support tagging inbound packets with the
 indexes of SAD entries corresponding to the SAs that protected them.

 Note that there is a race condition in this method of connection
 latching: incoming packets may race with the ULP and the IPsec key
 manager's manipulation of connection latch objects and SAD entries.
 As a result ULPs may not be able to trust some packets even though a
 suitable connection latch object may exist. Implementations MUST
 prevent such races. One method to prevent these races is to tag
 packets passed up by the ESP/AH layer with a key manager state
 version number that is monotonically incremented every time that
 connection latching state changes; this version number must be
 incremented atomically relative to the SAD and the LD, including SAD
 subsets stored on IPsec offload hardware. Other methods may be
 possible, including dropping packets that arrive within a certain
 amount of time since the creation/destruction of connection latch
 objects (e.g., if the maximum latency within the key manager and IP
 stack is known and guaranteed).

2.3. Informative model: local packet tagging

 In this section we describe connection latching in terms of
 interfaces between ULPs and IPsec based on tagging packets as they go
 up and down the IP stack.

 This section is INFORMATIVE.

 The ULPs and IPsec interface through a local packet tagging scheme
 (i.e., the tags don't appear on the wire):

 o The IPsec layer tags all inbound protected packets addressed to
 the host with the index of the SAD entry corresponding to the SA
 that protected the packet.

 o The IPsec layer understands two types of tags on outbound packets:

 * a tag specifying a set of latched parameters (peer ID, quality
 of protection, etc...) that the IPsec layer will use to find or
 acquire an appropriate SA for protecting the outbound packet
 (else IPsec will inform the ULP and drop the packet);

 * a tag requesting feedback about the SA used to protect the
 outgoing packet, if any.

 ULPs create latched connections by interfacing with IPsec below as

Williams Expires August 27, 2008 [Page 13]

Internet-Draft IPsec Connection Latching February 2008

 follows:

 o When the ULP passes a connection's initiating packet to IP the ULP
 requests feedback about the SA used to protect the outgoing
 packet, if any, and may specify latching parameters requested by
 the application. If the packet is protected by IPsec then the ULP
 records certain parameters of the SA used to protect it in the
 connection's TCB.

 o When a ULP receives a connection's initiating packet it processes
 the IPsec tag of the packet, and it records in the connection's
 TCB the parameters of the SA that should be latched.

 Once SA parameters are recorded in a connection's TCB the ULP
 enforces the connection's latch, or binding, to these parameters as
 follows:

 o The ULP processes the IPsec tag of all inbound packets for a given
 connection and checks that the SAs used to protect input packets
 match the connection latches recorded in the TCBs. Packets which
 are not so protected are dropped (this corresponds to
 transitioning the connection latch to the SUSPENDED state until
 the next acceptable packet arrives, but in this model this
 transition is imaginary), or cause the ULP to break the connection
 latch and inform the application.

 o The ULP always requests that outgoing packets be protected by SAs
 that match the latched connection by appropriately tagging
 outbound packets.

 The receipt of a packet matching a latched connection's 5-tuple, but
 protected by an SA with an inappropriate peer, SHOULD be taken as an
 indication that the original peer is no longer at the original
 address and that the connection SHOULD be reset, the application
 informed, and the connection latch removed.

 This model of connection latching may not be workable with ESP/AH
 offload hardware that does not support the packet tagging scheme
 described above.

 Extending the ULP/IPsec interface to the application should enable
 applications to use connection-less datagram transports and implement
 connection latching at the application layer.

2.4. Non-native mode IPsec

 Non-native IPsec implementations, primarily BITS and SG, can
 implement connection latching too. One major distinction between

Williams Expires August 27, 2008 [Page 14]

Internet-Draft IPsec Connection Latching February 2008

 native IPsec and BITS/BITW/SG IPsec is the lack of APIs for
 applications at the end-points in the case of the latter. As a
 result there can be no uses of the latch management interfaces as
 described in Section 2.2, not at the ULP end-points. Therefore BITS/
 BITW/SG implementations must discern ULP connection state from packet
 inspection (which many firewalls can do) and emulate calls to the key
 manager accordingly.

 When a connection latch is broken a BITS/BITW/SG implementation may
 have to fake a connection reset by sending appropriate packets (e.g.,
 TCP RST packets), for the affected connections.

 As with all stateful middle-boxes this scheme suffers from the
 inability of the middle-box to interact with the applications. For
 example, connection death may be difficult to ascertain. Nor can
 channel binding applications work with channels maintained by proxy
 without being able to communicate (securely) about it with the
 middle-box.

2.5. Conflict Resolution

 Consider a system, say, an IMAP server, with an IPsec policy allowing
 all peers with certificates issued by some CA to claim any
 dynamically allocated address in a local network.

 In such an environment a peer might appear using some address, then
 disappear (e.g., a laptop whose battery runs out) and another peer
 might later (after the first peer's DHCP lease expires) appear using
 the same IP address as the first peer. The first peer might have had
 a long-lived TCP connection open with the server. The new peer might
 try to open a connection with the same server and with the same
 5-tuple as the first peer. The new peer's TCP SYN packet will fail
 to match the existing connection's latch.

 In such cases implementations based on Section 2.2 and Section 2.4
 will be unable to narrow the new peer's child SA proposals to avoid a
 conflict, and must either reject them (and transition the existing
 latch to SUSPENDED) or terminate the existing connection latch (i.e.,
 transition it to the BROKEN state).

 Implementors MUST provide termination of the existing connection as
 the default behaviour in such cases. Implementors MAY provide a
 configuration option for selecting the other behaviours.

Williams Expires August 27, 2008 [Page 15]

Internet-Draft IPsec Connection Latching February 2008

3. Optional protection

 Given IPsec APIs an application could request that a connection's
 packets be protected where they would otherwise be bypassed; that is,
 applications could override BYPASS policy. Locally privileged
 applications could request that their connections' packets be
 bypassed rather than protected; that is, privileged applications
 could override PROTECT policy. We call this "optional protection."

 Both native IPsec models of connection latching can be extended to
 support optional protection. With the model described in Section 2.3
 optional protection comes naturally: the IPsec layer need only check
 that the protection requested for outbound packets meets or exceeds
 (as determined by local or system policy) the quality of protection,
 if any, required by the SPD. Similarly, for the model described in

Section 2.2 the check that requested protection meets or exceeds that
 required by the SPD is performed by the IPsec key manager when
 creating connection latch and connection latch listener objects.

 When an application requests, and IPsec permits, either additional
 protection, or bypassing protection, then the SPD MUST be logically
 updated such that there exists a suitable SPD entry protecting or
 bypassing the exact 5-tuple recorded by the corresponding connection
 latch. Such logical SPD updates MUST be made at connection latch
 creation time, and MUST be made atomically (see the note about race
 conditions in Section 2.2). Such updates of the SPD MUST NOT survive
 system crashes or reboots.

Williams Expires August 27, 2008 [Page 16]

Internet-Draft IPsec Connection Latching February 2008

4. Simulataneous latch establishment

 Some connection-oriented ULPs, specifically TCP, support simulaneous
 connections (where two clients connect to each other, using the same
 5-tuple, at the same time). Connection latching supports
 simultaneous latching as well, provided that the key exchange
 protocol does not make it impossible.

 Consider two applications doing a simultaneous TCP connect to each
 other and requesting an IPsec channel. If they request the same
 connection latching parameters, then the connection and channel
 should be established as usual. Even if the key exchange protocol in
 use doesn't support simultaneous IKE_SA and/or child SA
 establishment, provided one peer's attempt to create the necessary
 child SAs succeeds then the other peer should be able to notice the
 new SAs immediately upon failure of its attempts to create the same.

 If, however, the two peer applications were to request different
 connection latching parameters, then the connection latch must fail
 on one end (if the key exchange protocol does not support
 simultaneous SA creation) or on both ends.

Williams Expires August 27, 2008 [Page 17]

Internet-Draft IPsec Connection Latching February 2008

5. Security Considerations

 Connection latching protects only individual connections from weak
 peer ID<->address binding, IPsec configuration changes, and from
 configurations that allow multiple peers to assert the same
 addresses. But connection latching does not ensure that any two
 connections with the same end-point addresses will have the same
 latched peer IDs. In other words, applications that use multiple
 concurrent connections between two given nodes are not protected any
 more or less by use of IPsec connection latching than by use of IPsec
 alone. Such multi-connection applications can, however, examine the
 latched SA parameters of each connection to ensure that all
 concurrent connections with the same end-point addresses also have
 the same end-point IPsec IDs.

 Applications which are sensitive to connection closure, such as the
 Border Gateway Protocol (BGP), SHOULD set the conflict resolution
 option for connection latching (e.g., in the case of BGP that option
 should be set to "wait for the conflict to be resolved").

 IPsec channels are a pre-requisite for channel binding [RFC5056] to
 IPsec. Connection latching provides such channels, but the process
 of binding IPsec channels (latched connections) to authentication at
 application layers is not specified herein.

 Without IPsec APIs connection latching provides marginal security
 benefits over traditional IPsec. Such APIs are not described herein;
 see [I-D.ietf-btns-abstract-api].

https://datatracker.ietf.org/doc/html/rfc5056

Williams Expires August 27, 2008 [Page 18]

Internet-Draft IPsec Connection Latching February 2008

6. IANA Considerations

 There are not IANA considerations for this document.

Williams Expires August 27, 2008 [Page 19]

Internet-Draft IPsec Connection Latching February 2008

7. Acknowledgements

 The author thanks Michael Richardson for all his help, as well as
 Stephen Kent, Sam Hartman, Bill Sommerfeld, Dan McDonald, and many
 others who've participated in the BTNS WG or who've answered
 questions about IPsec, connection latching implementations, etc...

Williams Expires August 27, 2008 [Page 20]

Internet-Draft IPsec Connection Latching February 2008

8. References

8.1. Normative References

 [I-D.ietf-btns-core]
 Williams, N. and M. Richardson, "Better-Than-Nothing-
 Security: An Unauthenticated Mode of IPsec",

draft-ietf-btns-core-06 (work in progress), January 2008.

 [I-D.ietf-btns-prob-and-applic]
 Touch, J., Black, D., and Y. Wang, "Problem and
 Applicability Statement for Better Than Nothing Security
 (BTNS)", draft-ietf-btns-prob-and-applic-06 (work in
 progress), October 2007.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
RFC 4306, December 2005.

8.2. Informative References

 [I-D.bellovin-useipsec]
 Bellovin, S., "Guidelines for Mandating the Use of IPsec
 Version 2", draft-bellovin-useipsec-07 (work in progress),
 October 2007.

 [I-D.dondeti-useipsec-430x]
 Dondeti, L. and V. Narayanan, "Guidelines for using IPsec
 and IKEv2", draft-dondeti-useipsec-430x-00 (work in
 progress), October 2006.

 [I-D.ietf-btns-abstract-api]
 Richardson, M., "An interface between applications and
 keying systems", draft-ietf-btns-abstract-api-00 (work in
 progress), June 2007.

 [IP_SEC_OPT.man]
 Sun Microsystems, Inc., "Solaris ipsec(7P) manpage",
 October 2006.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, November 1987.

https://datatracker.ietf.org/doc/html/draft-ietf-btns-core-06
https://datatracker.ietf.org/doc/html/draft-ietf-btns-prob-and-applic-06
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/draft-bellovin-useipsec-07
https://datatracker.ietf.org/doc/html/draft-dondeti-useipsec-430x-00
https://datatracker.ietf.org/doc/html/draft-ietf-btns-abstract-api-00
https://datatracker.ietf.org/doc/html/rfc1034

Williams Expires August 27, 2008 [Page 21]

Internet-Draft IPsec Connection Latching February 2008

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

Williams Expires August 27, 2008 [Page 22]

https://datatracker.ietf.org/doc/html/rfc5056

Internet-Draft IPsec Connection Latching February 2008

Author's Address

 Nicolas Williams
 Sun Microsystems
 5300 Riata Trace Ct
 Austin, TX 78727
 US

 Email: Nicolas.Williams@sun.com

Williams Expires August 27, 2008 [Page 23]

Internet-Draft IPsec Connection Latching February 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Williams Expires August 27, 2008 [Page 24]

