
Workgroup: Calendaring Extensions

Internet-Draft: draft-ietf-calext-jscontact-08

Published: 13 March 2023

Intended Status: Standards Track

Expires: 14 September 2023

Authors: R. Stepanek

Fastmail

M. Loffredo

IIT-CNR

JSContact: A JSON representation of contact data

Abstract

This specification defines a data model and JSON representation of

contact card information that can be used for data storage and

exchange in address book or directory applications. It aims to be an

alternative to the vCard data format and to be unambiguous,

extendable and simple to process. In contrast to the JSON-based

jCard format, it is not a direct mapping from the vCard data model

and expands semantics where appropriate.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Relation to the xCard and jCard formats

1.2. Notational Conventions

1.3. ABNF Notations

1.4. Type Signatures

1.5. Data types

1.5.1. Id

1.5.2. Int and UnsignedInt

1.5.3. PatchObject

1.5.4. Resource

1.5.5. UTCDateTime

1.6. Common properties

1.6.1. The contexts property

1.6.2. The label property

1.6.3. The pref property

1.7. Versioning

1.7.1. Version Scheme

1.7.2. Version Updates

1.8. Validating JSContact Properties

1.8.1. IANA-registered Properties

1.8.2. Unknown Properties

1.9. Vendor-Specific Extensions

1.9.1. Vendor-specific Properties

1.9.2. Vendor-specific Values

1.10. Reserved Property Names

2. Card

2.1. Metadata properties

2.1.1. @type

2.1.2. @version

2.1.3. created

2.1.4. kind

2.1.5. locale

2.1.6. members

2.1.7. prodId

2.1.8. relatedTo

2.1.9. uid

2.1.10. updated

2.2. Name and Organization properties

2.2.1. fullName

2.2.2. name

2.2.3. nickNames

2.2.4. organizations

2.2.5. speakToAs

2.2.6. titles

¶

2.3. Contact properties

2.3.1. emails

2.3.2. onlineServices

2.3.3. phones

2.3.4. preferredContactChannels

2.3.5. preferredLanguages

2.4. Calendaring and Scheduling properties

2.4.1. calendars

2.4.2. schedulingAddresses

2.5. Address and Location properties

2.5.1. addresses

2.6. Resource properties

2.6.1. cryptoKeys

2.6.2. directories

2.6.3. links

2.6.4. media

2.7. Multilingual properties

2.7.1. localizations

2.8. Additional properties

2.8.1. anniversaries

2.8.2. keywords

2.8.3. notes

2.8.4. personalInfo

3. Implementation Status

3.1. IIT-CNR/Registro.it

4. IANA Considerations

4.1. Media Type Registration

4.2. Creation of the "JSContact Properties" Registry

4.2.1. Preliminary Community Review

4.2.2. Submit Request to IANA

4.2.3. Designated Expert Review

4.2.4. Change Procedures

4.2.5. "JSContact Properties" Registry Template

4.2.6. Initial Contents for the "JSContact Properties" Registry

4.3. Creation of the "JSContact Types" Registry

4.3.1. "JSContact Types" Registry Template

4.3.2. Initial Contents for the "JSContact Types" Registry

4.4. Creation of the "JSContact Enum Values" Registry

4.4.1. "JSContact Enum Values" Registry Property Template

4.4.2. "JSContact Enum Values" Registry Value Template

4.4.3. Initial Contents for the "JSContact Enum Values"

Registry

5. Security Considerations

5.1. JSON Parsing

5.2. URI Values

6. References

6.1. Normative References

6.2. Informative References

Authors' Addresses

1. Introduction

This document defines a data model for contact card data normally

used in address book or directory applications and services. It aims

to be an alternative to the vCard data format [RFC6350].

The key design considerations for this data model are as follows:

The data model and set of attributes should mostly be compatible

with the one defined for the vCard data format [RFC6350] and

extensions ([RFC6473], [RFC6474], [RFC6715], [RFC6869],

[RFC8605]). The specification should add new attributes or value

types where appropriate. Not all existing vCard definitions need

an equivalent in JSContact, especially if the vCard definition is

considered to be obsolete or otherwise inappropriate. Conversion

between the data formats need not fully preserve semantic

meaning.

The attributes of the card data represented must be described as

a simple key-value pair, reducing complexity of its

representation.

The data model should avoid all ambiguities and make it difficult

to make mistakes during implementation.

Extensions, such as new properties and components, MUST NOT lead

to requiring an update to this document.

The representation of this data model is defined in the I-JSON

format [RFC7493], which is a strict subset of the JavaScript Object

Notation (JSON) Data Interchange Format [RFC8259]. Using JSON is

mostly a pragmatic choice: its widespread use makes JSContact easier

to adopt, and the availability of production-ready JSON

implementations eliminates a whole category of parser-related

interoperability issues.

1.1. Relation to the xCard and jCard formats

The xCard [RFC6351] and jCard [RFC7095] specifications define

alternative representations for vCard data, in XML and JSON format

respectively. Both explicitly aim to not change the underlying data

model. Accordingly, they are regarded as equal to vCard in the

context of this document.

1.2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.3. ABNF Notations

The ABNF definitions in this document use the notations of

[RFC5234]. ABNF rules not defined in this document either are

defined in [RFC5234] (such as the ABNF for CRLF, WSP, DQUOTE, VCHAR,

ALPHA, and DIGIT) or [RFC6350].

1.4. Type Signatures

Type signatures are given for all JSON values in this document. The

following conventions are used:

* - The type is undefined (the value could be any type, although

permitted values may be constrained by the context of this

value).

String - The JSON string type.

Number - The JSON number type.

Boolean - The JSON boolean type.

A[B] - A JSON object where the keys are all of type A, and the

values are all of type B.

A[] - A JSON array of values of type A.

A|B - The value is either of type A or of type B.

1.5. Data types

In addition to the standard JSON data types, a couple of additional

data types are common to the definitions of JSContact objects and

properties.

1.5.1. Id

Where Id is given as a data type, it means a String of at least 1

and a maximum of 255 octets in size, and it MUST only contain

characters from the URL and Filename Safe base64url alphabet, as

defined in Section 5 of [RFC4648], excluding the pad character (=).

This means the allowed characters are the ASCII alphanumeric

characters (A-Za-z0-9), hyphen (-), and underscore (_).

In many places in JSContact a JSON map is used where the map keys

are of type Id and the map values are all the same type of object.

This construction represents an unordered set of objects, with the

¶

¶

¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

¶

¶

added advantage that each entry has a name (the corresponding map

key). This allows for more concise patching of objects, and, when

applicable, for the objects in question to be referenced from other

objects within the JSContact object. The map keys MUST be preserved

across multiple versions of the JSContact object.

Unless otherwise specified for a particular property, there are no

uniqueness constraints on an Id value (other than, of course, the

requirement that you cannot have two values with the same key within

a single JSON map). For example, two Card (Section 2) objects might

use the same Ids in their respective photos properties. Or within

the same Card object the same Id could appear in the emails and

phones properties. These situations do not imply any semantic

connections among the objects.

1.5.2. Int and UnsignedInt

Where Int is given as a data type, it means an integer in the range

-2 +1 <= value <= 2^ -1, the safe range for integers stored in a

floating-point double, represented as a JSON Number.

Where UnsignedInt is given as a data type, it means an integer in

the range 0 <= value <= 2 -1, represented as a JSON Number.

1.5.3. PatchObject

A PatchObject is of type String[*], and represents an unordered set

of patches on a JSON object. Each key is a path represented in a

subset of JSON pointer format [RFC6901]. The paths have an implicit

leading /, so each key is prefixed with / before applying the JSON

pointer evaluation algorithm.

A patch within a PatchObject is only valid if all the following

conditions apply:

The pointer MUST NOT reference inside an array (i.e., you MUST

NOT insert/delete from an array; the array MUST be replaced in

its entirety instead).

All parts prior to the last (i.e., the value after the final

slash) MUST already exist on the object being patched.

There MUST NOT be two patches in the PatchObject where the

pointer of one is the prefix of the pointer of the other, e.g.,

addresses/1/city and addresses.

The value for the patch MUST be valid for the property being

set (of the correct type and obeying any other applicable

restrictions), or if null the property MUST be optional.

¶

¶

53 53

¶

53 ¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

The value associated with each pointer determines how to apply that

patch:

If null, remove the property from the patched object. If the key

is not present in the parent, this a no-op.

If non-null, set the value given as the value for this property

(this may be a replacement or addition to the object being

patched).

A PatchObject does not define its own @type property. Instead, a

@type property in a patch MUST be handled as any other patched

property value.

Implementations MUST reject in its entirety a PatchObject if any of

its patches are invalid. Implementations MUST NOT apply partial

patches.

1.5.4. Resource

This data type defines a resource associated with the entity

represented by this card, identified by a URI [RFC3986]. Several

property definitions later in this document refer to the Resource

data type as the basis for their property-specific value types. The

Resource data type defines the properties that are common to all of

them. Property definitions making use of Resource MAY define

additional properties for their value types.

A Resource object has the following properties:

@type: String (mandatory). Specifies the type of this resource

object. The allowed value is defined in later sections of this

document for each concrete resource type (Section 2.6).

type: String (optional). The type of the resource. The allowed

values are defined in the property definition that makes use of

the Resource type.

uri: String (mandatory). The resource value. This MUST be a URI

as defined in Section 3 of [RFC3986] and updates.

mediaType: String (optional). Used for URI resource values.

Provides the media type [RFC2046] of the resource identified by

the URI.

contexts: String[Boolean] (optional). The contexts in which to

use this resource. Also see Section 1.6.1.

pref: UnsignedInt (optional). The preference of this resource in

relation to other resources. Also see Section 1.6.3.

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

label: String (optional). A custom label for the value, see

Section 1.6.2.

1.5.5. UTCDateTime

This is a string in [RFC3339] date-time format, with the further

restrictions that any letters MUST be in uppercase, and the time

offset MUST be the character Z. Fractional second values MUST NOT be

included unless non-zero and MUST NOT have trailing zeros, to ensure

there is only a single representation for each date-time.

For example, 2010-10-10T10:10:10.003Z is conformant, but

2010-10-10T10:10:10.000Z is invalid and is correctly encoded as

2010-10-10T10:10:10Z.

1.6. Common properties

Most of the properties in this document are specific to a single

JSContact object type. Such properties are defined along with the

respective object type. The properties in this section are common to

multiple data types and are defined here to avoid repetition. Note

that these properties MUST only be set for a JSContact object if

they are explicitly mentioned to be allowed for this object type.

1.6.1. The contexts property

Type: String[Boolean]

This property associates contact information with one or more

contexts in which it should be used. For example, someone might have

distinct phone numbers for work and private contexts, and may set

the desired context on the respective phone number in the phones

(Section 2.3.3) property.

This document defines the following common contexts. Additional

contexts may be defined in the properties or data types that make

use of this property, may be registered at IANA (Section 4.4.2, or

be vendor-specific (Section 1.9.1).

private: The contact information may be used to contact in a

private context.

work: The contact information may be used to contact in a

professional context.

1.6.2. The label property

Type: String

*

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

This property allows to associate contact data with user-defined

labels. Such labels may be set for phone numbers, email addresses

and resources. Typically, these labels are displayed along with

their associated contact data in graphical user interfaces. While

this specification does not place further restrictions on the value,

implementors SHOULD take in mind that labels best be succinct, so

that they properly display on small graphical interfaces and

screens.

1.6.3. The pref property

Type: UnsignedInt

This property allows to define a preference order for contact

information. For example, a card holder may have two email addresses

and prefer to be contacted with one of them.

Its value MUST be in the range 1 and 100. Lower values correspond to

a higher level of preference, with 1 being most preferred. If no

preference is set, then the contact information MUST be interpreted

as being least preferred.

Note that the preference only is defined in relation to contact

information of the same type. For example, the preference orders

within emails and phone numbers are independent of each other.

1.7. Versioning

Every instance of a JSContact Card (Section 2) indicates which

JSContact version its IANA-registered properties and values are

based on. The version is indicated both in the @version

(Section 2.1.2) property within the Card and in the version

(Section 4.1) parameter of the JSContact MIME content type. All

IANA-registered elements indicate the version at which they got

introduced or obsoleted.

Implementors are RECOMMENDED to always support the latest version.

1.7.1. Version Scheme

A JSContact version consists of a numeric major and minor version.

Later versions are numerically higher than former versions, with the

major version being more significant than the minor version. A

version value is produced by the ABNF

Differing major version values indicate substantial differences in

JSContact semantics and format. Implementations MUST be prepared

¶

¶

¶

¶

¶

¶

¶

¶

jsversion = 1*DIGIT "." 1*DIGIT¶

that property definitions and other JSContact elements differ in a

backwards-incompatible manner.

Differing minor version values indicate additions that enrich

JSContact data, but do not introduce backwards-incompatible changes.

Typically, these are new property enum values or properties with

narrow semantic scope. A new minor version MUST NOT require

implementations to change their processing of JSContact data.

1.7.2. Version Updates

If Expert Review or the IETF working group decides that a new major

JSContact version is required, a new standard RFC document MUST be

published. Such an RFC document MUST specify all changes to the

former JSContact version. An RFC document is not required to change

the minor JSContact version.

Every new JSContact version MUST be registered at IANA in the

JSContact Enum Value registry Table 6.

1.8. Validating JSContact Properties

JSContact objects are represented as I-JSON objects [RFC7493] and

the keys of such objects are called properties. This specification

distinguishes between three kinds of properties with regards to

validation: IANA-registered properties and unknown properties are

defined in this section, while vendor-specific properties are

defined in Section 1.9.1. A JSContact object is invalid if any its

properties are invalid. If a JSContact object is valid,

implementations MUST preserve all its properties.

1.8.1. IANA-registered Properties

An IANA-registered property is any property that has been registered

according to the IANA property registry rules as outlined in

Section 4. All properties defined in this specification, including

their object value types and enumerated values, are registered at

IANA.

Implementations MUST validate IANA-registered properties in

JSContact data, unless they are unknown to the implementation (see

Section 1.8.2). They MUST reject invalid IANA-registered properties.

A property is invalid if its name matches the name of an IANA-

registered property but the value violates its definition according

to the JSContact specification version defined in the Card object

@version property (Section 2.1.2).

IANA-registered property names MUST NOT contain US-ASCII control

characters (U+0000 to U+001F, U+007F), the COLON (U+003A) or

QUOTATION MARK (U+0022) characters. They SHOULD only contain US-

¶

¶

¶

¶

¶

¶

¶

ASCII alphanumeric characters that match the ALPHA and DIGIT rules

defined in Appendix B.1 of [RFC5234]). Notable exceptions of this

rule are metadata properties such as @type and @version defined in

later sections of this document. IANA-registered property names

SHOULD be notated in lower camel case.

1.8.2. Unknown Properties

Implementations may encounter JSContact data where a property name

is unknown to that implementation, but the name adheres to the

restrictions of an IANA-registered property.

Implementations MUST NOT treat such properties as invalid. Instead,

they MUST preserve them in the JSContact object. Implementations

that create or update JSContact data MUST only set IANA-registered

properties or vendor-specific properties, but MUST preserve any

already existing unknown properties. This is to allow applications

and services to interoperate without data loss, even if they do not

implement the same set of JSContact extensions.

1.9. Vendor-Specific Extensions

Vendors may extend properties and values for experimentation or to

store contacts data that only is useful for a single service or

application. Such extensions are not meant for interoperation and

vendors MUST NOT expect other implementations to process their

contents. If instead interoperation is desired, vendors are strongly

encouraged to define and register new properties, types and values

at IANA. Typically, sending a short description to the IETF working

group mailing list is enough for Expert Review to make a decision.

Notably, publishing a new RFC document is not required in the

general case. Section 4 defines how to register new properties,

types or values at IANA. Section 1.8.1 defines the naming

conventions for IANA-registered elements.

1.9.1. Vendor-specific Properties

Vendor-specific properties MAY be set in any JSContact object.

Implementations MUST preserve vendor-specific properties in

JSContact data, irrespective if they know their use. They MUST NOT

reject the property value as invalid, unless they are in control of

the vendor-specific property.

Vendor-specific property names MUST start with a vendor-specific

prefix, followed by the COLON character (U+003A), followed by a name

consisting of any other non-control ASCII or non-ASCII characters.

The vendor-specific prefix SHOULD be a domain name under control of

the service or application that sets the property, but it need not

resolve in the Domain Name System [RFC1034] and [RFC1035]. The

prefix ietf.org and its sub-domain names are reserved for IETF

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5234#appendix-B.1

specifications. The name following the prefix MUST NOT contain the

QUOTATION MARK (U+0022) character. It SHOULD NOT contain the TILDE

(U+007E) and SOLIDUS (U+002F) characters, as these require special-

escaping when encoding a JSON Pointer [RFC6901] including that

property.

The ABNF rule v-extension formally defines valid vendor-specific

property names. Note that the vendor prefix allows for more values

than are allowed as Internationalized Domain Names (IDN) [RFC8499].

This is to allow JSContact implementations simply validate property

names without implementing the full set of rules that apply to

domain names.

The value of vendor-specific properties can be any valid JSON value,

and naming restrictions do not apply to such values. Specifically,

if the property value is a JSON object then the keys of such objects

need not be named as vendor-specific properties.

The following all are valid examples of vendor-specific properties.

Figure 1

1.9.2. Vendor-specific Values

Some JSContact IANA-registered properties allow their values to be

vendor-specific. One such example is the kind property

Section 2.1.4, which enumerates its standard values but also allows

for arbitrary vendor-specific values. Such vendor-specific values

MUST be valid v-extension values as defined in Section 1.9.1. This

is an example for a vendor-specific value:

¶

¶

v-extension = v-prefix ":" v-name

v-prefix = v-label *("." v-label)

v-label = alnum-int / alnum-int *(alnum-int / "-") alnum-int

alnum-int = ALPHA / DIGIT / NON-ASCII

 ; see RFC 6350 Section 3.3

v-name = 1*(WSP / "!" / %x23-7e / NON-ASCII)

 ; any characters except CTLs and DQUOTE

 ; use of "/" (%x2f) and "~" (%x7e) is discouraged

¶

¶

¶

"example.com:foo": "bar",

"example.com:foo2": {

 "bar": "baz"

}

¶

Figure 2

Vendors are strongly encouraged to specify new standard values once

a vendor-specific turns out to be useful also for other systems.

1.10. Reserved Property Names

This specification reserves the property name extra at IANA. Its

sole purpose is to provide implementors with an internal variable

name which is certain to never occur as a property name in a

JSContact object. Implementations might want to map unknown or

vendor-specific properties to a variable with this name, but this is

implementation-specific. Any JSContact object including a property

with this name is invalid.

2. Card

Media type: application/jscontact+json;type=card (see Section 4.1).

A Card object stores information about a person, organization or

company.

2.1. Metadata properties

This section defines properties about this particular instance of a

Card object, such as its unique identifier, its creation date, how

it relates to other Card objects and other metadata information.

2.1.1. @type

Type: String (mandatory).

Specifies the type of this object. This MUST be Card

(Section 4.3.2).

2.1.2. @version

Type: String (mandatory).

Specifies the JSContact version used to define this card. The value

MUST be one of the IANA-registered JSContact Enum Values for the

@version property. This specification registers the JSContact

version value 1.0 (Table 6).

Figure 3: @version example

"kind": "example.com:kind:foo"

¶

¶

¶

¶

¶

¶

¶

¶

¶

"@version": "1.0",

2.1.3. created

Type: UTCDateTime (optional).

The date and time when this Card object was created.

Figure 4: created example

2.1.4. kind

Type: String (optional). The kind of the entity the Card represents.

The value MUST be either one of the following values, or registered

at IANA (Table 5), or a vendor-specific value (Section 1.9.1):

individual: a single person

group: a group person of persons or entities

org: an organization

location: a named location

device: a device, such as appliances, computers, or network

elements

application: a software application

Figure 5: kind example

2.1.5. locale

Type: String (optional).

This is the language tag, as defined in [RFC5646], that best

describes the locale used for text in the card. Note that such

values MAY be localized in the localizations property Section 2.7.1.

Figure 6: locale example

¶

¶

"created": "1994-09-30T14:35:10Z",

¶

¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

"kind": "individual",

¶

¶

"locale": "de-AT",

2.1.6. members

Type: String[Boolean] (optional).

This identifies the set of cards that are members of this group

card. Each key in the set is the uid property value of the member,

each boolean value MUST be true. If this property is set, then the

value of the kind property MUST be group.

The opposite is not true. A group Card will usually contain the

members property to specify the members of the group, but it is not

required to. A group Card without the members property can be

considered an abstract grouping, or one whose members are known

empirically (e.g. "IETF Participants").

Figure 7: members example

2.1.7. prodId

Type: String (optional).

The identifier for the product that created the Card object.

Figure 8: prodId example

2.1.8. relatedTo

Type: String[Relation] (optional).

Relates the object to other Card objects. This is represented as a

map, where each key is the uid of the related Card and the value

defines the relation. The Relation object has the following

properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be Relation (Section 4.3.2).

¶

¶

¶

"kind": "group",

"fullName": "The Doe family",

"uid": "urn:uuid:ab4310aa-fa43-11e9-8f0b-362b9e155667",

"members": {

 "urn:uuid:03a0e51f-d1aa-4385-8a53-e29025acd8af": true,

 "urn:uuid:b8767877-b4a1-4c70-9acc-505d3819e519": true

}

¶

¶

"prodId": "-//ONLINE DIRECTORY//NONSGML Version 1//EN"

¶

¶

*

¶

relation: String[Boolean] (optional, default: empty Object)

Describes how the linked object is related to the linking object.

The relation is defined as a set of relation types. If empty, the

relationship between the two objects is unspecified. Keys in the

set MUST be one of the RELATED property [RFC6350] type parameter

values, or an IANA-registered value, or a vendor-specific value

(Section 1.9.1). The value for each key in the set MUST be true.

Figure 9: relatedTo example

2.1.9. uid

Type: String (mandatory).

An identifier, used to associate the object as the same across

different systems, address books and views. The value SHOULD be a

URN [RFC8141] but for compatibility with [RFC6350] it MAY also be a

URI [RFC3986] or free-text value. The value of the URN SHOULD be in

the uuid namespace [RFC4122]. As of this writing, a revision of

[RFC4122] is being worked on and is likely to introduce new UUID

versions and best practices to generate global unique identifiers.

Implementors SHOULD follow any recommendations described there.

Until then, implementations SHOULD generate identifiers using the

random or pseudo-random UUID version described in Section 4.4 of

[RFC4122].

Figure 10: uid example

2.1.10. updated

Type: UTCDateTime (optional).

*

¶

"relatedTo": {

 "urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6": {

 "@type": "Relation",

 "relation": {

 "friend": true

 }

 },

 "8cacdfb7d1ffdb59@example.com": {

 "@type": "Relation",

 "relation": {}

 }

}

¶

¶

"uid": "urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"

¶

https://rfc-editor.org/rfc/rfc4122#section-4.4

The date and time when the data in this Card object was last

modified.

Figure 11: updated example

2.2. Name and Organization properties

This section defines properties that name the entity represented by

this card, its related organizations and roles, as well as how to

refer the entity represented by this card in spoken or written

language.

2.2.1. fullName

Type: String (optional).

This is the full name of the entity represented by this card. The

purpose of this property is to define a name even if the individual

name components are not known. If the name property is set, the

fullName property SHOULD NOT be set. If both properties are set,

applications SHOULD display the contents of the name property as the

name of the entity represented by this card. Applications SHOULD NOT

store the concatenated name component values of the name property in

the fullName property value.

Figure 12: fullName example

2.2.2. name

Type: Name (optional).

The name of the entity represented by this Card.

A Name object has the following properties

@type: String (mandatory). Specifies the type of this object.

This MUST be Name (Section 4.3.2).

components: NameComponent[] (mandatory). The components making up

the name. The component list MUST have at least one entry.

Name components SHOULD be ordered such that their values joined

as a String produce a valid full name of this entity. This

specification does not mandate how to do this but recommends the

¶

"updated": "1995-10-31T22:27:10Z"

¶

¶

¶

"fullName": "Mr. John Q. Public, Esq."

¶

¶

¶

*

¶

*

¶

following: If at least one of two adjacent name components is of

type separator then implementations SHOULD join their values

without any additional character. Otherwise, inserting a single

Space character in between name component values is a good

choice.

sortAs: String[String] (optional).

This defines how this name lexicographically sorts in relation to

other names when compared by a name component type. The key in

the map defines the name component type. The value for that key

defines the verbatim string to compare when sorting by this name

component type. Absence of a key indicates that this name

component type should not be considered during sort. Sorting by

that missing name component type or if the sortAs property is not

set is implementation-specific.

Each key in the map MUST be a valid name component type value as

defined for the type property of the NameComponent object (see

below). For each key in the map there MUST exist at least one

NameComponent object having that type in the components property

of this name.

Figure 13 illustrates the use of sortAs. The property value

indicates that the middle name followed by both surnames should

be used when sorting this name by surname. The absence of the

middle indicates that the middle name on its own should be

disregarded during sort. Even though the name only contains one

name component for the given name, the sortAs property still

explicitly defines how to sort by given name as otherwise sorting

by it would be undefined.

¶

* ¶

¶

¶

¶

Figure 13: name example

A NameComponent object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be NameComponent (Section 4.3.2).

value: String (mandatory). The value of this name component.

type: String (mandatory). The type of this name component. The

value MUST be either one of the following values, or registered

at IANA (Table 11), or a vendor-specific value (Section 1.9.1):

prefix. The value is an honorific title(s), e.g. "Mr", "Ms",

"Dr".

given. The value is a given name, also known as "first name",

"personal name".

"name": {

 "@type": "Name",

 "components": [

 {

 "@type": "NameComponent",

 "type": "given",

 "value": "Robert"

 },

 {

 "@type": "NameComponent",

 "type": "middle",

 "value": "Pau"

 },

 {

 "@type": "NameComponent",

 "type": "surname",

 "value": "Shou"

 },

 {

 "@type": "NameComponent",

 "type": "surname",

 "value": "Chang"

 }

],

 "sortAs": {

 "surname": "Pau Shou Chang",

 "given": "Robert"

 }

}

¶

*

¶

* ¶

*

¶

-

¶

-

¶

surname. The value is a surname, also known as "last name",

"family name".

middle. The value is a middle name, also known as "additional

name".

suffix. The value is an honorific suffix, e.g. "B.A.", "Esq.".

separator. A formatting separator for two name components.

The value property of the component includes the verbatim

separator, for example a hyphen character.

rank: UnsignedInt (optional, default: 1). Defines the rank of

this name component to other name components of the same type. If

set, the property value MUST be higher than or equal to 1.

For example, two name components of type surname may have their

rank property value set to 1 and 2, respectively. In this case,

the first name component defines the surname, and the second name

component the secondary surname.

Note that this property value does not indicate the order in

which to print name components of the same type. Some cultures

print the secondary surname before the first surname, others the

first before the second. Implementations SHOULD inspect the

locale property of the Card object to determine the appropriate

formatting. They MAY print name components in order of appearance

in the components property of the Name object.

2.2.3. nickNames

Type: Id[NickName] (optional).

The nick names of the entity represented by this card. A NickName

object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be NickName (Section 4.3.2).

name: String (mandatory). The nick name.

contexts: String[Boolean] (optional) The contexts in which to use

this nick name. Also see Section 1.6.1.

pref: UnsignedInt (optional). The preference of this nick name in

relation to other nick names. Also see Section 1.6.3.

-

¶

-

¶

- ¶

-

¶

*

¶

¶

¶

¶

¶

*

¶

* ¶

*

¶

*

¶

Figure 14: nickNames example

2.2.4. organizations

Type: Id[Organization] (optional).

The companies or organization names and units associated with this

card. An Organization object has the following properties, of which

at least one of the name and units properties MUST be set:

@type: String (mandatory). Specifies the type of this object.

This MUST be Organization (Section 4.3.2).

name: String (optional). The name of this organization.

units: OrgUnit[] (optional). A list of organizational units. If

set, the list MUST contain at least one entry.

sortAs: String (optional). This defines how this organization

name lexicographically sorts in relation to other organizations

when compared by name. The value defines the verbatim string

value to compare. In absence of this property, the name property

value SHOULD be used for comparison.

contexts: String[Boolean] (optional). The contexts in which

association with this organization apply. For example, membership

in a choir may only apply in a private context. Also see

Section 1.6.1.

A OrgUnit object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be OrgUnit (Section 4.3.2).

name: String (mandatory). The name of this organizational unit.

sortAs: String (optional). This defines how this organization

unit name lexicographically sorts in relation to other

organizational units of the same level when compared by name. The

level is defined by the array index of this organizational unit

in the units property of the Organization object. The property

value defines the verbatim string value to compare. In absence of

"nickNames": {

 "k391": {

 "@type": "NickName",

 "name": "Johnny"

 }

}

¶

¶

*

¶

* ¶

*

¶

*

¶

*

¶

¶

*

¶

* ¶

*

this property, the name property value SHOULD be used for

comparison.

Figure 15: organizations example

2.2.5. speakToAs

Type: SpeakToAs (optional).

Provides information how to address, speak to or refer to the entity

that is represented by this card. A SpeakToAs object has the

following properties, of which at least one property other than

@type MUST be set:

@type: String (mandatory). Specifies the type of this object.

This MUST be SpeakToAs (Section 4.3.2).

grammaticalGender: String (optional). Defines which grammatical

gender to use in salutations and other grammatical constructs.

Allowed values are:

animate

female

inanimate

male

neuter

¶

"organizations": {

 "o1": {

 "@type": "Organization",

 "name": "ABC, Inc.",

 "units": [

 {

 "@type": "OrgUnit",

 "name": "North American Division"

 },

 {

 "@type": "OrgUnit",

 "name": "Marketing"

 }

],

 "sortAs": "ABC"

 }

}

¶

¶

*

¶

*

¶

- ¶

- ¶

- ¶

- ¶

- ¶

Note that the grammatical gender does not allow to infer the

gender identities or assigned sex of the contact.

pronouns: Id[Pronouns] (optional). Defines the pronouns that the

contact chooses to use for themselves.

A Pronouns object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be Pronouns (Section 4.3.2).

pronouns: String (mandatory). Defines the pronouns. Any value or

form is allowed. Examples in English include she/her and they/

them/theirs. The value MAY be overridden in the localizations

property (Section 2.7.1).

contexts: String[Boolean] (optional). The contexts in which to

use these pronouns. Also see Section 1.6.1.

pref: UnsignedInt (optional). The preference of these pronouns in

relation to other pronouns in the same context. Also see

Section 1.6.3.

Figure 16: speakToAs example

2.2.6. titles

Type : Id[Title] (optional).

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

"speakToAs": {

 "grammaticalGender": "neuter",

 "pronouns": {

 "k19": {

 "@type": "Pronouns",

 "pronouns": "they/them",

 "pref": 2

 },

 "k32": {

 "@type": "Pronouns",

 "pronouns": "xe/xir",

 "pref": 1

 }

 }

}

¶

The job titles or functional positions of the entity represented by

this card. A Title has object the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be Title (Section 4.3.2).

name: String (mandatory). The title or role name of the entity

represented by this card.

type: String (optional, default title). Describes the

organizational or situational type of this title. Some

organizations and individuals distinguish between titles as

organizational positions and roles as more temporary assignments,

such as in project management. If set, the property value MUST

either be one of title and role, or be registered at IANA

(Section 4.4.2, or a vendor-specific value (Section 1.9.1).

organization: Id (optional). The id of the organization in which

this title is held.

Figure 17: titles example

2.3. Contact properties

This section defines properties how to contact the entity

represented by this card.

¶

*

¶

*

¶

*

¶

*

¶

"titles": {

 "le9": {

 "@type": "Title",

 "type": "title",

 "name": "Research Scientist"

 },

 "k2": {

 "@type": "Title",

 "type": "role",

 "name": "Project Leader",

 "organization": "o2"

 }

},

"organizations": {

 "o2": {

 "@type": "Organization",

 "name": "ABC, Inc."

 }

}

¶

2.3.1. emails

Type: Id[EmailAddress] (optional).

The email addresses to contact the entity represented by this card.

An EmailAddress object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be EmailAddress (Section 4.3.2).

address: String (mandatory). The email address. This MUST be an

addr-spec value as defined in Section 3.4.1 of [RFC5322].

contexts: String[Boolean] (optional). The contexts in which to

use this email address. Also see Section 1.6.1.

pref: UnsignedInt (optional). The preference of this email

address in relation to other email addresses. Also see

Section 1.6.3.

label: String (optional). A custom label for the value, see

Section 1.6.2.

Figure 18: emails example

2.3.2. onlineServices

Type: Id[OnlineService] (optional).

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

"emails": {

 "e1": {

 "@type": "EmailAddress",

 "contexts": {

 "work": true

 },

 "address": "jqpublic@xyz.example.com"

 },

 "e2": {

 "@type": "EmailAddress",

 "address": "jane_doe@example.com",

 "pref": 1

 }

}

¶

The online services that are associated with the entity represented

by this card. This can be messaging services, social media profiles,

and other. An OnlineService object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be OnlineService (Section 4.3.2).

service: String (optional). The name of the online service or

protocol. This SHOULD be the canonical service name including

capitalization. Typically the service name is the one which the

providers of that service use on their web sites, in their apps

or other publishing material. Examples are GitHub, kakao,

Mastodon.

user: String (mandatory). This identifies the entity represented

by this card at this online service. The type property defines

how to interpret the value.

type: String (mandatory). This defines the type of the identifier

in the user property. The type MUST be either one of the

following values, or registered at IANA (Table 20), or a vendor-

specific value (Section 1.9.1):

impp: The value of the user property is a URI primarily used

for instant messaging. The service property SHOULD be set.

uri: The value of the user property is a service-specific URI,

such as for a social media service. The service property

SHOULD be set.

username: The value of the user property is a service-specific

username, such as for a social media service. Any free-text

value is allowed. The service property MUST be set.

contexts: String[Boolean] (optional). The contexts in which to

use this service. Also see Section 1.6.1.

pref: UnsignedInt (optional). The preference of this service in

relation to other services. Also see Section 1.6.3.

label: String (optional). A custom label for the value, see

Section 1.6.2.

¶

*

¶

*

¶

*

¶

*

¶

-

¶

-

¶

-

¶

*

¶

*

¶

*

¶

Figure 19: onlineServices example

2.3.3. phones

Type: Id[Phone] (optional).

The phone numbers to contact the entity represented by this card. A

Phone object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be Phone (Section 4.3.2).

number: String (mandatory). The phone number, as either a URI or

free-text. Typical URI schemes are the [RFC3966] tel or [RFC3261]

sip schemes, but any URI scheme is allowed.

features: String[Boolean] (optional). The set of contact features

that this phone number may be used for. The set is represented as

an object, with each key being a method type. The boolean value

MUST be true. The method type MUST be either one of the following

values, or registered at IANA (Table 9), or a vendor-specific

value (Section 1.9.1):

voice The number is for calling by voice.

fax The number is for sending faxes.

pager The number is for a pager or beeper.

text The number supports text messages (SMS).

cell The number is for a cell phone.

textphone The number is for a device for people with hearing

or speech difficulties.

video The number supports video conferencing.

contexts: String[Boolean] (optional). The contexts in which to

use this number. Also see Section 1.6.1.

"onlineServices": {

 "x1": {

 "@type": "OnlineService",

 "user": "xmpp:alice@example.com",

 "type": "impp",

 "pref": 1

 }

}

¶

¶

*

¶

*

¶

*

¶

- ¶

- ¶

- ¶

- ¶

- ¶

-

¶

- ¶

*

¶

pref: UnsignedInt (optional). The preference of this number in

relation to other numbers. Also see Section 1.6.3.

label: String (optional). A custom label for the value, see

Section 1.6.2.

Figure 20: phones example

2.3.4. preferredContactChannels

Type : String[ContactChannelPreference[]] (optional).

Defines which channel the entity represented by this card prefers to

be contacted with. The keys in the object MUST be either one of the

following values, or registered at IANA (Table 14), or a vendor-

specific value (Section 1.9.1):

addresses. The entity prefers to be contacted by postal delivery

to one of the entries in addresses (Section 2.5.1).

emails. The entity prefers to be contacted by one of the entries

in emails (Section 2.3.1).

onlineServices. The entity prefers to be contacted by one of the

entries in onlineServices (Section 2.3.2).

phones. The entity prefers to be contacted by one of the entries

in phones (Section 2.3.3).

*

¶

*

¶

"phones": {

 "tel0": {

 "@type": "Phone",

 "contexts": {

 "private": true

 },

 "features": {

 "voice": true

 },

 "number": "tel:+1-555-555-5555;ext=5555",

 "pref": 1

 },

 "tel3": {

 "@type": "Phone",

 "contexts": {

 "work": true

 },

 "number": "tel:+33-01-23-45-67"

 }

}

¶

¶

*

¶

*

¶

*

¶

*

¶

The values in the object are a (possibly empty) list of preferences

for this contact channel. A valid ContactChannelPreference object

MUST have at least one of its properties set in addition to the

@type property.

A ContactChannelPreference object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be ContactChannelPreference (Section 4.3.2).

contexts: String[Boolean] (optional). Defines the contexts in

which to use this contact channel. Also see Section 1.6.1.

pref: UnsignedInt (optional). Defines the preference of this

contact channel in relation to other contact channels with the

same contexts. Also see Section 1.6.3.

Figure 21: preferredContactChannels example

2.3.5. preferredLanguages

Type : String[LanguagePreference[]] (optional).

Defines the preferred languages for contacting the entity associated

with this card. The keys in the object MUST be [RFC5646] language

tags. The values are a (possibly empty) list of contact language

preferences for this language. A valid LanguagePreference object

MUST have at least one of its properties set in addition to the

@type property.

A LanguagePreference object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be LanguagePreference (Section 4.3.2).

¶

¶

*

¶

*

¶

*

¶

"preferredContactChannels": {

 "emails": [

 {

 "@type": "ContactChannelPreference",

 "pref": 1

 }

],

 "phones": [

 {

 "@type": "ContactChannelPreference",

 "pref": 2

 }

]

}

¶

¶

¶

*

¶

contexts: String[Boolean] (optional). Defines the contexts in

which to use this language. Also see Section 1.6.1.

pref: UnsignedInt (optional). Defines the preference of this

language in relation to other languages of the same contexts.

Also see Section 1.6.3.

Figure 22: preferredLanguages example

2.4. Calendaring and Scheduling properties

This section defines properties how to schedule calendar events with

the entity represented by this card.

2.4.1. calendars

Type: Id[CalendarResource] (optional).

These are resources for calendaring, such as calendars to lookup

free-busy information for the entity represented by this card. A

CalendarResource object has all properties of the Resource

*

¶

*

¶

"preferredLanguages": {

 "en": [

 {

 "@type": "LanguagePreference",

 "contexts": {

 "work": true

 },

 "pref": 1

 }

],

 "fr": [

 {

 "@type": "LanguagePreference",

 "contexts": {

 "work": true

 },

 "pref": 2

 },

 {

 "@type": "LanguagePreference",

 "contexts": {

 "private": true

 }

 }

]

}

¶

¶

(Section 1.5.4) data type, with the following additional

definitions:

The @type property value MUST be CalendarResource

(Section 4.3.2).

The type property value MUST be one of the following, or be

registered at IANA (Section 4.4.2 or vendor-specific

(Section 1.9.1):

calendar The resource is a calendar that contains entries such as

calendar events or tasks.

freeBusy The resource allows for free-busy lookups, for example

to schedule group events.

Figure 23: calendars example

2.4.2. schedulingAddresses

Type: Id[SchedulingAddress] (optional).

The scheduling addresses by which the entity may receive calendar

scheduling invitations. A SchedulingAddress object has the following

properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be SchedulingAddress (Section 4.3.2).

uri: String (mandatory). The address to use for calendar

scheduling with this contact. This MUST be a URI as defined in

Section 3 of [RFC3986] and updates.

¶

*

¶

¶

*

¶

*

¶

"calendars": {

 "calA": {

 "@type": "CalendarResource",

 "type": "calendar",

 "uri": "ftp://ftp.example.com/calA.ics",

 "mediaType": "text/calendar"

 },

 "project-a": {

 "@type": "CalendarResource",

 "type": "freeBusy",

 "uri": "ftp://example.com/busy/project-a.ifb",

 "mediaType": "text/calendar"

 }

}

¶

¶

*

¶

*

¶

contexts: String[Boolean] (optional). The contexts in which to

use this scheduling address. Also see Section 1.6.1.

pref: UnsignedInt (optional). The preference of this scheduling

address in relation to other scheduling address. Also see

Section 1.6.3.

label: String (optional). A custom label for the scheduling

address, see Section 1.6.2.

Figure 24: schedulingAddresses example

2.5. Address and Location properties

This section defines properties for postal addresses and

geographical locations associated with the entity represented by

this card.

2.5.1. addresses

Type: Id[Address] (optional).

A map of address ids to Address objects, containing physical

locations. An Address object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be Address (Section 4.3.2).

street: StreetComponent[] (optional). The street address. The

concatenation of the component values, separated by whitespace,

SHOULD result in a valid street address for the address locale.

Doing so, implementations MAY ignore any separator components.

The StreetComponent object type is defined in the paragraph

below.

locality: String (optional). The city, town, village, post town,

or other locality within which the street address may be found.

region: String (optional). The province, such as a state, county,

or canton within which the locality may be found.

country: String (optional). The country name.

*

¶

*

¶

*

¶

"schedulingAddresses": {

 "sched1": {

 "@type": "SchedulingAddress",

 "uri": "mailto:janedoe@example.com"

 }

}

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

* ¶

postcode: String (optional). The postal code, post code, ZIP code

or other short code associated with the address by the relevant

country's postal system.

countryCode: String (optional). The Alpha-2 or Alpha-3 ISO-3166-1

country code [ISO.3166-1.2006].

coordinates: String (optional). A [RFC5870] "geo:" URI for the

address.

timeZone: String (optional). Identifies the time zone this

address is located in. This MUST be a time zone name registered

in the IANA Time Zone Database

contexts: String[Boolean] (optional). The contexts of the address

information. The boolean value MUST be true. In addition to the

common contexts (Section 1.6.1), allowed key values are:

billing An address to be used for billing.

delivery An address to be used for delivering physical items.

fullAddress: String (optional). This is the full address,

including street, region or country. The purpose of this property

is to define an address, even if the individual address

components are not known. If the street property is set, the

fullAddress property SHOULD NOT be set. If both properties are

set, applications SHOULD display the contents of the street

property as the street address of the entity represented by this

card. Applications SHOULD NOT store the concatenated street

component values of the street property in the fullAddress

property value.

pref: UnsignedInt (optional). The preference of this address in

relation to other addresses. Also see Section 1.6.3.

A StreetComponent object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be StreetComponent (Section 4.3.2).

type: String (mandatory). The type of this street component. The

value MUST be either one of the following values, or registered

at IANA (Table 10), or a vendor-specific value (Section 1.9.1):

name. The street name.

number. The street number.

apartment. The apartment number or identifier.

*

¶

*

¶

*

¶

*

¶

*

¶

- ¶

- ¶

*

¶

*

¶

¶

*

¶

*

¶

- ¶

- ¶

- ¶

https://www.iana.org/time-zones

room. The room number or identifier.

extension. The extension designation or box number.

direction. The cardinal direction, e.g. "North".

building. The building or building part this address is

located in.

floor. The floor this address is located on.

postOfficeBox. The post office box number or identifier.

separator. A separator for two street components. The value

property of the component includes the verbatim separator, for

example a newline character.

unknown. A street component value for which no type is known.

value: String (mandatory). The value of this street component.

- ¶

- ¶

- ¶

-

¶

- ¶

- ¶

-

¶

- ¶

* ¶

"addresses": {

 "k23": {

 "@type": "Address",

 "contexts": {

 "work": true

 },

 "fullAddress": "54321 Oak St\nReston\nVA\n20190\nUSA",

 "street": [

 {

 "@type": "StreetComponent",

 "type": "name",

 "value": "Oak St"

 },

 {

 "@type": "StreetComponent",

 "type": "number",

 "value": "54321"

 }

],

 "locality": "Reston",

 "region": "VA",

 "country": "USA",

 "postcode": "20190",

 "countryCode": "US"

 },

 "k24": {

 "@type": "Address",

 "contexts": {

 "private": true

 },

 "fullAddress": "12345 Elm St\nReston\nVA\n20190\nUSA",

 "street": [

 {

 "@type": "StreetComponent",

 "type": "name",

 "value": "Elm St"

 },

 {

 "@type": "StreetComponent",

 "type": "number",

 "value": "12345"

 }

],

 "locality": "Reston",

 "region": "VA",

 "country": "USA",

 "postcode": "20190",

 "countryCode": "US"

 }

}

Figure 25: addresses example

2.6. Resource properties

This section defines properties for digital resources associated

with the entity represented by this card.

2.6.1. cryptoKeys

Type: Id[CryptoResource] (optional).

These are cryptographic resources such as public keys and

certificates associated with the entity represented by this card. A

CryptoResource object has all properties of the Resource

(Section 1.5.4) data type, with the following additional

definitions:

The @type property value MUST be CryptoResource (Section 4.3.2).

The type property value either is not set, is registered at IANA

(Section 4.4.2 or vendor-specific.

Figure 26: cryptoKeys example

2.6.2. directories

Type: Id[DirectoryResource] (optional).

These are directory service resources, such as entries in a

directory or organizational directories for lookup. A

DirectoryResource object has all properties of the Resource

(Section 1.5.4) data type, with the following additional

definitions:

The @type property value MUST be DirectoryResource

(Section 4.3.2).

¶

¶

¶

* ¶

*

¶

"cryptoKeys": {

 "mykey": {

 "@type": "CryptoResource",

 "uri": "http://www.example.com/keys/jdoe.cer"

 }

}

¶

¶

*

¶

The type property value MUST be one of the following, or be

registered at IANA (Section 4.4.2 or vendor-specific

(Section 1.9.1):

directory The resource is a directory service where the entity

represented by this card is part of. This typically is an

organizational directory that also contains associated entities,

e.g. co-workers and management in a company directory.

entry The resource is a directory entry of the entity represented

by this card. In contrast to the directory type, this is the

specific URI for the entity within a directory.

In addition, the DirectoryResource object has the following

property:

listAs: UnsignedInt (optional). This defines the position of this

directory resource in the list of all DirectoryResource objects

having the same type in this card. If set, the listAs value MUST

be higher than zero. Applications that display the directories of

a Card in a list SHOULD order them such that entries with a

higher property value sort after lower ones. Multiple directory

resources MAY have the same listAs property value, or none at

all. Sorting such entries is implementation-specific.

Figure 27: directories example

2.6.3. links

Type: Id[LinkResource] (optional).

These are links to resources that do not fit any of the other use-

case specific resource properties. A LinkResource object has all

¶

*

¶

*

¶

¶

*

¶

"directories": {

 "dir1": {

 "@type": "DirectoryResource",

 "type": "entry",

 "uri": "http://dir.example.com/addrbook/jdoe/Jean%20Dupont.vcf"

 },

 "dir2": {

 "@type": "DirectoryResource",

 "type": "directory",

 "uri": "ldap://ldap.example/o=Example%20Tech,ou=Engineering",

 "pref": 1

 }

¶

properties of the Resource (Section 1.5.4) data type, with the

following additional definitions:

The @type property value MUST be LinkResource (Section 4.3.2).

The type property value either is not set, or MUST be one of the

following, or be registered at IANA (Section 4.4.2 or vendor-

specific (Section 1.9.1):

contact The resource is an URI by which the entity represented by

this card may be contacted, including web forms or other media

that require user interaction.

Figure 28: links example

2.6.4. media

Type: Id[MediaResource] (optional).

These are media resources such as photographs, avatars, or sounds

associated with the entity represented by this card. A MediaResource

object has all properties of the Resource (Section 1.5.4) data type,

with the following additional definitions:

The @type property value MUST be MediaResource (Section 4.3.2).

The type property value must be one of the following, or be

registered at IANA (Section 4.4.2 or vendor-specific

(Section 1.9.1):

photo The resource is a photograph or avatar.

sound The resource is audio media, e.g. to specify the proper

pronunciation of the name property contents.

logo The resource is a graphic image or logo associated with

entity represented by this card.

¶

* ¶

¶

*

¶

"links": {

 "link3": {

 "@type": "LinkResource",

 "type": "contact",

 "uri": "mailto:contact@example.com",

 "pref": 1

 }

}

¶

¶

* ¶

¶

* ¶

*

¶

*

¶

Figure 29: media example

2.7. Multilingual properties

This section defines properties how to localize the content of this

card in human languages.

2.7.1. localizations

Type: String[PatchObject] (optional).

This property localizes property values in this Card to languages

other than the main locale. Its purpose is to provide language-

specific alternatives to existing values, not to add new values. In

other words, a localized Card SHOULD NOT contain more information

than its non-localized variant.

The keys in the localizations property object are language tags

[RFC5646]. The values are patch objects which localize the Card in

the respective language tag. The paths in the PatchObject are

relative to the Card object that includes the localizations

property. A patch MUST NOT target the localizations property.

Conceptually, a Card is localized as follows:

Determine the language tag in which this Card should be localized

in.

If the localizations property includes a key for that language,

obtain the PatchObject value. If there is no such key, stop.

"media": {

 "res45": {

 "@type": "MediaResource",

 "type": "sound",

 "uri": "CID:JOHNQ.part8.19960229T080000.xyzMail@example.com"

 },

 "res47": {

 "@type": "MediaResource",

 "type": "logo",

 "uri": "http://www.example.com/pub/logos/abccorp.jpg"

 },

 "res1": {

 "@type": "MediaResource",

 "type": "photo",

 "uri": "..."

 }

}

¶

¶

¶

¶

¶

*

¶

*

¶

Create a copy of the Card, but do not copy the localizations

property.

Apply all patches in the PatchObject to the copy of the Card.

Optionally, set the locale property in the copy of the Card.

Use the patched copy of the Card as the localized variant of the

original Card.

A patch in the PatchObject may patch a simple-typed property value,

or a complex type.

Figure 30 shows how a single String property value is localized in

the jp locale.

Figure 30

Figure 31 shows how a complete object property value is localized in

the en locale.

*

¶

* ¶

* ¶

*

¶

¶

¶

"locale": "en",

"addresses": {

 "addr1": {

 "@type": "Address",

 "locality": "Tokyo"

 }

},

"localizations": {

 "jp": {

 "addresses/addr1/locality": " "
 }

}

¶

Figure 31

"locale": "ru",

"name": {

 "@type": "Name",

 "components": [

 {

 "@type": "NameComponent",

 "type": "given",

 "value": "Фёдор"

 },

 {

 "@type": "NameComponent",

 "type": "middle",

 "value": "Михайлович"

 },

 {

 "@type": "NameComponent",

 "type": "surname",

 "value": "Достоевский"

 }

]

},

"localizations": {

 "en": {

 "name": {

 "@type": "Name",

 "components": [

 {

 "@type": "NameComponent",

 "type": "given",

 "value": "Fyodor"

 },

 {

 "@type": "NameComponent",

 "type": "middle",

 "value": "Mikhailovich"

 },

 {

 "@type": "NameComponent",

 "type": "surname",

 "value": "Dostoevsky"

 }

]

 }

 }

}

2.8. Additional properties

This section defines properties for which none of the previous

sections is appropriate.

2.8.1. anniversaries

Type : Id[Anniversary] (optional).

These are memorable dates and events for the entity represented by

this card. An Anniversary object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be Anniversary (Section 4.3.2).

type: String (mandatory). Specifies the type of the anniversary.

This RFC defines a small set of common anniversary types,

additional types MAY be registered at IANA (Section 4.4.2):

birth: a birthday anniversary

death: a deathday anniversary

wedding: a wedding day anniversary

date: Timestamp|PartialDate (mandatory).

The date of this anniversary in the Gregorian calendar. This MUST

either be a whole or partial calendar date or a complete UTC

timestamp (see the definition of the Timestamp and PartialDate

object types below).

place: Address (optional). An address associated with this

anniversary, e.g. the place of birth or death.

A Timestamp object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be Timestamp (Section 4.3.2).

utc: UTCDateTime (mandatory). Specifies the point in time in UTC

time.

A PartialDate object represents a complete or partial calendar date

in the Gregorian calendar. It represents either a complete date, or

a year, or a month in a year, or a day in a month. It has the

¶

¶

¶

*

¶

*

¶

- ¶

- ¶

- ¶

* ¶

¶

*

¶

¶

*

¶

*

¶

following properties, of which at least year or month and day MUST

be set:

@type: String (mandatory). Specifies the type of this object.

This MUST be PartialDate (Section 4.3.2).

year: UnsignedInt (optional). This is the calendar year.

month: UnsignedInt (optional). This is the calendar month,

represented as the integers 1 <= month <= 12. If this property is

set then either year or day MUST be set.

day: UnsignedInt (optional). This is the calendar month day,

represented as the integers 1 <= day <= 31, depending on the

validity within the month and year. If this property is set then

month MUST be set.

calendarScale: String (optional). This is the calendar system in

which this date occurs, in lowercase. This MUST be either a CLDR-

registered calendar system name [RFC7529] or a vendor-specific

value. The year, month and day still MUST be represented in the

Gregorian calendar. Note that for calendar systems with leap

months, the year property might be required to convert between

the Gregorian calendar date and the respective calendar system.

¶

*

¶

* ¶

*

¶

*

¶

*

¶

Figure 32: anniversaries example

2.8.2. keywords

Type: String[Boolean] (optional). A set of free-text keywords, also

known as tags. The set is represented as an object, with each key

being a keyword. The boolean value MUST be true.

Figure 33: keywords example

2.8.3. notes

Type: Id[Note] (optional).

Free-text notes associated with this card. A Note object has the

following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be Note (Section 4.3.2).

"anniversaries": {

 "k8": {

 "@type": "Anniversary",

 "type": "birth",

 "date": {

 "@type": "PartialDate",

 "year": 1953,

 "month": 4,

 "day": 15

 }

 },

 "k9": {

 "@type": "Anniversary",

 "type": "death",

 "date": {

 "@type": "Timestamp",

 "utc": "1996-10-15T23:10:00Z"

 },

 "place": {

 "@type": "Address",

 "fullAddress": "4445 Tree Street\nNew England, ND 58647\nUSA"

 }

 }

}

¶

"keywords": {

 "internet": true,

 "IETF": true

}

¶

¶

*

¶

note: String (mandatory). The free text value of this note.

created: UTCDateTime (optional). The date and time when this note

was created.

author: Author (optional). The author of this note.

An Author object has the following properties, of which at least one

other than @type MUST be defined:

@type: String (mandatory). Specifies the type of this object.

This MUST be Author (Section 4.3.2).

name: String (optional). The name of this author.

uri: String (optional). A URI value that identifies the author.

Figure 34: notes example

2.8.4. personalInfo

Type: Id[PersonalInfo] (optional).

Defines personal information about the entity represented by this

card. A PersonalInfo object has the following properties:

@type: String (mandatory). Specifies the type of this object.

This MUST be PersonalInfo (Section 4.3.2).

type: String (mandatory). Specifies the type for this personal

information. The value MUST be one of the following, or be

registered at IANA (Section 4.4.2 or vendor-specific

(Section 1.9.1):

expertise: a field of expertise or credential

hobby: a hobby

* ¶

*

¶

* ¶

¶

*

¶

* ¶

* ¶

"notes": {

 "n1": {

 "note": "Open office hours are 1600 to 1715 EST, Mon-Fri",

 "created": "2022-11-23T15:01:32Z",

 "author": {

 "@type": "Author",

 "name": "John"

 }

 }

}

¶

¶

*

¶

*

¶

- ¶

- ¶

interest: an interest

value: String (mandatory). The actual information. This is free-

text, but future specifications MAY restrict allowed values

depending on the type of this PersonalInfo.

level: String (optional). Indicates the level of expertise, or

engagement in hobby or interest. The value MUST be one of the

following, or be registered at IANA (Section 4.4.2 or vendor-

specific (Section 1.9.1): high, medium and low.

listAs: UnsignedInt (optional). This defines the position of this

personal information in the list of all PersonalInfo objects

having the same type in this card. If set, the listAs value MUST

be higher than zero. Applications that display personal

information entries in a list SHOULD order them such that entries

with a higher property value sort after lower ones. Multiple

personal information entries MAY have the same listAs property

value, or none at all. Sorting such entries is implementation-

specific.

label: String (optional). A custom label. See Section 1.6.2.

Figure 35: personalInfo example

- ¶

*

¶

*

¶

*

¶

* ¶

"personalInfo": {

 "pi2": {

 "@type": "PersonalInfo",

 "type": "expertise",

 "value": "chemistry",

 "level": "high"

 },

 "pi1": {

 "@type": "PersonalInfo",

 "type": "hobby",

 "value": "reading",

 "level": "high"

 },

 "pi6": {

 "@type": "PersonalInfo",

 "type": "interest",

 "value": "r&b music",

 "level": "medium"

 }

}

Type name:

3. Implementation Status

NOTE: Please remove this section and the reference to [RFC7942]

prior to publication as an RFC. This section records the status of

known implementations of the protocol defined by this specification

at the time of posting of this Internet-Draft, and is based on a

proposal described in [RFC7942]. The description of implementations

in this section is intended to assist the IETF in its decision

processes in progressing drafts to RFCs. Please note that the

listing of any individual implementation here does not imply

endorsement by the IETF. Furthermore, no effort has been spent to

verify the information presented here that was supplied by IETF

contributors. This is not intended as, and must not be construed to

be, a catalog of available implementations or their features.

Readers are advised to note that other implementations may exist.

According to [RFC7942], "this will allow reviewers and working

groups to assign due consideration to documents that have the

benefit of running code, which may serve as evidence of valuable

experimentation and feedback that have made the implemented

protocols more mature. It is up to the individual working groups to

use this information as they see fit".

3.1. IIT-CNR/Registro.it

Responsible Organization: Institute of Informatics and Telematics

of National Research Council (IIT-CNR)/Registro.it

Location: https://rdap.pubtest.nic.it/

Description: This implementation includes support for RDAP

queries using data from the public test environment of .it ccTLD.

The RDAP server returns responses including Card in place of

jCard when queries contain the parameter jscard=1.

Level of Maturity: This is an "alpha" test implementation.

Coverage: This implementation includes all of the features

described in this specification.

Contact Information: Mario Loffredo, mario.loffredo@iit.cnr.it

4. IANA Considerations

4.1. Media Type Registration

This document defines a media type for use with JSContact data

formatted in JSON.

application

¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

¶

¶

https://rdap.pubtest.nic.it/

Subtype name:

Required parameters:

card:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

File extensions(s):

jscontact+json

type

This parameter conveys the type of the JSContact data in the body

part. It MUST NOT occur more than once. This RFC specifies a

single allowed parameter value, but future RFC documents MAY

extend this list:

The body part MUST consist of exactly one JSContact Card

(Section 2) object.

version

This parameter conveys the version of the JSContact data in the

body part. It MUST NOT occur more than once. If this parameter is

set, then the values of all JSContact @version (Table 1)

properties in the body part MUST match the parameter value.

This is the same as the encoding

considerations of application/json, as specified in Section 11 of

[RFC8259].

See Section 5 of this document.

While JSContact is designed to

avoid ambiguities as much as possible, when converting objects

from other contact formats to/from JSContact, it is possible that

differing representations for the same logical data or

ambiguities in interpretation might arise. The semantic

equivalence of two JSContact objects may be determined

differently by different applications, for example, where URL

values differ in case between the two objects.

TBD

Applications that currently

make use of the text/vcard media type can use this as an

alternative.

A JSON Pointer fragment

identifier may be used, as defined in [RFC6901], Section 6.

N/A

N/A

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8259#section-11
https://rfc-editor.org/rfc/rfc6901#section-6

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

N/A

calsify@ietf.org

COMMON

N/A

See the "Author's Address" section of this document.

IETF

4.2. Creation of the "JSContact Properties" Registry

IANA has created the "JSContact Properties" registry to allow

interoperability of extensions to JSContact objects.

This registry follows the Expert Review process ([RFC8126],

Section 4.5). If the "Intended Usage" field is common, sufficient

documentation is required to enable interoperability. Preliminary

community review for this registry is optional but strongly

encouraged.

A registration can have an intended usage of common, reserved, or

obsolete.

A reserved registration reserves a property name without assigning

semantics to avoid name collisions with future extensions or

protocol use.

An obsolete registration denotes a property that is no longer

expected to be added by up-to-date systems. A new property has

probably been defined covering the obsolete property's semantics.

Every registration MUST define the version of the JSContact

specification on which the definition of the newly registered,

updated or obsoleted item is based on. This typically is the latest

specification version that is in effect when the property gets

registered. The version MUST be one of the allowed values of the

@version property in the JSContact Enum Value registry (see

Table 6).

The JSContact property registration procedure is not a formal

standards process but rather an administrative procedure intended to

allow community comment and check it is coherent without excessive

time delay. It is designed to encourage vendors to document and

register new properties they add for use cases not covered by the

original specification, leading to increased interoperability.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8126#section-4.5

4.2.1. Preliminary Community Review

Notice of a potential new registration SHOULD be sent to the Calext

mailing list <calsify@ietf.org> for review. This mailing list is

appropriate to solicit community feedback on a proposed new

property.

Property registrations must be marked with their intended use:

"common", "reserved", or "obsolete".

The intent of the public posting to this list is to solicit comments

and feedback on the choice of the property name, the unambiguity of

the specification document, and a review of any interoperability or

security considerations. The submitter may submit a revised

registration proposal or abandon the registration completely at any

time.

4.2.2. Submit Request to IANA

Registration requests can be sent to <iana@iana.org>.

4.2.3. Designated Expert Review

The primary concern of the designated expert (DE) is preventing name

collisions and encouraging the submitter to document security and

privacy considerations. For a common-use registration, the DE is

expected to confirm that suitable documentation, as described in

Section 4.6 of [RFC8126], is available to ensure interoperability.

That documentation will usually be in an RFC, but simple definitions

are likely to use a web/wiki page, and if a sentence or two is

deemed sufficient, it could be described in the registry itself. The

DE should also verify that the property name does not conflict with

work that is active or already published within the IETF. A

published specification is not required for reserved or obsolete

registrations.

The DE will either approve or deny the registration request and

publish a notice of the decision to the Calext WG mailing list or

its successor, as well as inform IANA. A denial notice must be

justified by an explanation, and, in the cases where it is possible,

concrete suggestions on how the request can be modified so as to

become acceptable should be provided.

4.2.4. Change Procedures

Once a JSContact property has been published by IANA, the change

controller may request a change to its definition. The same

procedure that would be appropriate for the original registration

request is used to process a change request.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8126#section-4.6

Property Name:

Property Type:

Property Context:

Reference or Description:

Intended Usage:

Since Version:

Until Version:

Change Controller:

JSContact property registrations may not be deleted; properties that

are no longer believed appropriate for use can be declared obsolete

by a change to their "intended usage" field; such properties will be

clearly marked in the IANA registry.

Significant changes to a JSContact property's definition should be

requested only when there are serious omissions or errors in the

published specification, as such changes may cause interoperability

issues. When review is required, a change request may be denied if

it renders entities that were valid under the previous definition

invalid under the new definition.

4.2.5. "JSContact Properties" Registry Template

This is the name of the property. The property name

MUST NOT already be registered for any of the object types listed

in the "Property Context" field of this registration. Other

object types MAY already have registered a different property

with the same name; however, the same name SHOULD only be used

when the semantics are analogous.

This is the type of this property, using type

signatures, as specified in Section 1.4. The property type MUST

be registered in the "JSContact Types" registry.

This is a comma-separated list of JSContact

object types (Section 4.3.2) that contain this property.

This is a brief description or RFC number

and section reference where the property is specified (omitted

for "reserved" property names). This must include references to

all RFC documents where this property is introduced or updated.

This may be "common", "reserved", or "obsolete".

This defines the JSContact version on which this

property definition is based on. The version MUST be one of the

allowed values of the @version property in the JSContact Enum

Value registry (see Table 6).

This defines the JSContact version after which this

property got obsoleted and MUST NOT be used in later versions.

The Until Version value either MUST NOT be set, or be one of the

allowed values of the @version property in the JSContact Enum

Value registry (see Table 6).

This is who may request a change to this entry's

definition (IETF for RFCs from the IETF stream).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.2.6. Initial Contents for the "JSContact Properties" Registry

The following table lists the initial common usage entries of the

"JSContact Properties" registry. The Since Version for all

properties is 1.0. The Until Version for all properties is not set.

All RFC section references are for this document. The change

controller for all these properties is IETF.

Property Name Property Type Property Context Reference or Description

@type String

Address, Anniversary,

Author, Card,

CalendarResource,

ContactChannelPreference,

CryptoResource,

DirectoryResource,

EmailAddress,

LanguagePreference,

LinkResource,

MediaResource, Name,

NameComponent, NickName,

Note, OnlineService,

Organization, OrgUnit,

PartialDate,PersonalInfo,

Phone, Pronouns,

Relation, Resource,

SchedulingAddress,

SpeakToAs,

StreetComponent,

Timestamp, Title

Section 2.5.1, Section 2.8.1, Section 2.1.1, Section 2.4.1, Section 2.3.4, Section 2.6.1, Section 2.6.2, Section 2.3.1, Section 2.3.5, Section 2.6.3, Section 2.6.4, Section 2.2.2, Section 2.2.3, Section 2.8.3, Section 2.3.2, Section 2.2.4, Section 2.8.4, Section 2.3.3, Section 2.2.5, Section 2.1.8,

Section 2.4.2, Section 2.2.6

@version String Card Section 2.1.2

address String EmailAddress Section 2.3.1

addresses Id[Address] Card Section 2.5.1

anniversaries Id[Anniversary] Card Section 2.8.1

author Author Note Section 2.8.3

calendars Id[CalendarResource] Card Section 2.4.1

calendarScale String PartialDate Section 2.8.1

components NameComponent[] Name Section 2.2.2

contexts String[Boolean]

Address, NickName,

Pronouns, EmailAddress,

OnlineService, Phone,

ContactChannelPreference,

LanguagePreference,

CalendarResource,

CryptoResource,

DirectoryResource,

LinkResource,

MediaResource,

Section 1.6.1, Section 2.5.1, Section 2.2.3, Section 2.2.5, Section 2.3.1, Section 2.3.2, Section 2.3.3, Section 2.3.4, Section 2.3.5, Section 1.5.4, Section 2.4.1, Section 2.6.1, Section 2.6.2, Section 2.6.3, Section 2.6.4, Section 2.2.4, Section 2.4.2

¶

Property Name Property Type Property Context Reference or Description

Organization,

SchedulingAddress

coordinates String Address Section 2.5.1

country String Address Section 2.5.1

countryCode String Address Section 2.5.1

created UTCDateTime Card, Note Section 2.1.3, Section 2.8.3

date Timestamp|PartialDate Anniversary Section 2.8.1

day UnsignedInt PartialDate Section 2.8.1

directories Id[DirectoryResource] Card Section 2.6.2

emails Id[EmailAddress] Card Section 2.3.1

features String[Boolean] Phone Section 2.3.3

fullAddress String Address Section 2.5.1

fullName String Card Section 2.2.1

grammaticalGender String SpeakToAs Section 2.2.5

keywords String[Boolean] Card Section 2.8.2

kind String Card Section 2.1.4

label String

EmailAddress,

OnlineService, Phone,

CalendarResource,

CryptoResource,

DirectoryResource,

LinkResource,

MediaResource,

PersonalInfo,

SchedulingAddress

Section 1.6.2, Section 2.3.1, Section 2.3.2, Section 2.3.3, Section 1.5.4, Section 2.4.1, Section 2.6.1, Section 2.6.2, Section 2.6.3, Section 2.6.4, Section 2.8.4, Section 2.4.2

level String PersonalInfo Section 2.8.4

links Id[LinkResource] Card Section 2.6.3

listAs UnsignedInt
DirectoryResource,

PersonalInfo
Section 2.6.2, Section 2.8.4

locale String Card Section 2.1.5

locality String Address Section 2.5.1

localizations String[PatchObject] Card Section 2.7.1

media Id[MediaResource] Card Section 2.6.4

mediaType String

CalendarResource,

CryptoResource,

DirectoryResource,

LinkResource,

MediaResource

Section 1.5.4, Section 2.4.1, Section 2.6.1, Section 2.6.2, Section 2.6.3, Section 2.6.4

members String[Boolean] Card Section 2.1.6

month UnsignedInt PartialDate Section 2.8.1

name Name Card Section 2.2.2

name String

Author, NickName,

Organization, OrgUnit,

Title

Section 2.8.3, Section 2.2.3, Section 2.2.4, Section 2.2.6

nickNames Id[NickName] Card Section 2.2.3

note String Note Section 2.8.3

Property Name Property Type Property Context Reference or Description

notes Id[Note] Card Section 2.8.3

number String Phone Section 2.3.3

onlineServices Id[OnlineService] Card Section 2.3.2

organization String Title Section 2.2.6

organizations Id[Organization] Card Section 2.2.4

personalInfo Id[PersonalInfo] Card Section 2.8.4

phones Id[Phone] Card Section 2.3.3

place Address Anniversary Section 2.8.1

postcode String Address Section 2.5.1

pref UnsignedInt

Address, NickName,

Pronouns, EmailAddress,

OnlineService, Phone,

ContactChannelPreference,

LanguagePreference,

CalendarResource,

CryptoResource,

DirectoryResource,

LinkResource,

MediaResource,

SchedulingAddress

Section 1.6.3, Section 2.5.1, Section 2.2.3, Section 2.2.5, Section 2.3.1, Section 2.3.2, Section 2.3.3, Section 2.3.4, Section 2.3.5, Section 1.5.4, Section 2.4.1Section 2.6.1, Section 2.6.2, Section 2.6.3, Section 2.6.4, Section 2.4.2

preferredContactChannels String[ContactChannelPreference[]] Card Section 2.3.4

preferredLanguages String[LanguagePreference[]] Card Section 2.3.5

prodId String Card Section 2.1.7

pronouns Id[Pronouns] SpeakToAs Section 2.2.5

pronouns String Pronouns Section 2.2.5

rank UnsignedInt NameComponent Section 2.2.2

region String Address Section 2.5.1

relatedTo String[Relation] Card Section 2.1.8

relation String[Boolean] Relation Section 2.1.8

schedulingAddresses Id[SchedulingAddress] Card Section 2.4.2

service String OnlineService Section 2.3.2

sortAs String[String] Name Section 2.2.2

sortAs String Organization, OrgUnit Section 2.2.4

speakToAs SpeakToAs Card Section 2.2.5

street StreetComponent[] Address Section 2.5.1

timeZone String Address Section 2.5.1

titles Id[Title] Card Section 2.2.6

type String

Anniversary,

NameComponent, Title,

CalendarResource,

CryptoResource,

DirectoryResource,

LinkResource,

MediaResource,

OnlineService,

Section 2.8.1, Section 2.2.2, Section 2.2.6, Section 1.5.4, Section 2.4.1, Section 2.6.1, Section 2.6.2, Section 2.6.3, Section 2.6.4, Section 2.3.2, Section 2.5.1, Section 2.8.4

Type Name:

Reference or Description:

Intended Usage:

Property Name Property Type Property Context Reference or Description

StreetComponent,

PersonalInfo

uid String Card Section 2.1.9

units OrgUnit[] Organization Section 2.2.4

updated UTCDateTime Card Section 2.1.10

uri String

Author, CalendarResource,

CryptoResource,

DirectoryResource,

LinkResource,

MediaResource,

SchedulingAddress

Section 2.8.3, Section 1.5.4, Section 2.4.1, Section 2.6.1, Section 2.6.2, Section 2.6.3, Section 2.6.4, Section 2.4.2

user String OnlineService Section 2.3.2

utc UTCDateTime Timestamp Section 2.8.1

value String

NameComponent,

StreetComponent,

PersonalInfo

Section 2.2.2, Section 2.5.1, Section 2.8.4

year UnsignedInt PartialDate Section 2.8.1

Table 1: Initial Contents of the "JSContact Properties" Registry

The following table lists the initial reserved usage entries of the

"JSContact Properties" registry. All RFC section references are for

this document. The change controller for all these properties is

IETF.

Property

Name

Property

Type

Property

Context

Reference or

Description

Intended

Usage

extra
not

applicable

not

applicable
Section 1.10 reserved

Table 2: Initial Contents of the "JSContact Properties" Registry

4.3. Creation of the "JSContact Types" Registry

IANA has created the "JSContact Types" registry to avoid name

collisions and provide a complete reference for all data types used

for JSContact property values. The registration process is the same

as for the "JSContact Properties" registry, as defined in

Section 4.2.

4.3.1. "JSContact Types" Registry Template

the name of the type

a brief description or RFC number and

section reference where the Type is specified (may be omitted for

"reserved" type names)

common, reserved, or obsolete

¶

¶

¶

¶

¶

Since Version:

Until Version:

Change Controller:

This defines the JSContact version on which this

type definition is based on. The version MUST be one of the

allowed values of the @version property in the JSContact Enum

Value registry (see Table 6).

This defines the JSContact version after which this

type definition got obsoleted and MUST NOT be used in later

versions. The Until Version value either MUST be not set, or one

of the allowed values of the @version property in the JSContact

Enum Value registry (see Table 6).

This is who may request a change to this entry's

definition (IETF for RFCs from the IETF stream).

4.3.2. Initial Contents for the "JSContact Types" Registry

The following table lists the initial common usage entries of the

JSContact Types registry. The Since Version for all types is 1.0.

The Until Version for all types is not set. All RFC section

references are for this document. The change controller for all

these properties is IETF.

Type Name Reference or Description

Address Section 2.5.1

Anniversary Section 2.8.1

Author Section 2.8.3

Boolean Section 1.4

CalendarResource Section 2.4.1

Card Section 2

ContactChannelPreference Section 2.3.4

CryptoResource Section 2.6.1

DirectoryResource Section 2.6.2

EmailAddress Section 2.3.1

Id Section 1.5.1

Int Section 1.5.2

LanguagePreference Section 2.3.5

LinkResource Section 2.6.3

MediaResource Section 2.6.4

Name Section 2.2.2

NameComponent Section 2.2.2

NickName Section 2.2.3

Note Section 2.8.3

Number Section 1.4

OnlineService Section 2.3.2

Organization Section 2.2.4

OrgUnit Section 2.2.4

¶

¶

¶

¶

Property Name:

Context:

Type Name Reference or Description

PartialDate Section 2.8.1

PatchObject Section 1.5.3

PersonalInfo Section 2.8.4

Phone Section 2.3.3

Pronouns Section 2.2.5

Relation Section 2.1.8

SchedulingAddress Section 2.4.2

SpeakToAs Section 2.2.5

StreetComponent Section 2.5.1

String Section 1.4

Timestamp Section 2.8.1

Title Section 2.2.6

UnsignedInt Section 1.5.2

UTCDateTime Section 1.5.5

Table 3: Initial Contents of the "JSContact Types"

Registry

The following table lists the initial reserved usage entries of the

JSContact Types registry. All types are for version 1.0. All RFC

section references are for this document. The change controller for

all these properties is IETF.

Type Name Reference or Description

Resource Section 1.5.4

Table 4: Initial Contents of the

"JSContact Types" Registry

4.4. Creation of the "JSContact Enum Values" Registry

IANA has created the "JSContact Enum Values" registry to allow

interoperable extension of semantics for properties with enumerable

values. Each such property will have a subregistry of allowed

values. The registration process for a new enum value or adding a

new enumerable property is the same as for the "JSContact

Properties" registry, as defined in Section 4.2.

4.4.1. "JSContact Enum Values" Registry Property Template

This template is for adding a subregistry for a new enumerable

property to the "JSContact Enum" registry.

These are the name(s) of the property or properties

where these values may be used. This MUST be registered in the

"JSContact Properties" registry.

This is the list of allowed object types where the

property or properties may appear, as registered in the

¶

¶

¶

¶

Since Version:

Until Version:

Change Controller:

Initial Contents:

Enum Value:

Reference or Description:

Since Version:

Until Version:

"JSContact Properties" registry. This disambiguates where there

may be two distinct properties with the same name in different

contexts.

This defines the JSContact version on which this

enum value definition is based on. The version MUST be one of the

allowed values of the @version property in the JSContact Enum

Value registry (see Table 6).

This defines the JSContact version after which this

enum value definition got obsoleted and MUST NOT be used in later

versions. The Until Version value either MUST be not set, or one

of the allowed values of the @version property in the JSContact

Enum Value registry (see Table 6).

This is who may request a change to this entry's

definition (IETF for RFCs from the IETF stream).

This is the initial list of defined values for

this enum, using the template defined in Section 4.4.2. A

subregistry will be created with these values for this property

name/context tuple.

4.4.2. "JSContact Enum Values" Registry Value Template

This template is for adding a new enum value to a subregistry in the

JSContact Enum registry.

The verbatim value of the enum

A brief description or RFC number and

section reference for the semantics of this value

The JSContact version on which the enum value

definition is based on. The version MUST be one of the allowed

values of the @version property in the JSContact Enum Value

registry (see Table 6).

The JSContact version after which this enum value

got obsoleted and MUST NOT be used in later versions. The Until

Version value either MUST be not set, or one of the allowed

values of the @version property in the JSContact Enum Value

registry (see Table 6).

4.4.3. Initial Contents for the "JSContact Enum Values" Registry

For each subregistry created in this section, all RFC section

references are for this document. For all entries, the Since Version

is 1.0, the Until Version is not set, the Change Controller is IETF.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

kind

Card

Enum Value Reference or Description

individual Section 2.1.4

group Section 2.1.4

org Section 2.1.4

location Section 2.1.4

device Section 2.1.4

application Section 2.1.4

Table 5: JSContact Enum Values for kind

(Context: Card)

@version

Card

Enum Value Reference or Description

1.0 Section 2.1.2

Table 6: JSContact Enum Values for

@version (Context: Card)

contexts

NickName, Pronouns, EmailAddress, OnlineService, Phone,

ContactChannelPreference, LanguagePreference, CalendarResource,

CryptoResource, DirectoryResource, LinkResource, MediaResource,

SchedulingAddress

Enum Value Reference or Description

private Section 1.6.1

work Section 1.6.1

Table 7: JSContact Enum Values for

contexts (Context: NickName, Pronouns,

EmailAddress, OnlineService, Phone,

ContactChannelPreference,

LanguagePreference, CalendarResource,

CryptoResource, DirectoryResource,

LinkResource, MediaResource,

SchedulingAddress)

contexts

Address

Enum Value Reference or Description

private Section 1.6.1

work Section 1.6.1

billing Section 2.5.1

delivery Section 2.5.1

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Table 8: JSContact Enum Values for

contexts (Context: Address)

features

Phone

Enum Value Reference or Description

voice Section 2.3.3

fax Section 2.3.3

pager Section 2.3.3

text Section 2.3.3

cell Section 2.3.3

textphone Section 2.3.3

video Section 2.3.3

Table 9: JSContact Enum Values for

features (Context: Phone)

type

StreetComponent

Enum Value Reference or Description

name Section 2.5.1

number Section 2.5.1

apartment Section 2.5.1

room Section 2.5.1

extension Section 2.5.1

direction Section 2.5.1

building Section 2.5.1

floor Section 2.5.1

postOfficeBox Section 2.5.1

separator Section 2.5.1

unknown Section 2.5.1

Table 10: JSContact Enum Values for type

(Context: StreetComponent)

type

NameComponent

Enum Value Reference or Description

prefix Section 2.2.2

given Section 2.2.2

surname Section 2.2.2

middle Section 2.2.2

suffix Section 2.2.2

separator Section 2.2.2

Table 11: JSContact Enum Values for

type (Context: NameComponent)

¶

¶

¶

¶

¶

¶

¶

¶

¶

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

type

Title

Enum Value Reference or Description

title Section 2.2.6

role Section 2.2.6

Table 12: JSContact Enum Values for

type (Context: Title)

grammaticalGender

SpeakToAs

Enum Value Reference or Description

animate Section 2.2.5

female Section 2.2.5

inanimate Section 2.2.5

male Section 2.2.5

neuter Section 2.2.5

Table 13: JSContact Enum Values for

type (Context: SpeakToAs)

preferredContactChannels

Card

Enum Value Reference or Description

addresses Section 2.3.4

emails Section 2.3.4

onlineServices Section 2.3.4

phones Section 2.3.4

Table 14: JSContact Enum Values for

preferredContactChannels (Context: Card)

type

CalendarResource

Enum Value Reference or Description

calendar Section 2.4.1

freeBusy Section 2.4.1

Table 15: JSContact Enum Values for

type (Context: CalendarResource)

type

DirectoryResource

Enum Value Reference or Description

directory Section 2.6.2

entry Section 2.6.2

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Table 16: JSContact Enum Values for

type (Context: DirectoryResource)

type

LinkResource

Enum Value Reference or Description

contact Section 2.6.3

Table 17: JSContact Enum Values for

type (Context: LinkResource)

type

MediaResource

Enum Value Reference or Description

photo Section 2.6.4

sound Section 2.6.4

logo Section 2.6.4

Table 18: JSContact Enum Values for

type (Context: MediaResource)

type

Anniversary

Enum Value Reference or Description

birth Section 2.8.1

death Section 2.8.1

wedding Section 2.8.1

Table 19: JSContact Enum Values for

type (Context: Anniversary)

type

OnlineService

Enum Value Reference or Description

impp Section 2.3.2

uri Section 2.3.2

username Section 2.3.2

Table 20: JSContact Enum Values for

type (Context: OnlineService)

type

PersonalInfo

Enum Value Reference or Description

expertise Section 2.8.4

hobby Section 2.8.4

interest Section 2.8.4

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Table 21: JSContact Enum Values for

type (Context: PersonalInfo)

5. Security Considerations

Contact information is very privacy sensitive. It can reveal the

identity, location and credentials information, employment status,

interests and hobbies, and social network of a user. Its

transmission and storage must be done carefully to protect it from

possible threats, such as eavesdropping, replay, message insertion,

deletion, modification, and on-path attacks.

The data being stored and transmitted may be used in systems with

real-world consequences. For example, a malicious actor might

provide JSContact data that uses the name of another person but

insert their contact details to impersonate the unknown victim. Such

systems must be careful to authenticate all data they receive to

prevent them from being subverted and ensure the change comes from

an authorized entity.

This document only defines the data format; such considerations are

primarily the concern of the API or method of storage and

transmission of such files.

5.1. JSON Parsing

The security considerations of [RFC8259] apply to the use of JSON as

the data interchange format.

As for any serialization format, parsers need to thoroughly check

the syntax of the supplied data. JSON uses opening and closing tags

for several types and structures, and it is possible that the end of

the supplied data will be reached when scanning for a matching

closing tag; this is an error condition, and implementations need to

stop scanning at the end of the supplied data.

JSON also uses a string encoding with some escape sequences to

encode special characters within a string. Care is needed when

processing these escape sequences to ensure that they are fully

formed before the special processing is triggered, with special care

taken when the escape sequences appear adjacent to other (non-

escaped) special characters or adjacent to the end of data (as in

the previous paragraph).

If parsing JSON into a non-textual structured data format,

implementations may need to allocate storage to hold JSON string

elements. Since JSON does not use explicit string lengths, the risk

of denial of service due to resource exhaustion is small, but

implementations may still wish to place limits on the size of

¶

¶

¶

¶

¶

¶

¶

[ISO.3166-1.2006]

[RFC1034]

[RFC1035]

[RFC2046]

[RFC2119]

allocations they are willing to make in any given context, to avoid

untrusted data causing excessive memory allocation.

5.2. URI Values

Several JSContact properties contain URIs as values, and processing

these properties requires extra care. Section 7 of [RFC3986]

discusses security risks related to URIs.

Fetching remote resources carries inherent risks. Connections must

only be allowed on well-known ports, using allowed protocols

(generally, just HTTP/HTTPS on their default ports). The URL must be

resolved externally and not allowed to access internal resources.

Connecting to an external source reveals IP (and therefore often

location) information.

A maliciously constructed JSContact object may contain a very large

number of URIs. In the case of published address books with a large

number of subscribers, such objects could be widely distributed.

Implementations should be careful to limit the automatic fetching of

linked resources to reduce the risk of this being an amplification

vector for a denial-of-service attack.

6. References

6.1. Normative References

International Organization for Standardization,

"Codes for the representation of names of countries, 3rd

edition", ISO Standard 3166-1, 2006.

Mockapetris, P., "Domain names - concepts and

facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034,

November 1987, <https://www.rfc-editor.org/info/rfc1034>.

Mockapetris, P., "Domain names - implementation and

specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,

November 1987, <https://www.rfc-editor.org/info/rfc1035>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types", RFC 2046, DOI

10.17487/RFC2046, November 1996, <https://www.rfc-

editor.org/info/rfc2046>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-7
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2046

[RFC3339]

[RFC4122]

[RFC4648]

[RFC5234]

[RFC5322]

[RFC5646]

[RFC5870]

[RFC6350]

[RFC6901]

[RFC7493]

[RFC7529]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/info/rfc3339>.

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

info/rfc4122>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Resnick, P., Ed., "Internet Message Format", RFC 5322,

DOI 10.17487/RFC5322, October 2008, <https://www.rfc-

editor.org/info/rfc5322>.

Phillips, A., Ed. and M. Davis, Ed., "Tags for

Identifying Languages", BCP 47, RFC 5646, DOI 10.17487/

RFC5646, September 2009, <https://www.rfc-editor.org/

info/rfc5646>.

Mayrhofer, A. and C. Spanring, "A Uniform Resource

Identifier for Geographic Locations ('geo' URI)", RFC

5870, DOI 10.17487/RFC5870, June 2010, <https://www.rfc-

editor.org/info/rfc5870>.

Perreault, S., "vCard Format Specification", RFC 6350,

DOI 10.17487/RFC6350, August 2011, <https://www.rfc-

editor.org/info/rfc6350>.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,

"JavaScript Object Notation (JSON) Pointer", RFC 6901,

DOI 10.17487/RFC6901, April 2013, <https://www.rfc-

editor.org/info/rfc6901>.

Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI

10.17487/RFC7493, March 2015, <https://www.rfc-

editor.org/info/rfc7493>.

Daboo, C. and G. Yakushev, "Non-Gregorian Recurrence

Rules in the Internet Calendaring and Scheduling Core

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5870
https://www.rfc-editor.org/info/rfc5870
https://www.rfc-editor.org/info/rfc6350
https://www.rfc-editor.org/info/rfc6350
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7493

[RFC7942]

[RFC8126]

[RFC8141]

[RFC8174]

[RFC8259]

[RFC3261]

[RFC3966]

[RFC3986]

Object Specification (iCalendar)", RFC 7529, DOI

10.17487/RFC7529, May 2015, <https://www.rfc-editor.org/

info/rfc7529>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", BCP

205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://

www.rfc-editor.org/info/rfc7942>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Saint-Andre, P. and J. Klensin, "Uniform Resource Names

(URNs)", RFC 8141, DOI 10.17487/RFC8141, April 2017,

<https://www.rfc-editor.org/info/rfc8141>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

6.2. Informative References

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,

A., Peterson, J., Sparks, R., Handley, M., and E.

Schooler, "SIP: Session Initiation Protocol", RFC 3261,

DOI 10.17487/RFC3261, June 2002, <https://www.rfc-

editor.org/info/rfc3261>.

Schulzrinne, H., "The tel URI for Telephone Numbers", RFC

3966, DOI 10.17487/RFC3966, December 2004, <https://

www.rfc-editor.org/info/rfc3966>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

https://www.rfc-editor.org/info/rfc7529
https://www.rfc-editor.org/info/rfc7529
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8141
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3966
https://www.rfc-editor.org/info/rfc3966

[RFC6351]

[RFC6473]

[RFC6474]

[RFC6715]

[RFC6869]

[RFC7095]

[RFC8499]

[RFC8605]

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Perreault, S., "xCard: vCard XML Representation", RFC

6351, DOI 10.17487/RFC6351, August 2011, <https://

www.rfc-editor.org/info/rfc6351>.

Saint-Andre, P., "vCard KIND:application", RFC 6473, DOI

10.17487/RFC6473, December 2011, <https://www.rfc-

editor.org/info/rfc6473>.

Li, K. and B. Leiba, "vCard Format Extensions: Place of

Birth, Place and Date of Death", RFC 6474, DOI 10.17487/

RFC6474, December 2011, <https://www.rfc-editor.org/info/

rfc6474>.

Cauchie, D., Leiba, B., and K. Li, "vCard Format

Extensions: Representing vCard Extensions Defined by the

Open Mobile Alliance (OMA) Converged Address Book (CAB)

Group", RFC 6715, DOI 10.17487/RFC6715, August 2012,

<https://www.rfc-editor.org/info/rfc6715>.

Salgueiro, G., Clarke, J., and P. Saint-Andre, "vCard

KIND:device", RFC 6869, DOI 10.17487/RFC6869, February

2013, <https://www.rfc-editor.org/info/rfc6869>.

Kewisch, P., "jCard: The JSON Format for vCard", RFC

7095, DOI 10.17487/RFC7095, January 2014, <https://

www.rfc-editor.org/info/rfc7095>.

Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS

Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,

January 2019, <https://www.rfc-editor.org/info/rfc8499>.

Hollenbeck, S. and R. Carney, "vCard Format Extensions:

ICANN Extensions for the Registration Data Access

Protocol (RDAP)", RFC 8605, DOI 10.17487/RFC8605, May

2019, <https://www.rfc-editor.org/info/rfc8605>.

Authors' Addresses

Robert Stepanek

Fastmail

PO Box 234, Collins St West

Melbourne VIC 8007

Australia

Email: rsto@fastmailteam.com

Mario Loffredo

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc6351
https://www.rfc-editor.org/info/rfc6351
https://www.rfc-editor.org/info/rfc6473
https://www.rfc-editor.org/info/rfc6473
https://www.rfc-editor.org/info/rfc6474
https://www.rfc-editor.org/info/rfc6474
https://www.rfc-editor.org/info/rfc6715
https://www.rfc-editor.org/info/rfc6869
https://www.rfc-editor.org/info/rfc7095
https://www.rfc-editor.org/info/rfc7095
https://www.rfc-editor.org/info/rfc8499
https://www.rfc-editor.org/info/rfc8605
mailto:rsto@fastmailteam.com

IIT-CNR

Via Moruzzi,1

56124 Pisa

Italy

Email: mario.loffredo@iit.cnr.it

mailto:mario.loffredo@iit.cnr.it

	JSContact: A JSON representation of contact data
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Relation to the xCard and jCard formats
	1.2. Notational Conventions
	1.3. ABNF Notations
	1.4. Type Signatures
	1.5. Data types
	1.5.1. Id
	1.5.2. Int and UnsignedInt
	1.5.3. PatchObject
	1.5.4. Resource
	1.5.5. UTCDateTime

	1.6. Common properties
	1.6.1. The contexts property
	1.6.2. The label property
	1.6.3. The pref property

	1.7. Versioning
	1.7.1. Version Scheme
	1.7.2. Version Updates

	1.8. Validating JSContact Properties
	1.8.1. IANA-registered Properties
	1.8.2. Unknown Properties

	1.9. Vendor-Specific Extensions
	1.9.1. Vendor-specific Properties
	1.9.2. Vendor-specific Values

	1.10. Reserved Property Names

	2. Card
	2.1. Metadata properties
	2.1.1. @type
	2.1.2. @version
	2.1.3. created
	2.1.4. kind
	2.1.5. locale
	2.1.6. members
	2.1.7. prodId
	2.1.8. relatedTo
	2.1.9. uid
	2.1.10. updated

	2.2. Name and Organization properties
	2.2.1. fullName
	2.2.2. name
	2.2.3. nickNames
	2.2.4. organizations
	2.2.5. speakToAs
	2.2.6. titles

	2.3. Contact properties
	2.3.1. emails
	2.3.2. onlineServices
	2.3.3. phones
	2.3.4. preferredContactChannels
	2.3.5. preferredLanguages

	2.4. Calendaring and Scheduling properties
	2.4.1. calendars
	2.4.2. schedulingAddresses

	2.5. Address and Location properties
	2.5.1. addresses

	2.6. Resource properties
	2.6.1. cryptoKeys
	2.6.2. directories
	2.6.3. links
	2.6.4. media

	2.7. Multilingual properties
	2.7.1. localizations

	2.8. Additional properties
	2.8.1. anniversaries
	2.8.2. keywords
	2.8.3. notes
	2.8.4. personalInfo

	3. Implementation Status
	3.1. IIT-CNR/Registro.it

	4. IANA Considerations
	4.1. Media Type Registration
	4.2. Creation of the "JSContact Properties" Registry
	4.2.1. Preliminary Community Review
	4.2.2. Submit Request to IANA
	4.2.3. Designated Expert Review
	4.2.4. Change Procedures
	4.2.5. "JSContact Properties" Registry Template
	4.2.6. Initial Contents for the "JSContact Properties" Registry

	4.3. Creation of the "JSContact Types" Registry
	4.3.1. "JSContact Types" Registry Template
	4.3.2. Initial Contents for the "JSContact Types" Registry

	4.4. Creation of the "JSContact Enum Values" Registry
	4.4.1. "JSContact Enum Values" Registry Property Template
	4.4.2. "JSContact Enum Values" Registry Value Template
	4.4.3. Initial Contents for the "JSContact Enum Values" Registry

	5. Security Considerations
	5.1. JSON Parsing
	5.2. URI Values

	6. References
	6.1. Normative References
	6.2. Informative References

	Authors' Addresses

