
Network Working Group Steve Mansour/Netscape
Internet Draft Frank Dawson/Lotus
<draft-ietf-calsch-cap-00.txt> Doug Royer/Sun Microsystems
 Alexander Taler/CS&T
 Paul Hill/MIT
Expires six months from: August 5, 1999

Calendar Access Protocol (CAP)

This memo is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts. Internet-
Drafts are draft documents valid for a maximum of six months and may be
updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use Internet- Drafts as reference material or to cite
them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Distribution of this document is unlimited.

Copyright Statement

Copyright (C) The Internet Society 1999. All Rights Reserved.

Abstract

The Calendar Access Protocol (CAP) is an Internet protocol that permits
a Calendar User (CU) to utilize a Calendar User Agent (CUA) to access an
[RFC2445] based Calendar Store (CS). This memo defines the CAP
specification.The CAP definition is based on requirements identified by
the Internet Engineering Task Force (IETF) Calendaring and Scheduling
(CALSCH) Working Group. More information about the IETF CALSCH Working
Group activities can be found on the IMC web site at
http://www.imc.org/ietf-calendar, and at the IETF web site at
http://www.ietf.org/html.charters/calsch-charter.html. Refer to the
references within this memo for further information on how to access
these various documents.

https://datatracker.ietf.org/doc/html/draft-ietf-calsch-cap-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2445
http://www.imc.org/ietf-calendar
http://www.ietf.org/html.charters/calsch-charter.html

Mansour/Dawson/Royer 1 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

Table of Contents

1. Introduction..6

1.1 Formatting Conventions ...6

1.2 Related Documents ..6

1.3 Definitions ..7

2. CAP Design...10

2.1 System Model ..10

2.2 Calendar Store Object Model11

2.3 Protocol Model ..12

2.4 Roles ...13

2.5 Calendar User ...13
2.5.1 UPNs and Certificates ..14
2.5.2 CAP session identity ...14

2.6 Calendar Addresses ..15

2.7 Finding CAP Servers ...15

2.8 Extensions to iCalendar ...16

2.9 Relationship of RFC 2446 (ITIP) to CAP16

2.10 VCalendar Access Rights (VCARs)16

https://datatracker.ietf.org/doc/html/rfc2446

2.11 Query Schema ...17

3. State Diagram..17

4. Protocol Framework...18

4.1 CAP Application Layer ...18

4.2 CAP Transport Layer ...18

4.3 Response Format ...18

4.4 Auto-logout Timer ...19

4.5 Bounded Latency ...19

Mansour/Dawson/Royer 2 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

4.6 Data Elements ...19

5. Formal Command Syntax..20

5.1 Searching and Filtering ...20
5.1.1 Grammar For Search Mechanism20

6. Access Rights..21

6.1 VCAR Inheritance ..21

7. Commands and Responses...21

7.1 Transport Protocol Commands22
7.1.1 Initial Connection ...22
7.1.2 ABORT Command ..22
7.1.3 AUTHENTICATE Command ...23
7.1.4 CONTINUE Command ...26
7.1.5 DISCONNECT Command ...27
7.1.6 IDENTIFY Command ...27
7.1.7 SENDDATA Command ...27
7.1.8 STARTTLS Command ...27

7.2 Application Protocol Commands28
7.2.1 Calendaring Commands ...28
7.2.1.1 CREATE Method ..28
7.2.1.1.1 Creating New Calendars29
7.2.1.2 DELETE Method ..30
7.2.1.3 GENERATEUID Method31
7.2.1.4 MODIFY Method ..31
7.2.1.5 MOVE Method ..32
7.2.1.6 READ Method ..32

7.2.2 Scheduling Commands ..36
7.2.2.1 PUBLISH ..36
7.2.2.2 REQUEST ..36
7.2.2.3 REPLY ..36
7.2.2.4 ADD ..36
7.2.2.5 CANCEL ...36
7.2.2.6 REFRESH ..36
7.2.2.7 COUNTER ..36
7.2.2.8 DECLINECOUNTER ...36

7.2.3 iTIP Examples ..36
7.2.3.1 Sending and Receiving an iTIP request36
7.2.3.2 Handling an iTIP refresh39
7.2.3.3 Sending and accepting an iTIP counter40
7.2.3.4 Declining an iTIP counter41

8. Response Codes...42

9. Detailed SQL Schema..44

Mansour/Dawson/Royer 3 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

9.1 iCalendar Store Schema ..45

10. Examples..50

10.1 Authentication Examples ..50
10.1.1 Login Using Kerberos V450
10.1.2 Error Scenarios ...50

10.2 Read Examples ..51
10.2.1 Read From A Single Calendar51
10.2.2 Read From Multiple Calendars52
10.2.3 Timeouts ..53

10.2.4 Using the Calendar Parent, Children Properties54
 10.2.5 An example that depends on VEVENT.DTSTART and VALARM.DTSTART 54

11. Implementation Issues...54

12. Properties..54

12.1 Calendar Store Properties54

12.2 Calendar Properties ..54

13. Security Considerations...55

14. Changes to iCalendar..56

14.1 RIGHTS Value Type ..56

14.2 VCAR Calendar Component ..59

14.3 GRANT Component Property60

14.4 DENY Component Property ..61

14.5 VCAR Identifier Component Property61

14.6 REQUEST-STATUS property ..62

15. CAP Entities Registration...63

15.1 Registration of New and Modified CAP Entities63

15.2 Registration of New Entities63
15.2.1 Define the Entity ...63
15.2.2 Post the entity definition64
15.2.3 Allow a comment period64
15.2.4 Submit the entity for approval64

Mansour/Dawson/Royer 4 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

15.3 Property Change Control ..65

16. IANA Considerations...65

17. Acknowledgments...65

18. Bibliography..66

19. Author's Address..66

20. Full Copyright Statement..67

Mansour/Dawson/Royer 5 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

1. Introduction
This document specifies how a Calendar User Agent (CUA) interacts with a
Calendar Store (CS) to manage calendar information. In particular, it
specifies how to query, create, modify, and delete iCalendar components
(e.g., events, to-dos, or daily journal entries). It further specifies
how to search for available busy time information.

This protocol is based on request/response form of protocol data units,
sent from a client CUA to a calendar server. The protocol data units
leverage the standard iCalendar format [RFC2445] for conveying CS
related information.

1.1 Formatting Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

Calendaring and scheduling roles are referred to in quoted-strings of
text with the first character of each word in upper case. For example,
"Organizer" refers to a role of a "Calendar User" (CU) within the
protocol defined by this memo. Calendar components defined by [RFC2445]
are referred to with capitalized, quoted-strings of text. All calendar
components start with the letter "V". For example, "VEVENT" refers to
the event calendar component, "VTODO" refers to the to-do calendar
component and "VJOURNAL" refers to the daily journal calendar component.
Calendar access methods defined by this memo, as well as scheduling
methods defined by [RFC2446], are referred to with capitalized, quoted-
strings of text. For example, "CREATE" refers to the method for creating
a calendar component on a calendar, "READ" refers to the method for
reading calendar components.

Properties defined by this memo are referred to with capitalized,
quoted-strings of text, followed by the word "property". For example,
"ATTENDEE" property refers to the iCalendar property used to convey the
calendar address of a "Calendar User". Property parameters defined by
this memo are referred to with lower case, quoted-strings of text,
followed by the word "parameter". For example, "value" parameter refers
to the iCalendar property parameter used to override the default data
type for a property value. Enumerated values defined by this memo are
referred to with capitalized text, either alone or followed by the word
"value".

In tables, the quoted-string text is specified without quotes in order

https://datatracker.ietf.org/doc/html/rfc2445
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2445
https://datatracker.ietf.org/doc/html/rfc2446

to minimize the table length.

1.2 Related Documents
Implementers will need to be familiar with several other memos that,
along with this one, describe the Internet calendaring and scheduling
standards. This document,

Mansour/Dawson/Royer 6 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

[RFC2445] specifies the objects, data types, properties and property
parameters used in the protocols, along with the methods for
representing and encoding them;

[RFC2446] specifies an interoperability protocol for scheduling between
different implementations. The related documents are:

[RFC2447] specifies an Internet email binding for [RFC2446].

[iRIP] specifies a real-time binding for [to be published].

This memo does not attempt to repeat the specification of concepts or
definitions from these other memos. Where possible, references are made
to the memo that provides for the specification of these concepts or
definitions.

1.3 Definitions
Authentication ID (AuthID)
 A tuple of username, realm, and authentication method, used by the
 Calendar Service internally to identify a successfully
 authenticated CAP session.

Calendar
 A collection of logically related objects or entities each of which
 may be associated with a calendar date and possibly time of day.
 These entities can include other calendar properties or calendar
 components. In addition, a calendar might be hierarchically related
 to other sub-calendars. A calendar is identified by its unique
 calendar identifier. The [RFC2445] defines calendar properties,
 calendar components and component properties that make up the
 content of a calendar.

Calendar Access Protocol (CAP)

https://datatracker.ietf.org/doc/html/rfc2446
https://datatracker.ietf.org/doc/html/rfc2445

 The standard Internet protocol that permits a Calendar User Agent
 to access and manipulate a calendar residing on a Calendar Store.

Calendar Access Rights (CAR)
 The mechanism for specifying the CAP operations ("ACTIONS") that a
 particular calendar user ("UPN") are granted or denied permission
 to perform on a given calendar entity ("OBJECT"). The calendar
 access rights are specified with the "VCAR" calendar components
 within a CS and calendar.

Calendar Component
 An entity within a calendar. Some types of calendar components
 include events, to-dos, journals, alarms, time zones and freebusy
 data. A calendar component consists of component properties and
 possibly other sub-components. For example, an event may contain an
 alarm component.

Calendar Component Properties
 An attribute of a particular calendar component. Some calendar
 component properties are applicable to different types of calendar
 components. For example, DTSTART is applicable to VEVENT, VTODO,

Mansour/Dawson/Royer 7 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 VJOURNAL calendar components. Other calendar components are
 applicable only to an individual type of calendar component. For
 example, TZURL is only applicable to VTIMEZONE calendar components.

Calendar Identifier (CalID)
 A globally unique identifier associated with a calendar. Calendars
 reside within a CS. See Qualified Calendar Identifier and Relative
 Calendar Identifier.
Calendar Policy
 A CAP operational restriction on the access or manipulation of a
 calendar. For example, "events MUST be scheduled in unit intervals
 of one hour".
Calendar Properties
 An attribute of a calendar. The attribute applies to the calendar,
 as a whole. For example, CALSCALE specifies the calendar scale
 (e.g., GREGORIAN) for the whole calendar.

Calendar Service
 An implementation of a Calendar Store that manages one or more
 calendars.

Calendar Store (CS)
 The data and service model definition for a Calendar Service.

Calendar Store Identifier (CSID)
 The globally unique identifier for an individual CS. A CSID
 consists of the host and port portions of a "Common Internet Scheme
 Syntax" part of a URL, as defined by [RFC2396].

Calendar Store Components
 Components maintained in a CS specify a grouping of calendar store-
 wide information. Calendar store components can be accessed using
 CAP.

Calendar Store Properties
 Properties maintained in a Calendar Store calendar store-wide
 information. Calendar store properties can be accessed using CAP.

Calendar User (CU)
 An entity (often biological) that uses a calendaring system.

Calendar User Agent (CUA)
 The CUA is the client application that a CU utilizes to access and
 manipulate a calendar.

Calendaring and Scheduling System
 The computer sub-system that provides the services for accessing,
 manipulating calendars and scheduling calendar components.

CAP Session
 An open communication channel between a CAP CUA and a CAP CS.

Connected Mode

Mansour/Dawson/Royer 8 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 A mobile computing mode where the CUA is directly connected to the
 CS.

Delegate
 Is a calendar user (sometimes called the delegatee) who has been
 assigned participation in a scheduled calendar component (e.g.,
 VEVENT) by one of the attendees in the scheduled calendar
 component (sometimes called the delegator). An example of a
 delegate is a team member told to go to a particular meeting.

https://datatracker.ietf.org/doc/html/rfc2396

Designate
 Is a calendar user who is authorized to act on behalf of another
 calendar user. An example of a designate is an assistant.

Disconnected Mode
 A mobile computing mode where a CUA can be disconnected from a CS.
 When the CUA is disconnected, it is in the disconnected mode.

Fan Out
 The calendaring and scheduling process by which a calendar
 operation on one calendar is also performed on every other calendar
 specified in the operation. This may include the calendar
 associated with TARGET calendar property.

Hierarchical Calendars
 A CS feature where a calendar have a hierarchical relationship with
 another calendar in the CS. The top-most calendar in the
 hierarchical relationship has the CS as its parent. There may be
 multiple top-most calendars in a given CS. Within a given
 hierarchical relationship, all sub-calendars have a calendar with a
 "parent" topographical relationship. In addition, sub-calendars may
 have a relationship with another calendar that has a "child"
 topographical relationship. In addition, a calendar may have a
 relationship such that one or more calendars have a "sibling"
 topographical relationship with the calendar. The hierarchical
 calendar feature is not a storage relationship of the calendars
 within the CS. Instead it is a feature that relates access control
 rights to calendar content between different calendars in the CS.
 The hierarchical relationship of a calendar is specified in the
 "PARENT" and "CHILDREN" calendar properties.

High Bandwidth Connection
 A communications connection supporting high transfer rates;
 transfer rates commonly found within a LAN.

Local Store
 A CS which is on the same platform as the CUA.

Low Bandwidth Connection
 A communications connection supporting slow transfer rates;
 transfer rates commonly found in remote access technology.

Owner

Mansour/Dawson/Royer 9 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 A CU or CUs that have "OWNER" calendar access rights for a
 calendar. The owner is specified in the "OWNER" calendar property.

Qualified Calendar Identifier (Qualified CalID)
 A CalID where both the <scheme> and <csid> are present.

Realm
 A collection of calendar user accounts, identified by a string. The
 name of the realm is only used in UPNs. In order to avoid namespace
 conflict, the realm SHOULD be postfixed with an appropriate DNS
 domain name. (eg: the foobar realm could be called
 foobar.example.com).

Relative Calendar Identifier (Relative CalID)
 An identifier for an individual calendar in a calendar store. It is
 unique within a calendar store. It is recommended to be globally
 unique. A Relative CalID consists of the portion of the "scheme
 part" of a Qualified CalID following the Calendar Store Identifier.
 This is the same as the "URL path" of the "Common Internet Scheme
 Syntax" portion of a URL, as defined by [RFC2396].

Remote Store
 A CS which is not on the same platform as the CUA.

Session Identity
 A UPN associated with a CAP session. A session gains an identity
 after successful authentication. The identity is used in
 combination with CAR to determine access to data in the CS.

Sub-calendars
 Calendars that have a "child" hierarchical relationship with
 another calendar, its "parent".

User Name
 A name which denotes a Calendar User within a realm. This is part
 of a UPN.

User Principal Name (UPN)
 An identifier that denotes a unique CU. A UPN strongly resembles an

RFC 822 style email address and in some cases it may be identical
 to the email address for the CU. It consists of a realm in the form
 of a DNS domain name and a username. It may also have an optional
 instance. In it's simplest form it looks like "user@example.com".

2. CAP Design

2.1 System Model

https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc822

The system model describes the high level components of a calendar
system and how they interact with each other.

CAP is used by a "Calendar User Agent" (CUA) to send commands to and
receive responses from a "Calendar Service" (CS). The CUA prepares an

Mansour/Dawson/Royer 10 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

MIME encapsulated iCalendar object containing a command, sends it to the
CS, and receives an iCalendar object as a response. There are two
distinct protocols in operation to accomplish this exchange. The
Transport Protocol is used to move iCalendar objects between a CUA and a
CS. The Application Protocol defines the content and semantics of the
iCalendar objects sent between the CUA and the CS. This document defines
both the Transport Protocol and the Application Protocol.

In the diagram below, a user uses CUA1 to communicate with CS1 using
CAP. The CUA must authenticate the Calendar User (CU) so that access to
calendars on CS1 can be controlled. The CUA can then view, create, edit,
and delete calendars, calendar properties, and calendar components
subject to the access rights.

CAP servers support fanout. Fanout allows a CUA to communicate with a
single CS to perform scheduling operations with calendars on multiple
CSs. That is, a Calendar User (CU) can book events on or read events
from calendars on other calendar stores. To accomplish this, a CAP
server has several options:

 CS1 MAY play the role of a CUA and use CAP to access CS2;
 CS1 MAY be able to play the role of a CUA and use [iRIP] to
 interoperate with the possible iRIP support in CS2;
 CS1 MUST be able play the role of a CUA and use [RFC2447] to
 interoperate with other CUAs.
 Storage Agent

 +-----+ +-----+
 | | CAP | | CAP
 CUA1 ------| CS1 |-----------| CS2 |--------- CUA2
 | | | | A
 | | | | |
 | | | | |
 +-----+ +-----+ |
 | IMIP |
 +---------------------------------+

https://datatracker.ietf.org/doc/html/rfc2447

Note that the fanout feature in CAP is a convenience to the CUA. It is
perfectly valid for the CUA to assume the responsibility for fanout if
it wishes. That is, [RFC2447] messages could also be sent from CUA1 to
CUA2.

2.2 Calendar Store Object Model
The conceptual model for a calendar store is shown below. The calendar
store contains calendars, VTIMEZONEs, VCARs, and calendar store
properties.

Calendars contain VEVENTs, VTODOs, VJOURNALs, VALARMs, VCARs, and
calendar properties. Calendars may also contain other calendars.

 +---------Calendar Store-----------------------------+
 | |
 | |

Mansour/Dawson/Royer 11 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 | VCARs |
 | +--calendars-------------------------+ |
Properties						
	+--calendars--------+ VEVENTs					
VTIMEZONEs			VTODOs			
		VEVENTs	VJOURNALs			
		VCARs	VALARMs			
		+---+ VTODOs	VCARs			
				VALARMs	Calendar	
		+---+ VJOURNALs	Properties			
		VTIMEZONEs	VTIMEZONEs			
		Calendar	VSCHEDULE			
		Properties				
		VSCHEDULE				
	+-------------------+					
+------------------------------------+						
 +--+

Calendars within a Calendar Store are identified by their Relative
CALID.

In this model, VSCHEDULE is a queue of scheduling messages that have not
yet been applied to the calendar. Items in VSCHEDULE are discussed in
more detail below.

https://datatracker.ietf.org/doc/html/rfc2447

2.3 Protocol Model
A generic transport, Calendar Server Transport Protocol (CSTP), is used
to move data objects between a CUA and the CS. CSTP commands are listed
below and their usage and semantics are defined in section 7 of this
document.

CSTP Commands

Command Description
------------ --
 ABORT Stop a command whose latency time has been exceeded.
 AUTHENTICATE Authenticate a UPN.
 CONTINUE Continue the execution of a command whose latency
 time has been exceeded.
IDENTIFY Set a new identity for calendar access.
 DISCONNECT Terminate a connection with the server.
SENDDATA Send a data object MIME encapsulated iCalendar.
STARTTLS Negotiate transport level security using [TLS]

Application-level commands are used to manipulate data on the calendar
store. They are listed below and discussed in detail in section 7.

CAP Calendaring Commands

Command Description
------------ --
 CREATE Create a new calendar or component

Mansour/Dawson/Royer 12 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 DELETE Delete a calendar or component
 GENERATEUID Generate one or more unique ids
 MODIFY Change a calendar or component
 MOVE Move a calendar
READ Read a calendar properties or components

CAP Scheduling Commands

Command Description
------------ --
PUBLISH publish a calendar entry to one or more calendars
REQUEST schedule a calendar entry with one or more calendars
REPLY response to a scheduling request

ADD add one or more instances to an existing calendar entry
CANCEL cancel one or more instances to an existing calendar
 entry
REFRESH a request for the latest version of a calendar entry
COUNTER a request for a change (a counter-proposal) to a
 calendar entry
DECLINECOUNTER decline a counter proposal

2.4 Roles
CAP defines methods for managing [RFC2445] objects on a Calendar Store
and exchanging [RFC2445] objects for the purposes of group calendaring
and scheduling between "Calendar Users" (CUs). There are two distinct
roles taken on by CUs in CAP. The CU who creates an initial event or to-
do and invites other CUs as attendees takes on the role of "Organizer".
The CUs asked to participate in the group event or to-do take on the
role of "Attendee". Note that "role" is also a descriptive parameter to
the "ATTENDEE" property. Its use is to convey descriptive context to an
"Attendee" such as "chair", "REQ-PARTICIPANT" or NON-PARTICIPANT" and
has nothing to do with the scheduling workflow.

2.5 Calendar User
A Calendar User (CU) is an entity that can be authenticated. It is
represented in CAP as a UPN. A UPN is the owner of a calendar and the
subject of access rights.

Examples:
 user@example.com
 user/cap@example.com

The UPN representation is independent of the authentication mechanism
used during a particular CUA / CS interaction. A CU may use one
mechanism while using one CUA but the same user may use a different
authentication mechanism when using a different CUA, or while connecting
from a different location.

For Calendaring and Scheduling systems that are integrated with a
directory system the UPN SHOULD be stored in the attribute [TBD] with
OID [TBD]. This enables a clear mapping between a UPN and a
Distinguished Name. [note: Microsoft's Active Directory is storing UPNs

Mansour/Dawson/Royer 13 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

as the userPrincipalName.] Within a directory service a UPN is a single

https://datatracker.ietf.org/doc/html/rfc2445
https://datatracker.ietf.org/doc/html/rfc2445

valued property.

2.5.1 UPNs and Certificates

When using certificates for purposes of CAP authentication, the
SubjectName field of the user's certificate SHOULD contain the user's
UPN (for example, "juser@example.com") as the value of the "CN="
component, and the user's email address (often the same as the UPN) as
the value of the "E=" component . The altSubjectName will contain the DN
of the user's account object in the DS. The Issuer field must be that of
a root CA trusted to issue login certificates, or the DN of a lower
level CA whose certificate includes an "AuthorizedNamingContext" field
that authorizes it to issue certificates for "example.com" (exact field
name and validation mechanism TBD).

Note: If a server is validating data received via iMIP, if the
"ORGANIZER" or "ATTENDEE" property said (e.g.) "ATTENDEE;CN=Joe Random
User:juser@example.com" then the "juser@example.com" part should be
checked against the altSubjectName field of the certificate, and the
"Joe Random User" part should be checked against the CN component of the
altSubjectName DN. This is so the "ATTENDEE" property couldn't be munged
to something misleading like "ATTENDEE;CN=Joe Rictus
User:juser@example.com" and have it pass validation. This validation
will also defeat other attempts at confusion.

2.5.2 CAP session identity

A CAP session has an assocatied set of authentication credentials, from
which is derived a UPN. This UPN is the identity of the CAP session, and
is used to determine access rights for the session.

The CUA may change the identity of a CAP session by calling the
"IDENTIFY" command. The Calendar Service only permits the operation if
the session's authentication credentials are good for the requested
identity. The method of checking this permission is implementation
dependant, but may be thought of as a mapping from authentication
credentials to UPNs. The "IDENTIFY" command allows a single set of
authentication credentials to choose from multiple identities, and
allows multiple sets of authentication credentials to assume the same
identity.

For anonymous access the identity of the session is "@", a UPN with a
null username and null realm. A UPN with a null username, but non-null
realm, such as "@foo.com" may be used to mean any identity from that
realm, which is useful to grant access rights to all users in a given
realm. A UPN with a non-null username and null realm, such as "bob@"
could be a security risk and must not be used.

Since the UPN includes realm information it may be used to govern
calendar store access rights across realms. However, governing access

rights across realms is only useful if login access is available. This

Mansour/Dawson/Royer 14 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

could be done through a trusted server relationship or a temporary
account.

The "IDENTIFY" command provides for a weak group implementation. By
allowing multiple sets of authentication credentials belonging to
different users to identify as the same UPN, that UPN essentially
identifies a group of people, and may be used for group calendar
ownership, or the granting of access rights to a group.

2.6 Calendar Addresses

Calendar addresses are URIs that are modeled after [RFC2396]. CAP uses
the following forms of URI.

 [[<scheme>]://<csid>[:<port>]/]<relativeCALID>

where:

 <scheme> is "cap"
 <csid> is the Calendar Store ID. It is the network address of the
 computer on which the CAP server is running
 <port> is optional. Its default value is 5229. The port must be
 present if the CAP server does not listen on the default port.
 <relativeCALID> is an identifier that uniquely identifies the
 calendar on a particular calendar store. There is no implied
 structure in a Relative CALID. It is an arbitrary string of 7 bit
 ASCII characters. It may refer to the calendar of a user or of a
 resource such as a conference room. It MUST be unique within the
 calendar store. It is recommended that the Relative CALID be
 globally unique.

If the <scheme> and <csid> are present the calendar address is said to
be "qualified". Senders are required to supply the <relativeCALID>
portion of the address. A qualified calendar address is required when
the <csid> of the target calendar address differs from that of the CAP
server receiving the command.

Examples:

 cap://calendar.example.com/user1
 ://calendar.example.com/user1

https://datatracker.ietf.org/doc/html/rfc2396

 user1
 cap://calendar.example.com/conferenceRoomA
 cap://calendar.example.com/89798-098-zytytasd

For a user currently authenticated to a CAP server on
calendar.example.com, the first three addresses refer to the same
calendar.

2.7 Finding CAP Servers
Using DNS
Using SLP
Request-Status _ optional text (second field)

Mansour/Dawson/Royer 15 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

2.8 Extensions to iCalendar
In mapping the CAP command set, query feature, and access rights onto
the iCalendar format, several extended iCalendar methods and components
are defined by this memo.

 The search function is specified with the new iCalendar QUERY
 method. The QUERY method makes use of a new component, called
 VQUERY, that contains the search filter. The component consists of
 a set of new properties: SCOPE, MAXRESULTS, MAXRESULTSSIZE, QUERY
 and QUERYNAME, that define the search filter.
 Access control is specified the the new iCalendar VCAR component.
 The iCalendar METHOD property format has been updated with new
 values.
 A new iCalendar component, VCOMMAND, has been added. VCOMMANDs are
 needed to fully specify CAP commands.
 TARGET is a new property within the VCOMMAND component. It
 indicates a

2.9 Relationship of RFC 2446 (ITIP) to CAP
[RFC2446] describes scheduling methods which result in indirect
manipulation of calendar components. CAP methods provide direct
manipuation of calendar components. In the CAP calendar store model,
scheduling messages are kept separate from other calendar components.
This is modeled with the VSCHEDULE queue. Note that this is a conceptual
model, the actual storage details are left to implementations. The model
is shown pictorially as follows:

+-----------------VCALENDAR-------------------+

https://datatracker.ietf.org/doc/html/rfc2446
https://datatracker.ietf.org/doc/html/rfc2446

| |
| +-----------+ +-------VSCHEDULE---------+ |
	VEVENTs		PUBLISH messages	
	VTODOs		REQUEST messages	
	VJOURNALs		REPLY messages	
			ADD messages	
			CANCEL messages	
			REFRESH messages	
			COUNTER messages	
			DECLINECOUNTER messages	
+-----------+ +-------------------------+				
+---+

The METHOD is saved along with components. Scheduled components become
booked components when the METHOD changes from an ITIP method to the CAP
storage method. For example, a component whose METHOD is "REQUEST" is
scheduled. The component becomes booked when the METHOD is changed to
"CREATED".

[ed note: need to clean up the terminology here. We haven't discussed
"booked"]

2.10 VCalendar Access Rights (VCARs)
In simple terms, VCARs are used to grant or deny access to a calendar
for a Calendar User. Specifically, they grant User Principal Names

Mansour/Dawson/Royer 16 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

(UPNs) the rights to read and write components, properties, and
parameters on calendars within a calendar store.

The model does not put any restriction on the sequence in which the
object and access rights are created. That is, an event associated with
a particular VCAR might be created before or after the actual VCAR is
defined. In addition, the VCAR and VEVENT definition might be created in
the same iCalendar object and passed together in a single SENDDATA
command.

2.11 Query Schema

3. State Diagram
This section describes the states of the transport connection between a
CUA and a CS. The state diagram is shown below. State names shown with
first letter capitalized. The commands used to switch between states are

shown next to an arrow connecting the states. The commands are listed in
all capital letters. A condition that causes a state to change is shown
in lower case letters.

 CAPABILITY +-----+
 +-------+ | | CAPABILITY
 | | +---------------+ |
 | +-----------+ AUTHENTICATE | |<-+
 +-->| Connected |-------------->| Authenticated |<----+
 +-----------+ +--------| | |
 | | +---------------+ | command
 |DISCONNECT | | | completes
 V |DISCONNECT | |
 +--------------+ | |SENDDATA |
 | Disconnected |<--+ | |
 +--------------+ | | ABORT
 A | |
 | V |
 | DISCONNECT +---------------+ |
 +--------------------| Receive |--------+
 | |<--+
 +---------------+ |
 | | CONTINUTE
 +----+

The connection begins the Connected state when a CUA connects to a CAP
server. The capabilities of the CS are reported in the response from the
CS. From this state, the CUA can issue the DISCONNECT command to
terminate the connection, the CAPABILITY command, or the AUTHENTICATE
command to authenticate a Calendar User. The capabilities of the CS in
the authenticated state are returned in the response from the CS. One
use of the CAPABILITY command at this stage is to determine the
supported authentication mechanisms supported by the server.

If an AUTHENTICATE command is successful, the connection enters the
Authenticated state. From here the CUA can issue the CAPABILITY command.

Mansour/Dawson/Royer 17 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

The capabilities the server offers in the Authenticated state may be
different than those in the Connected state. The connection remains in
the Authenticated state after the CAPABILITY command completes. The CUA
can issue the DISCONNECT command to terminate the connection. The
SENDDATA command can be used to send a request to read, write, modify,

or delete data on the server.

After the SENDDATA command has been issued the connection enters the
Receive state while the CUA awaits and reads a server reply. Normally,
the server handles the command, sends a reply which is read by the CUA
and the connection returns to the Authenticated state. The CUA may have
issued the SENDATA command with a maximum latency time. This informs the
server that the CUA expects a response within the maximum latency time,
even if the command was not completed. When the server is unable to
complete the command in the maximum latency time, it issues an
appropriate reply code and waits for the CUA to tell it how to proceed.
If the CUA issues a CONTINUE command the server continues processing the
command and the connection remains in the Receive state. If the CUA
issues the ABORT command the server need not process the command any
further and the connection returns to the Authenticated state. The
DISCONNECT command can also be issued from the Receive state.

4. Protocol Framework

4.1 CAP Application Layer

The CAP application layer is used for the manipulation of the calendar
store. Commands and responses are transmitted between the CUA and CS
inside "VCALENDAR" component wrappers. Commands are specified as the
value of a "METHOD" property, and responses are specified as the value
of a "REQUEST-STATUS" property.

4.2 CAP Transport Layer

The CAP transport layer handles the transmission of CAP application
layer messages.

CAP transport layer commands are transmitted across the underlying
transport. The transport used is a TCP/IP socket connection between the
CUA and the CS. The CS listens for connections on port <xyz>.

Messages sent between the CUA and CS are formatted as a command followed
by any associated data:

<command> [<command data>]

4.3 Response Format
Server responses consist of a response code and any parameters:

<response code> [; debug text ; more text]
[<CRLF><application-data>]<CRLF>.CRLF>

Mansour/Dawson/Royer 18 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

The response codes are defined in Section 8. The debug text is human-
readable information for protocol debugging.

The optional application-data begins on the next line.

The response is terminated with a <CRLF> "." <CRLF> sequence. Any <CRLF>
"." sequences which appear in the transmitted data must be quoted by
placing an additional "." between the <CRLF> and the ".". For example,
the following sequences of characters in the application data:

 .
 ..2
 ...3

are quoted as follows:

 ..
 ...2
 3

No other tagged command sequence can be sent until the special
terminating character sequence <CRLF>.<CRLF> has been sent.

4.4 Auto-logout Timer

If a server has an inactivity auto-logout timer, that timer MUST be of
at least <pick a number: 30> minutes duration. The receipt of ANY
command from the client during that interval MUST suffice to reset the
auto-logout timer.

When a timeout occurs, the server drops the connection to the CUA.

4.5 Bounded Latency

[CAP] is designed so that the CUA can either obtain an immediate
response from a request or discover within a specified amount of time
that the request could not be completed in the requested amount of time.
When the CUA initiates a command that the server cannot complete within
the specified latency time, the server returns an appropriate response
code. The CUA then issues either a CONTINUE or ABORT command. The ABORT
command immediately terminates the command in progress and the
connection returns to the Authenticated state. The CONTINUE command
instructs the server to continue processing the command.

4.6 Data Elements
The data elements for CAP are MIME encapsulated iCalendar objects.

Mansour/Dawson/Royer 19 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

5. Formal Command Syntax

5.1 Searching and Filtering
This section describes CAPs searching and filtering entities within a
remote store. It is based on the Standard Query Language (SQL) defined
by [SQL].

The QUERY property value MUST be a valid QUERY value type. This new
value type is defined to be a "name=value" value type grammar, similar
in syntax to the format already in use for the iCalendar RECUR value
type. Each "name" is the name of a valid SQL statement component (e.g.,
SELECT, WHERE, etc.). Each "value" is valid string associated with one
of these SQL statement components.

[Editor's note: We need to precisely define what part of SQL we're using
and why we chose what we did.]

Examples needed:
Grant someone access to June events
Grant someone access to events during the month of June. (i.e., based on
the current system date, if it's prior to June or after June you don't
have access)

Example for denying access to a specific property:

DENY:UPN=FOO;ACTION=*;OBJECT=CLASS

*scope vcar to a component
*scope Grant, Deny of a VCAR

5.1.1 Grammar For Search Mechanism

SEARCH = "BEGIN:VQUERY" CRLF
 [scope] [maxresults] [maxsize] querycomp

 "END:VQUERY" CRLF

scope = "SCOPE:" comp-name ("," comp-name)*

comp-name = "VEVENT" / "VTODO" / "VJOURNAL" / "VTIMEZONE"
 / "VALARM" / "VFREEBUSY" / iana-name / x-name

maxresults = integer

maxsize = integer

querycomp = (query) / (queryname query) / queryname

queryname = "QUERYNAME:" text

query = "QUERY:" queryrule

queryrule = select where orderby ...

select = <any valid SQL string that goes into a SELECT clause>

Mansour/Dawson/Royer 20 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

where = <any valid SQL string that goes into a WHERE clause>

orderby = <any valid SQL string that goes into a ORDERBY
 clause>

6. Access Rights
Access rights within CAP are specified with the "VCAR" calendar
component, "RIGHTS" value type and the "GRANT", "DENY" and "CARID"
component properties.

Individual calendar access rights MUST be specifically granted to an
authenticated calendar user (i.e., UPN); all rights are denied unless
specifically granted.

Properties within an iCalendar object are unordered. This also is the
case for the "GRANT", "DENY" and "CARID" properties. Likewise, there is
no implied ordering required for components of a "RIGHTS" value type
other than that specified by the ABNF.

6.1 VCAR Inheritance

Calendar access rights specified in a calendar store are inherited as
default calendar access rights for any calendar in the parent calendar
store. Likewise, any calendar access rights specified in a root calendar
are inherited as default calendar access rights for any sub-calendar to
the root calendar. By implication, calendar access rights specified in a
sub-calendar are inherited as default calendar access rights for any
calendars that are hierarchically below the sub-calendar.

Calendar access rights specified in a calendar override any default
calendar access rights. Calendar access rights specified within a sub-
calendar override any default calendar access rights.

7. Commands and Responses
CAP commands and responses are described in this section.
Command arguments, identified by "Arguments:" in the command
descriptions below, are described by function, not by syntax. The
precise syntax of command arguments is described in the Formal Syntax
section.

Some commands cause specific server data to be returned; these are
identified by "Data:" in the command descriptions below. See the
response descriptions in the Responses section for information on these
responses, and the Formal Syntax section for the precise syntax of these
responses.

The "Result:" in the command description refers to the possible status
responses to a command, and any special interpretation of these status
responses.

Mansour/Dawson/Royer 21 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

Commands have the general form:

 <command> [arguments...]

where <command> is a command listed in the table above. A command MAY
have arguments. Arguments are defined in the detailed command
definitions below.

Responses to commands have the following general form:

 responseCode [sep transportDescr sep [applicationDescr]]

 CRLF "." CRLF

In the examples below, lines preceded with "S:" refer to the sender and
lines preceded with "R:" refer to the receiver. Lines in which the first
non-whitespace character is a "#" are editorial comments and are not
part of the protocol.

7.1 Transport Protocol Commands

7.1.1 Initial Connection

Arguments: none
Data: noneResult: 2.0 _ success.
 8.1 _ server too busy

Upon session startup, the server sends a response of 2.0 to indicate
that it is ready to receive commands. A response of 8.1 indicates that
the server is too busy to accept the connection. In addition, the
general capabilities of the CS are reported in the response from the CS.
These capabilities may be different than those reported in the
authenticated state.

The supported AUTHentication mechanisms. There may be 1 or more.
CAPVERSION
IRIPVERSION

7.1.2 ABORT Command
Arguments: none

Data: none

Result: 2.0 _ success
 2.2 _ no command is in progres

The ABORT command is issued by the CUA to stop a command whoselatency
time has been exceeded. When the latency time is specified onthe SENDATA
command, the CS must issue a reply to the CUA
within the specified time. It may be a reply code indicating
that the CS has not yet processed the request. The CUA must
then tell the server whether to continue or abort.

Mansour/Dawson/Royer 22 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

The CUA can issue the ABORT command at any time after the SENDATA
command has been completed but before receiving a reply.

7.1.3 AUTHENTICATE Command

Arguments: <SASL mechanism name> [<initial data>]

Data: continuation data may be requested

Result: 2.0 - Authenticate completed, now in authenticated state
 6.0 - Failed authentication
 6.1 - Authorization identity refused.
 6.2 - Sender aborted authentication, authentication
 exchange cancelled
 6.3 - Unsupported Authentication Mechanism
 9.1 - Unexpected command.

The capabilities of the CS in the authenticated state are reported in
the response from the CS. These may be different than the capabilities
in the Connected, but unauthenticated state.

The AUTHENTICATE command is used by the CUA to identify the user to the
CS. CAP uses the [SASL] specification for authentication. The desired
SASL mechanism is specified as the initial argument.

<SASL mechanism name> is a registered SASL authentication mechanism.
(Refer to [SASL] for information on obtaining a list of currently
registered mechanisms.) CS Supported authentication mechanisms can be
discovered using the CAPABILITY command. All implementations MUST
support Digest-MD5 authentication using DES and 3DES, as well as DES-56
for link level encryption. Implementations MUST support the SASL
Anonymous mechanism, although this may be disabled in installations.
Implementations SHOULD implement the External SASL mechanism and the
command STARTTLS.

<initial data> is an optional parameter which can be used for mechanisms
which require an initial response from the CUA.

The AUTHENTICATE command is followed by an authentication protocol
exchange, in the form of a series of CS challenges and CUA responses.
These challenges and responses are encoded in Base64 and transmitted
with a terminating CRLF. The CS terminates the exchange with a "."
<CRLF> sequence followed by a reply code. ("." is not a legal Base64
character.) Possible reply codes are listed above.

CAP does not provide support for SASL authorization identities. If a CUA
attempts to use an authorization identity the Calendar Service must
return the reply code indicating that the authorization identity was
refused.

Mansour/Dawson/Royer 23 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

If the CUA wishes to cancel an authentication exchange it may do so by
issuing a "." <CRLF> sequence. Upon receipt of such a sequence the CS
MUST terminate the exchange and return the appropriate reply code.

If a security layer was negotiated it comes into effect for the CS
starting with the first octet transmitted after the CRLF which follows
the 2.0 reply code, and for the CUA starting with the first octet after
the CRLF of its last response in the authentication exchange. Encrypted
data is transmitted as described in [SASL].

The service name specified by this protocol's profile of SASL is
"cap".

The result of the AUTHENTICATE command includes data indicating the
identity which has been assigned to the session, derived from the
supplied authentication credentials.

A CAP session does not have an identity until the CUA has issued the
"AUTHENTCATE" command.

The CUA may not issue the "AUTHENTCATE" command multiple times, even if
the first attempt was aborted. If a CUA attempts to do this the CS must
terminate the session.

Data returned in response to a successful logon is:

Client implementations SHOULD NOT require any capability name beyond
those defined in this specification, and MAY ignore any non-standard,
experimental capability names. Non-standard capability names are
prefixed with the text "X-". The prefix SHOULD also include a short
character vendor identifier For example, "X-FOO-BARCAPABILITY", for the
non-standard "BARCAPABILITY" capability of the implementor "FOO". This
command may return different results in the Connected state versus the
Authenticated state. It may also return different results depending on
the UPN.

 Capability Occurs Description
 --------------------- ------- ----------------------------------
 CAPrev1 1 Revision of CAP, must be

 "CAPrev1"

 IRIPrev1 0 or 1 Revision of IRIP, MAY be present.
 If present, it MUST be "IRIPrev1"

 CAR 0 or 1 Indicates level of CAR support CAR0,
 CAR1, CAR2, CAR3

 MAXICALOBJECTSIZE 0 or 1 An integer value that specifies
 The largest ICAL object the server
 will accept. Objects larger than
 this will be rejected.

 MAXDATE 0 or 1 The datetime value beyond which

Mansour/Dawson/Royer 24 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 the server cannot accept.

 MINDATE 0 or 1 The datetime value prior to which
 the server cannot accept.

The following examples illustrate the various possiblities for an
authentication protocol exchange.

Here are examples of a successful authentication:

 C: AUTHENTICATE KERBEROS_V4
 S: AmFYig==
 C: BAcAQU5EUkVXLkNNVS5FRFUAOCAsho84kLN3/IJmrMG+25a4DT
 S: or//EoAADZI=
 C: DiAF5A4gA+oOIALuBkAAmw==
 S: 2.0
 S: Content-Type:text/calendar; method=REQUEST; charset=US-ASCII
 S: Content-Transfer-Encoding: 7bit
 S:
 S: BEGIN:VCALENDAR
 S: PRODID:-//ACME/CAPserver//EN
 S: VERSION:2.1
 S: IDENTITY=bill@example.com
 S: CAPVERSION=1.0
 S: ITIPVERSION=1.0
 S: AUTH=KERBEROS_V4
 S: AUTH=DIGEST_MD5

 S: CAR=CAR1 appl
 S: MINDATE=19700101T000000Z appl
 S: MAXDATE=20370201T000000Z
 S: END:VCALENDAR
 S: .

 C: AUTHENTICATE ANONYMOUS
 S: 2.0
 S: Content-Type:text/calendar; method=REQUEST; charset=US-ASCII
 S: Content-Transfer-Encoding: 7bit
 S:
 S: BEGIN:VCALENDAR
 S: PRODID:-//ACME/CAPserver//EN
 S: VERSION:2.1
 S: CAPVERSION=1.0
 S: ITIPVERSION=1.0
 S: AUTH=KERBEROS_V4
 S: AUTH=DIGEST_MD5
 S: CAR=CAR1
 S: MINDATE=19700101T000000Z
 S: MAXDATE=20370201T000000Z
 S: END:VCALENDAR
 S: .

This example shows a failed authentication:

Mansour/Dawson/Royer 25 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 C: AUTHENTICATE KERBEROS_V4
 S: AmFYig==
 C: BAcAQU5EUkVXLkNNVS5FRFUAOCAsho84kLN3/IJmrMG+25a4DT
 S: .
 S: 6.0

7.1.4 CONTINUE Command

Arguments: latency time in seconds (optional)
Data: noneResult: results from the command in progress
 2.0.2 _ reply pending.

The CONTINUE command is issued by the client in response to a SENDATA
timeout. When a timeout value is specified on the SENDDATA command, the
server must issue a reply to the client within the specified time. If
the latency time has elapsed prior to the server completing the command
it returns a timeout response code. If the client wants the server to
continue processing the command it responds with the CONTINUE command.

If latencyTime is present, it must be a positive integer that specifies
the maximum number of seconds the client will wait for the next
response. If it is omitted, the receiver waits an indefinite period of
time for the response.

In this example, the client requests a response from the server every 10
seconds.

 ...
 C: SENDDATA:10
 C: Content-Type:text/calendar; method=READ; component=VEVENT
 C:
 C: BEGIN:VCALENDAR
 # etc
 C: END:VCALENDAR
 C: .
 # after 10 seconds...
 S: .
 S: 2.0.2
 C: CONTINUE:10
 S: 2.0
 S: Content-type:text/calendar; Method=RESPONSE;Component=VDATA;
 S: Optinfo=VERSION:2.1
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.1
 S: CALID:cap://cal.example.com/relcal2
 # etc.
 S: END:VCALENDAR
 S: .

Mansour/Dawson/Royer 26 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

7.1.5 DISCONNECT Command

Arguments: none

Data:

Result: 2.0
The DISCONNECT command is used by a client to terminate a connection. It
always succeeds.
Example:

C: DISCONNECT
[ed. Note: should the client now wait for a response from the server
before disconnecting?]S: 2.0
C: <drops connection>
S: <drops connection>

7.1.6 IDENTIFY Command

Arguments: Identity to assume

Data: None

Result: 2.0
 6.4 Identity not permitted

The "IDENTIFY" command allows the CUA to select a new identity to be
used for calendar access. This command may only be called in the
Authenticated State.

The CS determines through an internal mechanism if the credentials
supplied at authentication permit the assumption of the selected the
identity. If they do the session assumes the new identity, otherwise a
security error is returned.

7.1.7 SENDDATA Command
Arguments: [latencyTime]

Data: a MIME encapsulated iCalendar object

Result: 2.0.1 - Server will now accept input until <CRLF>.<CRLF>
 is encountered.

The SENDDATA command is used to send calendar requests and commands to
the server. After a response code of 2.0.1 is issued the CUA sends a
MIME encapsulated iCalendar object to the server. The end of this MIME
data is signaleled by the special sequence <CRLF>.<CRLF> .

7.1.8 STARTTLS Command
Arguments: None

Data: None

Result: 2.0

Mansour/Dawson/Royer 27 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 6.5 TLS not supported

The "STARTTLS" command is issued by the CUA to indicate to the CS that
it wishes to negotiate transport level security using [TLS]. If the CS
does not support TLS it returns status code 6.5. If the CS supports TLS
it issues an initial response of 2.0.12 indicating that the CUA should
proceed with TLS negotiation. Once the TLS negotiation is complete the
server returns the response code 2.0.

After issuing the "STARTTLS" command the CUA issues the "AUTHENTICATE"
command. The SASL external mechanism may be used if the CUA wishes to
use the authentication id which was used in the TLS negotiation. If an
authentication id was determined during TLS negotiations it MUST NOT be
used for the purpose of granting a CAP session identity unless the CUA
authenticates using the SASL external mechanism.

The CUA MUST NOT issue a "STARTTLS" if it has already issued an
"AUTHENTICATE" or "STARTTLS" command in this session. If a CUA does this
the CS must terminate the session.

The following examples illustrate the use of the "STARTTLS" command:

Unsupported TLS:

 C: STARTTLS
 S: 6.5

Supported TLS:

 C: STARTTLS
 S: 2.0.12
 <tls negotiation>
 S: 2.0

7.2 Application Protocol Commands

7.2.1 Calendaring Commands
The following methods provide a set of calendaring commands in CAP.
Calendaring commands (or methods) allow a CU to directly manipulate a
calendar.

Calendar access rights can be granted for the more generalized access
provided by the calendar commands.

7.2.1.1 CREATE Method

Arguments: objtype
Data: no specific data for this command
Result: 2.0 - successfully created the component or calendar
 6.0 _ Permission denied
 6.1 - Container(s) not found 6.2 - Calendar or
component already exists
 Bad args

Mansour/Dawson/Royer 28 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

The CREATE method is used to create a new iCalendar object of type
objtype. ContainerId1 through ContainerIdn specify the container(s) for
the create. When creating a new calendar at the top level, the CSID is
specified. Otherwise the container will be a CalID.

7.2.1.1.1 Creating New Calendars
Example to create a new calendar named "Bill's Soccer Team" in several
different containers. In the following example, the client is in the
Authenticated state with CS cal.example.com.

 C: SENDDATA
 C: CONTENT-TYPE: text/calendar;method=CREATE;component=VCOMMAND
 C: Content-Transfer-Encoding:7bit
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.1
 C: BEGIN:VCOMMAND
 C: METHOD:CREATE;VCALENDAR
 C: TARGET:cap://cal.example.com/
 C: TARGET:relcal4
 C: TARGET://bobo.ex.com/
 C: TARGET:relcal5
 C: TARGET:cap://cal.example.com/relcal8
 C: TARGET:relcal9
 C: BEGIN:VCALENDAR
 C: RELCALID:relcalz
 C: NAME:CHARSET=us-ascii;LANGUAGE=EN-us:Bill's Soccer Team
 C: OWNER:capcar:bill
 C: OWNER:capcar:mary
 C: CALMASTER:mailto:bill@example.com
 C: PREFERRED-TZID:US_PST

 C: BEGIN:VCAR
 C: CARID:12345
 C: GRANT;CN="Bill Jones":UPN=capcar:bill;ACTION=ALL;OBJECT=all
 C: GRANT;CN="Mary Jones":UPN=capcar:mary;ACTION=read;OBJECT=all
 C: END:VCAR
 C: END:VCALENDAR
 C: END:VCOMMAND
 C: END:VCALENDAR
 C: .
 S: 6.0 cap://cal.example.com/
 S: 2.0 cap://cal.example.com/relcal4 cap://cal.example.com/relcalz
 S: 3.1.4 cap://bobo.ex.com/
 S: 6.2 cap://cal.example.com/relcal5
 S: 3.1.5 cap://cal.example.com/relcal8
 S: 7.0 cap://cal.example.com/relcal9

If the example above, the Relative CALID is specified. The values for
this property must be unique on a CS. That is the reason for the 3.1.5
error response.

In the example below, the Relative CalID is not specified. So, the CAP
server will generate one for each calendar successfully created. The

Mansour/Dawson/Royer 29 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

value of the Relative CalID appears as the second parameter on the
response code.

 S: 6.0 cap://cal.example.com/
 S: 2.0 cap://cal.example.com/relcal4 cap://cal.example.com/rand123
 S: 3.1.4 cap://bobo.ex.com/
 S: 6.2 cap://cal.example.com/relcal5
 S: 3.1.4 cap://cal.example.com/relcal8
 S: 2.0 cap://cal.example.com/relcal9 cap://cal.example.com/rand456

Example to create a new component.

 C: SENDDATA
 C: Content-Type:text/calendar; method=CREATE; charset=US-ASCII
 C: Content-Transfer-Encoding:7bit
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.1
 C: CMDID:abcde

 C: METHOD:CREATE
 C: TARGET:cap://cal.foo.com/relcal1
 C: TARGET:relcal2
 C: BEGIN:VEVENT
 C: DTSTART:19990307T180000Z
 C: UID:abcd12345
 C: DTEND:19990307T190000Z
 C: SUMMARY:Important Meeting
 C: END:VEVENT
 C: END:VCALENDAR
 C: .
 S: 2.0
 S: Content-Type:text/calendar; method=RESPONSE; OPTINFO="CMDID:abcde"
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.1
 S: CMDID:abcde
 S: METHOD:RESPONSE
 S: BEGIN:VEVENT
 S: REQUEST-STATUS:2.0;cap://cal.foo.com/relcal1 abcd12345
 S: REQUEST-STATUS:2.0;cap://cal.foo.com/relcal2 abcd12345
 S: END:VEVENT
 S: END:VCALENDAR

 [Editors Note: this returns the calendar and UID? Is this right? It
 could also be UID and RecurrenceID ? what about if the event has an
 RRULE?]

7.2.1.2 DELETE Method

Arguments: ContainerId1 [;...ContainerIdn]
Data: no specific data for this command
Result: 2.0 - successfully deleted the component or calendar
 Permission
 Calendar or component not found

Mansour/Dawson/Royer 30 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 Bad args
 Container(s) not found
The DELETE method is used to delete a calendar or component.
ContainerId1 through ContainerIdn specify the container(s) for the
delete. When deleting a calendar at the top level, the CSID is
specified. Otherwise the container will be a CalID.

Example to delete a calendar at the top level:

 C: SENDDATA
 C: Content-Type:text/calendar; method=DELETE; component=VCOMMAND
 C: Content-Transfer-Encoding:7bit
 C:
 C: BEGIN:VCALENDAR
 C: BEGIN:VCOMMAND
 C: METHOD:DELETE
 C: TARGET:cap://cal.foo.com/bill
 C: BEGIN:VQUERY
 C: SCOPE:VEVENT
 C: QUERY SELECT="UID"
 C: WHERE (UID EQ abcd12345)
 C: END:VQUERY
 C: END:VCOMMAND
 C: END:VCALENDAR
 C: .
 S: 2.0 cap://cal.foo.com/bill

7.2.1.3 GENERATEUID Method

Arguments: number of uids to generate
Data: new uids

Result: 2.0
GENERATEUID returns one or more new unique identifier which MUST be
unique on the server's calendar store. It is recommended that the return
value be a globally unique id.
Example:
C: GENERATEUID 2
S: 2.0 abcde1234567-asdf-lkhh abcde1234567-asdf-3455

7.2.1.4 MODIFY Method

Arguments: ContainerId1 [...ContainerIdn]
Data: no specific data for this command
Result: 2.0 - successfully modified the component or calendar
 Permission
 Calendar or component not found
 Bad args
 Container(s) not found
The MODIFY method is used to change an existing calendar or component.
ContainerId1 through ContainerIdn specify the container(s) of the
modification. When modifying a calendar at the top level, the CSID is
specified. Otherwise the container will be a CalID.

Mansour/Dawson/Royer 31 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

In the example below, the start and end time of the event with UID
abcd12345 is changed and the LOCATION property is removed.

 C: SENDDATA
 C: Content-type:text/calendar; Method=MODIFY; Component=VCOMMAND
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.1
 C: METHOD:MODIFY;VEVENT
 C: TARGET:relcal2
 C: BEGIN:VCOMMAND
 C: BEGIN:VQUERY
 C: SCOPE:VEVENT
 C: QUERY SELECT="UID"
 C: WHERE (UID EQ abcd12345)
 C: END:VQUERY
 C: BEGIN:VOLD
 C: DTSTART:19990421T160000Z
 C: DTEND:19990421T163000Z
 C: LOCATION:Joe's Diner
 C: END:VOLD
 C: BEGIN:VNEW
 C: DTSTART:19990421T160000Z
 C: DTEND:19990421T163000Z
 C: END:VNEW
 C: END:VCOMMAND
 C: END:VCALENDAR
 C: .
 S: 2.0 cap://cal.example.com/relcal2

7.2.1.5 MOVE Method

Arguments: ContainerId
Data: data as described below

Result: 2.0 _ success
 2.2 _ will attempt operation on the remote cap server
 Permission
 Calendar already exists
 Bad args
 Parent Calendar(s) not found
This method is used to move a calendar within the CS's hierarchy of
calendars.

[Editors Note: there could be VCAR issues with this... if a VCAR's scope
of influence is limited to a calendar, we're probably OK. We should

discuss this one]

7.2.1.6 READ Method

Arguments: ContainerId
Data: data as described below

Result: 2.0 _ successful and the requested data follows

Mansour/Dawson/Royer 32 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 2.2 _ will attempt read on the remote cap server
 Permission
 Calendar already exists
 Bad args
 Parent Calendar(s) not found

Read Events
In the example below events on March 10,1999 between 080000Z and 190000Z
are read. In this case only 4 properties for each event are returned.
Two calendars are specified. In the example, the CAP server is capable
of

 C: SENDDATA
 C: Content-type:text/calendar; Method=READ; Component=VQUERY
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.1
 C: METHOD:READ
 C: CMDID:xyz12345
 C: TARGET:relcal2
 C: TARGET:cap://bobo.ex.com/relcal3
 C: BEGIN:VQUERY
 C: QUERY:SELECT (DTSTART,DTEND,SUMMARY,UID);
 C: FROM VEVENT;
 C: WHERE (DTEND >= 19990310T080000Z AND
 C: DTSTART <= 19990310T190000Z);
 C: ORDERBY (DTSTART ASC, DTEND, UID, SUMMARY)
 C: END:VQUERY
 C: END:VCALENDAR
 C: .
 S: 2.0 cap://cal.example.com/relcal2
 S: Content-type:text/calendar; Method=RESPONSE;
 S: Optinfo=VERSION:2.1
 S: Content-Transfer-Encoding: 7bit

 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.1
 S: METHOD:RESPONSE
 S: BEGIN:VEVENT
 S: DTSTART:19990310T090000Z
 S: DTEND:19990310T100000Z
 S: UID:abcxyz12345
 S: SUMMARY:Meet with Sir Elton
 S: END:VEVENT
 S: BEGIN:VEVENT
 S: DTSTART:19990310T130000Z
 S: DTEND:19990310T133000Z
 S: UID:abcxyz8999
 S: SUMMARY:Meet with brave brave Sir Robin
 S: END:VEVENT
 S: END:VCALENDAR
 S: .
 S: 2.0 cap://bobo.ex.com/relcal3
 S: Content-type:text/calendar; Method=RESPONSE;Component=VDATA;

Mansour/Dawson/Royer 33 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 S: Optinfo=VERSION:2.1
 S: Content-Transfer-Encoding: 7bit
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.1
 S: METHOD:RESPONSE
 S: BEGIN:VDATA
 S: BEGIN:VEVENT
 S: DTSTART:19990310T140000Z
 S: DTEND:19990310T150000Z
 S: UID:123456asdf
 S: SUMMARY:Summer Budget
 S: END:VEVENT
 S: END:VDATA
 S: END:VCALENDAR
 S: .

The return values are subject to VCAR filtering. That is, if the request
contains properties to which the UPN does not have access, those
properties will not appear in the return values. If the UPN has access
to at least one property of events, but has been denied access to all

properties called out in the request, the response will contain a single
RESPONSE-CODE property indicating the error. That is, the VEVENT
components will be the following:

 S: 2.0 cap://bobo.ex.com/sally
 S: Content-type:text/calendar; Method=RESPONSE;Component=VDATA;
 S: Optinfo=VERSION:2.1
 S: Content-Transfer-Encoding: 7bit
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.1
 S: BEGIN:VDATA
 S: BEGIN:VEVENT
 S: RESPONSE-CODE:3.8
 S: END:VEVENT
 S: END:VDATA
 S: END:VCALENDAR
 S: .

If the UPN has no access to any events at all, the response will simply
be an empty data set. The response looks the same if there are
particular events to which the requester has been denied access.

 S: 2.0 cap://bobo.ex.com/sally
 S: Content-type:text/calendar; Method=RESPONSE;Component=VDATA;
 S: Optinfo=VERSION:2.1
 S: Content-Transfer-Encoding: 7bit
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.1
 S: BEGIN:VDATA
 S: END:VDATA
 S: END:VCALENDAR

Mansour/Dawson/Royer 34 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 S: .

Find alarms within a range of time.
 C: SENDDATA
 C: Content-type:text/calendar; Method=READ; Component=VQUERY
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.1
 C: METHOD:READ

 C: CMDID:xyz12345
 C: TARGET:relcal2
 C: TARGET:cap://bobo.ex.com/relcal3
 C: BEGIN:VQUERY
 C: QUERY:SELECT (VEVENT.DTSTART,
 VEVENT.DTEND,VEVENT.SUMMARY, VEVENT.UID,
 VALARM.*);
 C: FROM VEVENT,VTODO;
 C: WHERE (VALARM.TRIGGER >= 19990310T080000Z AND
 C: VALARM.TRIGGER <= 19990310T190000Z);
 C: ORDERBY (VALARM.TRIGGER ASC)
 C: END:VQUERY
 C: END:VCALENDAR
 C: .
 S: 2.0 cap://bobo.ex.com/relcal3
 S: Content-type:text/calendar; Method=RESPONSE;
 S: Optinfo=VERSION:2.1
 S: Content-Transfer-Encoding: 7bit
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.1
 S: METHOD:RESPONSE
 S: CMDID:xyz12345
 S: TARGET:cap://bobo.ex.com/relcal3
 S: BEGIN:VEVENT
 S: DTSTART:19990310T130000Z
 S: DTEND:19990310T133000Z
 S: UID:abcxyz8999
 S: SUMMARY:Meet with brave brave Sir Robin
 S: BEGIN:VALARM
 S: TRIGGER:19990310T132500Z
 S: SUMMARY:Almost time..
 S: ACTION:DISPLAY
 S: END:VALARM
 S: END:VEVENT
 S: END:VCALENDAR
 S: .
 S: 2.0 cap://bobo.ex.com/relcal2
 S: Content-type:text/calendar; Method=RESPONSE;
 S: Optinfo=VERSION:2.1
 S: Content-Transfer-Encoding: 7bit
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.1
 S: METHOD:RESPONSE

Mansour/Dawson/Royer 35 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 S: CMDID:xyz12345
 S: TARGET:cap://bobo.ex.com/relcal2
 S: BEGIN:VEVENT
 S: REQUEST-STATUS:2.0
 S: END:VEVENT
 S: END:VCALENDAR
 S: .

7.2.2 Scheduling Commands
The following provide a set of scheduling commands (or methods) in CAP.
Scheduling commands allow a CU to indirectly manipulate a calendar by
asking another CU to perform an operation on their calendar. For
example, CU-A can request CU-B to add a meeting to their calendar; in
effect inviting CU-B to the meeting.

Calendar access rights can be granted for scheduling commands without
granting rights for more generalized access with the calendar commands.

[Editors Note: This section needs to be completed by adding the
restriction tables for each of these iTIP methods. The basis for the
text is to be taken from [RFC2446].]

7.2.2.1 PUBLISH

7.2.2.2 REQUEST

7.2.2.3 REPLY

7.2.2.4 ADD

7.2.2.5 CANCEL

7.2.2.6 REFRESH

7.2.2.7 COUNTER

7.2.2.8 DECLINECOUNTER

7.2.3 iTIP Examples
The following examples describe scenarios for the handling of incoming
iTIP data. An appropriate sort-order for the handling of icoming iTIP is
by UID, Recurrence-id, sequence, dtstamp. This processing may be
optimized, for instance, REFRESHs could be processed last.

As an update to [RFC2446], data with the "COUNTER" method should be
processed even if the Seqeunce number is stale.

https://datatracker.ietf.org/doc/html/rfc2446
https://datatracker.ietf.org/doc/html/rfc2446

7.2.3.1 Sending and Receiving an iTIP request

In this example A invites B and C to a meeting, B accepts the meeting
and C rejects it. The calendars for A, B and C are relcal1, relcal2

Mansour/Dawson/Royer 36 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

and relcal3 respectively, and are all on the same server, "cal.foo.com".
A lot of these described actions are performed by the CUAs and not the
users themselves, the CUAs are called A-c, B-c and C-c respectively.

A wishes to create a meeting with B and C, so A-c uses CAP to send the
following iTIP request to relcal2 and relcal3, while logged in to
"cal.foo.com".

 BEGIN:VCALENDAR
 VERSION:2.1
 CMDID:xhj-dd
 METHOD:REQUEST
 TARGET:cap://cal.foo.com/relcal2
 TARGET:relcal3
 BEGIN:VEVENT
 UID:abcd12345
 DTSTART:19990307T180000Z
 DTEND:19990307T190000Z
 ORGANIZER:cap://cal.foo.com/relcal1
 ATTENDEE;RSVP=TRUE;PARTSTAT=NEEDS-ACTION:cap://cal.foo.com/relcal2
 ATTENDEE;RSVP=TRUE;PARTSTAT=NEEDS-ACTION:cap://cal.foo.com/relcal3
 SUMMARY:Important Meeting
 END:VEVENT
 END:VCALENDAR

An incoming event (indicated by the value of the "METHOD" property)
then appears in relcal2 and relcal3, with the following data:

 BEGIN:VEVENT
 METHOD:REQUEST
 UID:abcd12345
 DTSTART:19990307T180000Z
 DTEND:19990307T190000Z
 ORGANIZER:cap://cal.foo.com/relcal1
 ATTENDEE;RSVP=TRUE;PARTSTAT=NEEDS-ACTION:cap://cal.foo.com/relcal2
 ATTENDEE;RSVP=TRUE;PARTSTAT=NEEDS-ACTION:cap://cal.foo.com/relcal3
 SUMMARY:Important Meeting

 END:VEVENT

B-c and C-c must search for such incoming events, they do so using the
following CAP search:

 BEGIN:VCALENDAR
 VERSION:2.1
 METHOD:READ
 CMDID:xhr-de
 TARGET:relcal2
 # or TARGET:relcal3
 BEGIN:VQUERY
 QUERY:SELECT (ALL);
 FROM VEVENT;
 WHERE (METHOD == REQUEST);
 END:VQUERY
 END:VCALENDAR

Mansour/Dawson/Royer 37 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

In response to this search they get the above event. B-c and C-c must
then crack open the VEVENT, find the UID and determine if there is
already an event on their calendar with that UID. To do this they use
the following search:

 BEGIN:VCALENDAR
 VERSION:2.1
 METHOD:READ
 CMDID:xhr-df
 TARGET:relcal2
 BEGIN:VQUERY
 QUERY:SELECT (ALL);
 FROM VEVENT;
 WHERE (UID == abcd12345);
 END:VQUERY
 END:VCALENDAR

We assume that the event is not already in their relcal2 or relcal3, so
the read they only returns the original incoming iTIP (the UID matched),
but this can be ignored since it is incoming.

B-c prompts B who decides to accept the meeting request, and B-c creates
a copy of the event in relcal2, with the "PARTSTAT" parameter set to
ACCEPTED. B-c also sends this copy to the Organizer at relcal1 as an

iTIP REPLY, preserving the CMDID:

 BEGIN:VCALENDAR
 VERSION:2.1
 CMDID:xhj-dd
 METHOD:REPLY
 TARGET:cap://cal.foo.com/relcal1
 BEGIN:VEVENT
 UID:abcd12345
 DTSTART:19990307T180000Z
 DTEND:19990307T190000Z
 ORGANIZER:cap://cal.foo.com/relcal1
 ATTENDEE;PARTSTAT=ACCEPTED:cap://cal.foo.com/relcal2
 SUMMARY:Important Meeting
 END:VEVENT
 END:VCALENDAR

C, on the other hand, decides to decline the meeting, and C-c sends a
reply to the Organizer to that effect, as follows:

 BEGIN:VCALENDAR
 VERSION:2.1
 CMDID:xhj-dd
 METHOD:REPLY
 TARGET:cap://cal.foo.com/relcal1
 BEGIN:VEVENT
 UID:abcd12345
 DTSTART:19990307T180000Z
 DTEND:19990307T190000Z

Mansour/Dawson/Royer 38 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 ORGANIZER:cap://cal.foo.com/relcal1
 ATTENDEE;PARTSTAT=DECLINED:cap://cal.foo.com/relcal3
 SUMMARY:Important Meeting
 END:VEVENT
 END:VCALENDAR

It is preferable that C-c store the event in relcal3 even though it has
been declined. Storing the event in relcal3 allows subsequent iTIP
messages to be interpreted correctly. The "PARTSTAT" parameter
indicates that the event was refused, and a tombstone property may be
necessary if the user wishes to delete the event.

After receiving the replies from relcal2 and relcal3, A-c updates the

version of the event in relcal1 to indicate the new participation
statii:

 BEGIN:VEVENT
 METHOD:REQUEST
 UID:abcd12345
 DTSTART:19990307T180000Z
 DTEND:19990307T190000Z
 ORGANIZER:cap://cal.foo.com/relcal1
 ATTENDEE;PARTSTAT=ACCEPTED:cap://cal.foo.com/relcal2
 ATTENDEE;PARTSTAT=DECLINED:cap://cal.foo.com/relcal3
 SUMMARY:Important Meeting
 END:VEVENT

A-c then sends a new iTIP request to relcal2 only, indicating the
updated information.

7.2.3.2 Handling an iTIP refresh

A little bit later, C is thinking about accepting the event in the
previous example, but first wants to check the current state of the
event. To find the current state C-c uses the iTIP "REFRESH" method,
sending the following to relcal1:

BEGIN:VCALENDAR
VERSION:2.1
CMDID:xud-pn
METHOD:REFRESH
TARGET:cap://cal.foo.com/relcal1
BEGIN:VEVENT
UID:abcd12345
ORGANIZER:cap://cal.foo.com/relcal1
ATTENDEE:cap://cal.foo.com/relcal3
DTSTAMP:19990306T202333Z
END:VEVENT
END:VCALENDAR

A-c finds the refresh as an incoming iTIP, and searches for the
corresponding event. Having found the event (with no changes since the
last example) A-c then verifies that relcal3 is in fact an Attendee of
the event and is thus allowed to request a refresh. (In the case of a

Mansour/Dawson/Royer 39 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

published event things are more complicated.) A-c packages the event up

as an iTIP request and sends it to relcal3:

BEGIN:VCALENDAR
VERSION:2.1
CMDID: xud-pn
METHOD:REQUEST
TARGET:cap://cal.foo.com/relcal3
BEGIN:VEVENT
UID:abcd12345
DTSTART:19990307T180000Z
DTEND:19990307T190000Z
ORGANIZER:cap://cal.foo.com/relcal1
ATTENDEE;PARTSTAT=ACCEPTED:cap://cal.foo.com/relcal2
ATTENDEE;PARTSTAT=DECLINED:cap://cal.foo.com/relcal3
SUMMARY:Important Meeting
SEQUENCE:0
DTSTAMP:19990306T204333Z
END:VEVENT
END:VCALENDAR

[Ed. - should the CMDID match that of the REFRESH?]

7.2.3.3 Sending and accepting an iTIP counter

Having received the latest copy of the event C wishes to propose a
venue for the event, using an iTIP COUNTER. To do this C-c sends the
following to relcal1:

 BEGIN:VCALENDAR
 VERSION:2.1
 CMDID:zzykjjk
 METHOD:COUNTER
 TARGET:cap://cal.foo.com/relcal1
 BEGIN:VEVENT
 UID:abcd12345
 DTSTART:19990307T180000Z
 DTEND:19990307T190000Z
 ORGANIZER:cap://cal.foo.com/relcal1
 ATTENDEE;PARTSTAT=DECLINED:cap://cal.foo.com/relcal3
 SUMMARY:Important Meeting
 LOCATION:La Belle Province
 COMMENT:My favourite restaurant\, I'll definitely go if it's there.
 END:VEVENT
 END:VCALENDAR

Having sent the information to relcal1, C-c shouldn't store the new
details in relcal3. If C-c updated the version in relcal3 and relcal1
did not reply to the counter, then relcal3 would have incorrect
information. Instead C-c preserves the correct information and waits
for a response from relcal1. A CUA implementation may wish to

preserve this information itself, externally to the CS.

Mansour/Dawson/Royer 40 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

In order to receive an iTIP counter A-c follows the same search as for
other iTIP data, first find the incoming message, next find any
matching events in the calendar store.

Having found the matching event, A reviews the proposed changes and
decides to accept the COUNTER. To do this, A-c modifies the version
in relcal1 (bumping the sequence number) to:

 BEGIN:VEVENT
 METHOD:CREATE
 UID:abcd12345
 DTSTART:19990307T180000Z
 DTEND:19990307T190000Z
 ORGANIZER:cap://cal.foo.com/relcal1
 ATTENDEE;PARTSTAT=ACCEPTED:cap://cal.foo.com/relcal2
 ATTENDEE;PARTSTAT=DECLINED:cap://cal.foo.com/relcal3
 SUMMARY:Important Meeting
 LOCATION:La Belle Province
 SEQUENCE:1
 END:VEVENT

A-c then sends the updated version as a request to both relcal2 and
relcal3:

 BEGIN:VCALENDAR
 VERSION:2.1
 CMDID:xup-po
 METHOD:REQUEST
 TARGET:cap://cal.foo.com/relcal2
 TARGET:cap://cal.foo.com/relcal3
 BEGIN:VEVENT
 UID:abcd12345
 DTSTART:19990307T180000Z
 DTEND:19990307T190000Z
 ORGANIZER:cap://cal.foo.com/relcal1
 ATTENDEE;RSVP=TRUE;PARTSTAT=NEEDS-ACTION:cap://cal.foo.com/relcal2
 ATTENDEE;RSVP=TRUE;PARTSTAT=NEEDS-ACTION:cap://cal.foo.com/relcal3
 SUMMARY:Important Meeting
 LOCATION:La Belle Province
 SEQUENCE:1

 DTSTAMP:19990307T054339Z
 END:VEVENT
 END:VCALENDAR

7.2.3.4 Declining an iTIP counter

B does not like the new location and also counters the event, B-c
sends the following iTIP:

 BEGIN:VCALENDAR
 VERSION:2.1
 CMDID:xim-ef
 METHOD:COUNTER

Mansour/Dawson/Royer 41 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 TARGET:cap://cal.foo.com/relcal1
 BEGIN:VEVENT
 UID:abcd12345
 DTSTART:19990307T180000Z
 DTEND:19990307T190000Z
 ORGANIZER:cap://cal.foo.com/relcal1
 ATTENDEE:cap://cal.foo.com/relcal2
 SUMMARY:Important Meeting
 LOCATION:Au Coin Dor=E9
 END:VEVENT
 END:VCALENDAR

However, C does not accept the counter, and C-c replies with a decline
counter:

 BEGIN:VCALENDAR
 VERSION:2.1
 CMDID:xim-ef
 METHOD:DECLINE-COUNTER
 TARGET:cap://cal.foo.com/relcal2
 BEGIN:VEVENT
 DTSTAMP:19990307T093245Z
 UID:abcd12345
 ORGANIZER:cap://cal.foo.com/relcal1
 SEQUENCE:1
 END:VEVENT
 END:VCALENDAR

Fortunately B-c kept the original information when sending the
counter, and there is no problem when no information is returned in
the DECLINE-COUNTER.

8. Response Codes
Numeric response codes are returned at both the transport and
application layer. The same set of codes is used in both cases.

[Editors Note: Do we want to use the same set of codes?]

The format of these codes is described in [RFC2445], and extend in
[RFC2446] and [RFC2447]. The following describes new codes added to this
set.

At the application layer response codes are returned as the value of a
"REQUEST-STATUS" property. The value type of this property is modified
from that defined in [RFC2445], to make the accompanying text optional.

Code Params Description
--
2.0 varies Success. The parameters vary with the operation
 and are specified

2.0.1 none Success, send data, terminate with

Mansour/Dawson/Royer 42 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 <CRLF>.<CRLF>

2.0.2 A reply is pending. It could not be completed in
 the specified amount of time. The server awaits
 a CONTINUE or ABORT command.

2.0.3 In response to the client issuing an ABORT
 command, this reply code indicates that any
 command currently underway was successfully
 aborted.

2.0.6 An operation is being attempted on a remote
 server. This response indicates that the server
 has not yet been contacted but an attempt will
 be made to contact it after the command has been
 sent.

https://datatracker.ietf.org/doc/html/rfc2445
https://datatracker.ietf.org/doc/html/rfc2446
https://datatracker.ietf.org/doc/html/rfc2447
https://datatracker.ietf.org/doc/html/rfc2445

3.1.4 Capability not supported

4.1 Calendar store access denied

6.1 authenticate failure: unsupported authentication
 mechanism, credentials rejected

6.2 Sender aborted authentication, authentication
 exchange cancelled

7.0 A timeout has occurred. The server was unable
 to complete the operation in the requested time.

8.0 A failure has occurred in the Receiver that
 prevents the operation from succeeding.

8.1 Sent when a session cannot be established because
 the CAP Server is too busy.

8.2 Used to signal that an ICAL object has exceeded
 the server's size limit.

8.3 A DATETIME value was too large to be represented
 on this Calendar.

8.4 A DATETIME value was too far in the past to be
 represented on this Calendar.

8.5 An attempt was made to create a new object but
 the unique id specified is already in use.

8.6 ID clash

9.0 An unrecongnized command was received.

10.1 Accompanied by an alternate address. The

Mansour/Dawson/Royer 43 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 RECIPIENT specified should be contacted at the
 given alternate address. The referral address
 MUST follow the reply code.

10.2 The server is shutting down.

10.4 The operation has not be performed because it
 would cause the resources (memory, disk,CPU, etc)
 to exceed the allocated quota.

10.5 The ITIP message has been queued too too long.
 Delivery has been aborted.

9. Detailed SQL Schema
This section describes a conceptual schema for object model in CAP. It
is used as the basis for querying data managed by the CS. This is only a
conceptual schema. Implementations can use any schema they like so long
as they are prepared to map CAP queries that are expressed in this
conceptual schema. Implementations are not required to use SQL database
technology. The protocol is designed such that a CUA does not need to
handle these queries.

This schema is based on SQL-92 [SQL] along with the [SQLCOM]
corrections.

Properties than can occur multiple times are intended to be put in
separate tables. For example

 BEGIN:VEVENT
 UID:1
 DTSTART:19990326T201400Z
 ORGANIZER:mailto:sam@abc.COM
 SUMMARY:I have 2 attachments
 ATTACHMENT;FMTTYPE=audio/basic:ftp://host.com/pub/sounds/bell.au
 ATTACHMENT;FMTTYPE=audio/basic:ftp://host.com/pub/sounds/bell2.au
 END:VEVENT

There are two ATTACHMENT properties each having a unique value. These
are kept in separate tables. This is diagrammed below. The diagram is
not a complete representation of the VEVENT table. It is an abbreviated
table used to illustrate how properties that can occur multiple times
are intended to be represented.

ABBREVIATED VEVENT TABLE

 UID DTSTART ORGANIZER SUMMARY ATTACH_LIST
+----+----------------+-------------------+------------+------------+
|1 |19990326T201400Z|mailto:sam@abc.com |I have 2 | 123 |
| | | |attachments | |
+----+----------------+-------------------+------------+------------+
|999 |19700101T000000Z|mailto:usr@host.com|I have no | |
| | | |attachments | |

Mansour/Dawson/Royer 44 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

+----+----------------+-------------------+------------+------------+

ABBREVIATED ATTACH_LIST TABLE

 ATTACH_LIST VALUE INLINE_BLOB
+------------+------------------------------------+-----------------+
|123 | ftp://host.com/pub/sounds/bell.au | |
+------------+------------------------------------+-----------------+
|123 | ftp://host.com/pub/sounds/bell2.au| |
+------------+------------------------------------+-----------------+
234		MIICajCCAdO-
		gAwIBAgICBEU
		<...remainder
		of "BASE64"
		encoded binary
		data...>
+------------+------------------------------------+-----------------+

9.1 iCalendar Store Schema
The following defines the schema for an iCalendar object and the
components, properties, and parameters defined in [RFC2445].

Create table VCALENDAR {
 RELATIVECALID VARCHAR(256) PRIMARY KEY,
 CALMASTER VARCHAR(256),
 CHARSET VARCHAR(256),
 CHILDREN VARCHAR(256)
 LANGUAGE CHAR(5)
 LAST_MODIFIED
 NAME VARCHAR(256),
 OWNERS
 PARENT CHAR(16),
 PATH
 SCHEDULABLE_HOURS
 TOMBSTONE
 TZID
 LAST_MODIFIED_BY
};

create table VEVENT {
 ATTACH_LIST INTEGER,
 ATTENDEE_LIST INTEGER,
 /* CATEGORIES may contain a comma seperated list */
 CATEGORIES VARCHAR(len?),

ftp://host.com/pub/sounds/bell.au
ftp://host.com/pub/sounds/bell2
https://datatracker.ietf.org/doc/html/rfc2445

 CLASS INTEGER,
 CLASS_PARAMS INTEGER,
 COMMENT VARCHA,
 COMMENT_PARAMS INTEGER,
 CONTACT_LIST INTEGER,
 CREATED TIMESTAMP NOT NULL DEFAULT
 CURRENT_DATE,
 CREATED_PARAMS INTEGER,
 DESCRIPTION VARCHAR(len?),

Mansour/Dawson/Royer 45 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 DESCRIPTION_PARAMS INTEGER,
 DTEND TIMESTAMP,
 DTEND_PARAMS INTEGER,
 DTSTAMP TIMESTAMP NOT NULL,
 DTSTAMP_PARAMS INTEGER,
 DTSTART TIMESTAMP NOT NULL,
 DTSTART_PARAMS INTEGER,
 DURATION <?type?>,
 DURATION_PARAMS INTEGER,
 EXDATE_LIST INTEGER,
 EXRULE_LIST INTEGER,
 GEO_LAT NUMBER,
 GEO_LON NUMBER,
 GEO_PARAMS INTEGER,
 LAST_MODIFIED TIMESTAMP NOT NULL DEFAULT
 CURRENT_DATE,
 LAST_MODIFIED_PARAMS INTEGER,
 LOCATION VARCHA,
 LOCATION_PARAMS INTEGER,
 METHOD VARCHAR(len20?),
 ORGANIZER VARCHAR(len?) NOT NULL,
 ORGANIZER_PARAMS INTEGER,
 PRIORITY INTEGER,
 PRIORITY_PARAMS CHAR(1),
 RECURRENCE_ID VARCHAR(len?),
 RECURRENCE_ID_PARAMS INTEGER,
 RDATE_LIST INTEGER,
 RELATED_TO_LIST INTEGER,
 /* RESOURCES may contain a comma seperated list */
 RESOURCES VARCHAR(len?),
 RESOURCES_PARAMS INTEGER,
 RRULE_LIST INTEGER,

 SUMMARY VARCHAR(len?) NOT NULL DEFAULT "",
 SUMMARY_PARAMS INTEGER,
 SEQUENCE INTEGER NOT NULL DEFAULT 0,
 SEQUENCE_PARAMS INTEGER,
 STATUS INTEGER,
 STATUS_PARAMS CHAR(1),
 TRANSP CHAR(1),
 TRANSP_PARAMS INTEGER,
 UID VARCHAR(len?) NOT NULL,
 UID_PARAMS INTEGER,
 URL VARCHA,
 URL_PARAMS INTEGER,
 X_PROP_LIST INTEGER,
 VALARM_LIST INTEGER,
};

create table VTODO {
 ATTENDEE_LISTINTEGER,
 ATTACH_LIST INTEGER,
 /* CATEGORIES may contain a comma separated list */
 CATEGORIES VARCHAR(len?),
 CLASS INTEGER,

Mansour/Dawson/Royer 46 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 CLASS_PARAMS INTEGER,
 COMMENT VARCHAR(len?),
 COMMENT_PARAMS INTEGER,
 CONTACT_LIST INTEGER,
 CREATED TIMESTAMP NOT NULL DEFAULT
 CURRENT_DATE,
 CREATED_PARAMS INTEGER,
 DESCRIPTION VARCHAR(len?),
 DESCRIPTION_PARAMS INTEGER,
 DTSTAMP TIMESTAMP NOT NULL,
 DTSTAMP_PARAMS INTEGER,
 DTSTART TIMESTAMP NOT NULL,
 DTSTART_PARAMS INTEGER,
 DUE TIMESTAMP,
 DUE_PARAMS INTEGER,
 DURATION <?type?>,
 DURATION_PARAMS INTEGER,
 EXDATE_LIST INTEGER,
 EXRULE_LIST INTEGER,

 GEO_LAT NUMBER,
 GEO_LON NUMBER,
 GEO_PARAMS INTEGER,
 LAST_MODIFIED TIMESTAMP NOT NULL DEFAULT
 CURRENT_DATE,
 LAST_MODIFIED_PARAMS INTEGER,
 LOCATION VARCHA,
 LOCATION_PARAMS INTEGER,
 METHOD VARCHAR(len20?),
 ORGANIZER VARCHAR(len?) NOT NULL,
 ORGANIZER_PARAMS INTEGER,
 PERCENT_COMPLETE INTEGER,
 PERCENT_COMPLETE_PARAMSLETE INTEGER
 PRIORITY INTEGER NOT NULL,
 PRIORITY_PARAMS INTEGER,
 RDATE_LIST INTEGER,
 RECURRENCE_ID VARCHAR(len?),
 RECURRENCE_ID_PARAMS INTEGER,
 /* RESOURCES may contain a comma seperated list */
 RESOURCES VARCHAR(len?),
 RESOURCES_PARAMS INTEGER,
 RRULE_LIST INTEGER,
 SEQUENCE INTEGER NOT NULL DEFAULT 0,
 SEQUENCE_PARAMS INTEGER,
 SUMMARY VARCHAR(len?) NOT NULL DEFAULT "",
 SUMMARY_PARAMS INTEGER,
 UID VARCHAR(len?) NOT NULL,
 UID_PARAMS INTEGER,
 URL VARCHAR(len?)
 URL_PARAMS INTEGER,
 X_PROP_LIST INTEGER
 VALARM_LIST INTEGER,
};

create table VJOURNAL {

Mansour/Dawson/Royer 47 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 ATTACH_LIST INTEGER,
 /* CATEGORIES may contain a comma seperated list */
 CATEGORIES VARCHAR(len?),
 CLASS INTEGER,
 CLASS_PARAMS INTEGER,
 COMMENT VARCHAR(len?),

 COMMENT_PARAMS INTEGER,
 CONTACT_LIST INTEGER,
 CREATED TIMESTAMP NOT NULL DEFAULT
 CURRENT_DATE,
 CREATED_PARAMS INTEGER,
 DESCRIPTION VARCHAR(len?) NOT NULL DEFAUT "",
 DESCRIPTION_PARAMS INTEGER,
 DTSTAMP TIMESTAMP NOT NULL,
 DTSTAMP_PARAMS INTEGER,
 DTSTART TIMESTAMP NOT NULL,
 DTSTART_PARAMS INTEGER,
 EXDATE_LIST INTEGER,
 EXRULE_LIST INTEGER,
 LAST_MODIFIED TIMESTAMP NOT NULL DEFAULT
 CURRENT_DATE,
 METHOD VARCHAR(len20?),
 LAST_MODIFIED_PARAMS INTEGER,
 ORGANIZER VARCHAR(len?) NOT NULL,
 ORGANIZER_PARAMS INTEGER,
 RDATE_LIST INTEGER,
 RECURRENCE_ID VARCHAR(len?),
 RECURRENCE_ID_PARAMS INTEGER,
 RELATED_TO_LIST INTEGER,
 RRULE_LIST INTEGER,
 SEQUENCE INTEGER NOT NULL DEFAULT 0,
 SEQUENCE_PARAMS INTEGER,
 STATUS INTEGER,
 STATUS_PARAMS CHAR(1),
 SUMMARY VARCHAR(len?) NOT NULL DEFAULT "",
 SUMMARY_PARAMS INTEGER,
 UID VARCHAR(len?) NOT NULL,
 UID_PARAMS INTEGER,
 X_PROP_LIST INTEGER
};

An implementation may not actually have a VFREEBUSY table as
the information may be produced dynamicly. However a CS
MUST appear to provide this table as this may be how a CUA
chooses to query for VFREEBUSY information while using
[CAP]. Example, it probabily would not make any sense for
ATTENDEE to exist in this table, yet a CUA may wish to ask
for the VFREEBUSY for an ATTENDEE.

create table VFREEBUSY {
 ATTENDEE_LIST VARCHAR(len?),
 COMMENT VARCHAR(len?),
 COMMENT_PARAMS INTEGER,
 CONTACT_LIST INTEGER,

Mansour/Dawson/Royer 48 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 DTEND TIMESTAMP NOT NULL,
 DTEND_PARAMS INTEGER,
 DTSTAMP TIMESTAMP NOT NULL,
 DTSTAMP_PARAMS INTEGER,
 DTSTART TIMESTAMP NOT NULL,
 DTSTART_PARAMS INTEGER,
 FREEBUSY_LIST INTEGER NOT NULL,
 METHOD VARCHAR(len20?),
 ORGANIZER VARCHAR(len?) NOT NULL,
 ORGANIZER_PARAMS INTEGER,
 X_PROP_LIST INTEGER
 URL VARCHAR(len?)
};

create table VTIMEZONE {
 DAYLIGHT_LIST INTEGER, /* In TZ_LIST table */
 STANDARD_LIST INTEGER, /* In TZ_LIST table */
 TZID VARCHAR(len?) NOT NULL,
 TZID_PARAM INTEGER,
 TZURL VARCHAR(len?) NOT NULL,
 TZURL_PARAM INTEGER,
 X_PROP_LIST INTEGER
};

create table TZ_LIST {
 /* Maps to DAYLIGHT_LIST or STANDARD_LIST in VTIMEZONE table */
 TZ_KEY INTEGER,
 COMMENT VARCHAR(len?),
 COMMENT_PARAMS INTEGER,
 DTSTART TIMESTAMP NOT NULL,
 DTSTART_PARAMS INTEGER,
 LAST_MODIFIED TIMESTAMP NOT NULL DEFAULT
 CURRENT_DATE,
 LAST_MODIFIED_PARAMS INTEGER,
 RDATE_LIST INTEGER,
 RRULE_LIST INTEGER,
 TZNAME VARCHAR(len?),
 TZOFFSET <?type?> NOT NULL,
 TZOFFSETFROM <?type?> NOT NULL,
 TZOFFSETTO <?type?> NOT NULL,
};

create table VALARM_LIST {
 /* Maps to VALARM_LIST in other tables */

 VALARM_KEY INTEGER,
 ACTION INTEGER NOT NULL,
 ACTION_PARAMS INTEGER,
 ATTACH_LIST INTEGER,
 DESCRIPTION VARCHAR(len?) NOT NULL DEFAUT "",
 DESCRIPTION_PARAMS INTEGER,
 DURATION <?type?>,
 DURATION_PARAMS INTEGER,
 REPEAT INTEGER,
 REPEAT_PARAMS INTEGER,

Mansour/Dawson/Royer 49 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 SUMMARY VARCHAR(len?) NOT NULL DEFAULT "",
 SUMMARY_PARAMS INTEGER,
 TRIGGER_DT TIMESTAMP,
 TRIGGER_DURATION <?type?>,
 X_PROP_LIST INTEGER
};

10. Examples
For all the examples in this section, the authenticated user is
user@example.com.

10.1 Authentication Examples

10.1.1 Login Using Kerberos V4
Use Kerberos V4 to authenticate as bill@example.com to the CAP server on
cal.example.com.

 C: <connect to cal.example.com on port ...>
 S: 2.0
 S: CAPVERSION=1.0
 S: ITIPVERSION=1.0
 S: AUTH=KERBEROS_V4
 S: AUTH=DIGEST_MD5
 S: .
 C: AUTHENTICATE KERBEROS_V4
 S: AmFYig==
 C: BAcAQU5EUkVXLkNNVS5FRFUAOCAsho84kLN3/IJmrMG+25a4DT
 S: or//EoAADZI=
 C: DiAF5A4gA+oOIALuBkAAmw==
 S: 2.0
 S: IDENTITY=bill@example.com

 S: CAPVERSION=1.0
 S: ITIPVERSION=1.0
 S: AUTH=KERBEROS_V4
 S: AUTH=DIGEST_MD5
 S: CAR=CAR1 appl
 S: MINDATE=19700101T000000Z appl
 # who knows this date (end of the 32 bit number)?
 S: MAXDATE=20370201T000000Z
 S: .

10.1.2 Error Scenarios
Use of SASL Authorization Identity is not supported. Use the IDENTITY
command instead. If you attempt to use the Authorization Identity, an
error status will be returned.

 C: AUTHENTICATE KERBEROS_V4
 S: AmFYig==
 C: BAcAQU5EUkVXLkNNVS5FRFUAOCAsho84kLN3/IJmrMG+25a4DT
 S: or//EoAADZI=
 C: DiAF5A4gA+oOIALuBkAAmw==
 S: 6.1

Mansour/Dawson/Royer 50 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 S: .

Sender aborted authentication:

 C: AUTHENTICATE KERBEROS_V4
 S: AmFYig==
 C: .
 S: 6.2
 S: .

Unsupported mechanism:

 C: AUTHENTICATE Experimental_Auth
 S: 6.3
 S: .

10.2 Read Examples

10.2.1 Read From A Single Calendar

In this example bill@example.com reads a day's worth of events from
cap://cal.example.com/opaqueid99.

 C: SENDDATA
 C: Content-type:text/calendar; Method=READ; Component=VQUERY
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.1
 C: METHOD:READ
 C: CMDID:xyz12345
 C: TARGET:cap://cal.example.com/opaqueid99
 C: BEGIN:VQUERY
 C: QUERY:SELECT (VEVENT.DTSTART,VEVENT.DTEND,SUMMARY,UID);
 C: FROM VEVENTTABLE;
 C: WHERE (VEVENT.DTEND >= 19990714T080000Z AND
 C: VEVENT.DTSTART <= 19990715T080000Z);
 C: ORDERBY (VEVENT.DTSTART ASC, VEVENT.DTEND, UID, SUMMARY)
 C: END:VQUERY
 C: END:VCALENDAR
 C: .

 # this response code means that the transport successfully
 # delivered the data.
 S: 2.0 ; got the request OK ; I swear
 S: Content-type:text/calendar; Method=RESPONSE;
 S: Optinfo=VERSION:2.1
 S: Content-Transfer-Encoding: 7bit
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.1
 S: METHOD:RESPONSE
 S: TARGET:cap://cal.example.com/opaqueid99
 S: CMDID:xyz12345

Mansour/Dawson/Royer 51 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 # we have not yet discussed response-status

 S: RESPONSE-STATUS:2.0
 S: BEGIN:VEVENT
 S: DTSTART:19990714T200000Z
 S: DTEND:19990714T210000Z
 S: UID:000444888929922
 S: SUMMARY:Blah bla

 S: END:VEVENT
 S: BEGIN:VEVENT
 S: UID:0034848098038888989443
 S: SUMMARY:meeting
 S: DTEND:19990714T233000Z
 S: DTSTART:19990714T223000Z
 S: END:VEVENT
 S: END:VCALENDAR
 S: .

10.2.2 Read From Multiple Calendars
In this example bill@example.com reads a day's worth of events from
cap://cal.example.com/opaqueid101 and cap://cal.example.com/opaqueid103

 C: SENDDATA
 C: Content-type:text/calendar; Method=READ; Component=VQUERY
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.1
 C: METHOD:READ
 C: CMDID:xyz12346
 C: TARGET:cap://cal.example.com/opaqueid101
 C: TARGET:opaqueid103
 C: BEGIN:VQUERY
 C: QUERY:SELECT (DTSTART,DTEND,SUMMARY,UID);
 C: FROM VEVENT;
 C: WHERE (DTEND >= 19990714T080000Z AND
 C: DTSTART <= 19990715T080000Z);
 C: ORDERBY (DTSTART ASC, DTEND, UID, SUMMARY)
 C: END:VQUERY
 C: END:VCALENDAR
 C: .
 S: 2.0
 S: Content-Type:multipart/mixed;boundary="--FEE3790DC7E35189CA67"
 S:
 S: ----FEE3790DC7E35189CA67
 S: Content-type:text/calendar; Method=RESPONSE;
 S: Optinfo=VERSION:2.1
 S: Content-Transfer-Encoding: 7bit
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.1
 S: METHOD:RESPONSE
 S: TARGET:cap://cal.example.com/opaqueid103
 S: CMDID:xyz12346
 S: RESPONSE-CODE:2.0

Mansour/Dawson/Royer 52 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 S: BEGIN:VEVENT
 S: UID:0034848098038888989443
 S: SUMMARY:meeting
 S: DTEND:19990714T233000Z
 S: DTSTART:19990714T223000Z
 S: END:VEVENT
 S: END:VCALENDAR
 S:
 S: ----FEE3790DC7E35189CA67CE2C
 S: Content-type:text/calendar; Method=RESPONSE;
 S: Optinfo=VERSION:2.1
 S: Content-Transfer-Encoding: 7bit
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.1
 S: METHOD:RESPONSE
 S: TARGET:cap://cal.example.com/opaqueid101
 S: CMDID:xyz12346
 S: RESPONSE-CODE:4.1 ; access denied
 S: END:VCALENDAR
 S:
 S: ----FEE3790DC7E35189CA67CE2C
 S: .

10.2.3 Timeouts
In this example bill@example.com attempts to read a calendar but the
latency time he supplies is not sufficient for the server to complete
the command.

 C: SENDDATA 3
 C: Content-type:text/calendar; Method=READ; Component=VQUERY
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.1
 C: METHOD:READ
 C: CMDID:xyz12346
 C: TARGET:cap://cal.example.com/opaqueid101
 C: TARGET:opaqueid103
 C: BEGIN:VQUERY
 C: QUERY:SELECT (DTSTART,DTEND,SUMMARY,UID);
 C: FROM VEVENT;
 C: WHERE (DTEND >= 19990714T080000Z AND
 C: DTSTART <= 19990715T080000Z);
 C: ORDERBY (DTSTART ASC, DTEND, UID, SUMMARY)
 C: END:VQUERY
 C: END:VCALENDAR

 C: .
 S: 7.0 ; timeout
 S: .

If Bill wants to continue and give the server more time he would issue a
CONTINUE command:

 C: CONTINUE 10

Mansour/Dawson/Royer 53 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

If Bill wants to abort the command and not wait any further he would
issue an ABORT command:

 C: ABORT
 S: 2.0
 S: .

10.2.4 Using the Calendar Parent, Children Properties

10.2.5 An example that depends on VEVENT.DTSTART and VALARM.DTSTART

11. Implementation Issues
1. What are the minimum component properties set required to create a
new VEVENT, VTODO and VJOURNAL?. PROPOSAL: DTSTART, SUMMARY and UID.

2. What is the state of all undefined properties? PROPOSAL: Not defined.
So a query will not return them, if they are selected.

12. Properties
[Editors Note: These extensions/changes to iCalendar need to be
reformatted to conform to the IANA registration process defined in
section 7 of [RFC2445].]

12.1 Calendar Store Properties
Read
Name Only Description
------------- ---- ---
DEFAULT-VCARS N The default VCARs for newly created toplevel
 calendars

MAXDATE Y The date/time in the future beyond which
 the server cannot represent.

MINDATE Y The date/time in the past prior to which

https://datatracker.ietf.org/doc/html/rfc2445#section-7

 the server cannot represent.

TIME Y Current server time. This is returned as a
 localtime and TZID

[Editors Note: Should there be something here about how the server
handles RRULES and EXRULES? For example, can/MUST the server unzip
RRULES/EXRULES? Does it even support RRULES? Can it deal with unbounded
RRULES?]

12.2 Calendar Properties

 Read
Name Only Description
------------- ---- --
CHARSET N the default charset for localized strings in this
 calendar

CHILDREN Y the sub-calendars belonging to this calendar.

Mansour/Dawson/Royer 54 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

CREATED Y the timestamp of the calendar's create date

LANGUAGE N the default language for localizable strings in
 this calendar

LAST-MODIFIED N the timestamp when the properties of the calendar
 were last updated.

NAME N the display name for this calendar. It is
 a localizable string.

OWNERS N a multi instanced property indicating the
 calendar owner.

PARENT N maintained by a CAP server.

PATH Y ?? human readable path of name. ??
 [editors note: I think this is going to be
 really problematic. Can we do away with
 this? Or perhaps make it optional?]

RELATIVECALID N a unique name for the calendar. It is made

 up of 7 bit ASCII characters.

SCHEDULABLE- N the preferred time range for scheduling
HOURS events on this calendar.

TOMBSTONE N a marker indicating that this calendar has been
 Deleted.

TZID N the id of the timezone associated with this
 calendar

LAST-MODIFIED-BY Y UPN of the person or process that
 last modified the calendar properties.

13. Security Considerations
For the mandatory SASL mechanism that CAP specifies, the mechanism
support is:

 MUST authentication
 MUST authorization
 MAY impersonation

The security issue:

 +---------+ +----------+
CUA1 ------ | CS1 |--------CAP----------| CS2 |-----CUA2
 | calF | | calA |
 +---------+ +----------+

 UserListX is not an owner of calF

Mansour/Dawson/Royer 55 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 UserListX has been given ACTONBEHALF of rights to calF by an owner
 of calF, UserY
 UserX authenticates to CS1 as UserX
 UserX wants to update the attendee status of an event on calA
 An owner of calA has granted access to UserY to update an event
 they have been invited to
 How do we grant UserX access to do this?

[Editors Note: This needs further work and examples.]

14. Changes to iCalendar
[Editors Note: These extensions/changes to iCalendar need to be
reformatted to conform to the IANA registration process defined in
section 7 of [RFC2445].]

14.1 RIGHTS Value Type

Value Name: RIGHTS

Purpose: This value type is used to identify properties whose value is a
calendar access rights.

Formal Definition: The value type is defined by the following notation:

rights = [princ] (policy / carref / cardef) CRLF

princ = "UPN" "=" (text / all / "OWNER" / "NONOWNER")

policy = ";" "POLICY" "=" policyname

policyname = "READBUSYTIMEINFO" / "ACTONBEHALFOF" /
"REQUESTONLY"
 / "UPDATEPARTSTATUS" / "OWNER" / iana-name

carref = ";" "CARREF" "=" text *("," text)

cardef = action object

action = ";" "ACTION" "=" act-type *("," act-type)

act-type = ("CREATE" / "MODIFY" / "DELETE" / "READ" / all)

object = ";" "OBJECT" "=" (csprop *("," csprop) [propvalue])
 / (calprop *("," calprop) [propvalue])
 / (component *("," component)) [compvalue]
 / (compprop *("," compprop) [propvalue])
 / (compparam *("," compparam) [paramvalue])

csprop = csprop2 / all / iana-name

csprop2 = <any calendar store property defined in [CAP]>

propvalue = propvalue2 / all / iana-name

Mansour/Dawson/Royer 56 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

https://datatracker.ietf.org/doc/html/rfc2445#section-7

propvalue2 = <any value appropriate for the named property>

calprop = calprop2 / all / iana-name

calprop2 = <any calendar property name defined in [RFC2445] or
 [CAP]>

component = component2 / all / iana-name

component2 = <any calendar component defined in [RFC2445] or
 [CAP]>

compprop = compprop2 / all / iana-name

compprop2 = <any component property name defined in [RFC2445] or
 [CAP]>

compparam = compparm2 / all / iana-name

compparm2 = <any component parameter name defined in [RFC2445] or
 [CAP]>

compvalue = ";" "VALUE" "=" ((component2 *("," component2))
 / all / iana-name)

paramvalue = paramvalue2 / all / iana-name

paramvalue2 = <any value appropriate for the named parameter>

all = "ALL"

iana-name = <A name registered with IANA>

Description: The value type is a structured value consisting of a list
of one or more access control rights rule parts. Each rule part is
defined by a "NAME=VALUE" pair. The rule parts are separated from each
other by the SEMICOLON character (US-ASCII decimal 59). The rule parts
are not ordered in any particular sequence, unless otherwise specified
by the ABNF. Individual rule parts MUST only be specified once.

The UPN rule part specifies the authenticated calendar user that the
calendar access rights applies to. The value of this rule part is either
a quoted text specifying a UPN or an unquoted text specifying a keyword
enumerating a standard authenticated user type. If the value is the
keyword is ALL, then the rule applies to all authenticated calendar
users (i.e., all UPNs). If the value is the keyword OWNER, then the rule
applies to any of the owners of the calendar store or calendar. If the
value is the keyword NONOWNER, then the rule applies to a UPN that is
not the owner of the calendar store or calendar. If this rule part is
not specified in the value, then the calendar access rights do not apply

https://datatracker.ietf.org/doc/html/rfc2445
https://datatracker.ietf.org/doc/html/rfc2445
https://datatracker.ietf.org/doc/html/rfc2445
https://datatracker.ietf.org/doc/html/rfc2445

to any UPN. In this case, the calendar access rights can be defined for
reference by another instance of a calendar access rights. For example,
a complex set of calendar access rights can be defined once and

Mansour/Dawson/Royer 57 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

referenced many times in the rights specified for individual calendar
users.

The POLICY rule part specifies a standard calendar access policy.
Calendar access policies are individual sets of well-defined calendar
access rights that can be referenced by their policy name.

NOTE: Possible calendar access policy that may be standardized by CAP
include:

 READBUSYTIMEINFO - Specifies rights for reading busy time data.

 ACTONBEHALFOF - Specifies rights for any CAP function taken on
 PUBLIC or PRIVATE calendar components. However, no CAP function
 can be taken on CONFIDENTIAL classified calendar components.

 REQUESTONLY - Specifies rights for creating new event invitations,
 to-do assignments and journal entries.

 UPDATEPARTSTATUS - Specifies rights for modifying ones own
 participation status.

 OWNER - Specifies the same rights given to the owner of the
 calendar store or calendar.

The CARREF rule part specifies a reference to a particular "VCAR"
calendar component. The text is matched to a CARID property value within
a "VCAR" calendar component. This allows for a particular set of
calendar access rights to be defined once and referenced multiple times.
The "VCAR" identifier specified by this rule part is unique to the
calendar store.

The ACTION rule part defines one or more CAP actions that are allowed
for the UPN. The valid values are CREATE, COPY, DELETE, MODIFY, MOVE,
READ, corresponding to the calendar commands; PUBLISH, REQUEST, REPLY,
ADD, CANCEL, REFRESH, COUNTER, DECLINECOUNTER, corresponding to the
scheduling commands; and ALL, meaning all of calendaring commands and
scheduling commands. Multiple ACTION enumerations can be specified as a
COMMA character (US-ASCII decimal 44) separated list of ACTION

enumerated values. The text ALL is the same as specifying the enumerated
values "CREATE, MODIFY, DELETE, READ".

The OBJECT rule part defines the calendar store property, calendar
property, calendar component, component property, or parameter that the
ACTION is restricted to. Multiple OBJECT enumerations can be specified
as a COMMA character (US-ASCII decimal 44) separated list of OBJECT
enumerated values. The value ALL specifies any and all valid objects.

The VALUE rule part specifies the restricted values for the OBJECT rule
part. Multiple VALUE strings can be specified as a COMMA character (US-
ASCII decimal 44) separated list of VALUE strings. The text ALL
specifies any and all valid values. If an OBJECT rule part is specified
but no corresponding VALUE rule part is specified, then the rule applies
to any and all valid values of the specified OBJECT(s).

Mansour/Dawson/Royer 58 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

Example: The following is a rule which specifies access rights for "foo"
calendar user to read busy time values:

UPN="foo@host.com";ACTION=READ;OBJECT=DTSTART,DTEND

14.2 VCAR Calendar Component

Component Name: "VCAR"

Purpose: Provide a grouping of calendar access rights.

Format Definition: A "VCAR" calendar component is defined by the
following notation:

aclc = "BEGIN" ":" "VCAR" CRLF
 carprop
 "END" ":" "VCAR" CRLF

carprop = carid 1*(grant / deny)

Description: A "VCAR" calendar component is a grouping of calendar
access rights component properties.

The "CARID" property specifies the local identifier for the "VCAR"
calendar component. The "GRANT" property specifies calendar access

rights granted to an UPN. The "DENY" property specifies calendar access
rights denied from an UPN.

Example: In the following example, the UPN "foo@host.com" has read
access to the "DTSTART" and "DTEND" calendar properties. No other access
is specified:

 BEGIN:VCAR
 CARID:"View Start and End Times"
 GRANT:UPN="foo@host.com";ACTION="READ";OBJECT=DTSTART,DTEND
 END:VEVENT

In this example, all UPNs are given read access to "DTSTART" and
"DTEND". "All CUs" is specified by the UPN value "ALL". Note that this
enumerated UPN value is not in quotes.:

 BEGIN:VCAR
 CARID:"View Start and End Times 2"
 GRANT:UPN=ALL;ACTION=READ;OBJECT=DTSTART,DTEND
 END:VCAR

In this example, rights are specified for all UPNs to read components
classified as PUBLIC:

 BEGIN:VCAR
 CARID:"View PUBLIC Start and End Times"

Mansour/Dawson/Royer 59 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 GRANT:UPN=ALL;ACTION=READ;OBJECT=DTSTART;DTEND
 DENY:UPN=ALL;ACTION=READ;OBJECT=CLASS;VALUE=PUBLIC,
 CONFIDENTIAL
 END:VCAR

In this example, rights are specified for all UPNs to read or modify
existing components classified as PUBLIC:

 BEGIN:VCAR
 CARID:"Read and Modify PUBLIC Calendar Entries"
 GRANT:UPN=ALL;ACTION=READ,MODIFY;OBJECT=ALL
 DENY:UPN=ALL;ACTION=READ,MODIFY;OBJECT=CLASS;VALUE=PRIVATE,
 CONFIDENTIAL
 END:VCAR

In this example, rights are given to a standard calendar access right

policy of "viewing" (i.e., READ) busy time information:

 BEGIN:VCAR
 CARID:"View Busy Time Information"
 GRANT:UPN=ALL;POLICY=READBUSYTIMEINFO
 END:VCAR

In this example, full calendar access rights are given to the OWNER and
a hypothetical administrator is given access rights to specify calendar
access rights. If no other rights are specified, only these two UPNs can
specify calendar access rights:

 BEGIN:VCAR
 CARID:"Only OWNER or ADMIN Settable CARs"
 GRANT:UPN=OWNER;ACTION=ALL;OBJECT=ALL
 GRANT:UPN="cal-admin@host.com";ACTION=ALL;
 OBJECT=VCAR,CARID,GRANT,DENY
 END:VCAR

In this example, rights to create, read, modify or delete calendar
access rights are denied to all UPNs. This example would disable
providing different access rights to the calendar store or calendar.
This calendar access rights should not be specified, as they the ability
to change calendar access; even for the owner or administrator:

 BEGIN:VCAR
 CARID:"No CAR At All"
 DENY:UPN=ALL;OBJECT=VCAR,CARID,GRANT,DENY

14.3 GRANT Component Property

Property Name: GRANT

Purpose: This property specifies those access rights granted to a UPN.

Value Type: RIGHTS

Mansour/Dawson/Royer 60 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

Property Parameters: Only non-standard property parameters can be
specified on this property.

Conformance: This property can only be specified in "VCAR" calendar

component.

Description: This property is used to grant calendar access rights to a
UPN.

Format Definition: The property is defined by the following notation:

grant = "GRANT" rightsparam ":" rights CRLF
rightparam = *(";" xparam)

Example: In the following example, a hypothetical "guest@host.com" UPN
is granted rights to view busy time information. These rights are
specified by referencing a standard calendar access rights policy, by
name:

 GRANT:UPN="guest@host.com";POLICY="READBUSYTIMEINFO"

14.4 DENY Component Property

Property Name: DENY

Purpose: This property specifies those access rights denied from a UPN.

Value Type: RIGHTS

Property Parameters: Only non-standard property parameters can be
specified on this property.

Conformance: This property can only be specified in "VCAR" calendar
component.

Description: This property is used to deny calendar access rights to a
UPN.

Format Definition: The property is defined by the following notation:

DENY = "DENY" rightsparam ":" rights CRLF
rightsparam = *(";" xparam)

Example: In the following example, any UPN who is not the owner is
denied rights to create, modify or delete entries:

 DENY:UPN=NONOWNER;ACTION=CREATE,MODIFY,DELETE;OBJECT=ALL

14.5 VCAR Identifier Component Property

Property Name: CARID

Mansour/Dawson/Royer 61 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

Purpose: This property specifies the identifier for a "VCAR" calendar
component.

Value Type: TEXT

Property Parameters: Non-standard property parameters can be specified
on this property.

Conformance: This property can be specified in "VCAR" calendar
component.

Description: This property permits previously defined sets of calendar
access rights to be specified with a reference. This capability
facilitates repetitively specifying calendar access rights.

Format Definition: The property is defined by the following notation:

CARID = "CARID" textparam ":" text CRLF

Example: The following is an example of this property:

 CARID:"Restrict Guests From Creating ALARMs On Events"

14.6 REQUEST-STATUS property

This description is a revision of the REQUEST-STATUS property for
VCALENDAR version 2.1.

rstatus = "REQUEST-STATUS" rstatparam ":"
 statcode [";" statdesc [";" extdata]]

rstatparam = *(
 ; the following is optional,
 ; but MUST NOT occur more than once
 (";" languageparm) /

 ; the following is optional,
 ; and MAY occur more than once

 (";" xparam)

)

 statcode = 1*DIGIT *("." 1*DIGIT)

 ;Hierarchical, numeric return status code

 statdesc = text
 ;An optional textual status description, content is
 ;decided by the implementor. May be empty.

 extdata = text
 ;Textual exception data. For example, the offending property

Mansour/Dawson/Royer 62 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 ;name and value or complete property line.

Example: The following are some possible examples of this property. The
COMMA and SEMICOLON separator characters in the property value are
BACKSLASH character escaped because they appear in a text value.

 REQUEST-STATUS:2.0;Success

 REQUEST-STATUS:2.0;Success despite braindead LDAP implementation

 REQUEST-STATUS:3.1;Invalid property value;DTSTART:96-Apr-01

 REQUEST-STATUS:2.8; Success\, repeating event ignored. Scheduled
 as a single event.;RRULE:FREQ=WEEKLY\;INTERVAL=2

 REQUEST-STATUS:4.1;Event conflict. Date/time is busy.

 REQUEST-STATUS:3.7;Invalid calendar user;ATTENDEE:
 MAILTO:jsmith@host.com

 REQUEST-STATUS:3.7;;ATTENDEE:MAILTO:jsmith@host.com

 REQUEST-STATUS:10.4;Help! That really shouldn't have happened.

15. CAP Entities Registration
This section provides the process for registration of new or modified
CAP entities.

15.1 Registration of New and Modified CAP Entities
New CAP entities are registered by the publication of an IETF Request
for Comment (RFC). Changes to a CAP entity are registered by the
publication of a revision of the RFC defining the method.

15.2 Registration of New Entities

This section defines procedures by which new entities (i.e., components,
properties, parameters, enumerated values or restriction tables) for a
CAP entity can be registered with the IANA.

Non-standard, experimental entities can be used by bilateral agreement,
provided the associated properties names follow the "X-" convention.
Such non-standard entities are non-IANA entities and need not be
registered using this process.

The procedures defined here are designed to allow public comment and
review of new CAP entities, while posing only a small impediment to the
definition of new properties.

Registration of a new CAP entity is accomplished by the following steps.

15.2.1 Define the Entity
A CAP entity is defined by completing the following template.

 To: ietf-calendar@imc.org

Mansour/Dawson/Royer 63 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 Subject: Registration of CAP entity XXX
 Entity name:
 Entity purpose:
 Description:
 CAP terminology changes:
 CAP data model changes:
 CAP system model changes:
 Conformance considerations:
 Format definition:
 Examples:

The meaning of each field in the template is as follows.

Entity name: The name of the entity.

Entity purpose: The purpose of the entity (e.g., Extends the CAP command
set to poll for notifications, etc.). Give a short but clear
description.

Description: Any special notes about the entity, how it is to be used,
etc.

CAP terminology changes: Any change or additions to the existing CAP

terminology needs to be specified.

CAP data model changes: Any of the valid property parameters for the
property needs to be specified.

CAP system model changes:

Conformance: A clear summary of how and where this CAP entity extension
MUST, MAY, SHOULD or can be used. Any changes or impact to the existing
conformance definition for CAP should be explained. The impact to
implmentations conforming to the existing CAP specification should be
clearly described.

Format definition: The ABNF for each element of the CAP entity needs to
be specified.

Examples: One or more examples of instances of the CAP entity and each
of its usage scenarios needs to be specified.

15.2.2 Post the entity definition
The entity description MUST be posted to the new entity discussion list,
ietf-calendar@imc.org.

15.2.3 Allow a comment period
Discussion on the new entity MUST be allowed to take place on the list
for a minimum of two weeks. Consensus MUST be reached on the property
before proceeding to the next step.

15.2.4 Submit the entity for approval
Once the two-week comment period has elapsed, and the proposer is
convinced consensus has been reached on the entity, the registration

Mansour/Dawson/Royer 64 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

application should be submitted to the Method Reviewer for approval. The
Method Reviewer is appointed by the Application Area Directors and can
either accept or reject the entity registration. An accepted
registration should be passed on by the Method Reviewer to the IANA for
inclusion in the official IANA method registry. The registration can be
rejected for any of the following reasons. 1) Insufficient comment
period; 2) Consensus not reached; 3) Technical deficiencies raised on
the list or elsewhere have not been addressed. The Method Reviewer's
decision to reject an entity can be appealed by the proposer to the
IESG, or the objections raised can be addressed by the proposer and the
entity resubmitted.

[Ed note: John Stracke to review any updates]

15.3 Property Change Control
Existing CAP entities can be changed using the same process by which
they were registered.

 1.
 Define the change
 2.
 Post the change
 3.
 Allow a comment period
 4.
 Submit the entity for approval

Note that the original author or any other interested party can propose
a change to an existing CAP entity, but that such changes should only be
proposed when there are serious omissions or errors in the published
memo. The Method Reviewer can object to a change if it is not backward
compatible, but is not required to do so.

CAP entity definitions can never be deleted from the IANA registry, but
entities which are no longer believed to be useful can be declared
OBSOLETE by adding this text to their "Entity purpose" field.

16. IANA Considerations

This memo defines IANA registered extensions to the attributes defined
by iCalendar, as defined in [RFC2445], and iTIP, as defined in
[RFC2426].

IANA registration proposals for iCalendar and iTIP are to be emailed to
the registration agent for the "text/calendar" MIME content-type,
<MAILTO: ietf-calendar@imc.org> using the format defined in section 7 of
[RFC2445].

17. Acknowledgments
The following have individuals were major contributors in the drafting
and discussion of this memo:

Mario Bonin, Andre Courtemanche, Dave Crocker, Pat Egen, Gilles Fortin,
Alex Hoppman, Bruce Kahn, Lisa Lippert, David Madeo, Bob Mahoney, Pete
O'Leary, Richard Shusterman, Tony Small, John Stracke.

Mansour/Dawson/Royer 65 Expires February 2000
Taler/Hill

https://datatracker.ietf.org/doc/html/rfc2445
https://datatracker.ietf.org/doc/html/rfc2426
https://datatracker.ietf.org/doc/html/rfc2445#section-7
https://datatracker.ietf.org/doc/html/rfc2445#section-7

Internet Draft CAP August 5, 1999

18. Bibliography
[RFC1521] N. Borenstein and N. Freed, "MIME (Multipurpose Internet Mail
Extensions) Part One: Mechanisms for Internet Draft UTF-825 July 1996
Specifying and Describing the Format of Internet Message Bodies", RFC
1521, Bellcore, Innosoft, September 1993.

[TLS] Dierks, Allen, "The TLS Protocol", RFC 2246, January 1999

[RFC2396] Berners-Lee, Fielding, Masinter, "Uniform Resource Identifiers
(URI): Generic Syntax", RFC 2396, August 1998.

[RFC2445] Dawson, Stenerson, "Internet Calendaring and Scheduling Core
Object Specification (iCalendar)", RFC 2445, November 1998

[RFC2446] Silverberg, Mansour, Dawson, Hopson, "iCalendar Transport-
Independent Interoperability Protocol (iTIP)", RFC 2446, November 1998

[RFC2447] Dawson, Mansour, Silverberg, "iCalendar Message-Based
Interoperability Protocol (iMIP)", RFC 2445, November 1998

[SQL] "Database Language _ SQL", ANSI/ISO/IEC 9075: 1992, aka ANSI
X3.135-1992, aka FiPS PUB 127-2

[SQLCOM] ANSI/ISO/IEC 9075:1992/TC-1-1995, Technical corrigendum 1 to
ISO/IEC 9075: 1992, also adopted as Amendment 1 to ANSI X3.135.1992

[UNICODE] The Unicode Consortium, "The Unicode Standard --Worldwide
Character Encoding -- Version 1.0", Addison-Wesley, Volume 1, 1991,
Volume 2, 1992. UTF-8 is described in Unicode Technical Report #4.

[US-ASCII] Coded Character Set--7-bit American Standard Code for
Information Interchange, ANSI X3.4-1986.

19. Author's Address
The following address information is provided in a vCard v3.0, the RFC
2426 electronic business card format.

 BEGIN:VCARD
 VERSION:3.0
 N:Dawson;Frank
 FN:Frank Dawson
 ORG:Lotus Development Corporation
 ADR;TYPE=WORK,POSTAL,PARCEL:;;6544 Battleford Drive;Raleigh;NC;
 27613-3502;US
 TEL;TYPE=PREF,WORK,MSG:+1-617-693-8728
 TEL;TYPE=WORK,MSG:+1-919-676-9515
 TEL;TYPE=WORK,FAX:+1-919-676-9515

https://datatracker.ietf.org/doc/html/rfc1521
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2445
https://datatracker.ietf.org/doc/html/rfc2446
https://datatracker.ietf.org/doc/html/rfc2445

 EMAIL;TYPE=INTERNET,PREF:Frank_Dawson@Lotus.com
 EMAIL;TYPE=INTERNET:fdawson@earthlink.net
 URL;TYPE=X-HOME:http://home.earthlink.net/~fdawson
 END:VCARD

 BEGIN:VCARD
 VERSION:3.0

Mansour/Dawson/Royer 66 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

 N:Mansour;Steve
 FN:Steve Mansour
 ORG:Netscape
 ADR;TYPE=WORK,POSTAL,PARCEL:;;501 E Middlfield Road;Mountain
 View;CA;94043;US
 TEL;WORK;MSG:+1-650-937-2378
 TEL;WORK;FAX:+1-650-937-2103
 EMAIL;INTERNET:sman@netscape.com
 END:VCARD

 BEGIN:VCARD
 VERSION:3.0
 FN:Doug Royer
 N:Royer;Doug
 ORG:Sun Microsystems
 ADR;TYPE=WORK,POSTAL,PARCEL:MS MPK17-105;;901 San Antonio Road;
 Palo Alto;CA;94303-4900
 TEL;TYPE=WORK,VOICE:650-786-7599
 TEL;TYPE=FAX:650-786-7994
 EMAIL;TYPE=INTERNET:doug.royer@sun.com
 END:VCARD

 BEGIN:VCARD
 VERSION:3.0
 FN:Alexander Taler
 N:Taler;Alexander
 ORG:CS&T
 ADR;TYPE=WORK,POSTAL,PARCEL:;;3333 Graham Boulevard;Montreal;QC;
 H3R 3L5;Canada
 TEL;TYPE=WORK,VOICE:514-733-8500
 TEL;TYPE=FAX:514-733-8878
 EMAIL;TYPE=INTERNET:alext@cst.ca
 END:VCARD

20. Full Copyright Statement
"Copyright (C) The Internet Society (1999). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implmentation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included
on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice
or references to the Internet Society or other Internet organizations,
except as needed for the purpose of developing Internet standards in
which case the procedures for copyrights defined in the Internet
Standards process MUST be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an "AS
IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK

Mansour/Dawson/Royer 67 Expires February 2000
Taler/Hill

Internet Draft CAP August 5, 1999

FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Mansour/Dawson/Royer 68 Expires February 2000
Taler/Hill

