
Calendaring and Scheduling D. Royer
Internet-Draft INET-Consulting
Expires: November 14, 2004 G. Babics
 Oracle
 P. Hill
 Massachusetts Institute of
 Technology
 S. Mansour
 AOL/Netscape
 May 16, 2004

Calendar Access Protocol (CAP)
draft-ietf-calsch-cap-13

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on November 14, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 The Calendar Access Protocol (CAP) is an Internet protocol described
 in this memo that permits a Calendar User (CU) to utilize a Calendar
 User Agent (CUA) to access an [iCAL] based Calendar Store (CS).

 The CAP definition is based on requirements identified by the
 Internet Engineering Task Force (IETF) Calendaring and Scheduling

Royer, et al. Expires November 14, 2004 [Page 1]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 (CALSCH) Working Group. More information about the IETF CALSCH
 Working Group activities can be found on the IMC web site at http://

www.imc.org/ietf-calendar and at the IETF web site at http://
www.ietf.org/html.charters/calsch-charter.html [1]. Refer to the

 references within this memo for further information on how to access
 these various documents.

Table of Contents

1. Introduction . 5
1.1 Formatting Conventions 5
1.2 Related Documents 6
1.3 Definitions . 7
2. Additions to iCalendar 12
2.1 New Value Types (summary) 14
2.1.1 New Parameters (summary) 14
2.1.2 New or Updated Properties (summary) 15
2.1.3 New Components (summary) 17
2.2 Relationship of RFC-2446 (ITIP) and CAP 18
3. CAP Design . 20
3.1 System Model . 20
3.2 Calendar Store Object Model 20
3.3 Protocol Model . 21
3.3.1 Use of BEEP, MIME and iCalendar 22
4. Security Model . 24
4.1 Calendar User and UPNs 24
4.1.1 UPNs and Certificates 24
4.1.2 Anonymous Users and Authentication 25
4.1.3 User Groups . 25
4.2 Access Rights . 26
4.2.1 Access Control and NOCONFLICT 26
4.2.2 Predefined VCARs . 26
4.2.3 Decreed VCARs . 28
4.3 CAP Session Identity 29
5. CAP URL and Calendar Address 31
6. New Value Types . 33
6.1 Property Value Data Types 33
6.1.1 CAL-QUERY Value Type 33
6.1.2 UPN Value Type . 48
6.1.3 UPN-FILTER Value . 49
7. New Parameters . 52
7.1 ACTION Parameter . 52
7.2 ENABLE Parameter . 52
7.3 ID Parameter . 53
7.4 LATENCY Parameter 54

http://www.imc.org/ietf-calendar
http://www.imc.org/ietf-calendar
http://www.ietf.org/html.charters/calsch-charter.html
http://www.ietf.org/html.charters/calsch-charter.html
https://datatracker.ietf.org/doc/html/rfc2446

7.5 LOCAL Parameter . 55
7.6 LOCALIZE Parameter 55
7.7 OPTIONS Parameter 56

Royer, et al. Expires November 14, 2004 [Page 2]

Internet-Draft Calendar Access Protocol (CAP) May 2004

8. New Properties . 58
8.1 ALLOW-CONFLICT Property 58
8.2 ATT-COUNTER Property 58
8.3 CALID Property . 59
8.4 CALMASTER Property 60
8.5 CAP-VERSION Property 60
8.6 CARID Property . 61
8.7 CAR-LEVEL Property 61
8.8 COMPONENTS Property 62
8.9 CSID Property . 64
8.10 DECREED Property . 64
8.11 DEFAULT-CHARSET Property 65
8.12 DEFAULT-LOCALE Property 66
8.13 DEFAULT-TZID Property 67
8.14 DEFAULT-VCARS Property 68
8.15 DENY Property . 69
8.16 EXPAND property . 69
8.17 GRANT Property . 70
8.18 ITIP-VERSION Property 71
8.19 MAX-COMP-SIZE Property 71
8.20 MAXDATE Property . 72
8.21 MINDATE Property . 73
8.22 MULTIPART Property 73
8.23 NAME Property . 74
8.24 OWNER Property . 75
8.25 PERMISSION Property 75
8.26 QUERY property . 76
8.27 QUERYID property . 77
8.28 REQUEST-STATUS property 78
8.29 QUERY-LEVEL Property 79
8.30 RECUR-ACCEPTED Property 79
8.31 RECUR-LIMIT Property 80
8.32 RECUR-EXPAND Property 81
8.33 RESTRICTION Property 81
8.34 SCOPE Property . 82
8.35 STORES-EXPANDED Property 83
8.36 TARGET Property . 84
8.37 TRANSP Property . 84
9. New Components . 86
9.1 VAGENDA Component 86
9.2 VCALSTORE Component 88
9.3 VCAR Component . 89
9.4 VRIGHT Component . 92
9.5 VREPLY Component . 93
9.6 VQUERY Component . 93
10. Commands and Responses 95
10.1 CAP Commands (CMD) 95

10.1.1 Bounded Latency . 96

Royer, et al. Expires November 14, 2004 [Page 3]

Internet-Draft Calendar Access Protocol (CAP) May 2004

10.2 ABORT Command . 98
10.3 CONTINUE Command . 99
10.4 CREATE Command . 100
10.5 DELETE Command . 105
10.6 GENERATE-UID Command 108
10.7 GET-CAPABILITY Command 110
10.8 IDENTIFY Command . 112
10.9 MODIFY Command . 115
10.10 MOVE Command . 119
10.11 REPLY Response to a Command 121
10.12 SEARCH Command . 122
10.12.1 Searching for VFREEBUSY 125
10.13 SET-LOCALE Command 126
10.14 TIMEOUT Command . 127
10.15 Response Codes . 128
11. Object Registration 131
11.1 Registration of New and Modified Entities 131
11.2 Post the item definition 131
11.3 Allow a comment period 131
11.4 Release a new RFC 131
12. BEEP and CAP . 132
12.1 BEEP Profile Registration 132
12.2 BEEP Exchange Styles 134
12.3 BEEP connection details 134
13. IANA Considerations 137
14. Security Considerations 138

 Authors' Addresses 139
A. Acknowledgments . 141
B. Bibliography . 142

 Intellectual Property and Copyright Statements 144

Royer, et al. Expires November 14, 2004 [Page 4]

Internet-Draft Calendar Access Protocol (CAP) May 2004

1. Introduction

 This document specifies how a Calendar CUA interacts with a CS to
 manage calendar information. In particular, it specifies how to
 query, create, modify, and delete iCalendar components (e.g., events,
 to-dos, or daily journal entries). It further specifies how to search
 for available busy time information. Synchronization with CUAs is not
 covered and believed to be possible using CAP.

 CAP is specified as a [BEEP] "profile". As such, many aspects of the
 protocol (e.g., authentication and privacy) are provided within
 [BEEP]. The protocol data units leverage the standard iCalendar
 format [iCAL] to convey calendar related information.

 CAP can also be used to store and fetch [iTIP] objects and when those
 objects are used in this memo, they mean exactly the same as defined
 in [iTIP]. When iCalendar objects are transferred between the CUA and
 a CS, some additional properties and parameters may be added and the
 CUA is responsible for correctly generating iCalendar objects to non
 CAP processes.

 The definition of new components, properties, parameter's, and value
 types are broken into two parts. The first part summarizes and
 defines the new objects. The second part provides the detail and any
 ABNF for those objects. The ABNF in CAP as in other iCalendar
 specifications is order independent. That is properties in a
 component may occur in any order and parameters in any property may
 occur in any order.

1.1 Formatting Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this
 document are to be interpreted as described in [RFCWORDS].

 Calendaring and scheduling roles are referred to in quoted-strings of
 text with the first character of each word in upper case. For
 example, "Organizer" refers to a role of a "Calendar User" (CU)
 within the protocol defined by [iTIP]. Calendar components defined by
 [iCAL] are referred to with capitalized, quoted-strings of text. All
 iCalendar components should start with the letter "V". For example,

 "VEVENT" refers to the event calendar component, "VTODO" refers to
 the to-do component and "VJOURNAL" refers to the daily journal
 component.

 Scheduling methods defined by [iTIP], are referred to with
 capitalized, quoted-strings of text. For example, "REPLY" refers to
 the method for replying to a "REQUEST".

Royer, et al. Expires November 14, 2004 [Page 5]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 CAP commands are referred to by upper-case, quoted-strings of text,
 followed by the word "command". For example, "CREATE" command refers
 to the command for creating a calendar entry, "SEARCH" command refers
 to the command for reading calendar components. CAP Commands are
 named using the "CMD" property.

 Properties defined by this memo are referred to with capitalized,
 quoted-strings of text, followed by the word "property". For example,
 "ATTENDEE" property refers to the iCalendar property used to convey
 the calendar address that has been invited to a "VEVENT" or "VTODO"
 component.

 Property parameters defined by this memo are referred to with
 capitalized, quoted-strings of text, followed by the word
 "parameter". For example, "PARTSTAT" parameter refers to the
 iCalendar property parameter used to specify the participation status
 of an attendee. Enumerated values defined by this memo are referred
 to with capitalized text, either alone or followed by the word
 "value".

 Object states defined by this memo are referred to with capitalized,
 quoted-strings of text, followed by the word "state". For example,
 "BOOKED" state refers to an object in the booked state.

 Within a query, the different parts are referred to as a "clause" and
 its value as "clause value" and the clause name will be in uppercase
 enclosed in quotes. Example, The "SELECT" clause or if the "SELECT"
 clause value contains ...

 In tables, the quoted-string text is specified without quotes in
 order to minimize the table length.

1.2 Related Documents

 Implementers will need to be familiar with several other memos that,
 along with this one, describe the Internet calendaring and scheduling
 standards. These documents are:

 [iCAL] - (RFC2445) Which specifies the objects, data types,
 properties and property parameters used in the protocols, along

https://datatracker.ietf.org/doc/html/rfc2445

 with the methods for representing and encoding them.

 [iTIP] - (RFC2446) Which specifies an interoperability protocol for
 scheduling between different installations.

 [iMIP] - (RFC2447) Which specifies the Internet email binding for
 [iTIP].

Royer, et al. Expires November 14, 2004 [Page 6]

https://datatracker.ietf.org/doc/html/rfc2446
https://datatracker.ietf.org/doc/html/rfc2447

Internet-Draft Calendar Access Protocol (CAP) May 2004

 [GUIDE] - (RFC3283), a guide to implementers and describes the
 elements of a calendaring system, how they interact with each
 other, how they interact with end users, and how the standards and
 protocols are used.

 This memo does not attempt to repeat the specification of concepts
 and definitions from these other memos. Where possible, references
 are made to the memo that provides for the specification of these
 concepts and definitions.

1.3 Definitions

 BOOKED - An object in the calendar store has one of three conceptual
 states. It is in the "UNPROCESSED" state, "BOOKED" state, or
 marked for deletion which is the "DELETED" state. How the
 implementation stores the state of any object is not a protocol
 issues and is not discussed. An object can be said to be booked,
 unprocessed, or marked for delete.

 1. An "UNPROCESSED" state scheduling object has been stored in
 the calendar store but has not been acted on by a CU or CUA.
 All scheduled entries are [iTIP] objects. All [iTIP] objects
 in the store are not in the "BOOKED" state. To retrieve any
 [iTIP] object, simply do a query asking for any objects that
 are stored in the "UNPROCESSED" state.

 2. A "BOOKED" state entry is stored with the "CREATE" command. It
 is an object that has been acted on by a CU or CUA and there
 has been a decision to store an object. To retrieve any booked
 object, simply do a query asking for any objects that were
 stored in the "BOOKED" state.

 3. A "DELETED" state entry is created by sending a "DELETE"
 command with the "OPTION" parameter value set to "MARK". To
 retrieve any deleted object, simply do a query asking for any
 objects that were stored in the "DELETED" state. By default
 objects marked for delete are not returned. The CUA must
 specifically ask for marked for delete objects. You can not
 ask for components in the "DELETED" state and in other states
 in the same "VQUERY" component, as there would be no way to

https://datatracker.ietf.org/doc/html/rfc3283

 distinguish between them in the reply.

 Calendar - A collection of logically related objects or entities
 each of which may be associated with a calendar date and possibly
 time of day. These entities can include calendar properties or
 components. In addition, a calendar might be related to other

Royer, et al. Expires November 14, 2004 [Page 7]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 calendars with the "RELATED-TO" property. A calendar is identified
 by its unique calendar identifier. The [iCAL] defines the initial
 calendar properties, calendar components and properties that make
 up the contents of a calendar.

 Calendar Access Protocol (CAP) - The standard Internet protocol that
 permits a CUA to access and manipulate calendars residing on a
 Calendar Store. (this memo)

 Calendar Access Rights (VCAR) - The mechanism for specifying the CAP
 operations ("PERMISSION") that a particular calendar user ("UPN")
 is granted or denied permission to perform on a given calendar
 object ("SCOPE"). The calendar access rights are specified with a
 "VCAR" component. (Section 9.3.)

 Calendar Address - Also See Calendar URL - they are one in the same
 for CAP addresses. The calendar address can also be the value to
 the "ATTENDEE" and "ORGANIZER" properties as defined in [iCAL].

 Calendar URL - A calendar URL is a URL defined in this memo that
 specifies the address of a CS or Calendar.

 Component- Any object that conforms to the iCalendar object format
 and that is either defined in an internet draft, registered with
 IANA, or is an experimental object that is prefixed with "x-".
 Some types of components include calendars, events, to-dos,
 journals, alarms, and time zones. A component consists of
 properties and possibly other contained components. For example,
 an event may contain an alarm component.

 Container - This is a generic name for VCALSTORE or VAGENDA.

 Properties - An attribute of a particular component. Some properties
 are applicable to different types of components. For example, the
 "DTSTART" property is applicable to the "VEVENT", "VTODO", and
 "VJOURNAL" components. Other components are applicable only to an
 individual type of calendar component. For example, the "TZURL"
 property may only be applicable to the "VTIMEZONE" components.

 Calendar Identifier (CALID) - A globally unique identifier

 associated with a calendar. Calendars reside within a CS. See
 Qualified Calendar Identifier and Relative Calendar Identifier.
 All CALIDs start with "cap:".

 Calendar Policy - A CAP operational restriction on the access or
 manipulation of a calendar. These may be outside of the scope of
 the CAP protocol. An example of an implementation or site policy
 is, "events MUST BE scheduled in unit intervals of one hour".

Royer, et al. Expires November 14, 2004 [Page 8]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Calendar Property - An attribute of a calendar ("VAGENDA"). The
 attribute applies to the calendar, as a whole. For example, the
 "CALSCALE" property specifies the calendar scale (e.g., the
 "GREGORIAN" value) for the all entries within the calendar.

 Calendar Store (CS) - The data and service model definition for a
 Calendar Store as defined in this memo. This memo does not specify
 how the CS is implemented.

 Calendar Server - An implementation of a Calendar Store (CS) that
 manages one or more calendars.

 Calendar Store Identifier (CSID) - The globally unique identifier
 for an individual CS. A CSID consists of the host and port
 portions of a "Common Internet Scheme Syntax" part of a URL, as
 defined by [URL]. The CSID excludes any reference to a specific
 calendar. (Section 8.9)

 Calendar Store Components - Components maintained in a CS specify a
 grouping of calendar store-wide information.

 Calendar Store Properties - Properties maintained in a Calendar
 Store calendar store-wide information.

 Calendar User (CU) - An entity (often biological) that uses a
 calendaring system.

 Calendar User Agent (CUA) - The client application that a CU
 utilizes to access and manipulate a calendar.

 CAP Session - An open communication channel between a CUA and a CS.
 If the CAP session is authenticated, the CU is "authenticated" and
 it is an "authenticated CAP session".

 Contained Component / Contained Properties - A component or property
 that is contained inside of another component. A "VALARM"
 component for example may be contained inside of a "VEVENT"
 component. And a "TRIGGER" property could be a contained property
 of a "VALARM" component.

 Delegate - A CU (sometimes called the delegatee) who has been
 assigned participation in a scheduled component (e.g., VEVENT) by
 one of the attendees in the scheduled component (sometimes called
 the delegator). An example of a delegate is a team member told to
 go to a particular meeting in place of another Attendee who is
 unable to attend.

Royer, et al. Expires November 14, 2004 [Page 9]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Designate - A CU who is authorized to act on behalf of another CU.
 An example of a designate is an assistant.

 Experimental - The CUA and CS may implement experimental extensions
 to the protocol. They also might have experimental components,
 properties, and parameters. These extensions MUST start with "x-"
 (or "X-") and should include a vendor prefix (such as
 "x-myvendor-"). There is no guarantee that these experimental
 extensions will interoperate with other implementations. There is
 no guarantee that they will not interact in unpredictable ways
 with other vendor experimental extensions. There is no guarantee
 that the same specific experimental extension is not used my
 multiple vendors in incompatible ways. Implementations should
 limit sending those extensions to other implementations.

 Object - A generic name for any component, property, parameter, or
 value type to be used in iCalendar.

 Overlapped Booking - A policy which indicates whether or not
 components with a "TRANSP" property not set to
 "TRANSPARENT-NOCONFLICT" or "OPAQUE-NOCONFLICT" value can overlap
 one another. When the policy is applied to a calendar it indicates
 whether or not the time span of any component (VEVENT, VTODO, ...)
 in the calendar can overlap the time span of any other component
 in the same calendar. When applied to an individual object, it
 indicates whether or not any other component's time span can
 overlap that individual component. If the CS does not allow
 overlapped booking, then the CS is unwilling to allow any
 overlapped bookings within any calendar or entry in the CS.

 Owner - One or more CUs or UGs that are listed in the "OWNER"
 property in a calendar. There can be more than one owner.

 Qualified Calendar Identifier (Qualified CALID) - A CALID in which
 both the scheme and CSID of the CAP URI are present.

 Realm - A collection of calendar user accounts, identified by a
 string. The name of the Realm is only used in UPNs. In order to
 avoid namespace conflict, the Realm SHOULD be postfixed with an
 appropriate DNS domain name. (e.g., the foobar Realm could be
 called foobar.example.com).

 Relative Calendar Identifier (Relative CALID) - An identifier for an
 individual calendar in a calendar store. It MUST BE unique within
 a calendar store. A Relative CALID consists of the "URL path" of
 the "Common Internet Scheme Syntax" portion of a URL, as defined
 by [URI] and [URLGUIDE].

Royer, et al. Expires November 14, 2004 [Page 10]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Session Identity - A UPN associated with a CAP session. A session
 gains an identity after successful authentication. The identity is
 used in combination with VCAR to determine access to data in the
 CS.

 User Group (UG) - A collection of Calendar Users and/or User Groups.
 These groups are expanded by the CS and may reside either locally
 or in an external database or directory. The group membership may
 be fixed or dynamic over time.

 Username - A name which denotes a Calendar User within a Realm. This
 is part of a UPN.

 User Principal Name (UPN) - A unique identifier that denotes a CU or
 a group of CU. (Section 6.1.2)

Royer, et al. Expires November 14, 2004 [Page 11]

Internet-Draft Calendar Access Protocol (CAP) May 2004

2. Additions to iCalendar

 Several new components, properties, parameters, and value types are
 added in CAP. This section summarizes those new objects.

 This memo extends the properties that can go into 'calprops' as
 defined in [iCAL] section 4.6 page 51 to allow [iTIP] objects
 transmitted between a CAP aware CUA and the CS to contain the
 "TARGET" and "CMD" properties. This memo also adds to the [iCAL] ABNF
 to allow IANA and experimental extensions. This memo does not address
 how a CUA transmits [iTIP] or [iMIP] objects to non CAP programs.

 calprops = 2*(

 ; 'prodid' and 'version' are both REQUIRED,
 ; but MUST NOT occur more than once.
 ;
 prodid /version /

 ; These are optional, but MUST NOT occur
 ; more than once.
 ;
 calscale /
 method /
 cmd /

 ; Target is optional, and may occur more
 ; than once.
 ;
 target / other-props)

 other-props = *(x-prop) *(iana-prop) *(other-props)

 iana-prop = ; Any property registered by IANA directly or
 ; included in an RFC that may be applied to
 ; the component and within the rules published.

 x-prop = ; As defined in [iCAL]

 Another change is that the 'component' part of the 'icalbody' ABNF as
 described in [iCAL] section 4.6 is optional when sending a command as
 shown in the following updated ABNF:

 icalbody = calprops component

 ; If the "VCALENDAR" component contains the "CMD"

Royer, et al. Expires November 14, 2004 [Page 12]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 ; property then the 'component' is optional:
 ;
 / calprops ; Which MUST include a "CMD" property

 In addition a problem exists with the control of "VALARM" components
 and their "TRIGGER" properties. A CU may wish to set their own alarm
 (local alarms) on components. These local alarms are not to be
 forwarded to other CUs, CUAs, or CSs as are the "SEQUENCE" property
 and the "ENABLE" parameter. So for the protocol between a CUA and a
 CS, the following changes apply to the CAP protocol from [iCAL]

section 4.6.6 page 67:

 alarmc = "BEGIN" ":" "VALARM" CRLF
 alarm-seq
 other-props
 (audioprop / dispprop / emailprop / procprop)
 "END" ":" "VALARM" CRLF

 alarm-seq = "SEQUENCE" alarmseqparams ":" posint0 CRLF

 alarmseqparams = other-params [";" local-param] other-params

 ; Where DIGIT is defined in [iCAL]
 ;
 posint0 = 1*DIGIT
 posint1 = posintfirst 1*DIGIT

 ; A number starting with 1 through 9.
 ;
 posintfirst = %x31-39

 other-params = *(";" xparam) *(";" iana-params) *(";" other-param)

 iana-params = ; Any parameter registered by IANA directly or
 ; included in an RFC that may be applied to
 ; the property and within the rules published.

 xparam ; As defined in [iCAL]

 The CUA adds a "SEQUENCE" property to each "VALARM" component as it
 books the component. This property along with the "LOCAL" and
 "ENABLE" parameters allow the CUA to uniquely identify any VALARM in
 any component. The CUA should remove those before forwarding to non
 CAP aware CUAs.

Royer, et al. Expires November 14, 2004 [Page 13]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 In addition, if a CUA wished to ignore a "TRIGGER" property in a
 "VALARM" component that was supplied to it by the "Organizer", the
 CUA needs a common way to tag that trigger as disabled. So the
 following is a modification to [iCAL] section 4.8.6.3 page 127:

 trigger = "TRIGGER" 1*(";" enable-param) (trigrel / trigabs)

Section 7.2 and Section 7.5.

2.1 New Value Types (summary)

 UPN The UPN value type is text value type restricted to only UPN
 values. (Section 6.1.2)

 UPN-FILTER Like the UPN value type, but also includes filter rules
 that allow wildcards. (Section 6.1.3)

 CALQUERY The "CAL-QUERY" value type is a query syntax that is used by
 the CUA to specify the rules that apply to a CAP command. (Section

6.1.1)

2.1.1 New Parameters (summary)

 ACTION - The "ACTION" parameter informs the endpoint if it should
 abort or ask to continue on timeout. (Section 7.1).

 ENABLE - The "ENABLE" parameter in CAP is used to tag a property in
 a component as disabled or enabled. (Section 7.2).

 ID - The "ID" parameter specifies a unique identifier to be used for
 any outstanding commands.

 LATENCY - The "LATENCY" parameter supplies the timeout value for
 command completion to the other endpoint. (Section 7.4).

 LOCAL - The "LOCAL" parameter in CAP is used to tag a property in a
 component to signify that the component is local or to be
 distributed. (Section 7.5).

 LOCALIZE - The "LOCALIZE" parameter specifies the locale to be used
 in error and warning messages.

 OPTIONS - The "OPTIONS" parameter passes optional information for
 the command being sent.

Royer, et al. Expires November 14, 2004 [Page 14]

Internet-Draft Calendar Access Protocol (CAP) May 2004

2.1.2 New or Updated Properties (summary)

 ALLOW-CONFLICT - Some entries in a calendar might not be valid if
 other entries were allowed to overlap the same time span. (Section

8.1)

 ATT-COUNTER - When storing a "METHOD" property with the "COUNTER"
 method, there needs to be a way to remember the "ATTENDEE" value
 that sent the COUNTER. (Section 8.2)

 CAP-VERSION - The version of CAP the implementation supports.
 (Section 8.5)

 CAR-LEVEL - The level of calendar access level supported. (Section
8.7)

 COMPONENTS - The list of components supported. (Section 8.8)

 CSID - The Calendar Store IDentifier (CSID) uniquely identifies a
 CAP server. (Section 8.9)

 CALID - Each calendar within a CS needs to be uniquely identifiable.
 The "CALID" property identifies a unique calendar within a CS. It
 can be a full CALID or a relative CALID. (Section 8.3)

 CALMASTER - The "CALMASTER" property specifies the contact
 information for the CS. (Section 8.4)

 CARID - Access rights can be saved and fetched by unique ID - the
 "CARID" property. (Section 8.6)

 CMD - The CAP commands, as well as replies are transmitted using the
 "CMD" property. (Section 10.1)

 DECREED - Some access rights are not changeable by the CUA. When
 that is the case, the "DECREED" property value in the "VCAR"
 component will be TRUE. (Section 8.10)

 DEFAULT-CHARSET - The list of charsets supported by the CS. The
 first entry is the default for the CS. (Section 8.11)

 DEFAULT-LOCALE - The list of locales supported by the CS. The first
 entry in the list is the default locale. (Section 8.12)

 DEFAULT-TZID - This is the list of known timezones supported. The
 first entry is the default. (Section 8.13)

Royer, et al. Expires November 14, 2004 [Page 15]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 DEFAULT-VCARS - A list of the "CARID" properties that will be used
 to create new calendars. (Section 8.14)

 DENY - The UPNs listed in the "DENY" property of a "VCAR" component
 will denied access as described in the "VRIGHT" component.
 (Section 8.15)

 EXPAND - This property tells the CS if the query reply should expand
 components into multiple instances. The default is FALSE and is
 ignored for CSs that can not expand recurrence rules. (Section

8.16)

 GRANT - The UPNs listed in the "GRANT" property of a "VCAR"
 component will allowed access as described in the "VRIGHT"
 component. (Section 8.17)

 ITIP-VERSION - The version of [iTIP] supported. (Section 8.18)

 MAXDATE - The maximum date supported by the CS. (Section 8.20)

 MAX-COMP-SIZE - The largest component size allowed in the
 implementation including attachments in octets. (Section 8.19)

 MINDATE - The minimum date supported by the CS. (Section 8.21)

 MULTIPART - Passed in the capability messages to indicate which MIME
 multipart types the sender supports. (Section 8.22)

 NAME - The "NAME" property is used to add locale specific
 descriptions into components. (Section 8.23)

 OWNER - Each calendar has at least one "OWNER" property. (xref
 target="OWNER"/>) Related to the "CAL-OWNERS()" (Section 6.1.1.1)
 query clause.

 PERMISSION - This property specifies the permission being granted or
 denied. Examples are the "SEARCH" and "MODIFY" values. (Section

8.25)

 QUERY - Used to hold the CAL-QUERY (Section 8.26) for the component.

 QUERYID - A unique id for a stored query. (Section 8.27)

 QUERY-LEVEL - The level of the query language supported. (Section
8.29)

Royer, et al. Expires November 14, 2004 [Page 16]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 RECUR-ACCEPTED - If the implementation support recurrence rules.
 (Section 8.30)

 RECUR-EXPAND - If the implementation support expanding recurrence
 rules. (Section 8.32)

 RECUR-LIMIT - Any maximum limit on the number of instances the
 implementation will expand recurring objects. (Section 8.31)

 REQUEST-STATUS - The [iCAL] "REQUEST-STATUS" property is extended to
 include new error numbers. (Section 8.28)

 RESTRICTION - In the final check when granting calendar access
 requests, the CS test the results to the value of the
 "RESTRICTION" property in the corresponding "VRIGHT" component to
 determine if the access meets that restriction. (Section 8.33)

 SCOPE - The "SCOPE" property is used in "VRIGHT"s component to
 select the subset of data that may be acted upon when checking
 access rights. (Section 8.34)

 SEQUENCE - When the "SEQUENCE" property is used in a "VALARM"
 component it uniquely identifies the instances of the "VALARM"
 within that component.

 STORES-EXPANDED - Specifies if the implementation stores recurring
 object expanded or not. (Section 8.35)

 TARGET - The new "VCALENDAR" component property "TARGET" (Section
8.36) is used to specify which calendar(s) will be the subject of

 the CAP command.

 TRANSP - This is a modification the [iCAL] "TRANSP" property and it
 allows more values. The new values are related to conflict
 control. (Section 8.37)

2.1.3 New Components (summary)

 VAGENDA - CAP allows the fetching and storing of the entire contents
 of a calendar. The "VCALENDAR" component is not sufficient to
 encapsulate all of the needed data that describes a calendar. The
 "VAGENDA" component is the encapsulating object for an entire
 calendar. (Section 9.1)

 VCALSTORE - Each CS contains one or more calendars (VAGENDAs), the
 "VCALSTORE" component is the encapsulating object that can hold
 all of the "VAGENDA" components along with any components and

Royer, et al. Expires November 14, 2004 [Page 17]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 properties that are unique to the store level. (Section 9.2)

 VCAR - Calendar Access Rights are specified and encapsulated in the
 new iCalendar "VCAR" component. The "VCAR" component holds some
 new properties and at least one "VRIGHT" component. (Section 9.3)

 VRIGHT - This component encapsulates a set of instructions to the CS
 that define the rights or restrictions needed. (Section 9.4)

 VREPLY - This component encapsulates a set of data that can consist
 of an arbitrary amounts of properties and components. Its contents
 is dependent on the command that was issued. (Section 9.5)

 VQUERY - The search operation makes use of a new component, called
 "VQUERY" and a new value type "CAL-QUERY" (Section 6.1.1). The
 "VQUERY" component is used to fetch objects from the CS. (Section

9.6)

2.2 Relationship of RFC-2446 (ITIP) and CAP

 [iTIP] describes scheduling methods which result in indirect
 manipulation of components. In CAP, the "CREATE" command is used to
 deposit entities into the store. Other CAP commands such as "DELETE",
 "MODIFY" and "MOVE" command values provide direct manipulation of
 components. In the CAP calendar store model, scheduling messages are
 conceptually kept separate from other components by their state.

 All scheduling operations are as defined in [iTIP]. This memo makes
 no changes to any of the methods or procedures described in [iTIP].
 In this memo referring to the presence of the "METHOD" property in an
 object is the same as saying an [iTIP] object.

 A CUA may create a "BOOKED" state object by depositing an iCalendar
 object into the store. This is done by depositing an object that does
 not have a "METHOD" property. The CS then knows to set the state of
 the object to the "BOOKED" state. If the object has a "METHOD"
 property then the object is stored in the "UNPROCESSED" state.

 If existing "UNPROCESSED" state objects exist in the CS for the same

https://datatracker.ietf.org/doc/html/rfc2446

 UID then a CUA may wish to consolidate the objects in to one "BOOKED"
 state object. The CUA would fetch the "UNPROCESSED" state objects for
 that UID and process them in the CUA as described in [iTIP]. Then if
 the CUA wished to book the UID, the CUA would issue a "CREATE"
 command to create the new "BOOKED" state object in the CS, followed
 by a "DELETE" command to remove any related old [iTIP] objects from
 the CS. And it might also involve having the CUA send some [iMIP]
 objects or contacting other CSs and performing CAP operations on

Royer, et al. Expires November 14, 2004 [Page 18]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 those CSs.

 The CUA could also decide not to book the object. In which case the
 "UNPROCESSED" state objects could be removed from the CS or the CUA
 could set those object to the marked for delete state. The CUA could
 also ignore objects for later processing.

 The marked for delete state is used to keep the object around so that
 the CUA can process duplicate requests automatically. If a duplicate
 [iTIP] object is deposited into the CS and there exists identical
 marked for delete objects, then a CUA acting on behalf of the "OWNER"
 can silently drop those duplicate entries.

 Another purpose for the marked for delete state is so that when a CU
 decides they do not wish to have the object show in their calendar,
 the CUA can book the object; changing the "PARTSTAT" parameter to
 "DECLINED" in the "ATTENDEE" property that corresponds to their UPN.
 Then perform an [iTIP] processing such as sending back a decline.
 Then mark that object as marked for delete. Their CUA might be
 configurable to automatically drop any updates for that object
 knowing the CU has already declined.

 When synchronizing with multiple CUAs, the marked for delete state
 could be used to inform the synchronization process that an object is
 to be deleted. How synchronization is done is not specified in this
 memo.

 Several "UNPROCESSED" state entries can be in the CS for the same
 UID. However once consolidated, then only one object exists in the CS
 and that is the booked object. The others MUST BE removed, or have
 their state changed to "DELETED".

 There MUST NOT BE more than one "BOOKED" state object in a calendar
 for the same "UID". The "ADD" method value may create multiple
 objects all in the "BOOKED" state for the same UID, however for the
 purpose of this memo, they are the same object that simply have
 multiple "VCALENDAR" components.

 For example, if you were on vacation, you could have received a
 "REQUEST" method to attend a meeting and several updates to that
 meeting. Your CUA would have to issue "SEARCH" commands to find them

 in the CS using CAP, process them, determine what the final state of
 the object from a possible combination of user input and programmed
 logic. Then the CUA would instruct the CS to create a new booked
 object from the consolidated results. Finally, the CUA could do a
 "DELETE" command to remove the related "UNPROCESSED" state objects.
 See [iTIP] for details on resolving multiple [iTIP] scheduling
 entries.

Royer, et al. Expires November 14, 2004 [Page 19]

Internet-Draft Calendar Access Protocol (CAP) May 2004

3. CAP Design

3.1 System Model

 The system model describes the high level components of a calendar
 system and how they interact with each other.

 CAP is used by a CUA to send commands to and receive responses from a
 CS.

 The CUA prepares a [MIME] encapsulated command, sends it to the CS,
 and receives a [MIME] encapsulated response. The calendaring related
 information within these messages are represented by iCalendar
 objects. In addition the "GET-CAPABILITY" command can be sent from
 the CS to the CUA.

 There are two distinct protocols in operation to accomplish this
 exchange. [BEEP] is the transport protocol used to move these
 encapsulations between a CUA and a CS. CAP's [BEEP] profile defines
 the application protocol where the content and semantics of the
 messages sent between the CUA and the CS are specified.

3.2 Calendar Store Object Model

 [iCAL] describes components such as events, todos, alarms, and
 timezones. [CAP] requires additional object infrastructure. In
 particular, detailed definitions of the containers for events and
 todos (calendars), access control objects, and a query language.

 The conceptual model for a calendar store is shown below. The
 calendar store (VCALSTORE - Section 9.2) contains "VCAR"s, "VQUERY"s,
 "VTIMEZONE"s, "VAGENDA"s and calendar store properties.

 Calendars (VAGENDAs) contain "VEVENT"s, "VTODO"s, "VJOURNAL"s,
 "VCAR"s, "VTIMEZONE"s, "VFREEBUSY", "VQUERY"s and calendar
 properties.

 The component "VCALSTORE" is used to denote the a root of the
 calendar store and contains all of the calendars.

 Calendar Store

 VCALSTORE
 |
 +-- properties
 +-- VCARs
 +-- VQUERYs

Royer, et al. Expires November 14, 2004 [Page 20]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 +-- VTIMEZONEs
 +-- VAGENDA
 | |
 | +--properties
 | +--VEVENTs
 | | |
 | | +--VALARMs
 | +--VTODOs
 | | |
 | | +--VALARMs
 | +--VJOURNALs
 | +--VCARs
 | +--VTIMEZONEs
 | +--VQUERYs
 | +--VFREEBUSYs
 | |
 | | ...
 .
 .
 +-- VAGENDA
 . .
 . .
 . .

 Calendars within a Calendar Store are identified by their unique
 Relative CALID.

3.3 Protocol Model

 CAP uses [BEEP] as the transport and authentication protocol.

 The initial charset MUST BE UTF-8 for the session in an unknown
 locale. If the CS supplied the [BEEP] 'localize' attribute in the
 [BEEP] 'greeting' then the CUA may tell the CS to switch locales for
 the session by issuing the "SET-LOCALE" CAP command and supplying one
 of the locales supplied by the [BEEP] 'localize' attribute. If
 supplied the first locale in the [BEEP] 'localize' attribute is the
 default locale of the CS. The locale is switched only after a
 successful reply.

 The "DEFAULT-CHARSET" property of the CS contains the list of
 charsets supported by the CS with the first value being the default

 for new calendars. If the CUA wishes to switch to one of those
 charsets for the session, the CUA issues the "SET-LOCALE" command.
 The CUA would have to first perform a "GET-CAPABILITY" command on the
 CS to get the list of charsets supported by the CS. The charset is
 switched only after a successful reply.

Royer, et al. Expires November 14, 2004 [Page 21]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 The CUA may switch locales and charsets as needed. There is no
 requirement that a CS support multiple locales or charsets.

3.3.1 Use of BEEP, MIME and iCalendar

 CAP uses the [BEEP] application protocol over TCP. (refer to [BEEP]
 and [BEEPTCP] for more information). The default port that the CS
 listens for connections is on user port 1026.

 The [BEEP] data exchanged in CAP is a iCalendar MIME content that
 fully conforms to [iCAL] iCalendar format.

 This example tells the CS to generate and return 10 UIDs to be used
 by the CUA. Note throughout this memo, 'C:' refers to what the CUA
 sends, 'S:' refers to what the CS sends, 'I:' refers to what the
 initiator sends, and 'L:' refers to what the listener sends. Where
 initiator and listener are used as defined in [BEEP].

 C: MSG 1 2 . 432 62
 C: Content-Type: text/calendar
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.0
 C: PRODID:-//someone's prodid
 C: CMD;ID=unique-per-cua-123;OPTIONS=10:GENERATE-UID
 C: END:VCALENDAR

 NOTE: The following examples will not include the [BEEP] header and
 footer information. Only the iCalendar objects that are sent between
 the CUA and CS will be shown as the [BEEP] payload boundaries are
 independent of CAP.

 The commands listed below are used to manipulate or access the data
 on the calendar store:

 ABORT - Sent to halt the processing of some of the commands.
 (Section 10.2)

 CONTINUE - Sent to continue processing a command that has had its
 specified timeout time reached. (Section 10.3)

 CREATE - Create a new object on the CS. Initiated by the CUA only.
 (Section 10.4)

Royer, et al. Expires November 14, 2004 [Page 22]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 SET-LOCALE - Tell the CS to use any named locale and charset
 supplied. Initiated by the CUA only. (Section 10.13)

 DELETE - Delete objects from the CS. Initiated by the CUA only. Can
 also be used to mark an object for deletion. (Section 10.5)

 GENERATE-UID - Generate one or more unique ids. Initiated by the CUA
 only. (Section 10.6)

 GET-CAPABILITY - Query the capabilities the other end point of the
 session. (Section 10.7)

 IDENTIFY - Set a new identity for the session. Initiated by the CUA
 only. (Section 10.8)

 MODIFY - Modify components. Initiated by the CUA only. (Section
10.9)

 MOVE - Move components to another container. Initiated by the CUA
 only. (Section 10.10)

 REPLY - When replying to a command, the "CMD" value will be set to
 "REPLY" so that it will not be confused with a new command.
 (Section 10.11)

 SEARCH - Search for components. Initiated by the CUA only. (Section
10.12)

 TIMEOUT - Sent when a specified amount of time has lapsed and a
 command has not finished. (Section 10.14)

Royer, et al. Expires November 14, 2004 [Page 23]

Internet-Draft Calendar Access Protocol (CAP) May 2004

4. Security Model

 The [BEEP] transport performs all session authentication.

4.1 Calendar User and UPNs

 A CU is an entity that can be authenticated. It is represented in CAP
 as a UPN, which is a key part of access rights. The UPN
 representation is independent of the authentication mechanism used
 during a particular CUA/CS interaction. This is because UPNs are used
 within VCARs. If the UPN were dependent on the authentication
 mechanism, a VCAR could not be consistently evaluated. A CU may use
 one mechanism while using one CUA but the same CU may use a different
 authentication mechanism when using a different CUA, or while
 connecting from a different location.

 The user may also have multiple UPNs for various purposes.

 Note that the immutability of the user's UPN may be achieved by using
 SASL's authorization identity feature. (The transmitted authorization
 identity may be different than the identity in the client's
 authentication credentials.) [SASL, section 3]. This also permits a
 CU to authenticate using their own credentials, yet request the
 access privileges of the identity for which they are proxying SASL.
 Also, the form of authentication identity supplied by a service like
 TLS may not correspond to the UPNs used to express a server's access
 rights, requiring a server specific mapping to be done. The method by
 which a server determines a UPN, based on the authentication
 credentials supplied by a client, is implementation specific. See
 [BEEP] for authentication details; [BEEP] relies on SASL.

4.1.1 UPNs and Certificates

 When using X.509 certificates for purposes of CAP authentication, the
 UPN should appear in the certificate. Unfortunately there is no
 single correct guideline for which field should contain the UPN.

 From RFC-2459, section 4.1.2.6 (Subject):

 If subject naming information is present only in the

https://datatracker.ietf.org/doc/html/rfc2459#section-4.1.2.6

 subjectAlt-Name extension (e.g., a key bound only to an email
 address or URI), then the subject name MUST be an empty sequence
 and the subjectAltName extension MUST BE critical.

 Implementations of this specification MAY use these comparison
 rules to process unfamiliar attribute types (i.e., for name
 chaining). This allows implementations to process certificates
 with unfamiliar attributes in the subject name.

Royer, et al. Expires November 14, 2004 [Page 24]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 In addition, legacy implementations exist where an RFC 2822 name
 is embedded in the subject distinguished name as an EmailAddress
 attribute. The attribute value for EmailAddress is of type
 IA5String to permit inclusion of the character '@', which is not
 part of the PrintableString character set. EmailAddress attribute
 values are not case sensitive (e.g., "fanfeedback@redsox.com" is
 the same as "FANFEEDBACK@REDSOX.COM").

 Conforming implementations generating new certificates with
 electronic mail addresses MUST use the rfc822Name in the subject
 alternative name field (see sec. 4.2.1.7 of [X509CRL]) to describe
 such identities. Simultaneous inclusion of the EmailAddress
 attribute in the subject distinguished name to support legacy
 implementations is deprecated but permitted.

 Since no single method of including the UPN in the certificate will
 work in all cases, CAP implementations MUST support the ability to
 configure what the mapping will be by the CS administrator.
 Implementations MAY support multiple mapping definitions, for
 example, the UPN may be found in either the subject alternative name
 field, or the UPN may be embedded in the subject distinguished name
 as an EmailAddress attribute.

 Note: If a CS or CUA is validating data received via [iMIP], if the
 "ORGANIZER" or "ATTENDEE" properties said (e.g.) "ATTENDEE;CN=Joe
 Random User:MAILTO:juser@example.com" then the email address should
 be checked against the UPN. This is so the "ATTENDEE" property cannot
 be changed to something misleading like "ATTENDEE;CN=Joe Rictus
 User:MAILTO:jrictus@example.com" and have it pass validation. Note
 that it is the email addresses that miscompare, the CN miscompare is
 irrelevant.

4.1.2 Anonymous Users and Authentication

 Anonymous access is often desirable. For example an organization may
 publish calendar information that does not require any access control
 for viewing or login. Conversely, a user may wish to view
 unrestricted calendar information without revealing their identity.

4.1.3 User Groups

https://datatracker.ietf.org/doc/html/rfc2822

 A User Group is used to represent a collection of CUs or other UGs
 that can be referenced in VCARs. A UG is represented in CAP as a UPN.
 The CUA cannot distinguish between a UPN that represents a CU or a
 UG.

 UGs are expanded as necessary by the CS. The CS MAY expand a UG
 (including nested UGs) to obtain a list of unique CUs. Duplicate UPNs

Royer, et al. Expires November 14, 2004 [Page 25]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 are filtered during expansion.

 How the UG expansion is maintained across commands is implementation
 specific. A UG may reference a static list of members, or it may
 represent a dynamic list. Operations SHOULD recognize changes to UG
 membership.

 CAP does not define commands or methods for managing UGs.

4.2 Access Rights

 Access rights are used to grant or deny access to calendars,
 components, properties, and parameters in a CS to a CU. CAP defines a
 new component type called a Calendar Access Right (VCAR).
 Specifically, a "VCAR" component grants, or denies, UPNs the right to
 search and write components, properties, and parameters on calendars
 within a CS.

 The "VCAR" component model does not put any restriction on the
 sequence in which the object and access rights are created. That is,
 an object associated with a particular "VCAR" component might be
 created before or after the actual "VCAR" component is defined. In
 addition, the "VCAR" and "VEVENT" components might be created in the
 same iCalendar object and passed together in a single object.

 All rights MUST BE denied unless specifically granted.

 If two rights specified in "VCAR" components are in conflict, the
 right that denies access always takes precedence over the right that
 grants access. Any attempt to create a "VCAR" component that
 conflicts with a "VCAR" components with a "DECREED" property set to
 the "TRUE" value must fail.

4.2.1 Access Control and NOCONFLICT

 The "TRANSP" property can take on values "TRANSPARENT-NOCONFLICT" and
 "OPAQUE-NOCONFLICT" that prohibit other components from overlapping
 it. This setting overrides access. The "ALLOW-CONFLICT" CS, Calendar
 or component setting may also prevent overlap, returning an error
 code "6.3".

4.2.2 Predefined VCARs

 Predefined calendar access CARIDs that MUST BE implemented are:

Royer, et al. Expires November 14, 2004 [Page 26]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 CARID:READBUSYTIMEINFO - Specifies the "GRANT" and "DENY" rules that
 allow UPNs to search "VFREEBUSY" components. An example definition
 for this VCAR is:

 BEGIN:VCAR
 CARID:READBUSYTIMEINFO
 BEGIN:VRIGHT
 GRANT:*
 PERMISSION:SEARCH
 SCOPE:SELECT * FROM VFREEBUSY WHERE STATE() = 'BOOKED'
 END:VRIGHT
 END:VCAR

 CARID:REQUESTONLY - Specifies the "GRANT" and "DENY" rules to UPNs
 other than the owner of the calendar the ability to write new
 objects with the property "METHOD" property set to the "REQUEST"
 value. This CARID allows the owner to specify which UPNs are
 allowed to make scheduling requests. An example definition for
 this VCAR is:

 BEGIN:VCAR
 CARID:REQUESTONLY
 BEGIN:VRIGHT
 GRANT:NON CAL-OWNERS()
 PERMISSION:CREATE
 RESTRICTION:SELECT VEVENT FROM VAGENDA WHERE METHOD = 'REQUEST'
 RESTRICTION:SELECT VTODO FROM VAGENDA WHERE METHOD = 'REQUEST'
 RESTRICTION:SELECT VJOURNAL FROM VAGENDA WHERE METHOD = 'REQUEST'
 END:VRIGHT
 END:VCAR

 CARID:UPDATEPARTSTATUS - Grants to authenticated users the right to
 modify the instances of the "ATTENDEE" property set to one of
 their calendar addresses in any components for any booked
 component containing an "ATTENDEE" property. This allows (or
 denies) a CU the ability to update their own participation status

 in a calendar where they might not otherwise have "MODIFY" command
 access. They are not allowed to change the "ATTENDEE" property
 value. An example definition for this VCAR is (This example only
 affects the "VEVENT" components):

Royer, et al. Expires November 14, 2004 [Page 27]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 BEGIN:VCAR
 CARID:UPDATEPARTSTATUS
 BEGIN:VRIGHT
 GRANT:*
 PERMISSION:MODIFY
 SCOPE:SELECT ATTENDEE FROM VEVENT
 WHERE ATTENDEE = SELF()
 AND ORGANIZER = CURRENT-TARGET()
 AND STATE() = 'BOOKED'
 RESTRICTION:SELECT * FROM VEVENT
 WHERE ATTENDEE = SELF()
 END:VRIGHT
 END:VCAR

 CARID:DEFAULTOWNER - Grants to any owner the permission they have
 for the target. An example definition for this VCAR is:

 BEGIN:VCAR
 CARID:DEFAULTOWNER
 BEGIN:VRIGHT
 GRANT:CAL-OWNERS()
 PERMISSION:*
 SCOPE:SELECT * FROM VAGENDA
 END:VRIGHT
 END:VCAR

4.2.3 Decreed VCARs

 A CS MAY choose to implement and allow persistent immutable VCARs
 that may be configured by the CS administrator. A reply from the CS
 may dynamically create "VCAR" components that are decreed depending
 on the implementation. To the CUA any "VCAR" component with the
 "DECREED" property set to "TRUE" can not be changed by the currently
 authenticated UPN, and depending on the implementation and other
 "VCAR" components; might not be able to be changed by any UPN using

 CAP, and never when the CUA gets a "DECREED:TRUE" VCAR.

 When a user attempts to modify or override a decreed "VCAR" component
 rules an error will be returned indicating that the user has

Royer, et al. Expires November 14, 2004 [Page 28]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 insufficient authorization to perform the operation. The reply to the
 CUA MUST BE the same as if a non-decreed VCAR caused the failure.

 The CAP protocol does not define the semantics used to initially
 create a decreed VCAR. This administrative task is outside the scope
 of the CAP protocol.

 For example; an implementation or a CS administrator may wish to
 define a VCAR that will always allow the calendar owners to have full
 access to their own calendars.

 Decreed "VCAR" components MUST BE readable by the calendar owner in
 standard "VCAR" component format.

4.3 CAP Session Identity

 A [BEEP] session has an associated set of authentication credentials,
 from which is derived a UPN. This UPN is the identity of the CAP
 session, and is used to determine access rights for the session.

 The CUA may change the identity of a CAP session by calling the
 "IDENTIFY" command. The CS only permits the operation if the
 session's authentication credentials are good for the requested
 identity. The method of checking this permission is implementation
 dependent, but may be thought of as a mapping from authentication
 credentials to UPNs. The "IDENTIFY" command allows a single set of
 authentication credentials to choose from multiple identities, and
 allows multiple sets of authentication credentials to assume the same
 identity.

 For anonymous access the identity of the session is "@". A UPN with a
 null Username and null Realm is anonymous. A UPN with a null
 Username, but non-null Realm, such as "@foo.com" may be used to mean
 any identity from that Realm, which is useful to grant access rights
 to all users in a given Realm. A UPN with a non-null Username and
 null Realm, such as "bob@" could be a security risk and MUST NOT be
 used.

 As the UPN includes Realm information it may be used to govern
 calendar store access rights across Realms. However, governing access

 rights across Realms is only useful if login access is available.
 This could be done through a trusted server relationship or a
 temporary account. Note that trusted server relationships are outside
 the scope of [CAP].

 The "IDENTIFY" command also provides for a weak group implementation.
 By allowing multiple sets of authentication credentials belonging to
 different users to identify as the same UPN, that UPN essentially

Royer, et al. Expires November 14, 2004 [Page 29]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 identifies a group of people, and may be used for group calendar
 ownership, or the granting of access rights to a group.

Royer, et al. Expires November 14, 2004 [Page 30]

Internet-Draft Calendar Access Protocol (CAP) May 2004

5. CAP URL and Calendar Address

 The CAP URL scheme is used to designate calendar stores and calendars
 accessible using the CAP protocol.

 The CAP URL scheme conform to the generic URL syntax, defined in RFC
2396, and follows the Guidelines for URL Schemes, set forth in RFC
2718.

 A CAP URL begins with the protocol prefix "cap" and is defined by the
 following grammar.

 capurl = "cap://" csid ["/" relcalid]
 csid = hostport ; As defined in Section 3.2.2 of RFC 2396
 relcalid = *uric ; As defined in Section 2 of RFC 2396

 A 'relcalid' is an identifier that uniquely identifies a calendar on
 a particular calendar store. There is no implied structure in a
 Relative CALID (relcalid). It may refer to the calendar of a user or
 of a resource such as a conference room. It MUST BE unique within the
 calendar store.

 Examples:

 cap://cal.example.com
 cap://cal.example.com/Company/Holidays
 cap://cal.example.com/abcd1234Usr

 A 'relcalid' is permitted and is resolved according to the rules
 defined in Section 5 of RFC 2396.

 Examples of valid relative CAP URLs:

 opqaueXzz123String

https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2718
https://datatracker.ietf.org/doc/html/rfc2718
https://datatracker.ietf.org/doc/html/rfc2396#section-3.2.2
https://datatracker.ietf.org/doc/html/rfc2396#section-2
https://datatracker.ietf.org/doc/html/rfc2396#section-5

 UserName/Personal

 A Calendar addresses can be described as qualified or relative CAP
 URLs.

 For a user currently authenticated to the CS on cal.example.com,
 these two example calendar addresses refer to the same calendar:

Royer, et al. Expires November 14, 2004 [Page 31]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 cap://cal.example.com/abcd1234USR
 abcd1234USR

Royer, et al. Expires November 14, 2004 [Page 32]

Internet-Draft Calendar Access Protocol (CAP) May 2004

6. New Value Types

 The following sections contains new components, properties,
 parameters, and value definitions.

 The purpose of these is to extend the iCalendar objects in a
 compatible way so that existing iCalendar "VERSION" property "2.0"
 value parsers can still parse the objects without modification.

6.1 Property Value Data Types

6.1.1 CAL-QUERY Value Type

 Subject: Registration of text/calendar MIME value type CAL-QUERY

 Value Name: CAL-QUERY

 Value Type Purpose: This value type is used to identify values and
 contains query statements targeted at locating those values.

 This is based on [SQL92] and [SQLCOM].

 1. For the purpose of a query, all components should be handled as
 tables, and the properties of those components, should be handled
 as columns.

 2. All VAGENDAs and CSs look like tables for the purpose of a QUERY.
 And all of their properties look like columns in those tables.

 3. You CAN NOT do any cross component-type joins. And that means you
 can ONLY have one component, OR one "VAGENDA" component OR one
 "VCALSTORE" component in the "FROM" clause.

 4. Everything in the "SELECT" clause and "WHERE" clauses in MUST BE
 from the same component type, or "VAGENDA" component OR
 "VCALSTORE" component in the "FROM" clause.

 5. When multiple "QUERY" properties are supplied in a single
 "VQUERY" component, the results returned are the same as the
 results returned for multiple "VQUERY" components having each a
 single "QUERY" property.

 6. The '.' is used to separate the table name (component) and column
 name (property or component) when selecting a property that is
 contained inside of a component that is targeted in the TARGET
 property.

 7. A contained component without a '.' is not the same as

Royer, et al. Expires November 14, 2004 [Page 33]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 "component-name.*". If given as "component-name" (no dot) the
 encapsulating BEGIN/END statement will be supplied for
 "component-name".:

 In this example the '.' is used to separate the "TRIGGER" property
 from its contained component (VALARM). Which is contained in any
 "VEVENT" component in the selected "TARGET" property value (a
 relcalid). All "TRIGGER" properties in any "VEVENT" component in
 relcalid would be returned.

 TARGET:relcalid
 QUERY:SELECT VALARM.TRIGGER FROM VEVENT

 SELECT VALARM FROM VEVENT WHERE UID = "123"

 This returns one BEGIN/END "VALARM" component for each
 "VALARM" component in the matching "VEVENT" component.
 As there is no '.' (dot) in the VALARM after the SELECT above:

 BEGIN:VALARM
 TRIGGER;RELATED=END:PT5M
 REPEAT:4
 ...
 END:VALARM
 BEGIN:VALARM
 TRIGGER;RELATED=START:PT5M
 DURATION:PT10M
 ...
 END:VALARM
 ...
 ...

 If provided as "component-name.*", then only the properties and any
 contained components will be returned:

 SELECT VALARM.* FROM VEVENT WHERE UID = "123"

 Will return all of the properties in each "VALARM" component
 in the matching "VEVENT" component:

Royer, et al. Expires November 14, 2004 [Page 34]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 TRIGGER;RELATED=END:PT5M
 REPEAT:4
 ...
 TRIGGER;RELATED=START:PT5M
 DURATION:PT10M
 ...
 ...

 (a) SELECT <a-property-name> FROM VEVENT

 (b) SELECT VALARM FROM VEVENT

 (c) SELECT VALARM.* FROM VEVENT

 (d) SELECT * FROM VEVENT

 (e) SELECT * FROM VEVENT WHERE
 VALARM.TRIGGER < '20020201T000000Z'
 AND VALARM.TRIGGER > '20020101T000000Z'

 Note:
 (a) Selects all instances of <a-property-name>
 from all "VEVENT" components.

 (b) and (c) Select all "VALARM" components from all
 "VEVENT" components. (b) would return then in
 BEGIN/END VALARM tags. (c) would return all
 of the properties without BEGIN/END VALARM tags.

 (d) Selects every property and every component
 that is in any "VEVENT" component, with each "VEVENT"
 component wrapped in a BEGIN/END VALARM tags.

 (e) Selects all properties and all contained
 components in all "VEVENT" components that have a "VALARM"
 component with a "TRIGGER" property value between
 the provided dates and times, with each "VEVENT"

 component wrapped in a BEGIN/END VALARM tags.

 NOT VALID:

 (f) SELECT VEVENT.VALARM.TRIGGER FROM VEVENT

 (g) SELECT DTSTART,UID FROM VEVENT WHERE
 VTODO.SUMMERY = "Fix typo in CAP"

Royer, et al. Expires November 14, 2004 [Page 35]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Note: (f) Is NOT valid because it contains
 two '.' characters in the "SELECT" clause.

 (g) Is NOT valid because it mixes VEVENT
 and VTODO properties in the same VQUERY.

 Formal Definition: The value type is defined by the following
 notation:

 cal-query = "SELECT" SP cap-val SP
 "FROM" SP comp-name SP
 "WHERE" SP cap-expr

 / "SELECT" SP cap-cols SP
 "FROM" SP comp-name

 cap-val = cap-cols / param
 / (cap-val "," cap-val)

 ; NOTE: there is NO space around the "," on
 ; the next line
 cap-cols = cap-col / (cap-cols "," cap-col)
 / "*"

 ; A 'cap-col' is:
 ;
 ; Any property name ('cap-prop') found in the component
 ; named in the 'comp-name' used in the "FROM" clause.
 ;
 ; SELECT ORGANIZER FROM VEVENT ...
 ;
 ; OR
 ;
 ; A component name ('comp-name') of an existing component
 ; contained inside of the 'comp-name' used in the "FROM"
 ; clause.
 ;
 ; SELECT VALARM FROM VEVENT ...

 ;
 ; OR
 ;
 ; A component name ('comp-name') of an existing
 ; component contained inside of the 'comp-name' used
 ; in the "FROM" clause followed by a property
 ; name ('cap-prop') to be selected from that component.

Royer, et al. Expires November 14, 2004 [Page 36]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 ; (comp-name "." cap-prop)
 ;
 ; SELECT VALARM.TRIGGER FROM VEVENT ...

 cap-col = comp-name
 / comp-name "." cap-prop
 / cap-prop

 comp-name = "VEVENT" / "VTODO" / "VJOURNAL" / "VFREEBUSY"
 / "VALARM" / "DAYLIGHT" / "STANDARD" / "VAGENDA"
 / "VCAR" / "VCALSTORE" / "VQUERY" / "VTIMEZONE"
 / "VRIGHT" / x-comp / iana-comp

 cap-prop = ; A property that may be in the 'cap-comp' named
 ; in the "SELECT" clause.

 cap-expr = "(" cap-expr ")"
 / cap-term

 cap-term = cap-expr SP cap-logical SP cap-expr
 / cap-factor

 cap-logical= "AND" / "OR"

 cap-factor = cap-colval SP cap-oper SP col-value
 / cap-colval SP "LIKE" SP col-value
 / cap-colval SP "NOT LIKE" SP col-value
 / cap-colval SP "IS NULL"
 / cap-colval SP "IS NOT NULL"
 / col-value SP "IN" cap-colval"
 / col-value SP "NOT IN" cap-colval"
 / "STATE()" "=" ("BOOKED"
 / "UNPROCESSED"
 / "DELETED"
 / iana-state
 / x-state)

 iana-state = ; Any state registered by IANA directly or
 ; included in an RFC that may be applied to
 ; the component and within the rules published.

 x-state = ; Any experimental state that starts with
 ; "x-" or "X-".

 cap-colval = cap-col / param

 param = "PARAM(" cap-col "," cap-param ")"

Royer, et al. Expires November 14, 2004 [Page 37]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 cap-param = ; Any parameter that may be contained in the cap-col
 ; in the supplied PARAM() function

 col-value = col-literal
 / "SELF()"
 / "CAL-OWNERS()"
 / "CAL-OWNERS(" cal-address ")"
 / "CURRENT-TARGET()"

 cal-address = ; A CALID as define by CAP

 col-literal = "'" literal-data "'"

 literal-data = ; Any data that matches the value type of the
 ; column that is being compared. That is you can
 ; not compare PRIORITY to "some string" because
 ; PRIORITY has a value type of integer. If it is
 ; not preceded by the LIKE element, any '%' and '_'
 ; characters in the literal data are not treated as
 ; wildcard characters and do not have to be backslash
 ; escaped.
 ;
 ; OR
 ;
 ; If the literal-data is preceded by the LIKE
 ; element it may also contain the '%' and '_'
 ; wildcard characters. And if the literal data
 ; that is comparing contains any '%' or '_'
 ; characters, they MUST BE backslash escaped as
 ; described in the notes below in order for them not
 ; to be treated as wildcard characters.
 ;
 ; And if the literal data contains any characters
 ; that would have to be backslash escaped if
 ; a property or parameter value then they must
 ; be backslash escaped in the literal-data.
 ; PLUS the quote character (') must be backslash
 ; escaped. Example:
 ;
 ; ... WHERE SUBJECT = 'It\'s time to ski'
 ;

 cap-oper = "="

 / "!="
 / "<"
 / ">"
 / "<="
 / ">="

Royer, et al. Expires November 14, 2004 [Page 38]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 SP = ; A single white space ASCII character
 ; (value in HEX %x20).

 x-comp = ; As defined in [iCAL] section 4.6

 iana-comp = ; As defined in [iCAL] section 4.6

6.1.1.1 [NOT] CAL-OWNERS()

 This function returns the list of "OWNER" properties for the named
 calendar when used in the "SELECT" clause.

 If called as 'CAL-OWNERS()', it is equivalent to the comma separated
 list of all of the owners of the calendar that match the provided
 "TARGET" property value. If the target is a "VCALSTORE", it returns
 the "CALMASTER" property.

 If called as 'CAL-OWNERS(cal-address)', then it is the equivalent to
 the comma separated list of owners for the named calendar id. If
 'cal-address' is a CS, it returns the "CALMASTER" property.

 If used in the "WHERE" clause it then returns true if the currently
 authenticated UPN is an owner of the currently selected object
 matched in the provided "TARGET" property. Used in a CAL-QUERY
 "WHERE" clause and in the UPN-FILTER.

6.1.1.2 CURRENT-TARGET()

 Is equivalent to the value of the "TARGET" property in the current
 command. Used in a CAL-QUERY "WHERE" clause.

6.1.1.3 PARAM()

 Used in a CAL-QUERY. Returns or tests for the value of the named
 parameter from the named property.

6.1.1.3.1 PARAM() in SELECT

 When used in a "SELECT" clause, it returns the entire property and
 all of that properties parameters (the result is not limited to the
 supplied parameter). If the property does not contain the named
 parameter, then the property is not returned (It could however be
 returned as a result of another "SELECT" clause value.) If multiple
 properties of the supplied name have the named parameter, all
 properties with that named parameter are returned. If multiple
 PARAM() clauses in a single "SELECT" CLAUSE match the same property,

Royer, et al. Expires November 14, 2004 [Page 39]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 then the single matching property is returned only once.

 Also note that many parameters have default values defined in [iCAL]
 that must be treated as existing with their default value in the
 properties as defined in [iCAL} even when not explicitly present. So
 for example if a query were performed with PARAM(ATTENDEE,ROLE) then
 ALL "ATTENDEE" properties would match because even when they do not
 explicitly contain the "ROLE" parameter, it has a default value and
 therefore must match.

 So when PARAM() is used in a "SELECT" clause, then it is more
 accurate to say that it means return the property if it contains the
 named parameter explicitly in the property or simply because the
 parameter has a default for that property.

6.1.1.3.2 PARAM() in WHERE

 When used in the "WHERE" clause, a match is true when the parameter
 value matches the compare clause according to the supplied WHERE
 values. If multiple named properties contain the named parameter,
 then each parameter value is compared in turn to the condition and if
 any match, then the results would be true for that condition the same
 as if only one had existed. Each matching properties or components
 are returned only once.

 As a parameter may be multivalued then the comparison might need to
 be done with an "IN" or "NOT IN" comparator.

 Given the following query:

 ATTENDEE;PARTSTAT=ACCEPTED:cap://host.com/joe

 SELECT VEVENT FROM VAGENDA
 WHERE PARAM(ATTENDEE,PARTSTAT) = 'ACCEPTED'

 Then all "VEVENT" components that contain one or more "ATTENDEE"
 properties that have a "PARTSTAT" parameter with a "ACCEPTED" value
 would be returned. And each uniquely matching VEVENT would only be
 returned once no matter how many "ATTENDEE" properties had matching
 roles in each unique "VEVENT" component.

 Also note that many parameters have default values defined in [iCAL].
 So if the following query were performed on the "ATTENDEE" property
 in the above example:

 SELECT VEVENT FROM VAGENDA
 WHERE PARAM(ATTENDEE,ROLE) = 'REQ-PARTICIPANT'

Royer, et al. Expires November 14, 2004 [Page 40]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 It would return the "ATTENDEE" property exampled above because the
 default value for the "ROLE" parameter is "REQ-PARTICIPANT".

6.1.1.4 SELF()

 Used in a CAL-QUERY "WHERE" clause. Returns the UPN of the currently
 authenticated UPN or their current UPN as a result of an IDENTIFY
 command.

6.1.1.5 STATE()

 Returns one of three values, "BOOKED", "UNPROCESSED", or "DELETED"
 depending on the state of the object. Where "DELETED" is a component
 in the marked for delete state. Components that have been removed
 from the store are never returned.

 If not specified in a query then both "BOOKED" and "UNPROCESSED" data
 is returned. Each unique "METHOD" property must be in a separate MIME
 object per the [iCAL] section 3.2 restriction.

6.1.1.6 Use of single quote

 All literal values are surrounded by single quotes ('), not double
 quotes ("), and not without any quotes. If the value contains quotes
 or any other ESCAPED-CHAR, they MUST BE backslash escaped as
 described in section 4.3.11 "Text" of [iCAL]. Any "LIKE" clause
 wildcard characters that are part of any literal data that is
 preceded by a "LIKE" clause or "NOT LIKE" clause and is not intended
 to mean wildcard search MUST BE escaped as described in note (7)
 below.

6.1.1.7 Comparing DATE and DATE-TIME values

 When comparing "DATE-TIME" values to "DATE" values and when comparing
 "DATE" values to "DATE-TIME" values, the result will be true if the
 "DATE" value is on the same day as the "DATE-TIME" value. And they
 are compared in UTC no matter what time zone the data may actual have
 been stored in.

 Local time event as descibed in section 4.2.19 of [iCAL] must be
 considered to be in the CUA default timezone that was supplied by the
 CUA in the "CAPABILITY" exchange.

 VALUE-1 VALUE-2 Compare Results

 20020304 20020304T123456 TRUE
 (in UTC-3) (in UTC-3)

Royer, et al. Expires November 14, 2004 [Page 41]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 20020304 20020304T003456 FALSE
 (in UTC) (in UTC-4)

 20020304T003456Z 20020205T003456 FALSE
 (in UTC-0) (in UTC-7)

 When comparing "DATE" values and "DATE-TIME" values with the "LIKE"
 clause the comparison will be done as if the value is a [iCAL] DATE
 or DATE-TIME string value.

 LIKE '2002%' will match anything in the year 2002.

 LIKE '200201%' will match anything in January 2002.

 LIKE '%T000000' will match anything at midnight.

 LIKE '____01__T%' will match anything for any year or
 time that is in January.
 (Four '_', '01', two '_' 'T%').

 Using a "LIKE" clause value of "%00%, would return any value that
 contained two consecutive zeros.

 All comparisons will be done in UTC.

6.1.1.8 DTEND and DURATION

 The "DTEND" property value is not included in the time occupied by
 the component. That is a "DTEND" property value of 20030614T12000
 includes all of the time up to but not including noon on that day.

 The "DURATION" property value end time is also not inclusive. So an
 object with a "DTSTART" property value of 20030514T110000 and a
 "DURATION" property value of "1H" does not include noon on that day.

 When a "QUERY" property value contains a "DTEND" value, then the CS
 MUST also evaluate any existing "DURATION" property value and
 determine if it has an effective end time that matches the "QUERY"
 property supplied "DTEND" value or any range of values supplied by
 the "QUERY" property.

 When a "QUERY" property contains a "DURATION" value, then the CS MUST
 also evaluate any existing "DTEND" property values and determine if
 they have an effective duration that matches the "QUERY" property
 value supplied "DURATION" value or any range of values supplied by

Royer, et al. Expires November 14, 2004 [Page 42]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 the "QUERY" property.

6.1.1.9 [NOT] LIKE

 The pattern matching characters are the '%' that matches zero or more
 characters, and '_' that matches exactly one character (where
 character does not always mean octet).

 "LIKE" clause pattern matches always cover the entire string. To
 match a pattern anywhere within a string, the pattern must start and
 end with a percent sign.

 To match a '%' or '_' in the data and not have it interpreted as a
 wildcard character, they MUST BE backslash escaped. That is to search
 for a '%' or '_' in the string:

 LIKE '%\%%' Matches any string with a '%' in it.
 LIKE '%_%' Matches any string with a '_' in it.

 Strings compared using the "LIKE" clause MUST BE performed using case
 in-sensitive comparisons when the locale allows. (Example: in
 US-ASCII the compare assumes 'a' = 'A').

 If the "LIKE" clause is preceded by 'NOT' then there is a match when
 the string compare fails.

 Some property values (such as the 'recur' value type), contain commas
 and are not multi valued. The CS must understand the objects being
 compared and understand how to determine how any multi valued or
 multi instances properties or parameter values are separated, quoted,
 and backslash escaped and perform the comparisons as if each value
 existed by itself and not quoted or backslash escaped when comparing
 using the LIKE element.

 See related examples in Section 6.1.1.11

6.1.1.10 Empty vs. NULL

 When used in a CAL-QUERY value, "NULL" means that the property or
 parameter is not present in the object. Paramaters that are not
 provided and have a default value in the property are considered to
 exist with their default value and will not be "NULL".

 If the property exists but has no value then "NULL" MUST NOT match.
 If the parameter exists but has no value then "NULL" MUST NOT match.
 If the parameter not present and has a default value then "NULL" MUST

Royer, et al. Expires November 14, 2004 [Page 43]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 NOT match.

 If the property (or parameter) exists, but has no value then it
 matches the empty string '' (quote quote).

6.1.1.11 [NOT] IN

 This is similar to the "LIKE" clause, except it does value matching
 and not string comparison matches.

 Some iCalendar objects can be multi instance and multi valued. The
 "IN" clause will return a match if the literal value supplied as part
 of the "IN" clause is contained in the value of any instance of the
 named property or parameter, or is in any of the multiple values in
 the named property or parameter. Unlike the "LIKE" clause, the '%'
 and '_' matching characters are not used with the "IN" clause and
 have no special meaning.

 BEGIN:A-COMPONENT
 a property:value1,value2 One property, two values.
 b property:"value1,value2" One property, one value.
 c property:parameter=1,2:x One parameter, two values.
 d property:parameter="1,2",3:y One parameter, one value.
 e property:parameter=",":z One parameter, one value.
 f property:x,y,z One property, three values
 END:A-COMPONENT

 'value1' IN property would match (a) only.
 'value1,value2' IN property would match (b) only.
 'value%' IN property would NOT match any.
 ',' IN property would NOT match any.
 '%,%' IN property would NOT match any.
 'x' IN property would match (f) and (c).
 '2' IN parameter would match (c) only.
 '1,2' IN parameter would match (d) only.
 ',' IN parameter would match (e) only.
 '%,%' IN parameter would NOT match any.

 property LIKE 'value1%' would match (a) and (b).
 property LIKE 'value%' would match (a) and (b).

 property LIKE 'x' would match (f) and (c).
 parameter LIKE '1%' would match (c) and (d).
 parameter LIKE '%2%' would match (c) and (d).
 parameter LIKE ',' would match (e) only.

 Some property values (such as the "RECUR" value type), contain commas

Royer, et al. Expires November 14, 2004 [Page 44]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 and are not multi valued. The CS must understand the objects being
 compared and understand how to determine how any multi valued or
 multi instances properties or parameter values are separated, quoted,
 and backslash escaped and perform the comparisons as if each value
 existed by itself and not quoted or backslash escaped when comparing
 using the IN element.

 If the "IN" clause is preceded by 'NOT' then there is a match when
 the value does not exist in the property or parameter value.

6.1.1.12 DATE-TIME and TIME values in a WHERE clause

 All "DATE-TIME" and "TIME" literal values supplied in a "WHERE"
 clause MUST BE terminated with 'Z'. That means that the CUA MUST
 supply the values in UTC.

 Valid:

 WHERE alarm.TRIGGER < '20020201T000000Z'
 AND alarm.TRIGGER > '20020101T000000Z'

 Not valid and it is a syntax error and the CS MUST reject the QUERY.

 WHERE alarm.TRIGGER < '20020201T000000'
 AND alarm.TRIGGER > '20020101T000000'

6.1.1.13 Multiple contained components

 If a query references a component and a component or property
 contained in the component, any clauses referring to the contained
 component or property must be evaluated on all of the contained
 components or properties. If any of the contained components or
 properties match the query, and the conditions on the containing
 component are also true, the component matches the query.

 For example, in the query below, if a BOOKED VEVENT contains multiple
 VALARMs, and the VALARM.TRIGGER clause is true for any of the VALARMs
 in the VEVENT, then the UID, SUMMARY, and DESCRIPTION of this VEVENT
 would be included in the QUERY results.

 BEGIN:VQUERY

Royer, et al. Expires November 14, 2004 [Page 45]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 EXPAND:TRUE
 QUERY:SELECT UID,SUMMARY,DESCRIPTION FROM VEVENT
 WHERE VALARM.TRIGGER >= '20000101T030405Z'
 AND VALARM.TRIGGER <= '20001231T235959Z'
 AND STATE() = 'BOOKED'
 END:VQUERY

6.1.1.14 Example, Query by UID

 The following example would match the entire content of a "VEVENT" or
 "VTODO" component with the "UID" property equal to "uid123" and not
 expand any multiple instances of the component. If the CUA does not
 know if "uid123" was a "VEVENT", "VTODO", "VJOURNAL", or any other
 component, then all components that the CUA supports MUST BE supplied
 in a QUERY property. This example assumes the CUA is only interested
 in "VTODO" and "VEVENT" components.

 If the results were empty it could also mean that "uid123" was a
 property in a component other than a VTODO or VEVENT.

 BEGIN:VQUERY
 QUERY:SELECT * FROM VTODO WHERE UID = 'uid123'
 QUERY:SELECT * FROM VEVENT WHERE UID = 'uid123'
 END:VQUERY

6.1.1.15 Query by Date-Time range

 This query selects the entire content of every booked "VEVENT"
 component that has an instance greater than or equal to July 1st,
 2000 00:00:00 UTC and less than or equal to July 30st, 2000 23:59:59
 UTC. This includes single instance "VEVENT" components that do no
 explicitly contain any recurence properties or "RECURRENCE-ID"
 properties. This works only for CSs that have the "RECUR-EXPAND"
 property value set to "TRUE" in the "GET-CAPABILITY" exchange.

 BEGIN:VQUERY
 EXPAND:TRUE

 QUERY:SELECT * FROM VEVENT
 WHERE RECURRENCE-ID >= '20000701T000000Z'
 AND RECURRENCE-ID <= '20000730T235959Z'
 AND STATE() = 'BOOKED'
 END:VQUERY

Royer, et al. Expires November 14, 2004 [Page 46]

Internet-Draft Calendar Access Protocol (CAP) May 2004

6.1.1.16 Query for all Unprocessed Entries

 The following example selects the entire contents of all non-booked
 "VTODO" and "VEVENT" components in the "UNPROCESSED" state. The
 default for the "EXPAND" property is FALSE, so the recurrence rules
 will not be expanded.

 BEGIN:VQUERY
 QUERYID:Fetch VEVENT and VTODO iTIP components
 QUERY:SELECT * FROM VEVENT WHERE STATE() = 'UNPROCESSED'
 QUERY:SELECT * FROM VTODO WHERE STATE() = 'UNPROCESSED'
 END:VQUERY

 The following example fetches all "VEVENT" and "VTODO" components in
 the "BOOKED" state.

 BEGIN:VQUERY
 QUERYID:Fetch All Booked VEVENT and VTODO components
 QUERY:SELECT * FROM VEVENT WHERE STATE() = 'BOOKED'
 QUERY:SELECT * FROM VTODO WHERE STATE() = 'BOOKED'
 END:VQUERY

 The following fetches the "UID" property for all "VEVENT" and "VTODO"
 components that have been marked for delete.

 BEGIN:VQUERY
 QUERYID:Fetch UIDs of marked for delete VEVENTs and VTODOs
 QUERY:SELECT UID FROM VEVENT WHERE STATE() = 'DELETE'
 QUERY:SELECT UID FROM VTODO WHERE STATE() = 'DELETE'
 END:VQUERY

6.1.1.17 Query with Subset of Properties by Date/Time

 In this example only the named properties will be selected and all

 booked and non-booked components will be selected that have a
 "DTSTART" value from February 1st to February 10th 2000 (in UTC).

 BEGIN:VQUERY
 QUERY:SELECT UID,DTSTART,DESCRIPTION,SUMMARY FROM VEVENT
 WHERE DTSTART >= '20000201T000000Z'

Royer, et al. Expires November 14, 2004 [Page 47]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 AND DTSTART <= '20000210T235959Z'
 END:VQUERY

6.1.1.18 Query with Components and Alarms In A Range

 This example fetches all booked "VEVENT" components with an alarm
 that triggers within the specified time range. In this case only the
 "UID", "SUMMARY", and "DESCRIPTION" properties will be selected for
 all booked "VEVENTS" components that have an alarm between the two
 date-times supplied.

 BEGIN:VQUERY
 EXPAND:TRUE
 QUERY:SELECT UID,SUMMARY,DESCRIPTION FROM VEVENT
 WHERE VALARM.TRIGGER >= '20000101T030405Z'
 AND VALARM.TRIGGER <= '20001231T235959Z'
 AND STATE() = 'BOOKED'
 END:VQUERY

6.1.2 UPN Value Type

 Value Name: UPN

 Purpose: This value type is used to identify values that contain user
 principal name of CU or group of CU.

 Formal Definition: The value type is defined by the following
 notation:

 upn = "@"
 / [dot-atom-text] "@" dot-atom-text

 ; dot-atom-text is defined in RFC 2822

https://datatracker.ietf.org/doc/html/rfc2822

 Description: This data type is an identifier that denotes a CU or a
 group of CU. A UPN is a RFC 2822 compliant email address, with
 exceptions listed below, and in most cases it is deliverable to the
 CU. In some cases it is identical to the CU's well known email
 address. A CU's UPN MUST never be an e-mail address that is
 deliverable to a different person. And there is no requirement that a

Royer, et al. Expires November 14, 2004 [Page 48]

https://datatracker.ietf.org/doc/html/rfc2822

Internet-Draft Calendar Access Protocol (CAP) May 2004

 person's UPN MUST BE their e-mail address. A UPN is formatted as a
 user name followed by "@" followed by a Realm in the form of a valid,
 and unique, DNS domain name. The user name MUST BE unique within the
 Realm. In it's simplest form it looks like "user@example.com".

 In certain cases a UPN will not be RFC 2822 compliant. When anonymous
 authentication is used, or anonymous authorization is being defined,
 the special UPN "@" will be used. When authentication MUST BE used,
 but unique identity MUST BE obscured, a UPN of the form
 @DNS-domain-name may be used. For example, "@example.com".

 Example:

 The following is a UPN for a CU:

 jdoe@example.com

 The following is a example of a UPN that could be for a group of CU:

 staff@example.com

 The following is a UPN for an anonymous CU belonging to a specific
 realm or when used as a UPN-FILTER it specifies that it applies to
 all UPNs in a specific realm:

 @example.com

 The following is a UPN for an anonymous CU:

 @

https://datatracker.ietf.org/doc/html/rfc2822

6.1.3 UPN-FILTER Value

 Value Name: UPN-FILTER

 Purpose: This value type is used to identify values that contain a
 user principal name filter.

 Formal Definition: The value type is defined by the following

Royer, et al. Expires November 14, 2004 [Page 49]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 notation:

 ; NOTE: "CAL-OWNERS(cal-address)"
 ; and "NOT CAL-OWNERS(cal-address)"
 ; are both NOT allowed below.
 ;
 upn-filter = "CAL-OWNERS()" /

 "NOT CAL-OWNERS()" /
 "*" /
 ["*" / dot-atom-text] "@" ("*" / dot-atom-text)

 ; dot-atom-text is defined in RFC 2822

 Description: The value is used to match user principal names (UPNs).
 For "CAL-OWNERS()" and "NOT CAL-OWNERS()", see Section 8.24.

 * Matches all UPNs.

 @ Matches the UPN of anonymous CUs
 belonging to the null realm

 @* Matches the UPN of anonymous CUs
 belonging to any non-null realm

 @realm Matches the UPN of anonymous CUs
 belonging to the specified realm.

 @ Matches the UPN of non-anonymous CUs
 belonging to any non-null realm

 *@realm Matches the UPN of non-anonymous CUs
 belonging to the specified realm

https://datatracker.ietf.org/doc/html/rfc2822

 user@realm Matches the UPN of the specified CU
 belonging to the specified realm

 user@* Not allowed.

 user@ Not allowed.

 Example: The following are examples of this value type:

Royer, et al. Expires November 14, 2004 [Page 50]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 DENY:NON CAL-OWNERS()
 DENY:@hackers.example.com
 DENY:*@hackers.example.com
 GRANT:sam@example.com

Royer, et al. Expires November 14, 2004 [Page 51]

Internet-Draft Calendar Access Protocol (CAP) May 2004

7. New Parameters

7.1 ACTION Parameter

 Parameter Name: ACTION

 Purpose: This parameter indicates the action to be taken when a
 timeout occurs.

 Value Type: TEXT

 Conformance: This property can be specified in the "CMD" property.

 When present in a "CMD" property the "ACTION" parameter specifies the
 action to be taken when the command timeout expires.

 Formal Definition: The parameter is defined by the following
 notation:

 action-param = ";" "ACTION" "=" ("ASK" / "ABORT")
 ; If 'action-param' is supplied then
 ; 'latency-param' MUST BE supplied.

 Example: The following is an example of this parameter:

 CMD;LATENCY=10;ACTION=ASK:CREATE

7.2 ENABLE Parameter

 Parameter Name: ENABLE

 Purpose: This parameter indicates whether or not the property should
 be ignored. Example if a "TRIGGER" property in a "VALARM" component
 should be ignored.

 Value Type: BOOLEAN

 Conformance: This property can be specified in the "TRIGGER"
 properties.

 Description: When a non owner sends an [iTIP] "REQUEST" to a calendar
 that object might contain a "VALARM" component. The owner may wish to

Royer, et al. Expires November 14, 2004 [Page 52]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 have local control over their own CUA and when or how alarms are
 triggered.

 A CUA may add the "ENABLE" parameter to any "TRIGGER" property before
 booking the component. If the "ENABLE" parameter is set to "FALSE",
 then the alarm will be ignored by the CUA. If set to "TRUE", or if
 the "ENABLE" property is not in the "TRIGGER" property, the alarm is
 enabled. This parameter may not be known by pre-CAP implementations
 and should not be an issue as it conforms to an 'ianaparam' as
 defined in [iCAL].

 Formal Definition: The property is defined by the following notation:

 enable-param = "ENABLE" "=" boolean

 Example: The following is an example of this property for a "VAGENDA"
 component:

 TRIGGER;ENABLE=FALSE;RELATED=END:PT5M

7.3 ID Parameter

 Parameter Name: ID

 Purpose: When used in a "CMD" component provides a unique identifier.

 Value Type: TEXT

 Conformance: This parameter can be specified in the "CMD" property.

 Description: If there is more than one command sent then the "ID"
 parameter is used to uniquely identify the command.

 A CUA may add the "ID" parameter to any "CMD" property before sending
 the command. There must not be more than one outstanding command
 tagged with the same "ID" parameter value.

 Formal Definition: The property is defined by the following notation:

 id-param = ";" "ID" "=" unique-id
 ; The text value supplied is a unique value
 ; shared between the CUA and CS to uniquely

Royer, et al. Expires November 14, 2004 [Page 53]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 ; identify the instance of command in the
 ; the current CUA session. The value has
 ; no meaning to other CUAs or other sessions.

 unique-id = ; text

 text = ; As defined in [iCAL].

 Example: The following is an example of this parameter component:

 CMD;UD=some-unique-value:CREATE

7.4 LATENCY Parameter

 Parameter Name: LATENCY

 Purpose: This parameter indicates time in seconds for when a timeout
 occurs.

 Value Type: TEXT

 Conformance: This property can be specified in the "CMD" property.

 When present in a "CMD" property the "LATENCY" parameter specifies
 the time in sections when the command timeout expires.

 Formal Definition: The parameter is defined by the following
 notation:

 latency-param = ";" "LATENCY" "=" latency-sec
 ; The value supplied in the time in seconds.
 ; If 'latency-param' is supplied then

 ; 'action-param' MUST BE supplied.

 latency-sec = posint1

 ; Default is zero (0) meaning no timeout.

 Example: The following is an example of this parameter:

Royer, et al. Expires November 14, 2004 [Page 54]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 CMD;LATENCY=10;ACTION=ASK:CREATE

7.5 LOCAL Parameter

 Parameter Name: LOCAL

 Purpose: Indicates if the named component should be exported to any
 non-organizer calendar.

 Value Type: BOOLEAN

 Conformance: This parameter can be specified in the "SEQUENCE"
 properties in a "VALARM" component.

 Description: When a non owner sends an [iTIP] "REQUEST" to a calendar
 that object might contain a "VALARM" component. The owner may wish to
 have local control over their own CUA and when or how alarms are
 triggered.

 A CUA may add the "LOCAL" parameter to the "SEQUENCE" property before
 booking the component. If the "LOCAL" parameter is set to "TRUE",
 then the alarm MUST NOT be forwarded to any other calender. If set to
 "FALSE", or if the "LOCAL" parameter is not in the "SEQUENCE"
 property, the alarm is global.

 Formal Definition: The property is defined by the following notation:

 local-param = "LOCAL" "=" boolean

 Example: The following is an example of this parameter:

 SEQUENCE;LOCAL=TRUE:4

7.6 LOCALIZE Parameter

 Parameter Name: LOCALIZE

 Purpose: If provided the "LOCALIZE" parameter specifies the desired
 language for error and warning messages.

 Value Type: TEXT

Royer, et al. Expires November 14, 2004 [Page 55]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Conformance: This parameter can be specified in the "CMD" properties.

 When the "LOCALIZE" parameter is supplied then its value MUST BE one
 of the values listed in the initial [BEEP] greeting 'localize'
 attribute.

 A CUA may add the "LOCALIZE" parameter to the "CMD" property to
 specify the language of any error or warning messages.

 Formal Definition: The property is defined by the following notation:

 localize-param = ";" "LOCALIZE" "=" beep-localize

 beep-localize = text ; As defined in [BEEP]
 ; The value supplied MUST BE one value from the initial
 ; [BEEP] greeting 'localize' attribute specifying
 ; the locale to use for error messages during
 ; this instance of the command sent.

 Example: The following is an example of this parameter:

 CMD;LOCALIZE=fr_CA:CREATE

7.7 OPTIONS Parameter

 Parameter Name: OPTIONS

 Purpose: If provided the "OPTIONS" parameter specifies some "CMD"
 property specific options.

 Value Type: TEXT

 Conformance: This parameter can be specified in the "CMD" properties.

 A CUA adds the "OPTIONS" parameter to the "CMD" property when the
 command needs extra values.

 Formal Definition: The property is defined by the following notation:

 option-param = ";" "OPTIONS" "=" cmd-specific

 cmd-specific = ; The value supplied is dependent on the
 ; CMD value. See the specific CMDs for the

Royer, et al. Expires November 14, 2004 [Page 56]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 ; correct values to use for each CMD.

 Example: The following is an example of this parameter:

 CMD;OPTIONS=10:GENERATE-UID

Royer, et al. Expires November 14, 2004 [Page 57]

Internet-Draft Calendar Access Protocol (CAP) May 2004

8. New Properties

8.1 ALLOW-CONFLICT Property

 Property Name: ALLOW-CONFLICT

 Purpose: This property indicates whether or not the calendar and CS
 supports component conflicts. That is, whether or not any of the
 components in the calendar can overlap.

 Value Type: BOOLEAN

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property can be specified in "VAGENDA" and
 "VCALSTORE" component.

 Description: This property is used to indicate whether components may
 conflict. That is, if their expanded instances may share the same
 time or overlap the same time periods. If it has a value of TRUE,
 then conflicts are allowed. If FALSE, the no two components may
 conflict.

 If FALSE in the "VCALSTORE" component, then all "VAGENDA" component
 "ALLOW-CONFLICT" property values MUST BE false in the CS.

 Formal Definition: The property is defined by the following notation:

 allow-conflict = "ALLOW-CONFLICT" other-params ":" boolean CRLF

 Example: The following is an example of this property for a "VAGENDA"
 component:

 ALLOW-CONFLICT:FALSE

8.2 ATT-COUNTER Property

 Property Name: ATT-COUNTER

 Property Parameters: Non-standard property parameters can be
 specified on this property.

Royer, et al. Expires November 14, 2004 [Page 58]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Conformance: This property MUST be specified in an iCalendar object
 that specifies counter proposal to a group scheduled calendar entity.
 When storing a "METHOD" property with the "COUNTER" method, there
 needs to be a way to remember who sent the COUNTER. The ATT-COUNTER
 property MUST BE added to all "COUNTER" [iTIP] components by the CUA
 before storing in a CS.

 Description: This property is used to identify the CAL-ADDRESS of the
 entity that sent the "COUNTER" [iTIP] object.

 Formal Definition: The property is defined by the following notation:

 attcounter = "ATT-COUNTER" other-params ":" cal-address CRLF

 Examples:

 ATT-COUNTER:cap:example.com/Doug
 ATT-COUNTER:mailto:Doug@Example.com

8.3 CALID Property

 Property Name: CALID

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property can be specified in the "VAGENDA"
 component.

 Description: This property is used to specify a fully qualified
 CALID.

 Formal Definition: The property is defined by the following notation:

 CALID = "CALID" other-params ":" relcalid CRLF

 Example:

 CALID:cap://cal.example.com/sdfifgty4321

Royer, et al. Expires November 14, 2004 [Page 59]

Internet-Draft Calendar Access Protocol (CAP) May 2004

8.4 CALMASTER Property

 Property Name: CALMASTER

 Purpose: The property specifies an e-mail address of a person
 responsible for the calendar store.

 Value Type: URI

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: The property can be specified in a "VCALSTORE"
 component.

 Description: The parameter value SHOULD BE a MAILTO URI as defined in
 [URL]. It MUST BE a contact URI such as a MAILTO URI and not a home
 page or file URI that describes how to contact the calmasters.

 Formal Definition: The property is defined by the following notation:

 calmaster = "CALMASTER" other-params ":" uri CRLF

 uri = ; IANA registered uri as defined in [iCAL]

 Example: The following is an example of this property:

 CALMASTER:mailto:administrator@example.com

8.5 CAP-VERSION Property

 Property Name: CAP-VERSION

 Purpose: This property specifies the version of CAP supported.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property is specified in the "VREPLY" component
 that is sent in response to a "GET-CAPABILITY" command.

 Description: This specifies the version of CAP that the endpoint
 supports. The list is a comma separated list of RFC numbers
 supported. The list MUST contain at least XXXX (NOTE 'XXXX' WILL BE
 REPLACED WITH THE RFC NUMBER OF THIS DOCUMENT).

Royer, et al. Expires November 14, 2004 [Page 60]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Formal Definition: The property is defined by the following notation:

 cap-version = "CAP-VERSION" other-params ":" text CRLF

 Example: The following are examples of this property:

 CAP-VERSION:XXXX

8.6 CARID Property

 Property Name: CARID

 Purpose: This property specifies the identifier for an access right
 component.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property MUST BE specified once in a "VCAR"
 component.

 Description: This property is used in the "VCAR" component to specify
 an identifier. A "CARID" property value is unique per container.

 Formal Definition: The property is defined by the following notation:

 carid = "CARID" other-params ":" text CRLF

 Example: The following are examples of this property:

 CARID:xyzzy-007
 CARID:User Rights

8.7 CAR-LEVEL Property

 Property Name: CAR-LEVEL

Royer, et al. Expires November 14, 2004 [Page 61]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Purpose: The property specifies the level of VCAR supported.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: The property can be specified in a "VREPLY" component
 that is sent in response to a "GET-CAPABILITY" command.

 Description: The value is one from a list of "CAR-NONE", "CAR-MIN",
 or "CAR-FULL-1". If "CAR-FULL-1" is supplied then "CAR-MIN" is also
 available. A "CAR-MIN" implementation only supported the
 "DEFAULT-VCARS" property values listed in the "VCALSTORE" component
 and a "CAR-MIN" implementation does not support the creation or
 modification of "VCAR" components from the CUA.

 Formal Definition: The property is defined by the following notation:

 car-level = "CAR-LEVEL" ":" other-params : car-level-values

 car-level-values = ("CAR-NONE" / "CAR-MIN" / "CAR-FULL-1"
 / other-levels)

 other-levels = ; Any name published in an RFC for a "CAR-LEVEL"
 ; property value.

 Example: The following is an example of this property:

 CAR-LEVEL:CAR-FULL-1

8.8 COMPONENTS Property

 Property Name: COMPONENTS

 Purpose: The property specifies a the list of components supported by
 the endpoint.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

Royer, et al. Expires November 14, 2004 [Page 62]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Conformance: The property can be specified in a "VREPLY" component in
 response to a "GET-CAPABILITY" command.

 Description: A comma separated list of components supported by the
 endpoint. If not in the list sent from the endpoint then they are not
 supported by that endpoint. Sending an unsupported component results
 in unpredictable results. This includes any components inside of
 other components (VALARM for example). The recommended list is
 "VCALSTORE,VCALENDAR,VREPLY,VAGENDA,
 VEVENT,VALARM,VTIMEZONE,VJOURNAL,VTODO,VALARM
 DAYLIGHT,STANDARD,VCAR,VRIGHT,VQUERY"

 Formal Definition: The property is defined by the following notation:

 components = "COMPONENTS" other-params ":" comp-list CRLF

 ; All of these MUST BE supplied only once.
 ;
 comp-list-req = "VCALSTORE" "," "VCALENDAR" "," "VTIMEZONE" ","
 "VREPLY" "," "VAGENDA" "," "STANDARD" ","
 "DAYLIGHT"

 ; At least one MUST BE supplied. The same value
 ; MUST NOT occur more than once.
 ;
 comp-list-min = ("," "VEVENT") / ("," "VTODO") / ("," "VJOURNAL")

 ; The same value MUST NOT occur
 ; more than once. If "VCAR" is supplied then
 ' "VRIGHT" must be supplied.
 ;
 comp-list-opt = ("," "VFREEBUSY") / ("," "VALARM")
 / ("," "VCAR") / ("," "VRIGHT")
 / ("," "VQUERY") / ("," x-comp)
 / ("," iana-comp)

 comp-list = comp-list-req 1*3comp-list-min *(comp-list-opt)

 Example: The following is an example of this property:

 COMPONENTS:VCALSTORE,VCALENDAR,VREPLY,VAGENDA,
 VEVENT,VALARM,VTIMEZONE,VJOURNAL,VTODO,
 DAYLIGHT,STANDARD,VFREEBUSY,VCAR,VRIGHT,VQUERY

Royer, et al. Expires November 14, 2004 [Page 63]

Internet-Draft Calendar Access Protocol (CAP) May 2004

8.9 CSID Property

 Property Name: CSID

 Purpose: The property specifies a the globally unique identifier for
 the calendar store.

 Value Type: URI

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: The property can be specified in a "VCALSTORE"
 component.

 Description: The identifier MUST BE globally unique. Each CS needs
 its own unique identifier. The "CSID" property is the official unique
 identifier for the CS. If the [BEEP] 'serverName' attribute was
 supplied in the [BEEP] 'start' message, then the CSID will be mapped
 to the virtual host name supplied and the host name part of the CSID
 MUST BE the same as the 'serverName' value. This allows one CS
 implementation to service multiple virtual hosts. CS's are not
 required to support virtual hosting. If a CS does not support virtual
 hosting then it must ignore the [BEEP] 'serverName' attribute.

 Formal Definition: The property is defined by the following notation:

 csid = "CSID" other-params ":" capurl CRLF

 Example: The following is an example of this property:

 CSID:cap://calendar.example.com

8.10 DECREED Property

 Property Name: DECREED

 Purpose: This property specifies if an access right calendar
 component is decreed or not.

 Value Type: BOOLEAN

 Property Parameters: Non-standard property parameters can be

Royer, et al. Expires November 14, 2004 [Page 64]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 specified on this property.

 Conformance: This property MAY be specified once in a "VCAR"
 component.

 Description: This property is used in the "VCAR" component to specify
 whether the component is decreed or not. If the "DECREED" property
 value is "true" then the CUA will be unable to change the contents of
 the "VCAR" component and any attempt will fail with an error.

 Formal Definition: The property is defined by the following notation:

 decreed = "DECREED" other-params ":" boolean CRLF

 Example: The following is an example of this property:

 DECREED:TRUE

8.11 DEFAULT-CHARSET Property

 Property Name: DEFAULT-CHARSET

 Purpose: This property indicates the default charset.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property can be specified in "VAGENDA" and
 "VCALSTORE" calendar component.

 Description: In a "VAGENDA" component this property is used to
 indicate the charset of calendar. If not specified, the default is
 the first value in the "VCALSTORE" components "DEFAULT-CHARSET"
 property value list. The value MUST BE an IANA registered character
 set as defined in [CHARREG].

 In a "VCALSTORE" component it is a comma separated list of charsets
 supported by the CS. The first entry is the default entry for all
 newly created "VAGENDA" components. The "UTF-8" value MUST BE in the
 "VCALSTORE" component "DEFAULT-CHARSET" property list. All compliant
 CAP implementations (CS and CUA) MUST support at least the "UTF-8"

Royer, et al. Expires November 14, 2004 [Page 65]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 charset.

 If a charset name contains a comma (,), then that comma must be
 backslashed escaped in the value.

 Formal Definition: The property is defined by the following notation:

 default-charset = "DEFAULT-CHARSET" other-params ":" text
 *("," text) CRLF

 Example: The following is an example of this property for a "VAGENDA"
 component:

 DEFAULT-CHARSET:Shift_JIS,UTF-8

8.12 DEFAULT-LOCALE Property

 Property Name: DEFAULT-LOCALE

 Purpose: This property specifies the default language for text
 values.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property can be specified in "VAGENDA" and
 "VCALSTORE" components.

 Description: In a "VAGENDA" component, the "DEFAULT-LOCALE" property
 is used to indicate the locale of the calendar. The full locale

 SHOULD be used. The default and minimum locale is POSIX (aka the 'C'
 locale).

 In a "VCALSTORE" component it is a comma separated list of locales
 supported by the CS. The first value in the list is the default for
 all newly created VAGENDAs. "POSIX" MUST BE in the list.

 Formal Definition: The property is defined by the following notation:

 default-locale = "DEFAULT-LOCALE" other-params ":" language

Royer, et al. Expires November 14, 2004 [Page 66]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 *("," language) CRLF

 language = Text identifying a locale, as defined in [CHARPOL]

 Example: The following is an example of this property:

 DEFAULT-LOCALE:en-US.iso-8859-1,POSIX

8.13 DEFAULT-TZID Property

 Property Name: DEFAULT-TZID

 Purpose: This property specifies the text value that specifies the
 time zones.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property may be specified once in a "VAGENDA" and
 "VCALSTORE" components.

 Description: A multi valued property that lists the known time zones.
 The first is the default. Where "TZID" property values are the same
 as the "TZID" property as defined in [iCAL].

 If in a "VCALSTORE" component it is a comma separated list of TZIDs
 known to the CS. The entry is used as the default TZID list for all
 newly created calendars. The list MUST contain at least "UTC". A
 "VCALSTORE" components MUST have one "VTIMEZONE" component contained
 in it for each value in the "DEFAULT-TZID" property value.

 If in a "VAGENDA" component it is a comma separated list of "TZID"
 property values naming the time zones known to the calendar. The
 first time zone in the list is the default and is used as the
 localtime for objects that contain a date or date-time value without
 a time zone. All "VAGENDA" components MUST have one "VTIMEZONE"
 component contained for each value in the "DEFAULT-TZID" property
 value.

 If a "TZID" property value contains a comma (,), the comma must be
 backslash escaped.

Royer, et al. Expires November 14, 2004 [Page 67]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Formal Definition: This property is defined by the following
 notation:

 default-tzid = "DEFAULT-TZID" other-params
 ":" [tzidprefix] text
 *("," [tzidprefix] text) CRLF

 Example: The following is an example of this property:

 DEFAULT-TZID:US/Mountain,UTC

8.14 DEFAULT-VCARS Property

 Property Name: DEFAULT-VCARS

 Purpose: This property is used to specify the "CARID" property ids of
 the default "VCAR" components for newly created "VAGENDA" components.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property MUST BE specified in "VCALSTORE" calendar
 component and MUST at least specify the following values:
 "READBUSYTIMEINFO", "REQUESTONLY", "UPDATEPARTSTATUS", and
 "DEFAULTOWNER".

 Description: This property is used in the "VCALSTORE" component to
 specify the "CARID" value of the "VCAR" components that MUST BE
 copied into now "VAGENDA" components at creation time by the CS. All
 "DEFAULT-VCAR" values must have "VCARS" components stored in the
 "VCALSTORE".

 Formal Definition: The property is defined by the following notation:

 def-vcars = "DEFAULT-VCARS" other-params ":" text
 *("," text) CRLF

 Example: The following is an example of this property:

Royer, et al. Expires November 14, 2004 [Page 68]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 DEFAULT-VCARS:READBUSYTIMEINFO,REQUESTONLY,
 UPDATEPARTSTATUS,DEFAULTOWNER

8.15 DENY Property

 Property Name: DENY

 Purpose: This property identifies the UPN(s) being denied access in
 the "VRIGHT" component.

 Value Type: UPN-FILTER

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property can be specified in "VRIGHT" components.

 Description: This property is used in the "VRIGHT" component to
 define the CU or UG being denied access.

 Formal Definition: The property is defined by the following notation:

 deny = "DENY" other-params ":" upn-filter CRLF

 Example: The following are examples of this property:

 DENY:*

 DENY:bob@example.com

8.16 EXPAND property

 Property Name: EXPAND

 Purpose: This property is to notify the CS if it should or should not
 expand any component with recurrence rules into multiple instances in
 a query reply.

 Value Type: BOOLEAN

 Property Parameters: Non-standard property parameters can be

Royer, et al. Expires November 14, 2004 [Page 69]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 specified on this property.

 Conformance: This property can be specified in "VQUERY" components.

 Description: If a CUA wishes to see all of the instances of a
 recurring component the CUA sets EXPAND=TRUE in the "VQUERY"
 component. If not specified, the default is FALSE. Note that if the
 CS has its "RECUR-EXPAND" CS property value set to false then the
 "EXPAND" property will be ignored and the result will be as if the
 "EXPAND" value was set to false. The results will be bounded by any
 date range or other limits in the query.

 Formal Definition: The property is defined by the following notation:

 expand = "EXPAND" other-params ":" ("TRUE" / "FALSE") CRLF

 Example: The following are examples of this property:

 EXPAND:FALSE
 EXPAND:TRUE

8.17 GRANT Property

 Property Name: GRANT

 Purpose: This property identifies the UPN(s) being granted access in
 the "VRIGHT" component.

 Value Type: UPN-FILTER

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property can be specified in "VRIGHT" calendar
 components.

 Description: This property is used in the "VRIGHT" component to
 specify the CU or UG being granted access.

 Formal Definition: The property is defined by the following notation:

 grant = "GRANT" other-params ":" upn-filter CRLF

Royer, et al. Expires November 14, 2004 [Page 70]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Example: The following are examples of this property:

 GRANT:*

 GRANT:bob@example.com

8.18 ITIP-VERSION Property

 Property Name: ITIP-VERSION

 Purpose: This property specifies the version of ITIP supported.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property is specified in the "VREPLY" component
 that is sent in response to a "GET-CAPABILITY" command.

 Description: This specifies the version of ITIP that the endpoint
 supports. The list is a comma separated list of RFC numbers
 supported. The list MUST contain at least 2446 to mean [iTIP]

 Formal Definition: The property is defined by the following notation:

 itip-version = "ITIP-VERSION" other-params ":" text CRLF

 Example: The following are examples of this property:

 ITIP-VERSION:2446

8.19 MAX-COMP-SIZE Property

 Property Name: MAX-COMP-SIZE

 Purpose: This property specifies the largest size of any object
 accepted.

 Value Type: TEXT

Royer, et al. Expires November 14, 2004 [Page 71]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property is specified in the "VREPLY" component
 that is sent in response to a "GET-CAPABILITY" command.

 Description: A positive integer value that specifies the size of the
 largest iCalendar object that can be accepted in octets. Objects
 larger than this will be rejected. A value of zero (0) means no
 limit. This is also the maximum value of any [BEEP] payload that will
 be accepted or sent.

 Formal Definition: The property is defined by the following notation:

 max-comp-size = "MAX-COMP-SIZE" other-params ":" posint0 CRLF

 Example: The following are examples of this property:

 MAX-COMP-SIZE:1024

8.20 MAXDATE Property

 Property Name: MAXDATE

 Purpose: This property specifies the date/time in the future beyond
 which the CS or CUA cannot represent.

 Value Type: DATE-TIME

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: The property can be specified in the "VCALSTORE"
 component.

 Description: The date and time MUST BE a UTC value and end with 'Z'.

 Formal Definition: The property is defined by the following notation:

 maxdate = "MAXDATE" other-params ":" date-time CRLF

Royer, et al. Expires November 14, 2004 [Page 72]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Example: The following is an example of this property:

 MAXDATE:20990101T000000Z

8.21 MINDATE Property

 Property Name: MINDATE

 Purpose: This property specifies the date/time in the past prior to
 which the server cannot represent.

 Value Type: DATE-TIME

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: The property can be specified in the "VCALSTORE"
 component.

 Description: The date and time MUST BE a UTC value and end with 'Z'.

 Formal Definition: The property is defined by the following notation:

 mindate = "MINDATE" other-params ":" date-time CRLF

 Example: The following is an example of this property:

 MINDATE:19710101T000000Z

8.22 MULTIPART Property

 Property Name: MULTIPART

 Purpose: This property provides a comma separated list of supported
 MIME multipart types supported by the sender.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

Royer, et al. Expires November 14, 2004 [Page 73]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Conformance: This property is specified in the "VREPLY" component
 that is sent in response to a "GET-CAPABILITY" command.

 Description: This property is used in the in the "GET-CAPABILITY"
 command reply to indicated the MIME multipart types supported. A CS
 and CUA SHOULD support all registered MIME multipart types.

 Formal Definition: The property is defined by the following notation:

 mname = "MULTIPART" other-params ":" text *("," text) CRLF

 Example: The following is an example of this property:

 MULTIPART:related,alternate,mixed

8.23 NAME Property

 Property Name: NAME

 Purpose: This property provides a localizable display name for a
 component.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property can be specified in a component.

 Description: This property is used in the in component to specify a
 localizable display name. If more than one "NAME" properties are in a
 component, then they MUST have unique "LANG" parameters. If the

 "LANG" parameter is not supplied, then it defaults to the "VAGENDA"
 components "DEFAULT-LOCALE" first value as the default. If the
 component is a "VAGENDA" then the default value is the "VAGENDA"s
 components "DEFAULT-LOCALE" first value as the default. A "VCALSTORE"
 components "DEFAULT-LOCALE" first value is the default if the
 component is stored at the "VCALSTORE" level.

 Formal Definition: The property is defined by the following notation:

 name = "NAME" nameparam ":" text CRLF

Royer, et al. Expires November 14, 2004 [Page 74]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 nameparam = other-params [";" languageparam] other-params

 languageparam = ; As defined in [iCAL].

 Example: The following is an example of this property:

 NAME:Restrict Guests From Creating VALARMs On VEVENTs

8.24 OWNER Property

 Property Name: OWNER

 Purpose: The property specifies an owner of the component.

 Value Type: UPN

 Property Parameters: Non-standard, alternate text representation and
 language property parameters can be specified on this property.

 Conformance: The property MUST BE specified at in a "VAGENDA"
 component.

 Description: A multi-instanced property indicating the calendar
 owner.

 Formal Definition: The property is defined by the following notation:

 owner = "OWNER" other-params ":" upn CRLF

 Example: The following is an example of this property:

 OWNER:jsmith@example.com
 OWNER:jdough@example.com

8.25 PERMISSION Property

 Property Name: PERMISSION

 Purpose: This property defines a permission that is granted or denied

Royer, et al. Expires November 14, 2004 [Page 75]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 in a "VRIGHT" component.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property can be specified in "VRIGHT" components.

 Description: This property is used in the "VRIGHT" component to
 define a permission that is granted or denied.

 Formal Definition: The property is defined by the following notation:

 perm = "PERMISSION" other-params ":" permvalue CRLF

 permvalue = ("SEARCH" / "CREATE" / "DELETE"
 / "MODIFY" / "MOVE" / all
 / iana-cmd / x-cmd)

 all = "*"

 iana-cmd = ; Any command registered by IANA directly or
 ; included in an RFC that may be applied as
 ; a command.

 x-cmd = ; Any experimental command that starts with
 ; "x-" or "X-".

 Example: The following is an example of this property:

 PERMISSION:SEARCH

8.26 QUERY property

 Property Name: QUERY

 Purpose: Specifies the query for the component.

 Value Type: CAL-QUERY

 Property Parameters: Non-standard property parameters can be
 specified on this property.

Royer, et al. Expires November 14, 2004 [Page 76]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Conformance: This property can be specified in "VQUERY" components.

 Description: A "QUERY" is used to specify the "CAL-QUERY" (Section
6.1.1 for the query.

 Formal Definition: The property is defined by the following notation:

 query = "QUERY" other-params ":" cal-query CRLF

 Example: The following is an example of this property:

 QUERY:SELECT * FROM VEVENT

8.27 QUERYID property

 Property Name: QUERYID

 Purpose: Specifies a unique ID for a query in the targeted container.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters are specified
 on this property.

 Conformance: This property can be specified in "VQUERY" components.

 Description: A "QUERYID" property is used to specify the unique id
 for a query. A "QUERYID" property value is unique per container.

 Formal Definition: The property is defined by the following notation:

 queryid = "QUERYID" other-params ":" text CRLF

 Example: The following are examples of this property:

 QUERYID:Any Text String
 QUERYID:fetchUnProcessed

Royer, et al. Expires November 14, 2004 [Page 77]

Internet-Draft Calendar Access Protocol (CAP) May 2004

8.28 REQUEST-STATUS property

 This description is a revision of the "REQUEST-STATUS" property for
 [iCAL] objects with a "VCALENDAR" component "VERSION" property that
 includes a value of "2.0" or newer. The 'statdesc' is optional and
 the 'extdata' may be included when 'statdesc' is not provided.

 rstatus = "REQUEST-STATUS" rstatparam ":"
 statcode ";" [statdesc] ";" [extdata]

 rstatparam = other-params [";" languageparam] other-params

 statcode = 1*DIGIT *("." 1*DIGIT)
 ;Hierarchical, numeric return status code

 statdesc = text
 ;An optional textual status description, content is
 ;decided by the implementer. May be empty.

 extdata = text
 ; Textual exception data. For example, the offending
 ; property name and value or complete property line.

 Example: The following are some possible examples of this property.
 The COMMA and SEMICOLON separator characters in the property value
 are BACKSLASH character escaped because they appear in a text value.

 REQUEST-STATUS:2.0;Success

 REQUEST-STATUS:3.1;Invalid property value;DTSTART:96-Apr-01

 REQUEST-STATUS:2.8; Success\, repeating VEVENT ignored. Scheduled
 as a single VEVENT.;RRULE:FREQ=WEEKLY;INTERVAL=2

 REQUEST-STATUS:4.1;Time conflict. Date/time is busy.

 REQUEST-STATUS:3.7;Invalid calendar user;ATTENDEE:
 MAILTO:jsmith@example.com

 REQUEST-STATUS:3.7;;ATTENDEE:MAILTO:jsmith@example.com

 REQUEST-STATUS:10.4;Help! That really shouldn't have happened.

Royer, et al. Expires November 14, 2004 [Page 78]

Internet-Draft Calendar Access Protocol (CAP) May 2004

8.29 QUERY-LEVEL Property

 Property Name: QUERY-LEVEL

 Purpose: This property specifies the level of query supported.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: The property can be specified in the "VREPLY" component
 in response to a "GET-CAPABILITY" command.

 Description: Indicates level of query support. CAL-QL-NONE is for
 CS's that allow ITIP methods only to be deposited and nothing else.

 Formal Definition: The property is defined by the following notation:

 query-level = "QUERY-LEVEL" other-params
 ":" ("CAL-QL-1" / "CAL-QL-NONE") CRLF

 Example: The following is an example of this property:

 QUERY-LEVEL:CAL-QL-1

8.30 RECUR-ACCEPTED Property

 Property Name: RECUR-ACCEPTED

 Purpose: This property specifies if the endpoint supports recurring
 instances.

 Value Type: BOOLEAN

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: The property can be specified in the "VREPLY" component
 in response to a "GET-CAPABILITY" command.

 Description: Indicates if recurrence rules are supported. If FALSE
 then the endpoint can not process any kind of recurring rules.

Royer, et al. Expires November 14, 2004 [Page 79]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Formal Definition: The property is defined by the following notation:

 recur-accepted = "RECUR-ACCEPTED" other-params ":" boolean CRLF

 Example: The following is an example of this property:

 RECUR-ACCEPTED:TRUE
 RECUR-ACCEPTED:FALSE

8.31 RECUR-LIMIT Property

 Property Name: RECUR-LIMIT

 Purpose: This property specifies the maximum number of instances the
 endpoint will expand instances into at query or storage time.

 Value Type: INTEGER

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: The property can be specified in the "VREPLY" component
 in response to a "GET-CAPABILITY" command.

 Description: For implementations that have the "STORES-EXPANDED"
 value set to TRUE, then this value specifies the maximum number of
 instances that will be stored and fetched. For all implementations
 this is the maximum number of instances that will be returned when
 the "EXPAND" parameter is specified as TRUE and the results contain a
 infinite or large number of recurring instances.

 Formal Definition: The property is defined by the following notation:

 recur-limit = "RECUR-LIMIT" other-params ":" posint1 CRLF

 Example: The following is an example of this property:

 RECUR-LIMIT:1000

Royer, et al. Expires November 14, 2004 [Page 80]

Internet-Draft Calendar Access Protocol (CAP) May 2004

8.32 RECUR-EXPAND Property

 Property Name: RECUR-EXPAND

 Purpose: This property specifies if the endpoint can expand
 recurrences into multiple objects.

 Value Type: BOOLEAN

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: The property can be specified in the "VREPLY" component
 in response to a "GET-CAPABILITY" command.

 Description: If TRUE then the endpoint can expand an object into
 multiple instances as defined by its recurrence rules when the
 "EXPAND" property is supplied. If FALSE then the endpoint ignores the
 "EXPAND" property.

 Formal Definition: The property is defined by the following notation:

 recur-expand = "RECUR-EXPAND" other-params ":" boolean CRLF

 Example: The following is an example of this property:

 RECUR-EXPAND:TRUE
 RECUR-EXPAND:FALSE

8.33 RESTRICTION Property

 Property Name: RESTRICTION

 Purpose: This property defines restrictions on the result value of
 new or existing components.

 Value Type: CAL-QUERY

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property can be specified in "VRIGHT" components,
 but only when the "PERMISSION" property is set to "CREATE", "MODIFY",

Royer, et al. Expires November 14, 2004 [Page 81]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 or "*" property value.

 Description: This property is used in the "VRIGHT" component to
 define restrictions on the components that can be written (i.e., by
 using the "CREATE" or "MOVE" commands) as well as on the values that
 may take existent calendar store properties, calendar properties,
 components, and properties (i.e., by using the "MODIFY" command).
 Accepted values MUST match any specified "RESTRICTION" property
 values.

 Formal Definition: The property is defined by the following notation:

 restrict = "RESTRICTION" other-params ":" cal-query CRLF

 Example: The following are examples of this property:

 RESTRICTION:SELECT * FROM VCALENDAR WHERE METHOD = 'REQUEST'

 RESTRICTION:SELECT * FROM VEVENT WHERE
 SELF() IN ORGANIZER

 RESTRICTION:SELECT * FROM VEVENT WHERE 'BUSINESS' IN
 CATEGORIES

8.34 SCOPE Property

 Property Name: SCOPE

 Purpose: This property identifies the objects in the CS to which the
 access rights applies.

 Value Type: CAL-QUERY

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property can be specified in "VRIGHT" components.

 Description: This property is used in the "VRIGHT" component to
 define the set of objects subject to the access right being defined.

 Formal Definition: The property is defined by the following notation:

Royer, et al. Expires November 14, 2004 [Page 82]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 scope = "SCOPE" other-params ":" cal-query CRLF

 Example: The following is an example of this property:

 SCOPE:SELECT DTSTART,DTEND FROM VEVENT WHERE CLASS = 'PUBLIC'

8.35 STORES-EXPANDED Property

 Property Name: STORES-EXPANDED

 Purpose: This property specifies if the sending endpoint expands
 recurrence rules prior to storing them into the CS.

 Value Type: BOOLEAN

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property can be specified in a "VREPLY" component
 in response to a "GET-CAPABILITY" command.

 Description: If the value is TRUE then the endpoint expands
 recurrence rules and then stores the results into the CS. If this is
 TRUE then the "RECUR-LIMIT" property is significant because an
 infinitely recurring appointment will be stored no more than
 "RECUR-LIMIT" property values into the CS and all other instances
 will be lost.

 Formal Definition: The property is specified by the following
 notation:

 stores-expanded = "STORES-EXPANDED" other-params ":" boolean CRLF

 The following is an example of this property:

 STORES-EXPANDED:TRUE
 STORES-EXPANDED:FALSE

Royer, et al. Expires November 14, 2004 [Page 83]

Internet-Draft Calendar Access Protocol (CAP) May 2004

8.36 TARGET Property

 Property Name: TARGET

 Purpose: This property defines the container that the command that is
 issued will act upon. Its value is a capurl as defined in Section 5.

 Value Type: URI

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property can be specified in a command component.

 Description: This property value is used to specify the container
 that the command will effect. When used in a command, the command
 will be performed on the container which has a capurl matching the
 value.

 Formal Definition: The property is specified by the following
 notation:

 target = "TARGET" other-params ":" (capurl / relcalid) CRLF

 The following is an example of this property:

 TARGET:cap://mycal.example.com
 TARGET:SomeRelCalid

8.37 TRANSP Property

 Property Name: TRANSP

 Purpose: This property defines whether an component is transparent or
 not to busy time searches. This is a modification to [iCAL] "TRANSP"
 property in that it adds some values.

 Value Type: TEXT

 Property Parameters: Non-standard property parameters can be
 specified on this property.

Royer, et al. Expires November 14, 2004 [Page 84]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Conformance: This property can be specified in a component.

 Description: Time Transparency is the characteristic of an object
 that determines whether it appears to consume time on a calendar.
 Objects that consume actual time for the individual or resource
 associated with the calendar SHOULD be recorded as "OPAQUE", allowing
 them to be detected by free-busy time searches. Other objects, which
 do not take up the individual's (or resource's) time SHOULD be
 recorded as "TRANSPARENT", making them invisible to free-busy time
 searches.

 Formal Definition: The property is specified by the following
 notation:

 transp = "TRANSP" other-params ":" transvalue CRLF

 transvalue
 = "OPAQUE" ;Blocks or opaque on busy time searches.
 / "TRANSPARENT" ;Transparent on busy time searches.

 / "TRANSPARENT-NOCONFLICT" ; Transparent on busy time
 ; searches and no other OPAQUE or OPAQUE-NOCONFLICT objects
 ; can overlap it.

 / "OPAQUE-NOCONFLICT" ; Opaque on busy time
 ; searches and no other OPAQUE or OPAQUE-NOCONFLICT objects
 ; can overlap it.
 ;
 ;Default value is OPAQUE

 The following is an example of this property for an object that is
 opaque or blocks on free/busy time searches plus no other object can
 overlap it:

 TRANSP:OPAQUE-NOCONFLICT

Royer, et al. Expires November 14, 2004 [Page 85]

Internet-Draft Calendar Access Protocol (CAP) May 2004

9. New Components

9.1 VAGENDA Component

 Component Name: VAGENDA

 Purpose: Provide a grouping of properties that defines an agenda.

 Formal Definition: There are two formats of the "VAGENDA" component.
 (1) When it is being created, and (2) how it exists in the
 "VCALSTORE" component.

 A "VAGENDA" component in a "VCALSTORE" component is defined by the
 following notes and ABNF notation:

 CALSCALE - The value MUST BE from the "VCALSTORE" "CALSCALE"
 property list. The default is the first entry in the VCALSTORE
 CALSCALE list.

 CREATED - The timestamp of the calendar's create date. This is a
 READ ONLY property in a "VAGENDA".

 LAST-MODIFIED - The timestamp of any change to the "VAGENDA"
 properties or when any component was last created, modified, or
 deleted.

 agenda = "BEGIN" ":" "VAGENDA" CRLF
 agendaprop
 *(icalobject) ; as defined in [iCAL]
 "END" ":" "VAGENDA" CRLF

 agendaprop = *(
 ; The following MUST occur exactly once.
 ;
 allow-conflict / relcalid / calscale / created
 / default-charset / default-locale
 / default-tzid / last-mod /

 ; The following MUST occur at least once.
 ; and the value MUST NOT be empty.

 / owner

 ; The following are optional,
 ; and MAY occur more than once.

Royer, et al. Expires November 14, 2004 [Page 86]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 / name / related-to / other-props / x-comp
)

 When creating a VAGENDA, use the following notation:

 agendac = "BEGIN" ":" "VAGENDA" CRLF
 agendacprop
 *(icalobject) ; as defined in [iCAL]
 "END" ":" "VAGENDA" CRLF

 agendacprop = *(
 ; The following MUST occur exactly once.
 ;
 allow-conflict / relcalid / calscale
 / default-charset / default-locale
 / default-tzid /

 ; The following MUST occur at least once.
 ; and the value MUST NOT be empty.
 ;
 / owner

 ; The following are optional,
 ; and MAY occur more than once.
 ;
 / name / related-to / other-props / x-comp
)

 To fetch all of the properties from the targeted "VAGENDA" component.
 This does not fetch any components:

 SELECT * FROM VAGENDA

 To fetch all of the properties from the targeted VAGENDA and all of
 the contained components, use the special '*.*' value:

 SELECT *.* FROM VAGENDA

Royer, et al. Expires November 14, 2004 [Page 87]

Internet-Draft Calendar Access Protocol (CAP) May 2004

9.2 VCALSTORE Component

 Component Name: VCALSTORE

 Purpose: Provide a grouping of properties that defines a calendar
 store.

 Formal Definition: A "VCALSTORE" component is defined by the
 following table and ABNF notation. The creation of a "VCALSTORE"
 component is an administrative task and not part of the CAP protocol.

 The following are notes to some of the properties in the "VCALSTORE"
 component.

 CALSCALE - A comma separated list of CALSCALEs supported by this CS.
 All "VAGENDA" component calendar CALSCALE properties MUST BE from
 this list. This list MUST contain at least "GREGORIAN". The
 default for newly created "VAGENDA" components is the first entry.

 RELATED-TO - This is a multiple instance property. There must be a
 "RELATED-TO" property MUST for each of the "VAGENDA" components
 contained in the "VCALSTORE" component each with the "RELTYPE"
 parameter value set to "CHILD". Other "RELATED-TO" properties may
 be included.

 CREATED - The timestamp of the CS creation time. This is a READ ONLY
 property.

 CSID - The CSID of this calendar store. MUST NOT be empty. How this
 property is set in the VCALSTORE is an administrative or
 implementation specific issue and is not covered in CAP. This is a
 READ ONLY property. A suggested value is the fully qualified host
 name or a fully qualified virtual host name supported by the
 system.

 LAST-MODIFIED - The timestamp when the Properties of the "VCALSTORE"
 component were last updated or calendars were created or deleted.
 This is a READ ONLY PROPERTY.

 calstorec = "BEGIN" ":" "VCALSTORE" CRLF
 calstoreprop
 *(vagendac)
 "END" ":" "VCALSTORE" CRLF

 calstoreprop = *(
 ; the following MUST occur exactly once

Royer, et al. Expires November 14, 2004 [Page 88]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 allow-conflict / calscale / calmaster
 / created / csid / default-charset
 / default-locale / default-vcars
 / default-tzid / last-mod / maxdate / mindate

 ; the following are optional,
 ; and MAY occur more than once

 / name / related-to / other-props / x-comp
)

 last-mod = ; As defined in [iCAL].

 To fetch all of the properties from the targeted VCALSTORE and not
 fetch the calendars that it contains:

 SELECT * FROM VCALSTORE

 To fetch all of the properties from the targeted "VCALSTORE"
 component and all of the contained calendars and all of those
 calendars contained properties and components, use the special '*.*'
 value:

 SELECT *.* FROM VCALSTORE

9.3 VCAR Component

 Component Name: VCAR

 Purpose: Provide a grouping of calendar access rights.

 Formal Definition: A "VCAR" component is defined by the following
 notation:

 carc = "BEGIN" ":" "VCAR" CRLF
 carprop 1*rightc
 "END" ":" "VCAR" CRLF

 carprop = 1*(

Royer, et al. Expires November 14, 2004 [Page 89]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 ; 'carid' is REQUIRED,
 ; but MUST NOT occur more than once

 carid /

 ; the following are OPTIONAL,
 ; and MAY occur more than once

 name / decreed / other-props
)

 Description: A "VCAR" component is a grouping of properties, and
 "VRIGHT" components, that represents access rights granted or denied
 to UPNs.

 The "CARID" property specifies the local identifier for the "VCAR"
 component. The "NAME" property specifies a localizable display name.

 Example: In the following example, the UPN "foo@example.com" is given
 search access to the "DTSTART" and "DTEND" VEVENT properties. No
 other access is specified:

 BEGIN:VCAR
 CARID:View Start and End Times
 NAME:View Start and End Times
 BEGIN:VRIGHT
 GRANT:foo@example.com
 PERMISSION:SEARCH
 SCOPE:SELECT DTSTART,DTEND FROM VEVENT
 END:VRIGHT
 END:VCAR

 In this example, all UPNs are given search access to "DTSTART" and
 "DTEND" properties of VEVENT components. "All CUs and UGs" are
 specified by the UPN value "*". Note that this enumerated UPN value
 is not in quotes:

 BEGIN:VCAR
 CARID:ViewStartEnd2
 NAME:View Start and End Times 2
 BEGIN:VRIGHT
 GRANT:*
 PERMISSION:SEARCH
 SCOPE:SELECT DTSTART,DTEND FROM VEVENT

Royer, et al. Expires November 14, 2004 [Page 90]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 END:VRIGHT
 END:VCAR

 In these examples, full calendar access rights are given to the
 CAL-OWNERS(), and a hypothetical administrator is given access rights
 to specify calendar access rights. If no other rights are specified,
 only these two UPNs can specify calendar access rights:

 BEGIN:VCAR
 CARID:some-id-3
 NAME:Only OWNER or ADMIN Settable VCARs
 BEGIN:VRIGHT
 GRANT:CAL-OWNERS()
 PERMISSION:*
 SCOPE:SELECT * FROM VAGENDA
 END:VRIGHT
 BEGIN:VRIGHT
 GRANT:cal-admin@example.com
 PERMISSION:*
 SCOPE:SELECT * FROM VCAR
 RESTRICTION:SELECT * FROM VCAR
 END:VRIGHT
 END:VCAR

 In this example, rights to write, search, modify or delete calendar
 access rights are denied to all UPNs. This example would disable
 providing different access rights to the calendar store or calendar.
 This calendar access right should be specified with great care, as it
 removes the ability to change calendar access; even for the owner or
 administrator. It could be used by small devices that do not support
 the changing of any VCAR:

 BEGIN:VCAR
 CARID:VeryRestrictiveVCAR-2
 NAME:No CAR At All
 BEGIN:VRIGHT
 DENY:*
 PERMISSION:*
 SCOPE:SELECT * FROM VCAR
 END:VRIGHT

 END:VCAR

Royer, et al. Expires November 14, 2004 [Page 91]

Internet-Draft Calendar Access Protocol (CAP) May 2004

9.4 VRIGHT Component

 Component Name: "VRIGHT"

 Purpose: Provide a grouping of properties that describe an access
 right (granted or denied).

 Formal Definition: A "VRIGHT" component is defined by the following
 notation:

 rightc = "BEGIN" ":" "VRIGHT" CRLF
 rightprop
 "END" ":" "VRIGHT" CRLF

 rightprop = 2*(

 ; either 'grant' or 'deny' MUST
 ; occur at least once
 ; and MAY occur more than once

 grant / deny /

 ; 'permission' MUST occur at least once
 ; and MAY occur more than once

 permission /

 ; the following are optional,
 ; and MAY occur more than once

 scope / restriction / other-props

)

 Description: A "VRIGHT" component is a grouping of calendar access
 right properties.

 The "GRANT" property specifies the UPN that is being granted access.
 The "DENY" property specifies the UPN is being denied access. The
 "PERMISSION" property specifies the actual permission being set. The
 "SCOPE" property identifies the calendar store properties, calendar
 properties, components, or properties to which the access right
 applies. The "RESTRICTION" property specifies restriction on the
 value that may take calendar store properties, calendar properties,
 calendar components, and properties after a "CREATE" or "MODIFY"
 command. Values MUST match all the instances of the "RESTRICTION"

Royer, et al. Expires November 14, 2004 [Page 92]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 property to be valid.

9.5 VREPLY Component

 Component Name: "VREPLY"

 Purpose: Provide a grouping of arbitrary properties and components
 that are the data set result from an issued command.

 Formal Definition: A "VREPLY" component is defined by the following
 notation:

 replyc = "BEGIN" ":" "VREPLY" CRLF
 any-prop-or-comp
 "END" ":" "VREPLY" CRLF

 any-prop-or-comp = ; Zero or more iana or experimental
 ; properties and components, in any order.

 Description: Provide a grouping of arbitrary properties and
 components that are the data set result from an issued command.

 A query can return a predictable set of arbitrary properties and
 components. This component is used by query and other commands to
 return data that does not fit into any other component. It may
 contain any valid property or component, even if they are not
 registered.

9.6 VQUERY Component

 Component Name: VQUERY

 Purpose: A component describes a set of objects to be acted upon.

 Formal Definition: A "VQUERY" component is defined by the following

 notation:

 queryc = "BEGIN" ":" "VQUERY" CRLF
 queryprop
 "END" ":" "VCAR" CRLF

 queryprop = 1*(

 ; 'queryid' is OPTIONAL but MUST NOT occur
 ; more than once. If the "TARGET" property

Royer, et al. Expires November 14, 2004 [Page 93]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 ; is supplied then the "QUERYID" property
 ; MUST BE supplied.
 ;
 queryid / target

 ; 'expand' is OPTIONAL but MUST NOT occur
 ; more than once.

 expand

 ; the following are OPTIONAL, and MAY occur
 ; more than once
 ;
 / name / other-props

 ; the following MUST occur at least once if
 ; queryid is not supplied.
 ;
 / query

)

 Description: A "VQUERY" contains properties that describe which
 properties and components the CS is requested to act upon.

 The "QUERYID" property specifies the local identifier for a "VQUERY"
 component.

 For a search, if the "TARGET" property is supplied in a "VQUERY"
 component, then the CS is to search for the query in the CALID
 supplied by the "TARGET" property value.

 For a create the "TARGET" property MUST NOT be supplied as the
 destination container is already supplied in the "TARGET" property of
 the "VCALENDAR" component.

 For examples, see Section 6.1.1.

Royer, et al. Expires November 14, 2004 [Page 94]

Internet-Draft Calendar Access Protocol (CAP) May 2004

10. Commands and Responses

 CAP commands and responses are described in this section.

10.1 CAP Commands (CMD)

 All commands are send using the CMD property.

 Property Name: CMD

 Purpose: The property defines the command to be sent.

 Value Type: TEXT

 Property Parameters: Non-standard, id, localize, latency, action or
 options.

 Conformance: This property is the method used to specify the commands
 to a CS and can exist in any object sent to the CS.

 Description: All of the commands to the CS are supplied in this
 property. The "OPTIONS" parameter is overloaded and its meaning is
 dependent on the CMD value supplied.

 Formal Definition: The property is defined by the following notation:

 cmd = "CMD" (
 / abort-cmd
 / continue-cmd
 / create-cmd
 / delete-cmd
 / generate-uid-cmd
 / get-capability-cmd
 / identify-cmd
 / modify-cmd
 / move-cmd
 / reply-cmd

 / search-cmd
 / set-locale-cmd
 / iana-cmd
 / x-cmd
) CRLF

 option-value = paramtext ; As defined in [iCAL]

 Calendaring commands allow a CUA to directly manipulate a calendar.

Royer, et al. Expires November 14, 2004 [Page 95]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Calendar access rights can be granted or denied for any commands.

10.1.1 Bounded Latency

 A CAP command can have an associated maximum latency time by
 specifying the "LATENCY" parameter. If the command is unable to be
 completed in the specified amount of time (as specified by the
 "LATENCY" parameter value with an "ACTION" parameter set to the "ASK"
 value), then a "TIMEOUT" command MUST BE sent on the same channel" to
 which there MUST BE a an "ABORT" or a "CONTINUE" command reply. If
 the CUA initiated the original command, then the CS would issue the
 "TIMEOUT" command and the CUA would then have to issue an "ABORT" or
 "CONTINUE" command. If the CS initiated the original command then the
 CUA would have to issue the "TIMEOUT" and the CS would send the
 "ABORT" or "CONTINUE".

 Upon receiving an "ABORT" command, the command must then be
 terminated. Only the "ABORT", "TIMEOUT", "REPLY, and "CONTINUE"
 commands can not be aborted. The "ABORT", "TIMEOUT", and "REPLY"
 commands MUST NOT have latency set.

 Upon receiving a "CONTINUE" command the work continues as if it had
 not been delayed or stopped. Note that a new latency time MAY BE
 included in a "CONTINUE" command indicating to continue the original
 command until the "LATENCY" parameter value expires or the results of
 the original command can be returned.

 Both the "LATENCY" parameter and the "ACTION" parameter MUST BE
 supplied to any "CMD" property, or nether can be added to the "CMD"
 property. The "LATENCY" parameter MUST BE set to the maximum latency
 time in seconds. The "ACTION" parameter accepts the following
 values: "ASK" and "ABORT" parameters.

 If the maximum latency time is exceeded and the "ACTION" parameter is
 set to the "ASK" value, then "TIMEOUT" command MUST BE sent.
 Otherwise if the "ACTION" parameter is set to the "ABORT" value then
 the command MUST BE terminated and return a REQUEST-STATUS code of
 2.0.3 for the original command.

 If a CS can both start sending the reply to a command and guarantee
 that all of the results can be sent from a command (short of

 something like network or power failure) prior to the "LATENCY"
 timeout value then the "LATENCY" time has not expired.

 Example:

 In this example the initiator asks for the listeners capabilities.

Royer, et al. Expires November 14, 2004 [Page 96]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 I: Content-Type: text/calendar
 I:
 I: BEGIN:VCALENDAR
 I: VERSION:2.0
 I: PRODID:The CUA's PRODID
 I: CMD;ID=xyz12346;LATENCY=3;ACTION=ask:GET-CAPABILITY
 I: END:VCALENDAR

 # After 3 seconds

 L: Content-Type: text/calendar
 L:
 L: BEGIN:VCALENDAR
 L: PRODID:-//someone's prodid
 L: VERSION:2.0
 L: CMD;ID=xyz12346:TIMEOUT
 L: END:VCALENDAR

 In order to continue and give the CS more time then the CUA would
 issue a "CONTINUE" command:

 I: Content-Type: text/calendar
 I:
 I: BEGIN:VCALENDAR
 I: VERSION:2.0
 I: PRODID:-//someone's prodid
 I: CMD;ID=xyz12346;LATENCY=3;ACTION=ask:CONTINUE
 I: END:VCALENDAR

 L: Content-Type: text/calendar
 L:
 L: BEGIN:VCALENDAR
 L: VERSION:2.0
 L: PRODID:-//someone's prodid
 L: CMD;ID=xyz12346:REPLY
 L: BEGIN:VREPLY
 L: REQUEST-STATUS:2.0.3;Continued for 3 more seconds
 L: END:VREPLY
 L: END:VCALENDAR

 Above the "2.0.3" status is returend because it is not an error, it
 is a progress status sent in reply to the "CONTINUE" command.

 To abort the command and not wait any further then issue an "ABORT"
 command:

Royer, et al. Expires November 14, 2004 [Page 97]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 I: Content-Type: text/calendar
 I:
 I: BEGIN:VCALENDAR
 I: VERSION:2.0
 I: PRODID:-//someone's prodid
 I: CMD;ID=xyz12346:ABORT
 I: END:VCALENDAR

 # Which would result in a 2.0.3 reply.

 L: Content-Type: text/calendar
 L:
 L: BEGIN:VCALENDAR
 L: VERSION:2.0
 L: PRODID:-//someone's prodid
 L: CMD;ID=xyz12346:REPLY
 L: BEGIN:VREPLY
 L: REQUEST-STATUS:2.0.3;Aborted As Requested.
 L: END:VREPLY
 L: END:VCALENDAR

 If the "ACTION" value had been set to "ABORT", then the listiner
 would send a "7.0" error on timeout in the reply to the command that
 initiated the command that timed out.

10.2 ABORT Command

 CMD: ABORT

 Purpose: The "ABORT" command is sent to request that the named or
 only in process command be aborted. Latency MUST not be supplied with
 the "ABORT" command.

 Formal Definition: An "ABORT" command is defined by the following
 notation:

 abort-cmd = abortparam ":" "ABORT"

 abortparam = *(

 ; the following are optional,
 ; but MUST NOT occur more than once

 id-param
 / localize-param

Royer, et al. Expires November 14, 2004 [Page 98]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 ; the following is optional,
 ; and MAY occur more than once

 / other-params

)

 The REPLY of any "ABORT" command is:

 abort-reply = "BEGIN" ":" "VCALENDAR" CRLF
 calprops
 abort-vreply
 "END" ":" "VCALENDAR" CRLF

 abort-vreply = "BEGIN" ":" "VREPLY" CRLF
 request-status
 other-props
 "END" ":" "VREPLY" CRLF

10.3 CONTINUE Command

 CMD: CONTINUE

 Purpose: The "CONTINUE" command is only sent after a "TIMEOUT"
 command has been received to inform the other end of the session to
 resume working on a command.

 Formal Definition: A "CONTINUE" command is defined by the following
 notation:

 continue-cmd = continueparam ":" "CONTINUE"

 continueparam = *(

 ; the following are optional,
 ; but MUST NOT occur more than once

 id-param
 / localize-param
 / latency-param

 ; the following MUST occur exactly once and only
 ; when the latency-param has been supplied and
 ; MUST NOT be supplied if the latency-param is

Royer, et al. Expires November 14, 2004 [Page 99]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 ; not supplied.

 / action-param

 ; the following are optional,
 ; and MAY occur more than once

 / other-params
)

 The REPLY of any "CONTINUE" command is:

 continue-reply = "BEGIN" ":" "VCALENDAR" CRLF
 calprops
 continue-vreply
 "END" ":" "VCALENDAR" CRLF

 continue-vreply = "BEGIN" ":" "VREPLY" CRLF
 request-status
 other-props
 "END" ":" "VREPLY" CRLF

10.4 CREATE Command

 CMD: CREATE

 Purpose: The "CREATE" command is used to create one or more
 iCalendar objects in the store in the "BOOKED" or "UNPROCESSED"
 state.

 A CUA MAY send a "CREATE" command to a CS. The "CREATE" command MUST
 BE implemented by all CSs.

 The CS MUST NOT send a "CREATE" command to any CUA.

 Formal Definition: A "CREATE" command is defined by the following
 notation and the hierarchy restrictions as defined in Section 3.2:

 create-cmd = createparam ":" "CREATE"

 createparam = *(

 ; the following are optional,
 ; but MUST NOT occur more than once

Royer, et al. Expires November 14, 2004 [Page 100]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 id-param
 / localize-param
 / latency-param

 ; the following MUST occur exactly once and only
 ; when the latency-param has been supplied and
 ; MUST NOT be supplied if the latency-param is
 ; not supplied.

 / action-param

 ; the following is optional,
 ; and MAY occur more than once

 / other-params
)

 Response:

 One iCalendar object per TARGET property MUST BE returned.

 The REPLY of any "CREATE" command is:

 Restriction Table for the iCalendar section of a reply that contains
 an iCalendar object is any valid [iTIP] response plus any from this
 ABNF:

 create-reply = "BEGIN" ":" "VCALENDAR" CRLF
 creply-props
 1*(create-vreply)
 "END" ":" "VCALENDAR" CRLF

 create-vreply = "BEGIN" ":" "VREPLY" CRLF
 created-id
 request-status
 other-props
 "END" ":" "VREPLY" CRLF

 ; Where the id is appropriate for the
 ; type of object created:
 ;
 ; VAGENDA = relcalid
 ; VALARM = sequence
 ; VCAR = carid
 ; VEVENT, VFREEBUSY, VJOURNAL, VTODO = uid
 ; VQUERY = queryid

Royer, et al. Expires November 14, 2004 [Page 101]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 ; VTIMEZONE = tzid
 ; x-component = x-id
 ;
 created-id = (relcalid / carid / uid / queryid /
 tzid / sequence / x-id)

 x-id = ; An ID for an x-component.

 creply-props = 4*(
 ; These are REQUIRED and MUST NOT occur
 ; more than once.
 ;
 prodid /version / target / reply-cmd

 ; These are optional, and may occur more
 ; than once.
 ;
 other-props

 For a "CREATE" command the "TARGET" property specifies the containers
 where the components will be created.

 If the iCalendar object being created does not have a "METHOD"
 property, then is not an [iTIP] object, then its state will be
 "BOOKED". Use the "DELETE" command to set the state of an object to
 the "DELETED" state (tagged for deletion). A CUA can not use the
 "CREATE" command to create an object in the "DELETED" state.

 If the intention is to book an [iTIP] object then the "METHOD"
 property MUST NOT BE supplied. Otherwise any [iTIP] object MUST have
 a valid [iTIP] "METHOD" property value and it is a scheduling request
 being deposited into the CS and will have its state set to
 "UNPROCESSED" state.

 ABNF for a "CREATE" object is:

 create-object = "BEGIN" ":" "VCALENDAR" CRLF
 ; If 'calprops' contain the "METHOD" property
 ; then this 'create-object' component MUST

 ; conform to [iTIP] restrictions.
 ;
 ; calprops MUST include 'create-cmd'
 ;
 calprops
 other-props
 1*(create-comp)

Royer, et al. Expires November 14, 2004 [Page 102]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 "END" ":" "VCALENDAR" CRLF

 ; NOTE: The 'VCALSTORE' component is not included in
 ; 'create-comp' as it is out of scope for CAP to create
 ; a new CS.
 ;
 create-comp = agendac / carc / queryc
 / timezonec / freebusyc
 / eventc / todoc / journalc
 / iana-comp / x-component

 In the following example two new top level "VAGENDA" components are
 created. Note that the "CSID" value of the server is cal.example.com
 which is where the new "VAGENDA" components are going to be created.

 C: Content-Type: text/calendar
 C:
 C: BEGIN:VCALENDAR
 C: PRODID:-//someone's prodid
 C: VERSION:2.0
 C: CMD;ID=creation01:CREATE
 C: TARGET:cal.example.com
 C: BEGIN:VAGENDA <- data for 1st new calendar
 C: CALID:relcalz1
 C: NAME;LANGUAGE=en_US:Bill's Soccer Team
 C: OWNER:bill
 C: CALMASTER:mailto:bill@example.com
 C: TZID:US/Pacific
 C: END:VAGENDA
 C: BEGIN:VAGENDA <- data for 2nd new calendar
 C: CALID:relcalz2
 C: NAME;LANGUAGE=EN-us:Mary's personal calendar
 C: OWNER:mary
 C: CALMASTER:mailto:mary@example.com
 C: TZID:US/Pacific
 C: END:VAGENDA
 C: END:VCALENDAR

 S: Content-Type: text/calendar
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.0

 S: PRODID:-//someone's prodid
 S: CMD;ID=creation01:REPLY
 S: TARGET:cal.example.com
 S: BEGIN:VREPLY <- Reply for 1st calendar create

Royer, et al. Expires November 14, 2004 [Page 103]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 S: CALID:relcalz1
 S: REQUEST-STATUS:2.0
 S: END:REPLY
 S: BEGIN:VREPLY <- Reply for 2nd calendar create
 S: CALID:relcalz2
 S: REQUEST-STATUS:2.0
 S: END:VREPLY
 S: END:VCALENDAR

 To create a new component in multiple containers simply name all of
 the containers in the "TARGET" in the create command. Here a new
 "VEVENT" component is created in two TARGET components. In this
 example, the "VEVENT" component is one new [iTIP] "REQUEST" to be
 stored in two calendars. The results would be iCalendar objects that
 conform to the [iTIP] replies as defined in [iTIP].

 This example shows two [iTIP] "VEVENT" components being created in
 each of the two supplied "TARGET" properties and as it contains the
 "METHOD" property they will be stored in the "UNPROCESSED" state:

 C: Content-Type: text/calendar
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.0
 C: PRODID:-//someone's prodid
 C: CMD;ID=creation02:CREATE
 C: METHOD:REQUEST
 C: TARGET:relcalz1
 C: TARGET:relcalz2
 C: BEGIN:VEVENT
 C: DTSTART:20030307T180000Z
 C: UID:FirstInThisExample-1
 C: DTEND:20030307T190000Z
 C: SUMMARY:Important Meeting
 C: END:VEVENT
 C: BEGIN:VEVENT
 C: DTSTART:20040307T180000Z
 C: UID:SecondInThisExample-2
 C: DTEND:20040307T190000Z
 C: SUMMARY:Important Meeting
 C: END:VEVENT
 C: END:VCALENDAR

 The CS sends the "VREPLY" commands in separate MIME objects, one per
 supplied "TARGET" property value.

Royer, et al. Expires November 14, 2004 [Page 104]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 S: Content-Type: text/calendar
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.0
 S: PRODID:-//someone's prodid
 S: CMD;ID=creation02:REPLY
 S: TARGET:relcalz1 <- 1st TARGET listed.
 S: BEGIN:REPLY <- Reply for 1st VEVENT create in 1st TARGET.
 S: UID:FirstInThisExample-1
 S: REQUEST-STATUS:2.0
 S: END:VREPLY
 S: BEGIN:REPLY <- Reply for 2nd VEVENT crate in 1st TARGET.
 S: UID:SecondInThisExample-2
 S: REQUEST-STATUS:2.0
 S: END:VREPLY
 S: END:VCALENDAR

 And the second reply for the 2nd TARGET:

 S: Content-Type: text/calendar
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.0
 S: PRODID:-//someone's prodid
 S: CMD;ID=creation02:REPLY
 S: TARGET:relcalz2 <- 2nd TARGET listed
 S: BEGIN:REPLY <- Reply for 1st VEVENT create in 2nd TARGET.
 S: UID:FirstInThisExample-1
 S: REQUEST-STATUS:2.0
 S: END:VREPLY
 S: BEGIN:REPLY <- Reply for 2nd VEVENT crate in 2nd TARGET.
 S: UID:SecondInThisExample-2
 S: REQUEST-STATUS:2.0
 S: END:VREPLY
 S: END:VCALENDAR

10.5 DELETE Command

 CMD: DELETE

 Purpose: The "DELETE" command physically removes the QUERY result
 from the store or marks it for deletion.

 A CUA MAY send a "DELETE" command to a CS. The "DELETE" command MUST

Royer, et al. Expires November 14, 2004 [Page 105]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 BE implemented by all CSs.

 The CS MUST NOT send a "DELETE" command to any CUA.

 Formal Definition: A "DELETE" command is defined by the following
 notation:

 delete-cmd = deleteparam ":" "DELETE"

 deleteparam = *(

 ; the following are optional,
 ; but MUST NOT occur more than once
 ;
 id-param
 / localize-param
 / latency-param
 / option-param "MARK"

 ; The following MUST occur exactly once and only
 ; when the latency-param has been supplied and
 ; MUST NOT be supplied if the latency-param is
 ; not supplied.
 ;
 / action-param

 ; the following is optional,
 ; and MAY occur more than once
 ;
 / other-params
)

 The "DELETE" command is used to delete calendars or components. The
 included "VQUERY" component(s) specifies the container(s) to delete.

 If a component is to be marked for delete and not physically removed,
 then include the "OPTIONS" parameter with its value set to the "MARK"
 value in order to alter its state to "DELETED".

 When components are deleted, only the top most component
 "REQUEST-STATUS" properties are returned. No "REQUEST-STATUS"
 properties are returned for components inside of the selected
 components. There MUST BE one "VREPLY" component returned for each
 object that is deleted or marked for delete. Note that if no "VREPLY"
 components are returned then nothing matched and nothing was deleted.

Royer, et al. Expires November 14, 2004 [Page 106]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Restriction Table for the "REPLY" command for any "DELETE" command.

 delete-reply = "BEGIN" ":" "VCALENDAR" CRLF
 calprops ; MUST include 'reply-cmd'
 *(delete-vreply)
 "END" ":" "VCALENDAR" CRLF

 delete-vreply = "BEGIN" ":" "VREPLY" CRLF
 deleted-id
 request-status
 "END" ":" "VREPLY" CRLF

 ; Where the id is appropriate for the
 ; type of object deleted:
 ;
 ; VAGENDA = relcalid
 ; VCAR = carid
 ; VEVENT, VFREEBUSY, VJOURNAL, VTODO = uid
 ; VQUERY = queryid
 ; ALARM = sequence
 ; VTIMEZONE = tzid
 ; x-component = x-id
 ; An instance = uid recurid
 ;
 deleted-id = (relcalid / carid / uid / uid recurid
 / queryid / tzid / sequence / x-id)

 Example to delete a "VEVENT" component with "UID" value of
 'abcd12345' from the calendar "relcald-22" from the current CS:

 C: Content-Type: text/calendar
 C:
 C: BEGIN:VCALENDAR
 C: TARGET:relcalid-22
 C: CMD;ID:"random but unique per CUA":DELETE
 C: BEGIN:VQUERY
 C: QUERY:SELECT VEVENT FROM VAGENDA WHERE UID = 'abcd12345'
 C: END:VQUERY
 C: END:VCALENDAR

 S: BEGIN:VCALENAR
 S: TARGET:relcalid-22
 S: CMD;ID:"random but unique per CUA":REPLY
 S: BEGIN:VREPLY

Royer, et al. Expires November 14, 2004 [Page 107]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 S: UID:abcd12345
 S: REQUEST-STATUS:3.0
 S: END:VREPLY
 S: END:VCALENDAR

 One or more iCalendar objects will be returned that contain a
 "REQUEST-STATUS" properties for the deleted components. There could
 have been more than one component deleted. Any booked and any number
 of unprocessed [iTIP] scheduling components that matched the QUERY
 value in the above example. Each unique "METHOD" property value that
 was deleted from the store MUST BE in a separate iCalendar object.
 This is because only one "METHOD" property is allowed in a single
 "VCALENDAR" BEGIN/END block.

10.6 GENERATE-UID Command

 CMD: GENERATE-UID

 Purpose: The "GENERATE-UID" command returns one or more unique
 identifiers which MUST BE globally unique.

 The "GENERATE-UID" command MAY BE sent to any CS. The "GENERATE-UID"
 command MUST BE implemented by all CSs.

 The "GENERATE-UID" command MUST NOT be sent to a CUA.

 Formal Definition: A "GENERATE-UID" command is defined by the
 following notation:

 generate-uid-cmd = genuidparam ":" "GENERATE-UID"

 genuidparam = *(

 ; The following are optional,
 ; but MUST NOT occur more than once.

 id-param
 / localize-param
 / latency-param

 ; The following MUST occur exactly once and only
 ; when the latency-param has been supplied and
 ; MUST NOT be supplied if the latency-param is
 ; not supplied.

 / action-param

Royer, et al. Expires November 14, 2004 [Page 108]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 ; The following is optional,
 ; and MAY occur more than once.

 / other-params

 ; The following MUST BE supplied exactly once.
 ; The value specifies the number of UIDs to
 ; be returned.

 / option-param posint1

)

 Response:

 gen-reply = "BEGIN" ":" "VCALENDAR" CRLF
 calprops ; Which MUST include 'reply-cmd'
 1*(gen-vreply)
 "END" ":" "VCALENDAR" CRLF

 gen-vreply = "BEGIN" ":" "VREPLY" CRLF
 1*(uid)
 request-status
 "END" ":" "VREPLY" CRLF

 Example:

 C: BEGIN:VCALENDAR
 C: VERSION:2.0
 C: PRODID:-//someone's prodid
 C: CMD;ID=unique-per-cua-124;OPTIONS=5:GENERATE-UID
 C: END:VCALENDAR

 S: Content-Type: text/calendar

 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.0
 S: PRODID:-//someone's prodid
 S: CMD;ID=unique-per-cua-124:REPLY
 S: BEGIN:VREPLY
 S: UID:20011121T120000Z-12340@cal.example.com
 S: UID:20011121T120000Z-12341@cal.example.com
 S: UID:20011121T120000Z-12342@cal.example.com

Royer, et al. Expires November 14, 2004 [Page 109]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 S: UID:20011121T120000Z-12343@cal.example.com
 S: UID:20011121T120000Z-12344@cal.example.com
 S: REQUEST-STATUS:2.0
 S: END:VREPLY
 S: END:VCALENDAR

10.7 GET-CAPABILITY Command

 CMD: GET-CAPABILITY

 Purpose: The "GET-CAPABILITY" command returns the capabilities of the
 other end point of the session.

 A CUA MUST send a "GET-CAPABILITY" command to a CS after the initial
 connection. A CS MUST send a "GET-CAPABILITY" command to a CUA after
 the initial connection. The "GET-CAPABILITY" command and reply MUST
 BE implemented by all CSs and CUAs.

 Formal Definition: A "GET-CAPABILITY" command is defined by the
 following notation:

 get-capability-cmd = capibiltyparam ":" "GET-CAPABILITY"

 capibiltyparam = *(

 ; the following are optional,
 ; but MUST NOT occur more than once
 ;
 id-param / localize-param / latency-param

 ; the following MUST occur exactly once and only
 ; when the latency-param has been supplied and
 ; MUST NOT be supplied if the latency-param is
 ; not supplied.
 ;
 / action-param

 ; the following is optional,
 ; and MAY occur more than once
 ;
 / other-params
)

 Response:

Royer, et al. Expires November 14, 2004 [Page 110]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 The "GET-CAPABILITY" command returns information about the Calendar
 other end of the session given the current state of the connection.
 The values returned may differ depending on current user identify and
 the security level of the connection.

 Client implementations SHOULD NOT require any capability element
 beyond those defined in this specification or future RFC publications
 , and MAY ignore any nonstandard, experimental capability elements.
 The "GET-CAPABILITY" reply may return different results depending on
 the UPN and if the UPN is authenticated.

 When sending a reply to a "GET-CAPABILITY" command, all of these MUST
 BE supplied. The following properties are returned in response to a
 "GET-CAPABILITY" command:

 cap-vreply = "BEGIN" ":" "VCALENDAR" CRLF
 ; The following properties may be in any order.
 ;
 prodid
 version
 reply-cmd
 other-props
 "BEGIN" ":" "VREPLY" CRLF
 ; The following properties may be in any order.
 ;
 cap-version
 car-level
 components
 stores-expanded
 maxdate
 mindate
 itip-version
 max-comp-size
 multipart
 query-level
 recur-accepted
 recur-expand
 recur-limit
 other-props
 "END" ":" "VREPLY" CRLF
 "END" ":" "VCALENDAR" CRLF

 Example:

 I: Content-Type: text/calendar
 I:
 I: BEGIN:VCALENDAR

Royer, et al. Expires November 14, 2004 [Page 111]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 I: VERSION:2.0
 I: PRODID:-//someone's prodid
 I: CMD;ID=unique-per-cua-125:GET-CAPABILITY
 I: END:VCALENDAR

 L: Content-Type: text/calendar
 L:
 L: BEGIN:VCALENDAR
 L: VERSION:2.0
 L: PRODID:-//someone's prodid
 L: CMD;ID=unique-per-cua-125:REPLY
 L: BEGIN:VREPLY
 L: CAP-VERSION:1.0
 L: PRODID:The CS prodid
 L: QUERY-LEVEL:CAL-QL-1
 L: CAR-LEVEL:CAR-FULL-1
 L: MAXDATE:99991231T235959Z
 L: MINDATE:00000101T000000Z
 L: MAX-COMPONENT-SIZE:0
 L: COMPONENTS:VCALENDAR,VTODO,VJOURNAL,VEVENT,VCAR,
 L: VALARM,VFREEBUSY,VTIMEZONE,STANDARD,DAYLIGHT,VREPLY
 L: ITIP-VERSION:2446
 L: RECUR-ACCEPTED:TRUE
 L: RECUR-EXPAND:TRUE
 L: RECUR-LIMIT:0
 L: STORES-EXPANDED:FALSE
 L: X-INET-PRIVATE-COMMANDS:1.0
 L: END:VREPLY
 L: END:VCALENDAR

10.8 IDENTIFY Command

 CMD: IDENTIFY

 Purpose: The "IDENTIFY" command allows the CUA to set a new identity
 to be used for calendar access.

 A CUA MAY send an "IDENTIFY" command to a CS. The "IDENTIFY" command
 MUST BE implemented by all CSs. A CS implementation MAY reject all
 "IDENTIFY" commands.

 The CS MUST NOT send a "IDENTIFY" command to any CUA.

 Formal Definition: A "IDENTIFY" command is defined by the following
 notation:

Royer, et al. Expires November 14, 2004 [Page 112]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 identify-cmd = identifyparam ":" "IDENTIFY"

 identifyparam = *(

 ; the following are optional,
 ; but MUST NOT occur more than once

 id-param
 / localize-param
 / latency-param

 ; the following MUST occur exactly once and only
 ; when the latency-param has been supplied and
 ; MUST NOT be supplied if the latency-param is
 ; not supplied.

 / action-param

 ; the following is optional,
 ; and MAY occur more than once

 / other-params

 ; The value is the UPN of the requested
 ; identity. If option is not supplied it is
 ; a request to return to the original authenticated
 ; identity.

 / option-param upn

)

 Response:

 A "REQUEST-STATUS" property wrapped in a "VREPLY" component with
only one of the following
 request-status codes:

 2.0 Successful.

 6.4 Identity not permitted. VCAR restriction.

 The CS determines through an internal mechanism if the credentials
 supplied at authentication permit the operation as the selected
 identity. If they do, the session assumes the new identity, otherwise
 a security error is returned.

 Example:

Royer, et al. Expires November 14, 2004 [Page 113]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 C: Content-Type: text/calendar
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.0
 C: PRODID:-//someone's prodid
 C: CMD;ID=unique-per-cua-999;OPTIONS=newUserId:IDENTIFY
 C: END:VCALENDAR

 S: Content-Type: text/calendar
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.0
 S: PRODID:-//someone's prodid
 S: BEGIN:VREPLY
 S: REQUEST-STATUS:2.0;Request Approved
 S: END:VREPLY
 S: END:VCALENDAR

 Or if denied:

 S: Content-Type: text/calendar
 S:
 S: BEGIN:VCALENDAR
 S: PRODID:-//someone's prodid
 S: VERSION:2.0
 S: BEGIN:VREPLY
 S: REQUEST-STATUS:6.4;Request Denied
 S: END:VREPLY
 S: END:VCALENDAR

 And for the CUA to return to its original authenticated identity
 the OPTIONS parameter is omitted:

 C: Content-Type: text/calendar
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.0
 C: PRODID:-//someone's prodid
 C: CMD;ID=unique-per-cua-995:IDENTIFY
 C: END:VCALENDAR

 The CS may accept (2.0) or deny (6.4) the request to return to the
 original identity.

 If a CS considers the "IDENTIFY" command an attempt to violate
 security, the CS MAY terminate the [BEEP] session without any further
 notice to the CUA after sending the "REQUEST-STATUS" 6.4 reply.

Royer, et al. Expires November 14, 2004 [Page 114]

Internet-Draft Calendar Access Protocol (CAP) May 2004

10.9 MODIFY Command

 CMD: MODIFY

 Purpose: The "MODIFY" command is used to modify existing components.

 A CUA MAY send a "MODIFY" command to a CS. The "MODIFY" command MUST
 BE implemented by all CSs.

 The CS MUST NOT send a "MODIFY" command to any CUA.

 Formal Definition: A "MODIFY" command is defined by the following
 notation:

 modify-cmd = modifyparam ":" "MODIFY"

 modifyparam = *(

 ; the following are optional,
 ; but MUST NOT occur more than once

 id-param
 / localize-param
 / latency-param

 ; the following MUST occur exactly once and only
 ; when the latency-param has been supplied and
 ; MUST NOT be supplied if the latency-param is
 ; not supplied.

 / action-param

 ; the following is optional,
 ; and MAY occur more than once

 / other-params

)

 The "MODIFY" command is used to modify existing components. The
 TARGET property specifies the calendars where the components exist
 that are going to be modified.

 The format of the request is three components inside of "VCALENDAR"
 component:

Royer, et al. Expires November 14, 2004 [Page 115]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 BEGIN:VCALENDAR
 ...
 BEGIN:VQUERY
 ...
 END:VQUERY
 BEGIN:XXX
 ...old-values...
 END:XXX
 BEGIN:XXX
 ...new-values...
 END:XXX
 END:VCALENDAR

 The "VQUERY" component selects the components that are to be
 modified.

 Where "XXX" above is a named component type (VEVENT, VTODO, ...).
 Both the old and new components MUST BE of the same type.

 The old-values is a component and the contents of that component are
 going to change and may contain information that helps uniquely
 identify the original component (SEQUENCE in the example below). If
 the CS can not find a component that matches the QUERY and does not
 have at least all of the OLD-VALUES, then a 6.1 error is returned.

 The new-values is a component of the same type as old-values and
 new-values contains the new data for each selected component. Any
 data that is in old-values and not in new-values is deleted from the
 selected component. Any values in new-values that was not in
 old-values is added to the component.

 In this example the "VEVENT" component with a "UID" property value of
 'unique-58' has; the "LOCATION" property and "LAST-MODIFIED" property
 changed, the "VALARM" component with the "SEQUENCE" property with a
 value of "3" has its "TRIGGER" property disabled, the "X-LOCAL"
 property is removed from the "VEVENT" component, and a "COMMENT"
 property is added.

 Because "SEQUENCE" property is used to locate the "VALARM" component
 in this example, both the old-values and the new-values contain the
 "SEQUENCE" property with a value of "3" and if the "SEQUENCE"

 property were to be left out of new-values, it would have been
 deleted.

 Example:

Royer, et al. Expires November 14, 2004 [Page 116]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 C: Content-Type: text/calendar
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.0
 C: PRODID:-//someone's prodid
 C: TARGET:my-cal
 C: CMD:ID=unique-mod:MODIFY
 C: BEGIN:VQUERY <- Query to select data set.
 C: QUERY:SELECT * FROM VEVENT WHERE UID = 'unique-58'
 C: END:VQUERY
 C: BEGIN:VEVENT <- Start of old data.
 C: LOCATION:building 3
 C: LAST-MODIFIED:20020101T123456Z
 C: X-LOCAL:some private stuff
 C: BEGIN:VALARM
 C: SEQUENCE:3
 C: TRIGGER;RELATED=END:PT5M
 C: END:VALARM
 C: END:VEVENT <- End of old data.
 C: BEGIN:VEVENT <- Start of new data.
 C: LOCATION:building 4
 C: LAST-MODIFIED:20020202T010203Z
 C: COMMENT:Ignore global trigger.
 C: BEGIN:VALARM
 C: SEQUENCE:3
 C: TRIGGER;ENABLE=FALSE:RELATED=END:PT5M
 C: END:VALARM
 C: END:VEVENT <- End of new data.
 C: END:VCALENDAR

 The "X-LOCAL" property was not supplied in the new-values, so it was
 deleted. The "LOCATION" property value was altered, as was the
 "LAST-MODIFIED" value. The "VALARM" component with a "SEQUENCE"
 property value of "3" had its "TRIGGER" property disabled, and the
 "SEQUENCE" property value did not change so it was not effected. The
 "COMMENT" property was added.

 When it comes to inline ATTACHMENTs, the CUA only needs to uniquely
 identify the contents of the ATTACHMENT value in the old-values in
 order to delete them. When the CS compares the attachment data it is
 compared in its binary form. The ATTACHMENT value supplied by the CUA
 MUST BE valid encoded information.

 For example, to delete the same huge inline attachment from every

 VEVENT in 'my-cal' that has an "ATTACH" property value with the
 old-values:

Royer, et al. Expires November 14, 2004 [Page 117]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 BEGIN:VCALENDAR
 VERSION:2.0
 PRODID:-//someone's prodid
 TARGET:my-cal
 CMD:MODIFY
 BEGIN:VQUERY
 QUERY:SELECT ATTACH FROM VEVENT
 END:VQUERY
 BEGIN:VEVENT
 ATTACH;FMTTYPE=image/basic;ENCODING=BASE64;VALUE=BINARY:
 MIICajCCAdOgAwIBAgICBEUwDQYJKoZIhvcNAQEEBQAwdzELMAkGA1U
 EBhMCVVMxLDAqBgNVBAoTI05ldHNjYXBlIENvbW11bmljYXRpb25zIE
 ...< remainder of attachment data NOT supplied >....
 END:VEVENT
 BEGIN:VEVENT
 END:VEVENT
 END:VCALENDAR

 Above the new-values is empty, so everything in the old-values is
 deleted.

 Furthermore, the following additional restrictions apply:

 1. One can not change the "UID" property of a component.

 2. If a contained component is changed inside of a selected
 component, and that contained component has multiple instances,
 then old-values MUST contain information that uniquely identifies
 the instance or instances that are changing. It is valid to
 change more than one. As all contained components that match
 old-values will be modified. In the first modify example above,
 if "SEQUENCE" properties were to be deleted from both the
 old-values and new-values, then all "TRIGGER" properties that
 matched the old-values in all "VALARM" components in the selected
 "VEVENT" components would be disabled.

 3. The result of the modify MUST BE a valid iCalendar object.

 Response:

 A "VCALENDAR" component is returned with one ore more
 "REQUEST-STATUS" property values.

 If any error occurred:

 No component will be changed at all. That is, it will appear just
 as it was prior to the modify and the CAP server SHOULD return a

Royer, et al. Expires November 14, 2004 [Page 118]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 "REQUEST-STATUS" property for each error that occurred.

 There MUST BE at least one error reported.

 If multiple components are selected, then what uniquely identified
 the component MUST BE returned (UID, QUERYID, ...) if the component
 contains a unique identifier. If not, sufficient information to
 uniquely identify the modified components MUST BE returned in the
 reply.

 S: Content-Type: text/calendar
 S:
 S: BEGIN:VCALENDAR
 S: TARGET:relcalid
 S: CMD;ID=delete#1:REPLY
 S: BEGIN:VREPLY
 S: BEGIN:VEVENT
 S: UID:123
 S: REQUEST-STATUS:2.0
 S: END:VEVENT
 S: END:VREPLY
 S: END:VCALENDAR

10.10 MOVE Command

 CMD: MOVE

 Purpose: The "MOVE" command is used to move components within the CS.

 A CUA MAY send a "MOVE" command to a CS. The "MOVE" command MUST BE
 implemented by all CSs.

 The CS MUST NOT send a "MOVE" command to any CUA.

 Formal Definition: A "MOVE" command is defined by the following
 notation:

 move-cmd = moveparam ":" "MOVE"

 moveparam = *(

 ; the following are optional,
 ; but MUST NOT occur more than once

Royer, et al. Expires November 14, 2004 [Page 119]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 id-param
 / localize-param
 / latency-param

 ; the following MUST occur exactly once and only
 ; when the latency-param has been supplied and
 ; MUST NOT be supplied if the latency-param is
 ; not supplied.

 / action-param

 ; the following is optional,
 ; and MAY occur more than once

 / other-params

)

 Response:
 The REQUEST-STATUS in a VCALENDAR object.

 The content of each "result" is subject to the result restriction
 table defined below.

 The access control on the "VAGENDA" component after it has been moved
 to its new location in the calstore MUST BE at least as secure as it
 was prior to the move. If the CS is not able to ensure the same level
 of security, a permission denied "REQUEST-STATUS" property value MUST
 BE returned and the "MOVE" command not performed.

 The "TARGET" property value specifies the new location, and the
 "VQUERY" component specifies the old location.

 Restriction Table for the "REPLY" command of any "MOVE" command.

 move-reply = "BEGIN" ":" "VCALENDAR" CRLF
 calprops
 1*(move-vreply)
 "END" ":" "VCALENDAR" CRLF

 move-vreply = "BEGIN" ":" "VREPLY" CRLF
 move-id
 request-status
 "END" ":" "VREPLY" CRLF

Royer, et al. Expires November 14, 2004 [Page 120]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 ; Where the id is appropriate for the
 ; type of object moved:
 ;
 ; VAGENDA = relcalid
 ; VCAR = carid
 ; VEVENT, VFREEBUSY, VJOURNAL, VTODO = uid
 ; VQUERY = queryid
 ; ALARM = sequence
 ; An instance = uid recurid
 ; x-component = x-id
 ;
 move-id = (relcalid / carid / uid / uid recurid
 / queryid / tzid / sequence / x-id)

 Example: moving the VAGENDA Nellis to Area-51

 C: Content-Type: text/calendar
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.0
 C: PRODID:-//someone's prodid
 C: CMD:MOVE
 C: TARGET:Area-51
 C: BEGIN:VQUERY
 C: QUERY: SELECT * FROM VAGENDA WHERE CALID='Nellis'
 C: END:VQUERY
 C: END:VCALENDAR

 S: Content-Type: text/calendar
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.0
 S: PRODID:-//someone's prodid
 S: TARGET:Area-51
 S: BEGIN:VREPLY
 S: CALID:Nellis
 S: REQUEST-STATUS: 2.0
 S: END:VREPLY
 S: END:VCALENDAR

10.11 REPLY Response to a Command

 CMD: REPLY

Royer, et al. Expires November 14, 2004 [Page 121]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Purpose: The "REPLY" value to the "CMD" property is used to return
 the results of all other commands to the CUA.

 A CUA MUST send a "REPLY" command to a CS for any command a CS MAY
 send to the CUA. The "REPLY" command MUST BE implemented by all CUAs
 that support getting the "GET-CAPABILITY" command.

 A CS MUST send a "REPLY" command to a CUA for any command a CUA MAY
 send to the CS. The "REPLY" command MUST BE implemented by all CSs.

 Formal Definition: A "REPLY" command is defined by the following
 notation:

 reply-cmd = replyparam ":" "REPLY"

 replyparam = *(

 ; The 'id' parameter value MUST BE exactly the
 ; same as the value sent in the original
 ; CMD property. If the original CMD did
 ; not have an 'id' parameter, then the 'id'
 ; MUST NOT be supplied in the REPLY.

 id-param

 ; the following is optional,
 ; and MAY occur more than once

 / other-params

)

10.12 SEARCH Command

 CMD: SEARCH

 Purpose: The "SEARCH" command is used to return selected components
 to the CUA.

 A CUA MAY send a "SEARCH" command to a CS. The "SEARCH" command MUST
 BE implemented by all CSs.

 The CS MUST NOT send a "SEARCH" command to any CUA.

 Formal Definition: A "SEARCH" command is defined by the following

Royer, et al. Expires November 14, 2004 [Page 122]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 notation:

 search-cmd = searchparam ":" "SEARCH"

 searchparam = *(

 ; the following are optional,
 ; but MUST NOT occur more than once

 id-param
 / localize-param
 / latency-param

 ; the following MUST occur exactly once and only
 ; when the latency-param has been supplied and
 ; MUST NOT be supplied if the latency-param is
 ; not supplied.

 / action-param

 ; the following is optional,
 ; and MAY occur more than once

 / other-params

)

 The format of the request is the search command (search-cmd) followed
 by one or more (query) "VQUERY" components

 Response:

 The data in each result set contains one or more iCalendar components
 composed of all the selected results enclosed in a single "VREPLY"
 component per "QUERY".

 Only "REQUEST-STATUS" property and the properties mentioned in the
 "SELECT" clause of the QUERY are included in the components. Each
 "VCALENDAR" component is tagged with the "TARGET" property.

 Searching for objects

 In the example below objects on March 10,1999 between 080000Z and
 190000Z are read. In this case only 4 properties for each objects are
 returned. Two calendars are specified. Only booked (vs scheduled)
 entries are to be returned (this example only selected VEVENT

Royer, et al. Expires November 14, 2004 [Page 123]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 objects):

 C: Content-Type: text/calendar
 C:
 C: BEGIN:VCALENDAR
 C: VERSION:2.0
 C: PRODID:-//someone's prodid
 C: CMD:SEARCH
 C: TARGET:relcal2
 C: TARGET:relcal3
 C: BEGIN:VQUERY
 C: QUERY:SELECT DTSTART,DTEND,SUMMARY,UID
 C: FROM VEVENT
 C: WHERE DTEND >= '19990310T080000Z'
 C: AND DTSTART <= '19990310T190000Z'
 C: AND STATE() = 'BOOKED'
 C: END:VQUERY
 C: END:VCALENDAR

 The return values are subject to VCAR filtering. That is, if the
 request contains properties to which the UPN does not have access,
 those properties will not appear in the return values. If the UPN has
 access to at least one property of the component, but has been denied
 access to all properties called out in the request, the response will
 contain a single "REQUEST-STATUS" property indicating the error.

 Here the request was successful, however one of the "VEVENT"
 components contents were not accessible (4.1).

 S: Content-Type: text/calendar
 S:
 S: BEGIN:VCALENDAR
 S: TARGET:relcalid
 S: CMD:REPLY
 S: VERSION:2.0
 S: PRODID:-//someone's prodid
 S: BEGIN:VREPLY
 S: BEGIN:VEVENT
 S: REQUEST-STATUS:4.1
 S: END:VEVENT
 S: BEGIN:VEVENT

 S: REQUEST-STATUS:2.0
 S: UID:123
 S: DTEND:19990310T080000Z
 S: DSTART:19990310T190000Z

Royer, et al. Expires November 14, 2004 [Page 124]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 S: SUMMARY: Big meeting
 S: END:VEVENT
 S: END:VREPLY
 S: END:VCALENDAR

 If the UPN has no access to any components at all, the response will
 simply be an empty data set. The response looks the same if there
 the particular components did not exist.

 S: Content-Type: text/calendar
 S:
 S: BEGIN:VCALENDAR
 S: VERSION:2.0
 S: PRODID:-//someone's prodid
 S: CMD:REPLY
 S: TARGET:ralcalid
 S: BEGIN:VREPLY
 S: REQUEST-STATUS:2.0
 S: END:VREPLY
 S: END:VCALENDAR

 If there are multiple targets, each iCalendar reply is contained
 within its own iCalendar object.

10.12.1 Searching for VFREEBUSY

 If a CS sets the "RECUR-EXPAND" property to "TRUE" and contains the
 "VFREEBUSY" component in the "COMPONENTS" value in a reply to the
 "GET-CAPABILITY" command, then it is the CS's responsibility and not
 the CUA's responsibility to provide the correct "VFREEBUSY"
 information for a calendar.

 If a CUA issues a "CREATE" "VFREEBUSY", such a CS MUST return success
 and not store the "VFREEBUSY" component as the results would never be
 used.

 Such a CS MUST dynamically create the results of a search for
 "VFREEBUSY" components at search time when searching for STATE() =

 'BOOKED' items.

 If a CUA searches for "VFREEBUSY" components with STATE() =
 'UNPROCESSED', such a CS MUST return a "VREPLY" with no components.

 If a CUA searches for "VFREEBUSY" components without specifying the
 STATE, such a CS MUST return the same result as if STATE()='BOOKED'

Royer, et al. Expires November 14, 2004 [Page 125]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 had been specified.

 For CSs that set the "CAPABILITY" "RECUR-EXPAND" property to "FALSE"
 and have the "VFREEBUSY" component in the "COMPONENTS" value in the
 "CAPABILITY" reply, a CUA MAY store the "VFREEBUSY" information on
 the CS. These CSs then MUST return a "VFREEBUSY" component calculated
 from the stored components. If no "VFREEBUSY" information is
 available for the "TARGET" calendar, then a "VFREEBUSY" with no
 blocked out time will be returned with a success code. A CUA sets the
 "VFREEBUSY" time on a those calendars by creating a "VFREEBUSY"
 component without a "METHOD" creating a "BOOKED" entry.

 If a CS does not set the "VFREEBUSY" value in the "COMPONENTS"
 "CAPABILITY" value, the CS does not support the "VFREEBUSY" component
 and all creation and searching for a "VFREEBUSY" component MUST fail.
 Examples of calendars that may be in this category are public event
 calendars that will never require scheduling with other UPNs.

10.13 SET-LOCALE Command

 CMD: SET-LOCALE

 Purpose: The "SET-LOCALE" command is used to select the locale that
 will be used in error codes used in the "REQUEST-STATUS" property.

 A CUA MAY send a "SET-LOCALE" command to a CS. The SET-LOCALE command
 MUST BE implemented by all CSs.

 The CS MUST NOT send a "SET-LOCALE" command to any CUA.

 Formal Definition: A "SET-LOCALE" command is defined by the following
 notation:

 setlocale-cmd = setlocaleparam ":" "SET-LOCALE"

 setlocaleparam = *(

 ; the following are optional,
 ; but MUST NOT occur more than once

 id-param
 / localize-param
 / latency-param
 / setlocale-option

 ; the following MUST occur exactly once and only
 ; when the latency-param has been supplied and

Royer, et al. Expires November 14, 2004 [Page 126]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 ; MUST NOT be supplied if the latency-param is
 ; not supplied.

 / action-param

 ; the following is optional,
 ; and MAY occur more than once

 / other-params

 setlocal-option = option-param newlocale

 newlocale = ; Any locale supplied in the initial [BEEP]
 ; "greeting" "localize" parameter and
 ; and any charset supported by the CS
 ; and listed in the DEFAULT-CHARSET property
 ; of the VCALSTORE.

)

 Examples:

 CMD:OPTIONS=en_US.UTF-8:SET-LOCALE
 CMD:OPTIONS=th_TH.ISO8859-11:SET-LOCALE
 CMD:OPTIONS=es_MX.ISO8859-1:SET-LOCALE

 Restriction Table for the "REPLY" command of any "SET-LOCALE"
 command.

 setlocale-reply = "BEGIN" ":" "VCALENDAR" CRLF
 calprops
 1*(setlocale-vreply)
 "END" ":" "VCALENDAR" CRLF

 setlocale-vreply = "BEGIN" ":" "VREPLY" CRLF
 request-status
 "END" ":" "VREPLY" CRLF

10.14 TIMEOUT Command

 CMD: TIMEOUT

Royer, et al. Expires November 14, 2004 [Page 127]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Purpose: The "TIMEOUT" command is only sent after a command has been
 sent with a latency value set. When received it means the command
 could not be completed in the time allowed.

 Formal Definition: A "TIMEOUT" command is defined by the following
 notation:

 timeout-cmd = timeoutparam ":" "TIMEOUT"

 timeoutparam = *(

 ; the following are optional,
 ; but MUST NOT occur more than once

 id-param
 / localize-param

 / other-params

)

10.15 Response Codes

 Numeric response codes are returned using the "REQUEST-STATUS"
 property.

 The format of these codes is described in [iCAL], and extend in
 [iTIP] and [iMIP]. The following describes new codes added to this
 set and how existing codes apply to CAP.

 At the application layer response codes are returned as the value of
 a "REQUEST-STATUS" property. The value type of this property is
 modified from that defined in [iCAL], in order to make the
 accompanying "REQUEST-STATUS" property text optional.

 Code Description
 --
 2.0 Success. The parameters vary with the
 operation and are specified.

 2.0.3 In response to the client issuing an
 "abort" reply, this reply code indicates
 that any command currently underway was
 successfully aborted.

Royer, et al. Expires November 14, 2004 [Page 128]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 3.1.4 Capability not supported.

 4.1 Calendar store access denied.

 6.1 Container not found.

 6.2 Attempt to create or modify an object
 such that it would overlap another object
 in either of the following two circumstances:

 (a) One of the objects has a TRANSP
 property set to OPAQUE-NOCONFLICT or
 TRANSPARENT-NOCONFLICT.

 (b) The calendar's ALLOW-CONFLICT
 property is set to FALSE.

 6.3 Bad args.

 6.4 Permission denied - VCAR restriction.
 A VCAR exists and the CS will not perform
 the operation.

 7.0 A timeout has occurred. The server was
 unable to complete the operation in the
 requested time.

 8.0 A failure has occurred in the CS
 that prevents the operation from
 succeeding.

 8.1 A query was performed and the query is
 too complex for the CS. The operation
 was not performed.

 8.2 Used to signal that an iCalendar object has
 exceeded the server's size limit

 8.3 A DATETIME value was too far in the future
 represented on this Calendar.

 8.4 A DATETIME value was too far in the past
 to be represented on this Calendar.

 8.5 An attempt was made to create a new
 object but the unique UID specified is
 already in use.

Royer, et al. Expires November 14, 2004 [Page 129]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 9.0 An unrecognized command was received.
 Or an unsupported command was received.

 10.4 The operation has not been performed
 because it would cause the resources
 (memory, disk, CPU, etc) to exceed the
 allocated quota.

 --

Royer, et al. Expires November 14, 2004 [Page 130]

Internet-Draft Calendar Access Protocol (CAP) May 2004

11. Object Registration

 This section provides the process for registration of new or modified
 properties, parameters, commands, or other modifications, additions,
 or deletions to objects.

11.1 Registration of New and Modified Entities

 New objects are registered by the publication of an IETF Request for
 Comment (RFC). Changes to a objects are registered by the publication
 of a revision to the RFC in a new RFC.

11.2 Post the item definition

 The object description MUST BE posted to the new object discussion
 list: ietf-calendar@imc.org.

11.3 Allow a comment period

 Discussion on a new object MUST BE allowed to take place on the list
 for a minimum of two weeks. Consensus MUST BE reached on the object
 before proceeding to the next step.

11.4 Release a new RFC

 The new object will be submitted for publication as any other
 internet draft requesting RFC status.

Royer, et al. Expires November 14, 2004 [Page 131]

Internet-Draft Calendar Access Protocol (CAP) May 2004

12. BEEP and CAP

12.1 BEEP Profile Registration

 Beep replies will be one to one (1:1 MSG/RPY) if possible and one to
 many (1:many MSG/ANS) when the "TARGET" property value changes. No
 more than one "TARGET" property value per reply.

 Profile Identification: specify a [URI] that authoritatively
 identifies this profile.

http://iana.org/beep/cap/1.0

 Message Exchanged during Channel Creation:

 CUAs SHOULD supply the BEEP "localize" attributes in the BEEP
 "greeting" messages.

 CSs SHOULD supply the BEEP "localize" attributes in the BEEP
 "greeting" messages.

 CUAs SHOULD supply the BEEP "serverName" attribute at channel
 creation time to the CS so that if the CS is performing virtual
 hosting the CS can determine the intended virtual host. CSs that do
 not support virtual hosting may ignore the BEEP "serverName"
 attribute.

 Messages starting one-to-one exchanges:

 The initial message after authentication each direction MUST BE
 single "text/calendar" object containing a CAP "CAPABILITY" CMD and
 must not be part of a MIME multipart message.

 After the initial message then a BEEP "MSG" may contain one or more
 MIME objects at least one of which MUST be "text/calendar" and each
 "text/calendar" MIME object MUST contain a CAP "CMD" property.

http://iana.org/beep/cap/1.0

 Multiple iCal objects may be sent in a single BEEP message by either
 representing them as separate MIME text/calendar parts contained
 within a MIME multipart/mixed part or by simple concatenation within
 a single text/calendar MIME object.

 In either case, all iCal objects transmitted together must have the
 same TARGET property.

 The sending of multipart MIME entities over BEEP is not permitted for
 CAP unless the other endpoint has indicated its ability to accept
 them via the appropriate CAPABILITY.

Royer, et al. Expires November 14, 2004 [Page 132]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Messages in positive replies:

 After the initial message then a BEEP "RPY" may contain one or more
 MIME objects at least one of which MUST be "text/calendar" and each
 "text/calendar" MIME object MUST contain a CAP "CMD" property. All
 "text/calendar" MIME objects in a single BEEP "RPY" messages MUST
 have the same "TARGET" property value.

 Multiple iCal objects may be sent in a single BEEP message by either
 representing them as separate MIME text/calendar parts contained
 within a MIME multipart/mixed part or by simple concatenation within
 a single text/calendar MIME object.

 In either case, all iCal objects transmitted together must have the
 same TARGET property.

 The sending of multipart MIME entities over BEEP is not permitted for
 CAP unless the other endpoint has indicated its ability to accept
 them via the appropriate CAPABILITY.

 Messages in negative replies:

 Any valid "text/calendar" MIME object that contains CAP
 "REQUEST-STATUS" property and a CAP "CMD" property with a property
 value of "REPLY". And where the CS has determined the requested
 operation to be a fatal error. And when the CS has performed NO
 operation that effected the contents of any part of the CS or any
 calendar controlled by the CS.

 Messages in one-to-many exchanges:

 After the initial message then a BEEP "MSG" may contain one or more
 MIME objects at least one of which MUST be "text/calendar" and each
 "text/calendar" MIME object MUST contain a CAP "CMD" property.

 The BEEP "MSG" messages can only contain MIME "multipart" MIME
 objects if the other endpoint has received a CAP "CAPABILITY"
 indicating the other endpoint supports multipart MIME objects. This
 does not prevent the endpoint from sending multiple [iCAL]
 'icalobject' objects in a single BEEP "MSG" so long as all of them

 have the same "TARGET" property value.

 Multiple iCal objects may be sent in a single BEEP message by either
 representing them as separate MIME text/calendar parts contained
 within a MIME multipart/mixed part or by simple concatenation within
 a single text/calendar MIME object.

 In either case, all iCal objects transmitted together must have the

Royer, et al. Expires November 14, 2004 [Page 133]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 same TARGET property.

 The sending of multipart MIME entities over BEEP is not permitted for
 CAP unless the other endpoint has indicated its ability to accept
 them via the appropriate CAPABILITY.

 Message Syntax:

 They are CAP "text/calendar" MIME objects as specified in this memo.

 Message Semantics:

 As defined in this memo.

12.2 BEEP Exchange Styles

 [BEEP] defines three styles of message exchange:

 MSG/ANS,ANS,...,NUL - For one to many exchanges.

 MSG/RPY - For one to one exchanges.

 MSG/ERR - For requests the cannot be processed due to an error.

 A CAP request targeted at more than one containers, MAY use a one-
 to-many exchange, with a distinct answer associated with each target.
 CAP request targeted at a single container MAY use a one-to-one
 exchange or a one-to-many exchange. "MSG/ERR" MAY only be used when
 an error condition prevents the execution of the request on all the
 targeted calendars.

12.3 BEEP connection details

 All CAP communications must be done securelsecurely. So the initial
 greeting includes the TLS profile.

 L: <wait for incoming connection>

 I: <open connection>

 L: RPY 0 0 . 0 110
 L: Content-Type: application/beep+xml
 L:
 L: <greeting>
 L: <profile uri='http://iana.org/beep/TLS' />
 L: </greeting>

Royer, et al. Expires November 14, 2004 [Page 134]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 L: END

 I: RPY 0 0 . 0 52
 I: Content-Type: application/beep+xml
 I:
 I: <greeting/>
 I: END

 At this point the connection is secure. The TLS profile 'resets' the
 connection, so it resends the greetings. And advertise the CAP
 profiles supported. And reply with the profile selected (only one
 profile exists at this time):

 L: <wait for incoming connection>

 I: <open connection>

 L: RPY 0 0 . 0 110
 L: Content-Type: application/beep+xml
 L:
 L: <greeting>
 L: <profile uri='http://iana.org/beep/cap/1.0'/>
 L: </greeting>
 L: END

 I: RPY 0 0 . 0 110
 I: Content-Type: application/beep+xml
 I:
 I: <greeting>
 I: <profile uri='http://iana.org/beep/cap/1.0'/>
 I: </greeting>
 I: END

 Then each channel must be authenticated before work can start. Now
 starting a channel involves authentication. Any SASL profile may be
 included such as these:

 <profile uri='http://iana.org/beep/SASL/OTP'/>
 <profile uri='http://iana.org/beep/SASL/DIGEST-MD5'/>
 <profile uri='http://iana.org/beep/SASL/ANONYMOUS'/>

 Example of anonymous channel:

Royer, et al. Expires November 14, 2004 [Page 135]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 C: <start number='1'>
 C: <profile uri='http://iana.org/beep/SASL/ANONYMOUS'/>
 C: </start>

 S: RPY 0 1 . 221 87
 S: Content-Type: application/beep+xml
 S:
 S:

 S: END

 Example of DIGEST-MD5 channel:

 C: <start number='1'>
 C: <profile uri='http://iana.org/beep/SASL/DIGEST-MD5'/>
 C: </start>

 S: RPY 0 1 . 221 87
 S: Content-Type: application/beep+xml
 S:
 S:

 S: END

 Piggybacking the "CAPABILITY" command. The "CAPABILITY" reply may be
 included during channel start (see RFC3080, section 2.3.1.2) as BEEP
 allows for the start command to include the initial data transfer.
 This reduces the number of round trips to initiate a CAP session.

https://datatracker.ietf.org/doc/html/rfc3080#section-2.3.1.2

Royer, et al. Expires November 14, 2004 [Page 136]

Internet-Draft Calendar Access Protocol (CAP) May 2004

13. IANA Considerations

 This memo defines IANA registered extensions to the attributes
 defined by iCalendar, as defined in [iCAL], and [iTIP].

 IANA registration proposals for iCalendar and [iTIP] are to be mailed
 to the registration agent for the "text/calendar" [MIME]
 content-type, <MAILTO: ietf-calendar@imc.org> using the format
 defined in section 7 of [iCAL].

 If the IESG approves this memo for publication, then the IANA
 registers the profile specified in Section 12.1, and selects an
 IANA-specific URI, e.g., http://iana.org/beep/cap/1.0.

http://iana.org/beep/cap/1.0

Royer, et al. Expires November 14, 2004 [Page 137]

Internet-Draft Calendar Access Protocol (CAP) May 2004

14. Security Considerations

 Access rights should be granted cautiously. Without careful planning
 it is possible to open up access to a greater degree than desired.

 The "IDENTIFY" command should be carefully implemented.

 In addition, since CAP is a profile of [BEEP], consult [BEEP]'s
Section 9 for a discussion of BEEP-specific security issues.

 There are risks of allowing anonymous UPNs to deposit REQUEST and
 REFRESH objects. (calendar spam and deninal of service for example)
 So implementations should consider methods to restrict anonymous
 requests to within acceptable usages.

 CS implementations might consider automatically creating VCARs that
 allow CAP ATTENDEEs in booked objects to deposit REFRESH and REPLY
 objects for those UIDs if they otherwise do not have access rather
 then opening up world access. And they may consider also allowing
 COUNTER objects for those ATTENDEEs.

 When an object is booked by a CUA the CS reply may wish to include
 warning messages to the CUA for ATTENDEEs that have CAP urls that do
 not have local UPNs as those ATTENDEES may be unable to REPLY or
 REFRESH. Some CSs may wish this to be an error.

 Although service provisioning is a policy matter, at a minimum, all
 implementations must provide the following tuning profiles:

 for authentication: http://iana.org/beep/SASL/DIGEST-MD5

 for confidentiality: http://iana.org/beep/TLS (using the
 TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher)

 for both: http://iana.org/beep/TLS (using the
 TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher supporting client-side
 certificates)

http://iana.org/beep/SASL/DIGEST-MD5
http://iana.org/beep/TLS
http://iana.org/beep/TLS

Royer, et al. Expires November 14, 2004 [Page 138]

Internet-Draft Calendar Access Protocol (CAP) May 2004

URIs

 [1] <http://www.imc.org/html.charters/calsch-charter.html>

Authors' Addresses

 Doug Royer
 INET-Consulting.com
 1795 W. Broadway #266
 Idaho Falls, ID 83402
 US

 Phone: +1-866-594-8574
 Fax: +1-866-594-8574
 EMail: Doug@Royer.com
 URI: http://INET-Consulting.com

 George Babics
 Oracle
 2000 Peel Street
 Montreal, Quebec H3A 2W5
 CA

 Phone: +1-514-733-8500 x4201
 Fax: +1-514-733-8878
 EMail: George.Babics@Oracle.com

 Paul Hill
 Massachusetts Institute of Technology
 W92-172
 77 Massachusetts Avenue
 Cambridge, MA 02139
 US

 Phone: +1-617-253-0124
 Fax: +1-617-258-8736
 EMail: phb@mit.edu

http://www.imc.org/html.charters/calsch-charter.html
http://INET-Consulting.com

Royer, et al. Expires November 14, 2004 [Page 139]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 Steve Mansour
 AOL/Netscape
 466 Ellis Road
 Mountain View, CA 94043
 US

 Phone: +1-650-937-3351
 EMail: sman@netscape.com

Royer, et al. Expires November 14, 2004 [Page 140]

Internet-Draft Calendar Access Protocol (CAP) May 2004

Appendix A. Acknowledgments

 The following have individuals were major contributors in the
 drafting and discussion of this memo and are greatly appreciated:

 Alan Davies, Andrea Campi, Andre Courtemanche, Andrew Davison, Anil
 Srivastava, ArentJan Banck, Arnaud Quillaud, Benjamin Sonntag,
 Bernard Desruisseaux, Bertrand Guiheneuf, Bob Mahoney, Bob Morgan,
 Bruce Kahn, Chris Dudding, Chris Olds, Christopher Apple, Cortlandt
 Winters, Craig Johnson, Cyrus Daboo, Damon Chaplin, Dan Hickman, Dan
 Kohn, Dan Winship, Darryl Champagne, David C. Thewlis, David Nicol,
 David Nusbaum, David West, Derik Stenerson, Eric R. Plamondon, Frank
 Dawson, Frank Nitsch, Gary Frederick, Gary McGath, Gilles Fortin,
 Graham Gilmore, Greg Barnes, Greg FitzPatrick, Harald Alvestrand,
 Harrie Hazewinkel, Helge Hess, Jagan Garimella, Jay Parker, Jim Ray,
 Jim Smith, Joerg Reichelt, John Berthels, John Smith, John Stracke,
 Jonathan Lennox, JP Rosevear, Karen Chu, Katie Capps Parlante, Kees
 Cook, Ken Crawford, Ki Wong, Lars Eggert, Lata Kannan, Lawrence
 Greenfield, Libby Miller, Lisa Dusseault, Lyndon Nerenberg, Mark
 Davidson, Mark Paterson, Mark Smith, Mark Swanson, Mark Tearle,
 Marshall Rose, Martijn van Beers, Martin Jackson, Matthias Laabs, Max
 Froumentin, Micah Gorrell, Michael Fair, Mike Higginbottom, Mike
 Hixson, Murata Makoto, Natalia Syracuse, Nathaniel Borenstein, Ned
 Freed, Olivier Gutknecht, Patrice Lapierre, Patrice Scattolin, Paul
 Hoffman, Paul Sharpe, Payod Deshpande, Pekka Pessi, Peter Thompson,
 Preston Stephenson, Prometeo Sandino Roman Corral, Ralph Patterson,
 Robert Lusardi, Robert Ransdell, Rob Siemborski, Satyanarayana
 Vempati, Satya Vempati, Scott Hollenbeck, Seamus Garvey, Shannon
 Clark, Shriram Vishwanathan, Steve Coya, Steve Mansour, Steve Miller,
 Steve Vinter, Stuart Guthrie, Suchet Singh Khalsa, Ted Hardie, Tim
 Hare, Timo Sirainen, Vicky Oliver, Yael Shaham-Gafni

Royer, et al. Expires November 14, 2004 [Page 141]

Internet-Draft Calendar Access Protocol (CAP) May 2004

Appendix B. Bibliography

 [BEEP] Rose, M., "The Block Extensible Exchange Protocol Core",
RFC 3080, March 2001
ftp://ftp.isi.edu/in-notes/rfc3080.txt

 [BEEPTCP] Rose, M., "Mapping the BEEP Core onto TCP", RFC 3081, March 2001
ftp://ftp.isi.edu/in-notes/rfc3081.txt

 [BEEPGUIDE] Rose, M., "BEEP, The Definitive Guide", ISBN 0-596-00244-0,
 O'Reilly & Associates, Inc.

 [CHARREG] Freed, N., Postel, J., "IANA Charset Registration Procedures",
RFC 2278, January 1998,
ftp://ftp.isi.edu/in-notes/rfc2278.txt

 [CHARPOL] Alvestrand, H., "IETF Policy on Character Sets and Languages",
RFC 2277, January 1998,
ftp://ftp.isi.edu/in-notes/rfc2277.txt

 [GUIDE] Mahoney, B., Babics, G., Taler, A. "Guide to Internet
 Calendaring", RFC 3283, June 2002,

ftp://ftp.isi.edu/in-notes/rfc3283.txt

 [iCAL] Dawson, F. and Stenerson, D., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)", RFC 2445,
 November 1998 ftp://ftp.isi.edu/in-notes/rfc2445.txt

 [iTIP] Silverberg, S., Mansour, S., Dawson, F. and Hopson, R.,
 "iCalendar Transport-Independent Interoperability Protocol
 (iTIP) Events, BusyTime, To-dos and Journal Entries",

RFC 2446, November 1998 ftp://ftp.isi.edu/in-notes/rfc2446.txt

 [iMIP] Dawson, F., Mansour, S. and Silverberg, "iCalendar
 Message-Based Interoperability Protocol (iMIP)", RFC 2447,
 November 1998 ftp://ftp.isi.edu/in-notes/rfc2447.txt

https://datatracker.ietf.org/doc/html/rfc3080
ftp://ftp.isi.edu/in-notes/rfc3080.txt
https://datatracker.ietf.org/doc/html/rfc3081
ftp://ftp.isi.edu/in-notes/rfc3081.txt
https://datatracker.ietf.org/doc/html/rfc2278
ftp://ftp.isi.edu/in-notes/rfc2278.txt
https://datatracker.ietf.org/doc/html/rfc2277
ftp://ftp.isi.edu/in-notes/rfc2277.txt
https://datatracker.ietf.org/doc/html/rfc3283
ftp://ftp.isi.edu/in-notes/rfc3283.txt
https://datatracker.ietf.org/doc/html/rfc2445
ftp://ftp.isi.edu/in-notes/rfc2445.txt
https://datatracker.ietf.org/doc/html/rfc2446
ftp://ftp.isi.edu/in-notes/rfc2446.txt
https://datatracker.ietf.org/doc/html/rfc2447
ftp://ftp.isi.edu/in-notes/rfc2447.txt

 [MIME] Borenstein, N. and Freed, N., "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",

RFC 2045, November 1996
ftp://ftp.isi.edu/in-notes/rfc2045.txt

 [RFCWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, BCP 14, March 1997

ftp://ftp.isi.edu/in-notes/rfc2119.txt

Royer, et al. Expires November 14, 2004 [Page 142]

https://datatracker.ietf.org/doc/html/rfc2045
ftp://ftp.isi.edu/in-notes/rfc2045.txt
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
ftp://ftp.isi.edu/in-notes/rfc2119.txt

Internet-Draft Calendar Access Protocol (CAP) May 2004

 [SASL] Myers, J., "Simple Authentication and Security Layer (SASL)",
RFC 2222, October 1997
ftp://ftp.isi.edu/in-notes/rfc2222.txt

 [SQL92] "Database Language SQL", ANSI/ISO/IEC 9075: 1992,
 aka ANSI X3.135-1992, aka FiPS PUB 127-2

 [SQLCOM] ANSI/ISO/IEC 9075:1992/TC-1-1995, Technical corrigendum 1
 to ISO/IEC 9075: 1992, also adopted as Amendment 1 to
 ANSI X3.135.1992

 [URLGUIDE] Masinter, L., Alvestrand, H., Zigmond, D., Petke, R.,
 "Guidelines for new URL Schemes", RFC 2718, November 1999,

ftp://ftp.isi.edu/in-notes/rfc2718.txt

 [URI] Berners-Lee, T., Fielding, R. and Masinter, L., "Uniform Resource
 Identifiers (URI): Generic Syntax", RFC 2396, August 1998

ftp://ftp.isi.edu/in-notes/rfc2396.txt

 [URL] Berners-Lee, T, Masinter, L. and McCahil, M., "Uniform
 Resource Locators (URL)", RFC 1738, December 1994

ftp://ftp.isi.edu/in-notes/rfc1738.txt

 [X509CRL] Housley, R., Ford, W., Polk, W., Solo, D. "Internet X.509
 Public Key Infrastructure, Certificate and CRL Profile",

RFC 2459, January 1999,
ftp://ftp.isi.edu/in-notes/rfc2459.txt

https://datatracker.ietf.org/doc/html/rfc2222
ftp://ftp.isi.edu/in-notes/rfc2222.txt
https://datatracker.ietf.org/doc/html/rfc2718
ftp://ftp.isi.edu/in-notes/rfc2718.txt
https://datatracker.ietf.org/doc/html/rfc2396
ftp://ftp.isi.edu/in-notes/rfc2396.txt
https://datatracker.ietf.org/doc/html/rfc1738
ftp://ftp.isi.edu/in-notes/rfc1738.txt
https://datatracker.ietf.org/doc/html/rfc2459
ftp://ftp.isi.edu/in-notes/rfc2459.txt

Royer, et al. Expires November 14, 2004 [Page 143]

Internet-Draft Calendar Access Protocol (CAP) May 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be

https://datatracker.ietf.org/doc/html/bcp11

 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

Royer, et al. Expires November 14, 2004 [Page 144]

Internet-Draft Calendar Access Protocol (CAP) May 2004

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Royer, et al. Expires November 14, 2004 [Page 145]

