
Network Working Group Andre Courtemanche, CS&T
Internet Draft IRIP Steve Mansour, Netscape
<draft-ietf-calsch-irip-03.txt> Pete O'Leary, Amplitude
Expires 6 months after: April 16, 1999

ICalendar Real-time Interoperability Protocol (iRIP)

Status of this Memo

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

This document specifies a binding from the iCalendar Transport-
independent Interoperability Protocol [ITIP] to a real-time transport.
Calendaring entries defined by the iCalendar Object Model [ICAL] are
composed using constructs from [RFC-2045], [RFC-2046], [RFC-2047],
[RFC-2048] and [RFC-2049].

This document is based on discussions within the Internet Engineering
Task Force (IETF) Calendaring and Scheduling (CALSCH) working group.
More information about the IETF CALSCH working group activities can be
found on the IMC website at http://www.imc.org, the IETF website at
http://www.ietf.org/html.charters/calsch-charter.html. Refer to the
references within this document for further information on how to
access these various documents.

Distribution of this document is unlimited. Comments and suggestions
for improvement should be sent to the authors.

https://datatracker.ietf.org/doc/html/draft-ietf-calsch-irip-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2048
https://datatracker.ietf.org/doc/html/rfc2049
http://www.imc.org
http://www.ietf.org/html.charters/calsch-charter.html

Mansour/Courtemanche/O'Leary 1 Expires August 1999

Internet Draft IRIP April 16, 1999

 Table Of Contents
1 Introduction 3
 1.1Related Memos 3
 1.2Formatting Conventions 3
2 Architecture 4
 2.1Protocol States 5
 2.2Calendar Address 6
 2.3Bounded Latency 7
3 Protocol 7
 3.1Commands 7
 3.1.1ABORT 8
 3.1.2AUTHENTICATE 9
 3.1.3CAPABILITY 12
 3.1.4CONTINUE 13
 3.1.5DEQUEUE 14
 3.1.6DISCONNECT 15
 3.1.7RECIPIENT 15
 3.1.8SENDATA 17
 3.1.9SWITCH 19
 3.2Fanout and Queued Transactions 19
 3.3Bi-Directional Queue Operation 20
 3.4Reply Codes 20
4 Implementation Considerations 23
5 Security Considerations 23
 5.1Security Threats and Recommendations 23
 5.1.1Authentication Hacking 23
 5.1.2Spoofing 23
 5.1.3Eavesdropping 24
 5.1.4Connection Flooding 24
 5.2Security Interoperability Issues 24
6 Examples 24
 6.1Unauthenticated Freebusy Request 24
 6.2Busy Time Request 25
 6.3Using Switch 28
 6.4Fanout Requests 29
 6.4.1Successful Fanout Request 29
 6.4.2Referral On Fanout 30
 6.5Queued Requests 31
 6.5.1Meeting Invitation 32
7 Acknowledgments 33
8 Bibliography 33
9 Open Issues 34
10 Author's Address 34
11 Full Copyright Statement 36

Mansour/Courtemanche/O'Leary 2 Expires August 1999

Internet Draft IRIP April 16, 1999

1 Introduction

This binding document provides the transport specific information
necessary to convey iCalendar Transport-independent Interoperability
Protocol [ITIP] messages over a real-time transport.

1.1 Related Memos

Implementers will need to be familiar with several other memos that,
along with this memo, form a framework for Internet calendaring and
scheduling standards.

This document specifies a real-time binding for [ITIP].

 - [ICAL] specifies a core specification of objects, data types,
 properties and property parameters;
 - [ITIP] specifies an interoperability protocol for scheduling
 between different implementations;
 - [IMIP] specifies a messaging-based protocol binding for [ITIP].

This document does not attempt to repeat the specification of concepts
or definitions from these other memos. Where possible, references are
made to the memo that provides for the specification of these concepts
or definitions.

1.2 Formatting Conventions

The mechanisms defined in this memo are defined in propose. In order
to refer to elements of the calendaring and scheduling model, core
object or interoperability protocol defined in [ICAL] and [ITIP] some
formatting conventions have been used.

Calendaring and scheduling roles defined by [ITIP] are referred to in
quoted-strings of text with the first character of each word in upper
case. For example, "Organizer" refers to a role of a "Calendar User"
within the scheduling protocol defined by [ITIP].

Calendar components defined by [ICAL] are referred to with
capitalized, quoted-strings of text. All calendar components start

with the letter "V". For example, "VEVENT" refers to the event
calendar component, "VTODO" refers to the to-do calendar component and
"VJOURNAL" refers to the daily journal calendar component.

Scheduling methods defined by [ITIP] are referred to with capitalized,
quoted-strings of text. For example, "REQUEST" refers to the method
for requesting a scheduling calendar component be created or modified,
"REPLY" refers to the method a recipient of a request uses to update
their status with the "Organizer" of the calendar component.

Properties defined by [ICAL] are referred to with capitalized, quoted-
strings of text, followed by the word "property". For example,

Mansour/Courtemanche/O'Leary 3 Expires August 1999

Internet Draft IRIP April 16, 1999

"ATTENDEE" property refers to the iCalendar property used to convey
the calendar address of a calendar user.

Property parameters defined by [ICAL] are referred to with lower case,
quoted-strings of text, followed by the word "parameter". For example,
"VALUE" parameter refers to the iCalendar property parameter used to
override the default data type for a property value.

2 Architecture

iRIP enables real-time interoperability between scheduling systems
using the iCalendar [ICAL] format for information exchange. iRIP is
designed primarily to allow Calendar Services (CS) to forward real-
time requests on behalf of Calendar User Agents (CUA) and receive real-
time responses. The goal of iRIP is to allow two or more CS's to
establish connections with each other. However, the design of iRIP
does not preclude its use from CUA directly to CS. iRIP allows a CS to
initiate a session and perform operations on behalf of multiple CUA's
without the need to reauthenticate the session for each CUA.

The sections and examples below refer to a "user", a "sender", and a
"receiver". For purposes of this document these terms are defined as
follows:

 user - the Calendar User that initiates a request.
 sender - the agent used to contact a receiving device, send
 commands, and receive replies.
 receiver - the agent that accepts commands and sends replies.

The sender and receiver can take on varying roles of a Calendar User
Agent (CUA) and Calendar Store (CS).

iRIP allows two CS's to establish different levels of trust. When an
iRIP connection is first established, the sender CS authenticates as

the iRIP server acting as a proxy for the originator of each ITIP
message being sent to the receiver.

Mansour/Courtemanche/O'Leary 4 Expires August 1999

Internet Draft IRIP April 16, 1999

2.1 Protocol States1

The iRIP state diagram is shown below. The states are shown in the
boxes. State names are written with the first letter capitalized. The
commands used to switch between states are shown next to an arrow
connecting the states. The commands are listed in all capital letters.
A condition that causes a state to change is shown in lower case
letters.

 CAPABILITY
 or SWITCH
 +----+
 V |
+-------------+ DISCONNECT +---------------+
| |---------------->| Terminated |<-----------------+
| Connected | +---------------+ |
| |<---+ A |
+-------------+ | | |
AUTHENTICATE	AUTHENTICATE	DISCONNECT	
	or CAPABILITY		
SWITCH	+----+		
	V		
+----------------------------------+			
 +--->| | ABORT +--------+ A
 | Authenticated |<-------| Idle | |
 +--->| |<--+ +--------+ |
 | +----------------------------------+ | | A |
 | | | complete| | | |

ABORT	RECEIVE DEQUEUE	or	CONT		latency
		ABORT	INUE		reply
V V			from		
+-------------+ +---------------+		server			
	SENDATA		<----+		
Send	---------------->	Receive			
			--------+		
+-------------+ +---------------+ |
 A | | DISCONNECT | DISCONNECT |
 +----+ +---------------->-----------+-------------------------+
RECIPIENT

An iRIP session begins when a TCP/IP connection is made on port 5228.
The protocol begins in the Connected state. Once connected, the sender
can issue the CAPABILITY which leaves the protocol in the Connected
state. The sender can also issue the SWITCH command requesting the
receiver to switch roles with the sender. Whether the receiver accepts
or declines the request, the protocol remains in the Connected state.
The DISCONNECT command terminates the connection. The AUTHENTICATE
command, when successful, begins the Authenticated state. From the
Authenticated state, the sender can:

1. begin sending an ITIP message to the receiver by issuing the

Mansour/Courtemanche/O'Leary 5 Expires August 1999

Internet Draft IRIP April 16, 1999

 RECIPIENT command,
2. re-authenticate as a different calendar using the AUTHENTICATE
 command,
3. request a queued ITIP message for the authenticated calendar using
 the DEQUEUE command,
4. execute the CAPABILITY command,
5. disconnect

In order to send an ITIP message to other calendars, the sender begins
by issuing the RECIPIENT command causing the protocol to enter the
Send state. The sender repeats the RECIPIENT command as many times as
needed to indicate all the target calendars. When all recipients have
been specified, the sender issues the SENDATA command and supplies the
[ITIP] message. This causes the protocol to enter the Receive state
where the sender waits for a response from the receiver. If the
receiver's response indicates that the request has been completed the
protocol returns to the Authenticated state. If the receiver indicates
that the request could not be completed in the time specified by the
sender the protocol enters the Idle state. At this point the sender
must decide how to proceed. If the sender issues the CONTINUE command,
the command in progress continues and the session returns to the
Receive state. If the sender issues the ABORT command the command is

aborted and the session is returned to the Authenticated state.

The sender may decide to abort sending the ITIP message while it
issues the RECIPIENT commands (perhaps because a RECIPIENT does not
exist). If the sender issues the ABORT command after one or more
RECIPIENT commands, the protocol returns to the Authenticated state.

A sender can abort an operation in progress while it is in the Receive
state by sending an ABORT command to the receiver.

>From the Authenticated state, a sender can also issue the DEQUEUE
command causing the protocol to request the receiver to return a
single queued ITIP message. Issuing the DEQUEUE command changes the
protocol to the Receive state. The receiver replies with a single
queued [ITIP] request or a status code to indicate that there are no
more queued requests for the authenticated user.

Though the DISCONNECT command should only be issued from the
Authenticated or Connected states, implementations should be prepared
to handle a DISCONNECT at any point in this state diagram.

2.2 Calendar Address

Calendar addresses, or CALUIDs, are URIs that are modeled after
[RFC2396]. iRIP CALIDs use the following form of URI.

 [<scheme>://<host>[:<port>]/]<relativeCALUID>

where:

Mansour/Courtemanche/O'Leary 6 Expires August 1999

Internet Draft IRIP April 16, 1999

 <scheme> must be "irip"

 <host> is address of the computer on which the iRIP server is
 running. This is also called the Calendar Store ID or
 CSID.

 <port> is optional. Its default value is 5228.

 <relativeCALUID> is an identifier that uniquely identifies the
 calendar on a particular calendar store. There is no
 implied structure in a relativeCALUID, it is an arbitrary
 string of 7-bit ASCII characters. It may refer to the
 calendar of a user or of a resource such as a conference
 room. It MUST be unique within the calendar store. It is
 recommended that the relativeCALUID be globally unique.

https://datatracker.ietf.org/doc/html/rfc2396

If the CSID is present the CALID is said to be "qualified". Qualified
CALIDs are necessary when the CSID portion of a calendar address is
different from the Calendar Store on which the calendar user is
currently authenticated.

Examples:

 irip://calendar.example.com/user1
 user1
 irip://calendar.example.com/conferenceRoomA
 irip://calendar.example.com/89798-098-zytytasd

For the iRIP server on calendar.example.com, the first two addresses
refer to the same calendar.

2.3 Bounded Latency

iRIP is designed so that the sender can either obtain an immediate
response from a request or discover within a specified amount of time
that the request has not yet completed. The sender can initiate
commands with an optional latency time specified. When the sender
specifies the latency time and the receiver cannot complete the
operation within the specified amount of time, the receiver return an
appropriate response code to the sender. The sender then issues either
a CONTINUE or ABORT command. The ABORT command immediately terminates
the command in progress. The CONTINUE command instructs the receiver
to continue processing the command. The ABORT command causes the
receiver to discard the current command and return to the
Authenticated state.

Mansour/Courtemanche/O'Leary 7 Expires August 1999

Internet Draft IRIP April 16, 1999

3 Protocol

3.1 Commands

iRIP commands are summarized in the table below and described in
detail in the following sections.

+===+
| Command Issued from State |
+===+

| ABORT Idle, Send, Receive |
| AUTHENTICATE Connected, Authenticated |
| CAPABILITY Connected, Authenticated, Send |
| CONTINUE Idle |
| DEQUEUE Authenticated |
| DISCONNECT Connected, Authenticated |
| SENDATA Send |
| RECIPIENT Authenticated, Send |
| SWITCH Connected, Authenticated |
+===+

Commands have the general form:

<command> [arguments...]

where <command> is a command listed in the table above. A command MAY
have arguments. Arguments are defined in the detailed command
definitions below. The length of a command and its arguments, and the
terminating <CRLF> MUST be l024 characters or less.

Responses to commands have the following general form:

[ICAL OBJECT]
.
<reply code> [arguments...]

A response MAY include an [ICAL] object. Whether an [ICAL] object is
present or not, the sequence <CRLF>.<CRLF> followed by a reply code is
mandatory. The reply code may have associated arguments. These
arguments are defined in the command descriptions for each command.
Arguments MUST NOT be present unless they are specifically called for
by the particular reply code.. The length of the reply code, any
arguments, and the terminating <CRLF> MUST be l024 characters or less.

In the examples below, lines preceded with "S:" refer to the sender
and lines preceded with "R:" refer to the receiver. Lines in which the
first non-whitespace character is a "#" are editorial comments and are
not part of the protocol.

3.1.1 ABORT

Mansour/Courtemanche/O'Leary 8 Expires August 1999

Internet Draft IRIP April 16, 1999

Arguments: none

Data: none

Result: 2.0 - success
 2.2 - no command in progress

The ABORT command is issued by the sender to stop a command whose
latency time has been exceeded. When the latency time is specified on
the SENDATA command, the receiver must issue a reply to the sender
within the specified time. The reply may be a reply code indicating
that the server has not yet processed the request. The sender must
then tell the server whether to continue or abort.

The Sender can issue the ABORT command at any time after the SENDATA
command has been completed but before the sender receives a reply.

Example:

...
S: RECIPIENT irip://cal.example.com/abc
R: 2.0 irip://cal.example.com/abc
S: RECIPIENT def
R: 2.0
S: SENDATA 10
R: 2.0.1
S: Content-Type:text/calendar; method=REQUEST; charset=US-ASCII
S: Content-Transfer-Encoding: quoted-printable
S:
S: BEGIN:VCALENDAR
S: ...
S: END:VCALENDAR
S: .
10 seconds elapse...
R: .
R: 2.0.2 irip://cal.example.com/abc
R: 2.0.2 irip://cal.example.com/def
S: ABORT
R: 2.0.3
S: <sender can now begin another command or it can disconnect>

The Receiver will issue the 8.2 reply code if it receives an ABORT
when the SENDATA or DEQUEUE command is not in progress. This could
happen if the Sender issues an ABORT command at a point in time after
the Receiver has completed the operation and issued the reply code but
before the Sender has actually received the reply code. For example:

S: SENDATA 10
S: <an ICAL object>
S: .
10 seconds elapse...
S: ABORT

Mansour/Courtemanche/O'Leary 9 Expires August 1999

Internet Draft IRIP April 16, 1999

R: 2.0
R: 8.2

In this case, the reply code 2.0 is in response to the [ICAL] object
and the reply code 8.2 is in response to the ABORT command.

3.1.2 AUTHENTICATE

Arguments: <SASL mechanism name> [<initial data>]

Data: continuation data may be requested

Result: 2.0 - Authenticate completed, now in authenticated state
 6.0 - Failed authentication
 6.1 - authenticate failure: unsupported authentication
 mechanism, credentials rejected
 6.2 - Sender aborted authentication, authentication
 exchange cancelled
 6.3 - Unsupported Authentication Mechanism
 9.1 - Unexpected command.

The AUTHENTICATE command is used by the client to identify the user to
the server. iRIP uses the [SASL] specification for authentication.
This allows iRIP users to choose from a variety of authentication
mechanisms. The only iRIP commands which can be issued before
authentication occurs are AUTHENTICATE, CAPABILITY, SWITCH and
DISCONNECT.

The AUTHENTICATE command initiates the authentication protocol
exchange.

<SASL mechanism name> is a registered SASL authentication mechanism.
(Refer to [SASL] for information on obtaining a list of currently
registered mechanisms.) <initial data> is an optional parameter which
can be used for mechanisms which require an initial Sender response.

If the mechanism is not supported by the Receiver it must indicate
this with a "." CRLF and the reply code 6.1 indicating that the
authentication mechanism is not supported. Supported authentication
mechanisms can be discovered using the CAPABILITY command.

If the mechanism is supported an authentication protocol exchange
takes place, in the form of a series of Receiver challenges and Sender
responses. The Receiver terminates the exchange with the
<CRLF>.<CRLF> sequence followed by a reply code. Successful
authentication is indicated with the reply code 2.0, and unsuccessful
authentication is indicated with the reply code 6.0. If the
authentication was successful, but the authorization identity was not

accepted the status code 6.3 is used. Upon successful authentication
the protocol enters the Authenticated state, otherwise it remains in
the Connected state.

Mansour/Courtemanche/O'Leary 10 Expires August 1999

Internet Draft IRIP April 16, 1999

In the authentication protocol exchange both Receiver challenges and
Sender responses consist of the authentication mechanism data
transformed into BASE64 and followed by a CRLF. If the Sender wishes
to cancel an authentication exchange, it issues the <CRLF>.<CRLF>
sequence. Upon receipt of such an answer, the Receiver MUST indicate
the end of the exchange the <CRLF>.<CRLF> sequence followed by reply
code 6.2 indicating that the exchange was aborted.

If a security layer was negotiated it comes into effect for the
Receiver starting with the first octet transmitted after the CRLF
which follows the 2.0 reply code, and for the Sender starting with the
first octet after the CRLF that concludes the authentication exchange
for the client. Data is transmitted as described in [SASL].

The service name specified by this protocol's profile of SASL is
"irip".

The following examples illustrate the various possiblities for an
authentication protocol exchange using Kerberos Version 4.

Successful authentication:

S: AUTHENTICATE KERBEROS_V4
R: AmFYig==
S: BAcAQU5EUkVXLkNNVS5FRFUAOCAsho84kLN3/IJmrMG+25a4DT
R: or//EoAADZI=
S: DiAF5A4gA+oOIALuBkAAmw==
R: .
R: 2.0

Failed authorization:

S: AUTHENTICATE KERBEROS_V4
R: AmFYig==
S: BAcAQU5EUkVXLkNNVS5FRFUAOCAsho84kLN3/IJmrMG+25a4DT
R: or//EoAADZI=
S: DiAF5A4gA+oOIALuBkAAmw==
R: .
R: 6.3

Failed authentication:

S: AUTHENTICATE KERBEROS_V4
R: AmFYig==
S: BAcAQU5EUkVXLkNNVS5FRFUAOCAsho84kLN3/IJmrMG+25a4DT
R: .
R: 6.0

Sender aborted authentication:

S: AUTHENTICATE KERBEROS_V4

Mansour/Courtemanche/O'Leary 11 Expires August 1999

Internet Draft IRIP April 16, 1999

R: AmFYig==
S: .
R: .
R: 6.2

Unsupported mechanism:

S: AUTHENTICATE Experimental_Auth
R: .
R: 6.1

3.1.2.1 Authentication with Proxy Access

Some [SASL] mechanisms allow the Sender to transmit an authorization
identity which is different from the authentication identity. iRIP
depends upon this ability in that it is servers who authenticate to
each other in order to process requests for users. The user which the
Sender is representing is transmitted as the authorization identity
during the [SASL] exchange. This identity takes the form of a CALID.

The authorization identity is used to administer the [ITIP] security
paradigm. Thus in an iRIP session REQUESTs may be issued for events of
which the authorized CALID is the Organizer, RESPONSEs or COUNTERs may
be issued for events which the authorized caladdress is Attending,
etc.

3.1.2.2 Selection of an Authentication Mechanism

The authentication mechanisms which a Receiver supports may be
discovered through use of the CAPABILITY. From the supplied list the
Sender may choose its preferred mechanism.

Not all mechanisms will be supported on all servers. There is no
minimum level of security which an iRIP compliant server is required
to support. This may result in iRIP servers which are unable to talk

to each other through lack of a common mechanism. This issue is
covered in more detail in the Security Considerations section of this
document.

3.1.3 CAPABILITY

Arguments: none

Data: Server capability information as described below

Result: 2.0 - authenticate completed, now in authenticated state

The CAPABILITY command tells the server to return a list of
capabilities it supports. The server must return a CAPABILITY

Mansour/Courtemanche/O'Leary 12 Expires August 1999

Internet Draft IRIP April 16, 1999

response with "iRIPrev1" as one of the listed capabilities. The
CAPABILITY command can be issued in any connection state. The response
may differ depending on the current state of the connection. The
responses may also differ depending upon the authenticated user.

Sender implementations SHOULD NOT require any capability name beyond
those defined in this specification, and MUST tolerate any unknown
capability names. This command may return different results in the
Connected states versus the Authenticated state. It may also return
different results depending on the authenticated calendar user.

The format of the capabilities response is a series of lines with the
form <name>[=<value>]. Each name-value pair is delimited by a <CRLF>
character sequence. Each line, including the terminating <CRLF> MUST
be 1024 characters or less. The sequence <CRLF>.<CRLF> followed by a
reply code terminates the response.

The table below summarizes the information available in response to a
CAPABILITY command.

Capability Occurs Description
--------------------- ------- ----------------------------------
iRIPrev1 1 Revision of iRIP, must be
 "iRIPrev1"

AUTH 0+ Authentication mechanism(s)
 supported

MAXICALOBJECTSIZE 0 or 1 An integer value that specifies
 the largest ICAL object (byte count)
 the server will accept. Objects larger

 than this will be rejected.

MAXDATE 0 or 1 The datetime value beyond which
 the server cannot accept.

MINDATE 0 or 1 The datetime value prior to which
 the server cannot accept.

Examples:

When executed from the Connected state the following occur:

S: CAPABILITY
R: iRIPrev1
R: AUTH=KERBEROS_V4
R: AUTH=PLAIN
R: .
R: 2.0

When executed from the Authenticated state the following occur:

Mansour/Courtemanche/O'Leary 13 Expires August 1999

Internet Draft IRIP April 16, 1999

S: CAPABILITY
R: CAPABILITY iRIPrev1
R: AUTH=KERBEROS_V4
R: AUTH=PLAIN
R: MAXICALOBJECTSIZE=50000
R: .
R: 2.0

3.1.4 CONTINUE

Arguments: [latencyTime]
Data: noneResult: results from the command in progress
 2.0.2 reply pending.
 9.1 unexpected command

The CONTINUE command is issued by the sender to allow an SENDATA
request to continue being processed. When the latency time is
specified on the SENDATA command, the Receiver must issue a reply to
the Sender within the specified time. The reply could be a reply code
indicating that the server has not yet processed the request. The
Sender must then tell the server whether to continue or abort the
command in progress.

The CONTINUE has the following form:

 CONTINUE [latencyTime]

If the optional latencyTime is present, it is a positive integer that
specifies the maximum number of seconds the client will wait for the
next response. If it is omitted, the receiver waits an indefinite
period of time for the response.

In this example, the sender requests a response from the server every
10 seconds.

...
S: RECIPIENT irip://A.example.com/sman
R: 2.0
S: SENDATA 10
R: 2.0.1
S: Content-Type:text/calendar; method=REQUEST; charset=US-ASCII
S: Content-Transfer-Encoding: 7bit
S:
S: BEGIN:VCALENDAR
etc...
S: END:VCALENDAR
S: .

after 10 seconds...

Mansour/Courtemanche/O'Leary 14 Expires August 1999

Internet Draft IRIP April 16, 1999

R: .
R: 2.0.2 Reply Pending
S: CONTINUE 10

less than 10 seconds elapse...

R: 2.0.11 irip://A.example.com/sman
R: Content-Type:text/calendar; method=REPLY; charset=US-ASCII
R: Content-Transfer-Encoding: 7bit
R:
R: BEGIN:VCALENDAR
etc...
R: END:VCALENDAR
R: .

3.1.5 DEQUEUE

Arguments: caluid [latencyTime]

Data: a single queued itip message on success.

Result: 2.0 <caluid> success
 2.0.2 <caluid> reply pending.
 2.0.8 <caluid> no more messages
 3.8 <caluid> no authority to perform this operation
 9.1 unexpected command

The DEQUEUE command requests the Receiver to send a single queued
message to the Sender. This differs from using the SWITCH command in
several ways:

 - the SWITCH command results in the Connected state after the
 Sender and Receiver roles are reversed. This means that both the
 Sender and Receiver must be prepared to handle the AUTHENTICATE
 command. Using the DEQUEUE command, queued commands can be collected
 by the original Sender without it having to handle the AUTHENTICATE
 command.
 - Only one message is transferred per DEQUEUE command.
 - The single and implicit receiver of a DEQUEUE message is the
 currently authenticated Sender.

If the Receiver has a queued message for the CALID and the
authenticated user is allowed to access the queue, it will be sent as
the reply to the DEQUEUE message. The message is followed by a
(required) <CRLF>.<CRLF> and a (required) response code.

Example:

S: DEQUEUE irip://cal.example.com/sman
R: Content-Type:text/calendar; method=REQUEST; charset=US-ASCII
R: Content-Transfer-Encoding: 7bit

Mansour/Courtemanche/O'Leary 15 Expires August 1999

Internet Draft IRIP April 16, 1999

R:
R: BEGIN:VCALENDAR
etc...
R: END:VCALENDAR
R: .
R: 2.0 irip://cal.example.com/sman
S: DEQUEUE irip://cal.example.com/sman
R: .
R: 2.0.8 irip://cal.example.com/sman

3.1.6 DISCONNECT

Arguments: none

Data: none

Result: 2.0 - success

The DISCONNECT command signals the end of communication between the
Sender and Receiver. It SHOULD be issued only from the Authenticated
or Connected states. However, receiver implementations MUST be
prepared to handle a DISCONNECT at any point in this state diagram.

Example:

S: DISCONNECT
R: 2.0

3.1.7 RECIPIENT

Arguments: caluid [latencyTime]

Data: none

Result: 2.0 <caluid> - Found the calendar

 2.0.4 <caluid> - caluid is not on this irip server but an
 attempt will be made to deliver the
 request or reply to the Calendar anyway.
 A trust relationship exists with IRIP
 server for caluid.

 2.0.5 <caluid> - just like 2.0.4 except that the message
 MUST be queued. That is, it will not be
 possible for this request to be
 processed in real-time.

 2.0.6 <caluid> - The specified <caluid> is not here but
 an attempt will be made to deliver the
 request or reply to <caluid> anyway.

Mansour/Courtemanche/O'Leary 16 Expires August 1999

Internet Draft IRIP April 16, 1999

 There is not a trust relationship
 between the IRIP server and the IRIP
 server for the target calendar.

 3.8 <caluid> - the authenticated iRIP session does not
 have authority to perform [iTIP]
 activities on <caluid>.

 5.3 <caluid> - IRIP services for the specified calid
 are not supported.

 9.1 - Unexpected command

 10.1 <caluid> <newcaluid>
 - <caluid> is not supported by this iRIP
 service but can be found <newcaluid>.
 Note that <newcaluid> need not be of the
 IRIP scheme.

The RECIPIENT command is used to identify a recipient of the iCalendar
Object. Use multiple RECIPIENT commands to specify multiple
recipients.

A reply code will be returned for each calendar address supplied. A
response code for each calendar address will also be returned after
the SENDATA command completes.

A reply code of 2.0 indicates that the calendar address is available
for [ITIP] messages. If the receiver does not accept [ITIP] messages
for the specified calendar address, it responds with [ITIP] reply code
5.3 to indicate that the calendar address is unknown. If the receiver
has a referral calendar address it responds with reply code 10.1 and
supplies the new calendar address. In either case, the iRIP server
does not deliver the [ITIP] message when the reply code is 5.3 or
10.1.

After the ITIP message has been sent, a reply code will be returned
for each of the recipients.

3.1.7.1 Fanout Issues On RECIPIENT

A receiver may be implemented such that it will fanout requests to
other iRIP servers. That is, a sender connects to iRIP receiver at
A.example.com and specifies a RECIPIENT calendar address on
B.example1.com. If the iRIP server at A.example.com handles getting
the request to the receiver at B.example1.com it supports fanout.

 iRIP iRIP
 Sender ----------- [A.example.com] ------------- [B.example.com]

An iRIP server implementation can implement fanout in different ways.

Mansour/Courtemanche/O'Leary 17 Expires August 1999

Internet Draft IRIP April 16, 1999

One way involves verifying remote recipient calendars in real-time.

Another way saves up all remote recipient calendars and simply
attempts to access them later. The advantage of verifying remote
calendars in real-time is that the sender is notified immediately, via
the reply code, whether or not the recipient calendar exists and is
accessible. For example, suppose that the iRIP server on A.example.com
just received the following command from Sender:

RECIPIENT irip://b.example.com/sam

If A.example.com immediately contacts B.example.com and issues a
RECIPIENT irip://b.example.com/sman and returns the reply back to
Sender, the sender will have an authoritative reply code (2.0 -
success, 3.7 - invalid calendar, or 10.1 - referral). On the other
hand, if A.example.com simply collects all the remote calendar
addresses and attempt to access them later in the transaction the
reply will be 2.0.4 (will attempt). The disadvantage of this approach
is that the sender does not know the status of the target calendar
during the RECIPIENT negotiation.

3.1.8 SENDATA

Arguments: [latencyTime]

Data: MIME encapsulated iCalendar object

Result: 2.0.1 - Begin sending the MIME encapsulated iCalendar
Object
 9.1 - Unexpected command

After sending the iCalendar object a result is returned for each
recipient. These results can be the following:

 2.0 <caluid> - Success. [ITIP] message delivered.
 2.0.2 <caluid> - A timeout has occurred.
 2.0.3 <caluid> - In response to the client issuing an
 ABORT
 2.0.7 <caluid> - The message has been queued for
 delivery.
 2.0.11 <caluid> - Success. [ITIP] message delivered and a
 response follows.

 8.0 A failure has occurred in the receiver that
 prevents the operation from succeeding.

 8.1 Sent when a session cannot be established because
 the iRIP Receiver is too busy.

 8.2 Used to signal that an ICAL object has exceeded the
 server's size limit.

Mansour/Courtemanche/O'Leary 18 Expires August 1999

Internet Draft IRIP April 16, 1999

 9.0 An unrecongnized command (METHOD) was received.

 9.1 A command was issued in a manner inconsistent with
 the state diagram. For example, issuing the SENDATA
 command without having specified a RECIPIENT will
 cause this error.

 10.2 The server is shutting down.

 10.4 The operation has not be performed because it would
 cause the resources (memory, disk, CPU, etc) to
 exceed the allocated quota

The SENDATA command is used to specify the iCalendar Object that is to
be delivered to one or more recipients specified in the RECIPIENT
command. The format of the command sequence is:

S: SENDATA [latencyTime]
R: 2.0.1
S: <MIME encapsulated sender ITIP Message>
S: .
R: <reply code> <caluid>

if the reply code above is 2.0.11 the following will also be sent:

R: <MIME encapsulated reply ITIP Message.>
R: .

The optional latencyTime value specifies the maximum number of seconds
the sender will wait for a reply. If it is not present, the client
places no time limit on the server for a reply. A reply code of 2.0.1
indicates that the [ITIP] message data can be sent. The data must be
broken into lines that are 1024 characters (including the ending
<CRLF> or less. When the entire message has been sent, the sender
terminates sending data with the special sequence <CRLF>.<CRLF>. The
receiver reply MAY contain an [ITIP] message. The reply MUST contain
the special sequence <CRLF>.<CRLF> followed by a reply code for each
RECIPIENT.

The command sequence for an iRIP server that does not include an
[ITIP] message in the reply might appear as follows:

S: RECIPIENT irip://cal.example.com/johndoe
R: 2.0
S: RECIPIENT irip://cal.othersystem.com/xyz
R: 2.0.5
S: SENDATA

R: 2.0.1
lots of data
S: .
R: .
R: 2.0 irip://cal.example.com/johndoe

Mansour/Courtemanche/O'Leary 19 Expires August 1999

Internet Draft IRIP April 16, 1999

R: 2.0.7 irip://cal.othersystem.com/xyz

If the reply code is 2.0.11, an [ITIP] message reply will follow. This
message will be terminated by the <CRLF>.<CRLF> sequence. iRIP servers
are not required to send [ITIP] messages in the reply to [ITIP]
requests delivered via the SENDATA command. However, the protocol
allows for high performance servers to do so. iRIP senders MUST accept
the [ITIP] message if the receiver includes it the reply.

3.1.9 SWITCH

Arguments: none

Data: none

Result: 2.0 Sender and receiver have switched roles.
 The connection is switched to the
 Connected State.

 3.14 Unsupported command. That is, the
 receiver refuses to switch roles.

The SWITCH command is used to allow the Sender and Receiver to change
roles. After a switch command is executed and the new Sender
authenticates, all queued commands that the new Sender has queued for
the new Receiver will be delivered.

The SWITCH command is useful in environments where the firewall of a
Sender would not allow the Receiver to initiate a connection. The
SWITCH command is issued by the Sender to give the Receiver the
opportunity to take the role of the Sender. The Sender must be in the
authenticated state before the SWITCH command can be used.

The Receiver must respond in one of the following fashions:

 - send an OK reply and take on the role of Sender
 - send a error reply indicating refusal and retain the role of
 Receiver

If program-A is currently the Sender and sends the SWITCH command and

receives an OK reply then program-A becomes the Receiver. The IRIP
connection returns to the Connected state. Program-A is then in its
initial state and sends a service ready response code of 2.0.

If program-B is currently the Receiver and sends an OK reply in
response to a SWITCH command then program-B becomes the Sender.
Program-B is then in the initial state (connected) as if it had just
connected to Program-A, and expects to receive a response code of 2.0.

3.2 Fanout and Queued Transactions

Mansour/Courtemanche/O'Leary 20 Expires August 1999

Internet Draft IRIP April 16, 1999

An iRIP server must be able to fanout requests targeted at other iRIP
servers. An iRIP server may queue information targeted at other iRIP
servers. There are several reasons for queing requests. One reason is
that firewall issues may prevent one server from contacting another.

iRIP servers can establish trust relationships between each other. A
trusted relationship means:

 - one server must authenticate with the other
 - authenticated calendars on one server are trusted and treated as
 authenticated on the other.

The trusted relationship need not be bi-directional. That is, the fact
that iRIP server A trusts iRIP server B does not necessarily mean that
B trusts A.

A trusted relationship between two iRIP servers means that one server
can queue transactions for the other server and deliver them some time
later. If iRIP server B trusts A, then A can queue requests for B. If
A does not trust B then B cannot accumulate requests for A. [Editors
Note: do we really want to impose this restriction?]

Certain requests may need to be delivered and replied to in real-time.
In fact, a requester may wish to cancel the request if the reply
cannot be delivered in real-time. In iRIP the reply code to the
RECIPIENT command indicates whether or not a reply will be made in
real-time (barring connection and hardware failures). This allows the
sender to abort the request if necessary.

3.3 Bi-Directional Queue Operation

It is possible that firewall configurations may not allow a connection
between two iRIP servers in either direction. That is, in the diagram
below, suppose there are two users, sender1 and sender2, who wish to
exchange [ITIP] messages. Their calendar addresses are

irip://B.foo.com/sender1 and irip://D.bar.com/sender2. The firewall
in front of B.foo.com prevents incoming external connections on the
iRIP server port. However, it allows outbound external connections on
the iRIP server port to happen. Similarly, the firewall in front of
D.bar.com also prevents inbound connections on the iRIP server port,
but allows outbound connections. To allow sender1 and sender2 to
exchange iRIP messages an intermediate iRIP server, C.foobar.com, is
used to queue messages for both of their calendars. A trust
relationship between the intermediate iRIP server and the endpoint
servers (B.foo.com and D.bar.com) is desirable but not required.
[Editors note: is desired but not required OK with everyone?]

 iRIP +-----------+ +-----------+ iRIP
sender1 --------| B.foo.com |--#--+--#--| D.bar.com |------- sender2
 +-----------+ | +-----------+
 |
 +----------------+

Mansour/Courtemanche/O'Leary 21 Expires August 1999

Internet Draft IRIP April 16, 1999

 | C.foobar.com |
 +----------------+
3.4 Reply Codes

iRIP error codes follow the format defined for Status Replies in
[ITIP]. All Status Replies as defined in [ITIP] are valid error codes
when returned by an iRIP command.

In addition to those defined in [ITIP], iRIP defines the following
error codes:

REPLY
CODE DESCRIPTION MEANING
------ ---------------------- --------------------------------------
2.0 STATOK Operation was successfully performed.

2.0.1 START-SENDATA Start ICAL input; end with
 <CRLF>.<CRLF>

2.0.11 OK-DATAFOLLOWS The request was processed
 successfully. Reply data follows on
 the next line and terminates with
 <CRLF>.<CRLF>

2.0.2 REPLY-PENDING A timeout has occurred. The server is
 still working on the reply. Use
 CONTINUE to continue waiting for the
 reply or ABORT to terminate the
 command.

2.0.3 ABORTED In response to the client issuing an
 ABORT command, this reply code
 indicates that any command currently
 underway was successsfully aborted.

2.0.4 WILL-ATTEMPT The specified Calendar is not here
 but an attempt will be made to deliver
 the request or reply to the Calendar
 anyway. There is a trust relationship
 between this iRIP server and the
 iRIP server for the target calendar.

2.0.5 TRUSTED-WILL-QUEUE The specified Calendar cannot be
 contacted directly and a trust
 relationship exists between this
 server and the server on which the
 Calendar exists. The request or reply
 will be queued and delivered to the
 target calendar when its iRIP server
 contacts this server and issues the
 SWITCH command.

Mansour/Courtemanche/O'Leary 22 Expires August 1999

Internet Draft IRIP April 16, 1999

2.0.6 WILL-ATTEMPT The specified Calendar is not here
 but an attempt will be made to deliver
 the request or reply to the Calendar
 anyway. There is not a trust
 relationship between the iRIP server
 and the iRIP server for the target
 calendar.

2.0.7 QUEUED The message has been queued for
 delivery.

2.0.8 QUEUE-EMPTY There are no more queued messages.

2.2 NO COMMAND IN PROGRESS An ABORT or CONTINUE was received when
 no command was in progress

6.1 AUTHENTICATE FAILURE Unsupported authentication mechanism,
 credentials rejected

6.2 AUTHENTICATION ABORTED Sender aborted authentication,
 authentication exchange cancelled

8.0 GENERAL FAILURE A failure has occurred in the Receiver

 that prevents the operation from
 succeeding.

8.1 SERVER TOO BUSY Sent when a session cannot be
 established because the iRIP
 Receiver is too busy.

8.2 ICAL OBJECT TOO BIG Used to signal that an ICAL object has
 exceeded the server's size limit.

8.3 DATE TOO LARGE A DATETIME value was too far in the
 future to be represented on this
 Calendar.

8.4 DATE TOO SMALL A DATETIME value was too far in the
 past to be represented on this
 Calendar.

9.0 INVALID iRIP COMMAND An unrecongnized command was received.

9.1 UNEXPECTED COMMAND A command was issued in a manner
 inconsistent with the state diagram.
 For example, issuing the SENDATA
 command without having specified any
 RECIPIENTs will cause this error.

10.1 REFERRAL Accompanied by an alternate address.
 The RECIPIENT specified should be
 contacted at the given alternate

Mansour/Courtemanche/O'Leary 23 Expires August 1999

Internet Draft IRIP April 16, 1999

 address. The referral address MUST
 follow the reply code.

10.2 SERVER SHUT DOWN The server is shutting down.

10.3 SERVER STOPPING FLOOD 2

10.4 EXCEEDED QUOTAS The operation has not be performed
 because it would cause the resources
 (memory, disk, CPU, etc) to exceed the
 allocated quota

10.5 QUEUED TOO LONG The ITIP message has been queued too
 long. Delivery has been aborted.

4 Implementation Considerations

It is strongly recommended that when an iRIP implementation encounters
an error requiring the communication channel between the Sender and
Receiver to be dropped that the DISCONNECT command be issued rather
than simply breaking the communication channel.

5 Security Considerations

The security of iRIP with [SASL] support is highly dependent on the
mechanism used to authenticate the client and whether or not the
security layer is further negotiated. Without a robust security layer,
iRIP transactions are subject to eavesdropping and the integrity of
iRIP transactions may be compromised. Since iRIP is designed
specifically for real time transactions, it is recommended that
implementations use the highest degree of authentication and
transmission security possible.

5.1 Security Threats and Recommendations
In addition to the security risks detailed in [ITIP], the following
sections discuss security risks in using iRIP as the transport
binding.

5.1.1 Authentication Hacking

Once authenticated, senders can re-authenticate from the Authenticated
state. It is possible that, once authenticated, a sender could take
advantage of this capability and repeatedly attempt to guess at
calendar user credentials. It is recommended that implementations
disconnect after a failed authentication attempt from the
Authenticated state.

Mansour/Courtemanche/O'Leary 24 Expires August 1999

Internet Draft IRIP April 16, 1999

5.1.2 Spoofing

The [ITIP] paradigm allows any modifications to data by its Organizer,
which maps to the [SASL] authorization identity. This means that
authorizing with appropriate identities over iRIP will allow read and
write access to any item in the Receiver's database. There are
several ways to limit this security risk.

The choice of accepted authentication mechanisms can reduce the
security risk. The ANONYMOUS mechanism allows a greater level of
interoperability, in that any Sender can connect anonymously, but

greatly increases the security risk for the same reason.

The method in which authorizations are accepted can also be modified
to improve security. Some hosts may be trusted to authorize as any
caladdress, while others may be only be trusted to authorize as users
in their domain.

[ITIP] data is transmitted in MIME containers, which provide a
facility for digitally signing their data. A sender may use this
scheme in order to provide a final security fallback.

Finally, some implementations may decide to queue incoming iRIP
commands for approval by the owner of the calendar, although this is
certainly the least reliable of these security mechanisms.

5.1.3 Eavesdropping

The use of SASL in iRIP allows the negotiation of an encrypted
security layer, which greatly reduces the chances that a connection
will be subject to eavesdropping.

However, if another iRIP server is being used to relay iRIP data this
relay server is privy to whatever information is being transmitted.
For this reason it may be desirable to use MIME's encryption facility
to protect the data.

5.1.4 Connection Flooding

Servers should be configurable to timeout unused connections.

5.2 Security Interoperability Issues

* minimum SASL mechanism
 [ed note: tbd Paul Hill to supply]
* add a failure case under 6.3

6 Examples

6.1 Unauthenticated Freebusy Request

Mansour/Courtemanche/O'Leary 25 Expires August 1999

Internet Draft IRIP April 16, 1999

This examples shows an anonymous request for the freebusy time of
irip://cal.example.com/sman. Note that once xyz is authenticated on
the IRIP server either the fully qualified IRIP CALID or the relative
CALID can be used to reference a Calendar. That is,

"irip://cal.example.com/xyz" and "xyz" refer to the same calendar and
can be used interchangeably.

R: <listen on TCP port 5228>
S: <establish a TCP connection to cal.example.com port 5228>
R: 2.0
S: AUTHENTICATE ANONYMOUS
R: 2.0
S: RECIPIENT:irip://b.foo.bar/sman
R: 2.0
S: SENDATA
R: 2.0.1
S: Content-Type:text/calendar; method=REQUEST; charset=US-ASCII
S: Content-Transfer-Encoding: 7bit
S:
S: BEGIN:VCALENDAR
S: PRODID:-//ACME/DesktopCalendar//EN
S: METHOD:REQUEST
S: VERSION:2.0
S: BEGIN:VFREEBUSY
S: ORGANIZER: irip://b.foo.bar/xyz
S: ATTENDEE: irip://b.foo.bar/sman
S: DTSTAMP:19971113T190000Z
S: DTSTART:19971115T160000Z
S: DTEND:19971116T040000Z
S: UID:www.example.com-873970198738777@host.com
S: END:VFREEBUSY
S: END:VCALENDAR
S: .

server looks up the freebusy time and builds a reply>

R: 2.0.11 irip://cal.example.com/sman
R: Content-Type:text/calendar; method=REPLY; charset=US-ASCII
R: Content-Transfer-Encoding: 7bit
R:
R: BEGIN:VCALENDAR
R: PRODID:-//EXAMPLE/DesktopCalendar//EN
R: METHOD:REPLY
R: VERSION:2.0
R: BEGIN:VFREEBUSY
R: ORGANIZER:irip://cal.example.com/xyz
R: ATTENDEE:irip://cal.example.com/sman
R: DTSTAMP:19971113T190005Z
R: DTSTART:19971115T160000Z
R: DTEND:19971116T040000Z
R: UID:www.example.com-873970198738777@host.com

Mansour/Courtemanche/O'Leary 26 Expires August 1999

Internet Draft IRIP April 16, 1999

R: FREEBUSY:19971115T230000Z/PT1H,19971115T210000Z/PT30M
R: END:VFREEBUSY
R: END:VCALENDAR
R: .
S: DISCONNECT
R: 2.0
R: <disconnect>
S: <disconnect>

6.2 Busy Time Request

In this example, the sender sends a Freebusy request to the iRIP
server at B.foo.com for several calendars. Some of the calendars are
on other calendar stores. The sender needs the information immediately
and will abort any attempt to queue requests.

R: <listen on TCP port 5228>
S: <establish a TCP connection to B.foo.com port 5228>
R: 2.0
S: AUTHENTICATE KERBEROS_V4 93407205

more authentication information

R: 2.0
S: RECIPIENT:irip://B.foo.com/bill
R: 2.0
S: RECIPIENT:irip://C.foobar.com/cathy
R: 2.0.4
S: RECIPIENT:irip://D.bar.com/david
R: 2.0.5
S: RECIPIENT:irip://E.barfoo.com/eddie
R: 2.0.6

the sender does not want this ITIP message to be queued request.
So, the current operation will be canceled. The operation will be
tried again with attendees that can be serviced in real-time.

S: ABORT
R: 2.0.3
S: RECIPIENT:irip://B.foo.com/bill
R: 2.0
S: RECIPIENT:irip://C.foobar.com/cathy
R: 2.0.4
S: RECIPIENT:irip://E.barfoo.com/eddie
R: 2.0.6
S: SENDATA
R: 2.0.1
S: Content-Type:text/calendar; method=REQUEST; charset=US-ASCII
S: Content-Transfer-Encoding: 7bit

S:
S: BEGIN:VCALENDAR
S: PRODID:-//ACME/DesktopCalendar//EN

Mansour/Courtemanche/O'Leary 27 Expires August 1999

Internet Draft IRIP April 16, 1999

S: METHOD:REQUEST
S: VERSION:2.0
S: BEGIN:VFREEBUSY
S: ORGANIZER:irip://B.foo.com/bill
S: ATTENDEE:irip://B.foo.com/bill
S: ATTENDEE:irip://C.foobar.com/cathy
S: ATTENDEE:irip://D.bar.com/david
S: ATTENDEE:irip://E.barfoo.com/eddie
S: DTSTAMP:19971113T190000Z
S: DTSTART:19971115T160000Z
S: DTEND:19971116T040000Z
S: UID:www.example.com-873970198738777@host.com
S: END:VFREEBUSY
S: END:VCALENDAR
S: .

server looks up the freebusy time for irip://B.foo.com/bill,
requests and receives the freebusy time for
irip://C.foobar.com/cathy and irip://E.barfoo.com/eddie. Then it
builds a reply

R: 2.0.11 irip://B.foo.com/bill
R: Content-Type:text/calendar; method=REPLY; charset=US-ASCII
R: Content-Transfer-Encoding: 7bit
R:
R: BEGIN:VCALENDAR
R: PRODID:-//EXAMPLE/DesktopCalendar//EN
R: METHOD:REPLY
R: VERSION:2.0
R: BEGIN:VFREEBUSY
S: ORGANIZER:irip://B.foo.com/bill
R: ATTENDEE:irip://B.foo.com/bill
R: DTSTAMP:19971113T190005Z
R: DTSTART:19971115T160000Z
R: DTEND:19971116T040000Z
R: UID:www.example.com-873970198738777@host.com
R: FREEBUSY:19971115T200000Z/PT1H,19971116T030000Z/PT30M
R: END:VFREEBUSY
R: END:VCALENDAR
R: .
R: 2.0.11 irip://C.foobar.com/cathy
R: Content-Type:text/calendar; method=REPLY; charset=US-ASCII

R: Content-Transfer-Encoding: 7bit
R:
R: BEGIN:VCALENDAR
R: PRODID:-//EXAMPLE/DesktopCalendar//EN
R: METHOD:REPLY
R: VERSION:2.0
R: BEGIN:VFREEBUSY
S: ORGANIZER:irip://B.foo.com/bill
R: ATTENDEE:irip://C.foobar.com/cathy
R: DTSTAMP:19971113T190005Z

Mansour/Courtemanche/O'Leary 28 Expires August 1999

Internet Draft IRIP April 16, 1999

R: DTSTART:19971115T160000Z
R: DTEND:19971116T040000Z
R: UID:www.example.com-873970198738777@host.com
R: FREEBUSY:19971115T230000Z/PT1H,19971116T020000Z/PT30M
R: END:VFREEBUSY
R: END:VCALENDAR
R: .
R: 2.0.11 irip://E.barfoo.com/eddie
R: Content-Type:text/calendar; method=REPLY; charset=US-ASCII
R: Content-Transfer-Encoding: 7bit
R:
R: BEGIN:VCALENDAR
R: PRODID:-//EXAMPLE/DesktopCalendar//EN
R: METHOD:REPLY
R: VERSION:2.0
R: BEGIN:VFREEBUSY
S: ORGANIZER:irip://B.foo.com/bill
R: ATTENDEE:irip://E.barfoo.com/eddie
R: DTSTAMP:19971113T190005Z
R: DTSTART:19971115T160000Z
R: DTEND:19971116T040000Z
R: UID:www.example.com-873970198738777@host.com
R: FREEBUSY:19971115T230000Z/PT1H,19971116T020000Z/PT30M
R: END:VFREEBUSY
R: END:VCALENDAR
R: .
S: DISCONNECT
R: 2.0
R: <disconnect>
S: <disconnect>

6.3 Using Switch

This session demonstrates how a poll can be accomplished using the

SWITCH command. In this case, the receiver (A.example.com) becomes
the sender after issuing the switch command.

receiver is currently A.example.com, the sender is B.xyz.com
R: <listen on TCP port 5228>
S: <establish a connection to TCP port 5228>
R: 2.0
S: AUTHENTICATE KERBEROS_V4
more authentication...
R: 2.0
S: SWITCH
R: 2.0

The connection state has returned to the Connected state.
A.example.com
must now Authenticate with B.xyz.com

Mansour/Courtemanche/O'Leary 29 Expires August 1999

Internet Draft IRIP April 16, 1999

S: 2.0
R: AUTHENTICATE KERBEROS_V4
more authentication...
R: 2.0

Now that the switch has occurred, A.example.com is the sender and
B.xyz.com is the receiver. At this point, A.example.com sends all
queued commands for recipients on B.xyz.com

S: RECIPIENT:irip://B.xyz.com/sman
R: 2.0
S: SENDATA
R: 2.0.1
S: Content-Type:text/calendar; method=REQUEST; charset=US-ASCII
S: Content-Transfer-Encoding: 7bit
S:
S: BEGIN:VCALENDAR
S: PRODID:-//ACME/DesktopCalendar//EN
S: METHOD:REQUEST
S: VERSION:2.0
S: BEGIN:VFREEBUSY
S: ORGANIZER:irip://A.example.com/billybob
S: ATTENDEE:irip://B.xyz.com/sman
S: DTSTAMP:19981113T190000Z
S: DTSTART:19981115T160000Z
S: DTEND:19981116T160000Z
S: UID:123456abcdef.1234.2314
S: END:VFREEBUSY

S: END:VCALENDAR
S: .

server looks up the freebusy time and builds a reply

R: 2.0.11 irip://B.xyz.com/sman
R: Content-Type:text/calendar; method=REPLY; charset=US-ASCII
R: Content-Transfer-Encoding: 7bit
R:
R: BEGIN:VCALENDAR
R: PRODID:-//EXAMPLE/DesktopCalendar//EN
R: METHOD:REPLY
R: VERSION:2.0
R: BEGIN:VFREEBUSY
R: ORGANIZER:irip://cal.example.com/xyz
R: ATTENDEE:irip://cal.example.com/sman
R: DTSTAMP:19981113T190005Z
R: DTSTART:19981115T160000Z
R: DTEND:19981116T160000Z
R: UID:123456abcdef.1234.2314
R: FREEBUSY:19981115T230000Z/PT1H,19981115T210000Z/PT30M
R: END:VFREEBUSY
R: END:VCALENDAR
R: .

Mansour/Courtemanche/O'Leary 30 Expires August 1999

Internet Draft IRIP April 16, 1999

A.example.com has no more queued ITIP messages for B.xyz.com.
So, it disconnects...

S: DISCONNECT
R: 2.0
R: <disconnect>
S: <disconnect>

6.4 Fanout Requests

6.4.1 Successful Fanout Request

In the diagram below, sender has authenticated to the iRIP server
B.foo.com and is attempting to deliver a request to calendars on
B.foo.com and C.foobar.com. The iRIP server on B.foo.com supports
fanout. It verifies remote calendars during the RECIPIENT negotiation
with sender.

 +-----------+ +-----------+
 sender ---------| B.foo.com |---------| D.bar.com |

 +-----------+ +-----------+

Connection between S and B.foo.com
S = sender
R = B.foo.com

R: <listen on TCP port 5228>
S: < connect to B.foo.com port 5228>
R: 2.0
S: AUTHENTICATE KERBEROS_V4 93407205
more authentication information
R: 2.0
S: RECIPIENT:irip://B.foo.com/bill
R: 2.0
S: RECIPIENT:irip://D.bar.com/david

Connection B.foo.com to D.bar.com

 S = B.foo.com
 R = D.bar.com

 R: <listen on TCP port 5228>
 S: <connect to D.bar.com>
 R: 2.0
 S: <authenticate as iRIP
 Server B.foo.com>
 R: 2.0
 S: RECIPIENT:irip://D.bar.com/david
 R: 2.0
R: 2.0

Mansour/Courtemanche/O'Leary 31 Expires August 1999

Internet Draft IRIP April 16, 1999

S: SENDATA
R: 2.0.1
S: <sends icaldata>
S: . S: SENDATA
 R: 2.0.1
 S: <sends icaldata>
 S: .
 R: .
 R: 2.0 irip://D.bar.com/david
R: .
R: 2.0 irip://B.foo.com/bill
R: 2.0 irip://D.bar.com/david
S: DISCONNECT
R: 2.0

6.4.2 Referral On Fanout

This example is just like the one above except that in this case the
remote calendar no longer exists and a referral is returned. The
sender cancels the transaction in the RECIPIENT phase (using ABORT)
and starts a new transaction that uses the referral address.

 +-----------+ +-----------+
 sender ---------| B.foo.com |----+----| D.bar.com |
 +-----------+ | +-----------+
 |
 | +-----------+
 +----| E.xyz.com |
 +-----------+

Connection between S and B.foo.com
S = sender
R = B.foo.com
====================================
S: < connect to B.foo.com port 5228>
R: 2.0
S: AUTHENTICATE KERBEROS_V4 93407205
S: <more authentication information>
R: 2.0
S: RECIPIENT:irip://B.foo.com/bill
R: 2.0
S: RECIPIENT:irip://D.bar.com/david

 Connection B.foo.com to D.bar.com

 S = B.foo.com
 R = D.bar.com
 ===================================

 R: <listen on TCP port 5228>

Mansour/Courtemanche/O'Leary 32 Expires August 1999

Internet Draft IRIP April 16, 1999

 S: <connect to D.bar.com port 5228>
 R: 2.0
 S: <authenticates as irip server
 B.foo.com>
 R: 2.0
 S: RECIPIENT:irip://D.bar.com/david
 R: 10.1 irip://E.xyz.com/david99
R: 10.1 irip://E.xyz.com/david99
S: ABORT

R: 2.0.3
S: RECIPIENT:irip://B.foo.com/bill
R: 2.0
S: RECIPIENT irip://E.xyz.com/david99

 Connection B.foo.com to E.xyz.com
 S = B.foo.com
 R = E.xyz.com
 ===================================
 S: <connect to D.bar.com port 5228>
 R: 2.0
 S: <authenticates as irip server
 B.foo.com>
 R: 2.0
 S: RECIPIENT irip://E.xyz.com/david99
 R: 2.0
R: 2.0
S: SENDATA
R: 2.0.1
S: <sends icaldata>
S: . S: SENDATA
 R: 2.0.1
 S: <sends icaldata>
 S: .
 R: .
 R: 2.0 irip://E.xyz.com/david99
R: .
R: 2.0 irip://B.foo.com/bill
R: 2.0 irip://E.xyz.com/david99
S: DISCONNECT
R: 2.0

6.5 Queued Requests

In the diagram below, sender S has authenticated to the iRIP server
B.foo.com. C.foobar.com, D.bar.com, and E.barfoo.com all have iRIP
servers. The iRIP server on B.foo.com has a trusted relationship with
iRIP servers on both C.foobar.com and D.bar.com. A firewall is in
place that prohibits iRIP server B.foo.com from initiating a
connection to the iRIP server on D.bar.com. However, iRIP server
D.bar.com can connect to iRIP server B.foo.com.

Mansour/Courtemanche/O'Leary 33 Expires August 1999

Internet Draft IRIP April 16, 1999

 +--------------+
 +------| C.foobar.com |

 | +--------------+
 |
 +-----------+ | +-----------+
 S ---------| B.foo.com |------#--| D.bar.com |
 +-----------+ | +-----------+
 |
 | +--------------+
 +------| E.barfoo.com |
 +--------------+

6.5.1 Meeting Invitation

In this example, S sends an event request to the iRIP server on B for
calendars on B, C, D, and E. Note that C's address moved from foo.com
to foobar.com and is reported to the sender during the RECIPIENT
negotiation.

R: <listen on TCP port 5228>
S: <establish a TCP connection to b.foo.com port 5228>
R: 2.0
S: AUTHENTICATE KERBEROS_V4 93407205
S: <more authentication information>
R: 2.0
S: RECIPIENT irip://B.foo.com/bill
R: 2.0
S: RECIPIENT irip://C.foobar.com/cathy
R: 10.1 irip://C.foobar.com/cathy
S: RECIPIENT irip://C.foobar.com/cathy
R: 2.0.4
S: RECIPIENT irip://D.bar.com/david
R: 2.0.5
S: RECIPIENT irip://E.barfoo.com/eddie
R: 2.0.6
S: SENDATA 16
R: 2.0.1
S: Content-Type:text/calendar; method=REQUEST; charset=US-ASCII
S: Content-Transfer-Encoding: 7bit
S:
S: BEGIN:VCALENDAR
S: PRODID:-//ACME/DesktopCalendar//EN
S: METHOD:REQUEST
S: VERSION:2.0
S: BEGIN:VEVENT
S: ORGANIZER:irip://B.foo.com/bill
S: ATTENDEE;ROLE=CHAIR;PARTSTAT=ACCEPTED:irip://B.foo.com/bill
S: ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL:irip://C.foobar.com/cathy
S: ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL:irip://D.bar.com/david
S: ATTENDEE;RSVP=TRUE;TYPE=INDIVIDUAL:irip://E.barfoo.com/eddie
S: DTSTAMP:19981011T190000Z
S: DTSTART:19981101T200000Z

Mansour/Courtemanche/O'Leary 34 Expires August 1999

Internet Draft IRIP April 16, 1999

S: DTEND:19981101T2100000Z
S: SUMMARY:Conference
S: UID:calsrv.example.com-873970198738777@example.com
S: SEQUENCE:0
S: STATUS:CONFIRMED
S: END:VEVENT
S: END:VCALENDAR
S: .
R: .
R: 2.0 irip://B.foo.com/bill
R: 2.0 irip://C.foobar.com/cathy
R: 2.0.7 irip://D.bar.com/david
R: 2.0 irip://E.barfoo.com/eddie
S: DISCONNECT
R: 2.0
R: <disconnect>
S: <disconnect>

The invitation is written to the calendar B.foo.com/bill. iRIP server
B.foo.com authenticates to C.foobar.com and sends the event request,
which is successfully written to C.foobar.com/cathy. The iRIP server
on B.foo.com cannot contact D.bar.com, but a trust relationship exists
between them and the request is queued for delivery. This request will
be delivered the next time the iRIP server on D.bar.com connects to
the iRIP server on B.foo.com and issues a SWITCH command. The iRIP
server on B.foo.com connects to the iRIP server on E.barfoo.com and
authenticates as anonymous since it has no trust relationship with
E.barfoo.com. If the anonymous authentication is successful, the event
request is delivered to E.barfoo.com/eddie.

7 Acknowledgments
The following have participated in the drafting and discussion of this
memo:

Frank Dawson, Bruce Kahn, Doug Royer, Mugino Saeki

8 Bibliography
[ICAL] F. Dawson, D. Stenerson, "Internet Calendaring and Scheduling
Core Object Specification - iCalendar", RFC-2445, November 1998,
http://www.imc.org/rfc2445.

[ITIP] S. Silverberg, S. Mansour, F. Dawson, R. Hopson, "iCalendar
Transport-Independent Interoperability Protocol (iTIP) : Scheduling
Events, Busy Time, To-dos and Journal Entries", RFC-2446, November
1998, http://www.imc.org/rfc2446.

https://datatracker.ietf.org/doc/html/rfc2445
http://www.imc.org/rfc2445
https://datatracker.ietf.org/doc/html/rfc2446
http://www.imc.org/rfc2446

[IMIP] F. Dawson, S. Mansour, S. Silverberg, "iCalendar Message-based
Interoperability Protocol (iMIP), ", RFC-2447, November 1998,
http://www.imc.org/rfc2447.

[ID-UTF8] 3"UTF-8, a transformation format of ISO 10646. F. Yergeau.",

Mansour/Courtemanche/O'Leary 35 Expires August 1999

Internet Draft IRIP April 16, 1999

RFC 2299, January 1998

[RFC-822] Crocker, D., "Standard for the Format of ARPA Internet Text
Messages", STD 11, RFC 822, August 1982.

[RFC-1847]. J. Galvin, S. Murphy, S. Crocker & N. Freed, "Security
Multiparts for MIME: Multipart/Signed and Multipart/Encrypted", RFC
1847, October 1995.

[RFC-2112] Levinson, E., "The MIME Multipart/Related Content-type,"
RFC 2112, March 1997.

[RFC-2015] M. Elkins, "MIME Security with Pretty Good Privacy (PGP),"
RFC 2015, October 1996.

[RFC-2045] Freed, N., Borenstein, N., " Multipurpose Internet Mail
Extensions (MIME) - Part One: Format of Internet Message Bodies", RFC
2045, November 1996.

[RFC-2046] Freed, N., Borenstein, N., " Multipurpose Internet Mail
Extensions (MIME) - Part Two: Media Types", RFC 2046, November 1996.

[RFC-2047] Moore, K., "Multipurpose Internet Mail Extensions (MIME) -
Part Three: Message Header Extensions for Non-ASCII Text", RFC 2047,
November 1996.

[RFC-2048] Freed, N., J. Klensin, J. Postel, "Multipurpose Internet
Mail Extensions (MIME) - Part Four: Registration Procedures", RFC
2048, January 1997.

[RFC-2222] J. Meyers, Simple Authentication and Security Layer
(SASL)", RFC 2222, October 1997.

[RFC2396] Berners-Lee, Fielding, Masinter, "Uniform Resource
Identifiers (URI): Generic Syntax", RFC 2396, August 1998.

[RFC-2445] Dawson, Stenerson, "Internet Calendaring and Scheduling
Core Object Specification (iCalendar)", RFC 2445, November 1998

[RFC-2446] Silverberg, Mansour, Dawson, Hopson, "iCalendar Transport-
Independent Interoperability Protocol (iTIP)", RFC 2446, November 1998

https://datatracker.ietf.org/doc/html/rfc2447
http://www.imc.org/rfc2447
https://datatracker.ietf.org/doc/html/rfc2299
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1847
https://datatracker.ietf.org/doc/html/rfc2112
https://datatracker.ietf.org/doc/html/rfc2015
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2445
https://datatracker.ietf.org/doc/html/rfc2446

[RFC-2447] Dawson, Mansour, Silverberg, "iCalendar Message-Based
Interoperability Protocol (iMIP)", RFC 2445, November 1998

9 Open Issues

Registration of the [SASL] profile for iRIP with the IANA.
Port Number registration

10 Author's Address

Mansour/Courtemanche/O'Leary 36 Expires August 1999

Internet Draft IRIP April 16, 1999

The following address information is provided in a vCard v2.1,
Electronic Business Card, format.

BEGIN:VCARD
VERSION:2.1
FN:Steve Mansour
ORG:Netscape Communications Corporation
ADR;WORK;POSTAL;PARCEL:;;501 East Middlefield Road;Mountain
 View;CA;94043;USA
TEL;WORK;MSG:+1-650-937-2378
TEL;WORK;FAX:+1-650-937-2103
EMAIL;INTERNET:sman@netscape.com
END:VCARD

BEGIN:VCARD
FN:Andre Courtemanche
ORG:CS&T
ADR;WORK;POSTAL;PARCEL:;;3333 Graham Boulevard;Montreal;QC;H3R
3L5;Canada
TEL;WORK;MSG:+1-514-733-8500
TEL;WORK;FAX:+1-514-733-8788
EMAIL;INTERNET:andre@cst.ca
END:VCARD

BEGIN:VCARD
FN:Pete O'Leary
ORG:Amplitude
ADR;WORK;POSTAL;PARCEL:;;
TEL;WORK;MSG:+1-415-659-3511
TEL;WORK;FAX:+1-415-659-0006
EMAIL;INTERNET:pete@amplitude.com
END:VCARD

The iCalendar object is a result of the work of the Internet

https://datatracker.ietf.org/doc/html/rfc2445

Engineering Task Force Calendaring and scheduling Working Group. The
co-chair of that working group is:

BEGIN:VCARD
FN:Pat Egen
ORG:Egen Consulting
ADR;WORK;POSTAL;PARCEL:;;803 Creek Overlook;Chattanooga;TN;37415
TEL;WORK;MSG:+1-423.875.2652
TEL;WORK;FAX:+1-423.875.2017
EMAIL;INTERNET:pregen@engenconsulting.com
END:VCARD

11 Full Copyright Statement

Copyright (C) The Internet Society, January 2, 1999. All Rights
Reserved.

This document and translations of it MAY be copied and furnished to

Mansour/Courtemanche/O'Leary 37 Expires August 1999

Internet Draft IRIP April 16, 1999

others, and derivative works that comment on or otherwise explain it
or assist in its implmentation MAY be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself MAY NOT be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of developing
Internet standards in which case the procedures for copyrights defined
in the Internet Standards process MUST be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

