
Workgroup: Captive Portal Interaction

Internet-Draft: draft-ietf-capport-api-05

Published: 4 February 2020

Intended Status: Standards Track

Expires: 7 August 2020

Authors: T. Pauly, Ed.

Apple Inc.

D. Thakore, Ed.

CableLabs

Captive Portal API

Abstract

This document describes an HTTP API that allows clients to interact

with a Captive Portal system.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 August 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

2. Terminology

3. Workflow

4. API Details

4.1. URI of Captive Portal API endpoint

4.1.1. Server Authentication

4.2. JSON Keys

4.3. Example Interaction

5. Security Considerations

5.1. Privacy Considerations

6. IANA Considerations

6.1. Captive Portal API JSON Media Type Registration

6.2. Captive Portal API Keys Registry

7. Acknowledgments

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

1. Introduction

This document describes a HyperText Transfer Protocol (HTTP)

Application Program Interface (API) that allows clients to interact

with a Captive Portal system. The API defined in this document has

been designed to meet the requirements in the Captive Portal

Architecture [I-D.ietf-capport-architecture]. Specifically, the API

provides:

The state of captivity (whether or not the client has access to

the Internet)

A URI that a client browser can present to a user to get out of

captivity

An encrypted connection (TLS for both the API and portal URI)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

2. Terminology

This document leverages the terminology and components described in

[I-D.ietf-capport-architecture] and additionally uses the following

association:

Captive Portal Client: The client that interacts with the Captive

Portal API is typically some application running on the User

Equipment that is connected to the Captive Network. This is also

referred to as the "client" in this document.

Captive Portal API Server: The server exposing the API's defined

in this document to the client. This is also referred to as the

"API server" in this document.

3. Workflow

The Captive Portal Architecture defines several categories of

interaction between clients and Captive Portal systems:

Provisioning, in which a client discovers that a network has a

captive portal, and learns the URI of the API server.

API Server interaction, in which a client queries the state of

the captive portal and retrieves the necessary information to

get out of captivity.

Enforcement, in which the enforcement device in the network

blocks disallowed traffic.

This document defines the mechanisms used in the second category. It

is assumed that the location of the Captive Portal API server has

been discovered by the client as part of Provisioning. The mechanism

for discovering the API Server endpoint is not covered by this

document.

4. API Details

4.1. URI of Captive Portal API endpoint

The URI of the API endpoint MUST be accessed using HTTP over TLS

(HTTPS) and SHOULD be served on port 443 [RFC2818]. The client

SHOULD NOT assume that the URI for a given network attachment will

stay the same, and SHOULD rely on the discovery or provisioning

process each time it joins the network. Depending on how the Captive

Portal system is configured, the URI might be unique for each client

host and between sessions for the same client host.

¶

*

¶

*

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

For example, if the Captive Portal API server is hosted at

example.org, the URI's of the API could be:

"https://example.org/captive-portal/api"

"https://example.org/captive-portal/api/X54PD"

4.1.1. Server Authentication

The purpose of accessing the Captive Portal API over an HTTPS

connection is twofold: first, the encrypted connection protects the

integrity and confidentiality of the API exchange from other parties

on the local network; and second, it provides the client of the API

an opportunity to authenticate the server that is hosting the API.

This authentication is aimed at allowing a user to be reasonably

confident that the entity providing the Captive Portal API has a

valid certificate for the hostname in the URI (such as

"example.com"). The hostname of the API SHOULD be displayed to the

user in order to indicate the entity which is providing the API

service.

Clients performing revocation checking will need some means of

accessing revocation information for certificates presented by the

API server. Online Certificate Status Protocol [RFC6960] (OCSP)

stapling, using the TLS Certificate Status Request extension

[RFC6066] SHOULD be used. OCSP stapling allows a client to perform

revocation checks without initiating new connections. To allow for

other forms of revocation checking, a captive network could permit

connections to OCSP responders or Certificate Revocation Lists

(CRLs) that are referenced by certificates provided by the API

server. In addition to connections to OCSP responders and CRLs, a

captive network SHOULD also permit connections to Network Time

Protocol (NTP) [RFC5905] servers or other time-sync mechnisms to

allow clients to accurately validate certificates.

Certificates with missing intermediate certificates that rely on

clients validating the certificate chain using the URI specified in

the Authority Information Access (AIA) extension [RFC5280] SHOULD

NOT be used by the Captive Portal API server. If the certificates do

require the use of AIA, the captive network will need to allow

client access to the host specified in the URI.

If the client is unable to validate the certificate presented by the

API server, it MUST NOT proceed with any of the behavior for API

interaction described in this document. The client will proceed to

interact with the captive network as if the API capabilities were

not present. It may still be possible for the user to access the

network by being redirected to a web portal.

¶

* ¶

* ¶

¶

¶

¶

¶

4.2. JSON Keys

The Captive Portal API data structures are specified in JavaScript

Object Notation (JSON) [RFC8259]. Requests and responses for the

Captive Portal API use the "application/captive+json" media type.

Clients SHOULD include this media type as an Accept header in their

GET requests, and servers MUST mark this media type as their

Content-Type header in responses.

The following keys are defined at the top-level of the JSON

structure returned by the API server:

"captive" (required, boolean): indicates whether the client is in

a state of captivity, i.e it has not satisfied the conditions to

access the external network. If the client is captive (i.e.

captive=true), it can still be allowed enough access for it to

perform server authentication Section 4.1.1.

"user-portal-url" (optional, string): provides the URL of a web

portal with which a user can interact.

"venue-info-url" (optional, string): provides the URL of a

webpage or site on which the operator of the network has

information that it wishes to share with the user (e.g., store

info, maps, flight status, or entertainment).

"can-extend-session" (optional, boolean): indicates that the URL

specified as "user-portal-url" allows the user to extend a

session once the client is no longer in a state of captivity.

This provides a hint that a client system can suggest accessing

the portal URL to the user when the session is near its limit in

terms of time or bytes.

"seconds-remaining" (optional, integer): indicates the number of

seconds remaining, after which the client will be placed into a

captive state. The API server SHOULD include this value if the

client is not captive (i.e. captive=false) and SHOULD omit this

value for captive clients.

"bytes-remaining" (optional, integer): indicates the number of

bytes remaining, after which the client will be in placed into a

captive state. The byte count represents the total number of IP

packet (layer 3) bytes sent and received by the client. Captive

portal systems might not count traffic to whitelisted servers,

such as the API server, but clients cannot rely on such behavior.

The valid JSON keys can be extended by adding entries to the Captive

Portal API Keys Registry Section 6. If a client receives a key that

it does not recognize, it MUST ignore the key and any associated

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

values. All keys other than the ones defined in this document as

"required" will be considered optional.

4.3. Example Interaction

A client connected to a captive network upon discovering the URI of

the API server will query the API server to retrieve information

about its captive state and conditions to escape captivity. To

request the Captive Portal JSON content, a client sends an HTTP GET

request:

The server then responds with the JSON content for that client:

Upon receiving this information the client will provide this

information to the user so that they may navigate the web portal (as

specified by the user-portal-url value) to enable access to the

external network. Once the user satisfies the requirements for

extenal network access, the client SHOULD query the API server again

to verify that it is no longer captive.

5. Security Considerations

One of the goals of this protocol is to improve the security of the

communication between client hosts and Captive Portal systems.

Client traffic is protected from passive listeners on the local

network by requiring TLS-encrypted connections between the client

and the Captive Portal API server, as described in Section 4. All

communication between the clients and the API server MUST be

encrypted.

In addition to encrypting communications between clients and Captive

Portal systems, this protocol requires a basic level of

¶

¶

GET /captive-portal/api/X54PD

Host: example.org

Accept: application/captive+json

¶

¶

HTTP/1.1 200 OK

Cache-Control: private

Date: Mon, 02 Mar 2020 05:07:35 GMT

Content-Type: application/captive+json

{

 "captive": true,

 "user-portal-url": "https://example.org/portal.html",

 "venue-info-url": "https://flight.example.com/entertainment",

 "seconds-remaining": 326,

 "can-extend-session": true

}

¶

¶

¶

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

authentication from the API server, as described in Section 4.1.1.

Specifically, the API server MUST present a valid certificate on

which the client can perform revocation checks. This allows the

client to ensure that the API server has authority for a hostname

that can be presented to a user.

It is important to note that while the server authentication checks

can validate a specific hostname, it is certainly possible for the

API server to present a valid certificate for a hostname that uses

non-standard characters or is otherwise designed to trick the user

into believing that its hostname is some other, more trustworthy,

name. This is a danger of any scenario in which a hostname is not

typed in by a user.

5.1. Privacy Considerations

Information passed in this protocol may include a user's personal

information, such as a full name and credit card details. Therefore,

it is important that Captive Portal API Servers do not allow access

to the Captive Portal API over unencrypted sessions.

6. IANA Considerations

IANA is requested to create a registration for an "application/

captive+json" media type (Section 6.1) and a registry for fields in

that format (Section 6.2).

6.1. Captive Portal API JSON Media Type Registration

This document registers the media type for Captive Portal API JSON

text, "application/captive+json".

application

captive+json

None

None

Encoding considerations are identical to

those specified for the "application/json" media type.

See Section 5

This document specifies format of

conforming messages and the interpretation thereof.

This document

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Applications that use this media type:

Additional information:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Key:

Type:

Description:

This media type is intended

to be used by servers presenting the Captive Portal API, and

clients connecting to such captive networks.

None

See

Authors' Addresses section.

COMMON

None

CAPPORT IETF WG

IETF

6.2. Captive Portal API Keys Registry

IANA is asked to create and maintain a new registry called "Captive

Portal API Keys", which will reserve JSON keys for use in Captive

Portal API data structures. The initial contents of this registry

are provided in Section 4.2.

Each entry in the registry contains the following fields:

The JSON key being registered, in string format.

The type of the JSON value to be stored, as one of the value

types defined in [RFC8259].

A brief description explaining the meaning of the

value, how it might be used, and/or how it should be interpreted

by clients.

New assignments for Captive Portal API Keys Registry will be

administered by IANA through Expert Review [RFC8126]. The Designated

Expert is expected to validate the existence of documentation

describing new keys in a permanent publicly available specification.

The expert is expected to validate that new keys have a clear

meaning and do not create unnecessary confusion or overlap with

existing keys. Keys that are specific to non-generic use cases,

particularly ones that are not specified as part of an IETF

document, are encouraged to use a domain-specific prefix.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2818]

[RFC5280]

[RFC5905]

[RFC6066]

[RFC6960]

[RFC8126]

[RFC8259]

[I-D.ietf-capport-architecture]

7. Acknowledgments

This work in this document was started by Mark Donnelly and Margaret

Cullen. Thanks to everyone in the CAPPORT Working Group who has

given input.

8. References

8.1. Normative References

Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/

RFC2818, May 2000, <https://www.rfc-editor.org/info/

rfc2818>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

"Network Time Protocol Version 4: Protocol and Algorithms

Specification", RFC 5905, DOI 10.17487/RFC5905, June

2010, <https://www.rfc-editor.org/info/rfc5905>.

Eastlake 3rd, D., "Transport Layer Security (TLS)

Extensions: Extension Definitions", RFC 6066, DOI

10.17487/RFC6066, January 2011, <https://www.rfc-

editor.org/info/rfc6066>.

Santesson, S., Myers, M., Ankney, R., Malpani, A.,

Galperin, S., and C. Adams, "X.509 Internet Public Key

Infrastructure Online Certificate Status Protocol -

OCSP", RFC 6960, DOI 10.17487/RFC6960, June 2013,

<https://www.rfc-editor.org/info/rfc6960>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

8.2. Informative References

¶

https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5905
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259

Larose, K. and D. Dolson, "CAPPORT Architecture", Work in

Progress, Internet-Draft, draft-ietf-capport-

architecture-05, 31 December 2019, <http://www.ietf.org/

internet-drafts/draft-ietf-capport-architecture-05.txt>.

Authors' Addresses

Tommy Pauly (editor)

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: tpauly@apple.com

Darshak Thakore (editor)

CableLabs

858 Coal Creek Circle

Louisville, CO 80027,

United States of America

Email: d.thakore@cablelabs.com

http://www.ietf.org/internet-drafts/draft-ietf-capport-architecture-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-capport-architecture-05.txt
mailto:tpauly@apple.com
mailto:d.thakore@cablelabs.com

	Captive Portal API
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Workflow
	4. API Details
	4.1. URI of Captive Portal API endpoint
	4.1.1. Server Authentication

	4.2. JSON Keys
	4.3. Example Interaction

	5. Security Considerations
	5.1. Privacy Considerations

	6. IANA Considerations
	6.1. Captive Portal API JSON Media Type Registration
	6.2. Captive Portal API Keys Registry

	7. Acknowledgments
	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

