
Workgroup: Internet Engineering Task Force

Internet-Draft:

draft-ietf-capport-architecture-08

Published: 11 May 2020

Intended Status: Informational

Expires: 12 November 2020

Authors: K. Larose

Agilicus

D. Dolson H. Liu

Google

CAPPORT Architecture

Abstract

This document describes a CAPPORT architecture. DHCP or Router

Advertisements, an optional signaling protocol, and an HTTP API are

used to provide the solution. The role of Provisioning Domains

(PvDs) is described.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 November 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Requirements Language

1.2. Terminology

2. Components

2.1. User Equipment

2.2. Provisioning Service

2.2.1. DHCP or Router Advertisements

2.2.2. Provisioning Domains

2.3. Captive Portal API Server

2.4. Captive Portal Enforcement Device

2.5. Captive Portal Signal

2.6. Component Diagram

3. User Equipment Identity

3.1. Identifiers

3.2. Recommended Properties

3.2.1. Uniquely Identify User Equipment

3.2.2. Hard to Spoof

3.2.3. Visible to the API Server

3.2.4. Visible to the Enforcement Device

3.3. Evaluating Types of Identifiers

3.4. Example Identifier Types

3.4.1. Physical Interface

3.4.2. IP Address

3.5. Context-free URI

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4. Solution Workflow

4.1. Initial Connection

4.2. Conditions About to Expire

4.3. Handling of Changes in Portal URI

5. Acknowledgments

6. IANA Considerations

7. Security Considerations

7.1. Trusting the Network

7.2. Authenticated APIs

7.3. Secure APIs

7.4. Risks Associated with the Signaling Protocol

7.5. User Options

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Existing Captive Portal Detection Implementations

Authors' Addresses

1. Introduction

In this document, "Captive Portal" is used to describe a network to

which a device may be voluntarily attached, such that network access

is limited until some requirements have been fulfilled. Typically a

user is required to use a web browser to fulfill requirements

imposed by the network operator, such as reading advertisements,

accepting an acceptable-use policy, or providing some form of

credentials.

Implementations generally require a web server, some method to

allow/block traffic, and some method to alert the user. Common

methods of alerting the user involve modifying HTTP or DNS traffic.

This document standardizes an architecture for implementing captive

portals while addressing most of the problems arising for current

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

captive portal mechanisms. The architecture is guided by these

principles:

Solutions SHOULD NOT require the forging of responses from DNS or

HTTP servers, or any other protocol. In particular, solutions

SHOULD NOT require man-in-the-middle proxy of TLS traffic.

Solutions MUST operate at the layer of Internet Protocol (IP) or

above, not being specific to any particular access technology

such as Cable, WiFi or mobile telecom.

Solutions MAY allow a device to be alerted that it is in a

captive network when attempting to use any application on the

network.

Solutions SHOULD allow a device to learn that it is in a captive

network before any application attempts to use the network.

The state of captivity SHOULD be explicitly available to devices

(in contrast to modification of DNS or HTTP, which is only

indirectly machine-detectable by the client when it compares

responses to well-known queries with expected responses).

The architecture MUST provide a path of incremental migration,

acknowledging a huge variety of portals and end-user device

implementations and software versions.

A side-benefit of the architecture described in this document is

that devices without user interfaces are able to identify parameters

of captivity. However, this document does not yet describe a

mechanism for such devices to escape captivity.

The architecture uses the following mechanisms:

Network provisioning protocols provide end-user devices with a

Uniform Resource Identifier [RFC3986] (URI) for the API that end-

user devices query for information about what is required to

escape captivity. DHCP, DHCPv6, and Router-Advertisement options

for this purpose are available in [RFC7710bis]. Other protocols

(such as RADIUS), Provisioning Domains [I-D.pfister-capport-pvd],

or static configuration may also be used. A device MAY query this

API at any time to determine whether the network is holding the

device in a captive state.

End-user devices can be notified of captivity with Captive Portal

Signals in response to traffic. This notification works in

response to any Internet protocol, and is not done by modifying

protocols in-band. This notification does not carry the portal

URI; rather it provides a notification to the User Equipment that

it is in a captive state.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

Receipt of a Captive Portal Signal informs an end-user device

that it could be captive. In response, the device MAY query the

provisioned API to obtain information about the network state.

The device MAY take immediate action to satisfy the portal

(according to its configuration/policy).

The architecture attempts to provide confidentiality,

authentication, and safety mechanisms to the extent possible.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. Terminology

Captive Network: A network which limits communication of attached

devices to restricted hosts until the user has satisfied Captive

Portal Conditions, after which access is permitted to a wider set of

hosts (typically the Internet).

Captive Portal Conditions: site-specific requirements that a user or

device must satisfy in order to gain access to the wider network.

Captive Portal Enforcement Device: The network equipment which

enforces the traffic restriction. Also known as Enforcement Device.

Captive Portal User Equipment: Also known as User Equipment. A

device which has voluntarily joined a network for purposes of

communicating beyond the constraints of the captive network.

Captive Portal Server: The web server providing a user interface for

assisting the user in satisfying the conditions to escape captivity.

Captive Portal API: Also known as API. An HTTP API allowing User

Equipment to query its state of captivity within the Captive Portal.

Captive Portal API Server: Also known as API Server. A server

hosting the Captive Portal API.

Captive Portal Signal: A notification from the network used to

inform the User Equipment that the state of its captivity could have

changed.

Captive Portal Signaling Protocol: Also known as Signaling Protocol.

The protocol for communicating Captive Portal Signals.

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

2. Components

2.1. User Equipment

The User Equipment is the device that a user desires to be attached

to a network with full access to all hosts on the network (e.g., to

have Internet access). The User Equipment communication is typically

restricted by the Enforcement Device, described in Section 2.4,

until site-specific requirements have been met.

At this time we consider only devices with web browsers, with web

applications being the means of satisfying Captive Portal

Conditions. An example interactive User Equipment is a smart phone.

The User Equipment:

SHOULD support provisioning of the URI for the Captive Portal API

(e.g., by DHCP)

SHOULD distinguish Captive Portal API access per network

interface, in the manner of Provisioning Domain Architecture

[RFC7556].

SHOULD have a mechanism for notifying the user of the Captive

Portal

SHOULD have a web browser so that the user may navigate the

Captive Portal user interface.

MAY prevent applications from using networks that do not grant

full network access. E.g., a device connected to a mobile network

may be connecting to a captive WiFi network; the operating system

MAY avoid updating the default route until network access

restrictions have been lifted (excepting access to the Captive

Portal server) in the new network. This has been termed "make

before break".

None of the above requirements are mandatory because (a) we do not

wish to say users or devices must seek full access to the captive

network, (b) the requirements may be fulfilled by manually visiting

the captive portal web application, and (c) legacy devices must

continue to be supported.

If User Equipment supports the Captive Portal API, it MUST validate

the API server's TLS certificate (see [RFC2818]). An Enforcement

Device SHOULD allow access to any services that User Equipment could

need to contact to perform certificate validation, such as OCSP

responders, CRLs, and NTP servers; see Section 4.1 of [I-D.ietf-

capport-api] for more information. If certificate validation fails,

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

User Equipment MUST NOT proceed with any of the behavior described

above.

2.2. Provisioning Service

Here we discuss candidate mechanisms for provisioning the User

Equipment with the URI of the API to query captive portal state and

navigate the portal.

2.2.1. DHCP or Router Advertisements

A standard for providing a portal URI using DHCP or Router

Advertisements is described in [RFC7710bis]. The CAPPORT

architecture expects this URI to indicate the API described in

Section 2.3.

2.2.2. Provisioning Domains

Although still a work in progress, [I-D.pfister-capport-pvd]

proposes a mechanism for User Equipment to be provided with PvD

Bootstrap Information containing the URI for the JSON-based API

described in Section 2.3.

2.3. Captive Portal API Server

The purpose of a Captive Portal API is to permit a query of Captive

Portal state without interrupting the user. This API thereby removes

the need for User Equipment to perform clear-text "canary" HTTP

queries to check for response tampering.

The URI of this API will have been provisioned to the User

Equipment. (Refer to Section 2.2).

This architecture expects the User Equipment to query the API when

the User Equipment attaches to the network and multiple times

thereafter. Therefore the API MUST support multiple repeated queries

from the same User Equipment and return the state of captivity for

the equipment.

At minimum, the API MUST provide: (1) the state of captivity and (2)

a URI for the Captive Portal Server.

A caller to the API needs to be presented with evidence that the

content it is receiving is for a version of the API that it

supports. For an HTTP-based interaction, such as in [I-D.ietf-

capport-api] this might be achieved by using a content type that is

unique to the protocol.

When User Equipment receives Captive Portal Signals, the User

Equipment MAY query the API to check the state. The User Equipment

¶

¶

¶

¶

¶

¶

¶

¶

¶

SHOULD rate-limit these API queries in the event of the signal being

flooded. (See Section 7.)

The API MUST be extensible to support future use-cases by allowing

extensible information elements.

The API MUST use TLS to ensure server authentication. The

implementation of the API MUST ensure both confidentiality and

integrity of any information provided by or required by it.

This document does not specify the details of the API.

2.4. Captive Portal Enforcement Device

The Enforcement Device component restricts the network access of

User Equipment according to site-specific policy. Typically User

Equipment is permitted access to a small number of services and is

denied general network access until it satisfies the Captive Portal

Conditions.

The Enforcement Device component:

Allows traffic to pass for User Equipment that is permitted to

use the network and has satisfied the Captive Portal Conditions.

Blocks (discards) traffic according to the site-specific policy

for User Equipment that has not yet satisfied the Captive Portal

Conditions.

May signal User Equipment using the Captive Portal Signaling

protocol if certain traffic is blocked.

Permits User Equipment that has not satisfied the Captive Portal

Conditions to access necessary APIs and web pages to fulfill

requirements for escaping captivity.

Updates allow/block rules per User Equipment in response to

operations from the Captive Portal Server.

2.5. Captive Portal Signal

When User Equipment first connects to a network, or when there are

changes in status, the Enforcement Device could generate a signal

toward the User Equipment. This signal indicates that the User

Equipment might need to contact the API Server to receive updated

information. For instance, this signal might be generated when the

end of a session is imminent, or when network access was denied.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

An Enforcement Device MUST rate-limit any signal generated in

response to these conditions. See Section 7.4 for a discussion of

risks related to a Captive Portal Signal.

2.6. Component Diagram

The following diagram shows the communication between each

component.

Figure 1: Captive Portal Architecture Component Diagram

In the diagram:

During provisioning (e.g., DHCP), the User Equipment acquires the

URI for the Captive Portal API.

¶

¶

o . o

. CAPTIVE NETWORK .

. +--------------+ .

. +------------+ Provision API URI | Provisioning | .

. | |<---------------------------+| Service | .

. | User | +--------------+ .

. | Equipment | Query captivity status +-------------+ .

. | |+--------------------------->| API | .

. | | Captivity status response | Server | .

. | |<---------------------------+| | .

. | | +------+------+ .

. | | | Status .

. | | Portal UI page requests +------+------+ .

. | |+--------------------------->| Web Portal | .

. | | Portal UI pages | Server | .

. | |<---------------------------+| | .

. +------------+ | | .

. ^ ^ | +-------------+ .

. | | | Data to/from ext. network | .

. | | +-----------------> +---------------+ Allow/Deny .

. | +--------------------+| | Rules .

. | | Enforcement | | .

. | Captive Portal Signal | Device | <---+ .

. +-------------------------+---------------+ .

. ^ | .

. | | .

. Data to/from external network .

. | | .

o| |. o

 | v

 EXTERNAL NETWORK

¶

*

¶

The User Equipment queries the API to learn of its state of

captivity. If captive, the User Equipment presents the portal

user interface from the Web Portal Server to the user.

Based on user interaction, the Web Portal Server directs the

Enforcement Device to either allow or deny external network

access for the User Equipment.

The User Equipment attempts to communicate to the external

network through the Enforcement Device.

The Enforcement Device either allows the User Equipment's packets

to the external network, or blocks the packets. If blocking

traffic and a signal has been implemented, it may respond with a

Captive Portal Signal.

Although the Provisioning Service, API Server, and Web Portal Server

functions are shown as discrete blocks, they could of course be

combined into a single element.

3. User Equipment Identity

Multiple components in the architecture interact with both the User

Equipment and each other. Since the User Equipment is the focus of

these interactions, the components must be able to both identify the

User Equipment from their interactions with it, and to agree on the

identity of the User Equipment when interacting with each other.

The methods by which the components interact restrict the type of

information that may be used as an identifying characteristics. This

section discusses the identifying characteristics.

3.1. Identifiers

An Identifier is a characteristic of the User Equipment used by the

components of a Captive Portal to uniquely determine which specific

User Equipment is interacting with them. An Identifier MAY be a

field contained in packets sent by the User Equipment to the

External Network. Or, an Identifier MAY be an ephemeral property not

contained in packets destined for the External Network, but instead

correlated with such information through knowledge available to the

different components.

3.2. Recommended Properties

The set of possible identifiers is quite large. However, in order to

be considered a good identifier, an identifier SHOULD meet the

following criteria. Note that the optimal identifier will likely

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

change depending on the position of the components in the network as

well as the information available to them. An identifier SHOULD:

Uniquely Identify the User Equipment

Be Hard to Spoof

Be Visible to the API Server

Be Visible to the Enforcement Device

An identifier might only apply to the current point of network

attachment. If the device moves to a different network location its

identity could change.

3.2.1. Uniquely Identify User Equipment

Each instance of User Equipment interacting with the Captive Network

MUST be given an identifier that is unique among User Equipment

interacting at that time.

Over time, the User Equipment assigned to an identifier value MAY

change. Allowing the identified device to change over time ensures

that the space of possible identifying values need not be overly

large.

Independent Captive Portals MAY use the same identifying value to

identify different User Equipment. Allowing independent captive

portals to reuse identifying values allows the identifier to be a

property of the local network, expanding the space of possible

identifiers.

3.2.2. Hard to Spoof

A good identifier does not lend itself to being easily spoofed. At

no time should it be simple or straightforward for one User

Equipment to pretend to be another User Equipment, regardless of

whether both are active at the same time. This property is

particularly important when the User Equipment is extended

externally to devices such as billing systems, or where the identity

of the User Equipment could imply liability.

3.2.3. Visible to the API Server

Since the API Server will need to perform operations which rely on

the identity of the User Equipment, such as answering a query about

whether the User Equipment is captive, the API Server needs to be

able to relate a request to the User Equipment making the request.

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

3.2.4. Visible to the Enforcement Device

The Enforcement Device will decide on a per-packet basis whether the

packet should be forwarded to the external network. Since this

decision depends on which User Equipment sent the packet, the

Enforcement Device requires that it be able to map the packet to its

concept of the User Equipment.

3.3. Evaluating Types of Identifiers

To evaluate whether a type of identifier is appropriate, one should

consider every recommended property from the perspective of

interactions among the components in the architecture. When

comparing identifier types, choose the one which best satisfies all

of the recommended properties. The architecture does not provide an

exact measure of how well an identifier type satisfies a given

property; care should be taken in performing the evaluation.

3.4. Example Identifier Types

This section provides some example identifier types, along with some

evaluation of whether they are suitable types. The list of

identifier types is not exhaustive. Other types may be used. An

important point to note is that whether a given identifier type is

suitable depends heavily on the capabilities of the components and

where in the network the components exist.

3.4.1. Physical Interface

The physical interface by which the User Equipment is attached to

the network can be used to identify the User Equipment. This

identifier type has the property of being extremely difficult to

spoof: the User Equipment is unaware of the property; one User

Equipment cannot manipulate its interactions to appear as though it

is another.

Further, if only a single User Equipment is attached to a given

physical interface, then the identifier will be unique. If multiple

User Equipment is attached to the network on the same physical

interface, then this type is not appropriate.

Another consideration related to uniqueness of the User Equipment is

that if the attached User Equipment changes, both the API Server and

the Enforcement Device MUST invalidate their state related to the

User Equipment.

The Enforcement Device needs to be aware of the physical interface,

which constrains the environment: it must either be part of the

device providing physical access (e.g., implemented in firmware), or

¶

¶

¶

¶

¶

¶

packets traversing the network must be extended to include

information about the source physical interface (e.g. a tunnel).

The API Server faces a similar problem, implying that it should co-

exist with the Enforcement Device, or that the Enforcement Device

should extend requests to it with the identifying information.

3.4.2. IP Address

A natural identifier type to consider is the IP address of the User

Equipment. At any given time, no device on the network can have the

same IP address without causing the network to malfunction, so it is

appropriate from the perspective of uniqueness.

However, it may be possible to spoof the IP address, particularly

for malicious reasons where proper functioning of the network is not

necessary for the malicious actor. Consequently, any solution using

the IP address SHOULD proactively try to prevent spoofing of the IP

address. Similarly, if the mapping of IP address to User Equipment

is changed, the components of the architecture MUST remove or update

their mapping to prevent spoofing. Demonstrations of return

routeability, such as that required for TCP connection

establishment, might be sufficient defense against spoofing, though

this might not be sufficient in networks that use broadcast media

(such as some wireless networks).

Since the IP address may traverse multiple segments of the network,

more flexibility is afforded to the Enforcement Device and the API

Server: they simply must exist on a segment of the network where the

IP address is still unique. However, consider that a NAT may be

deployed between the User Equipment and the Enforcement Device. In

such cases, it is possible for the components to still uniquely

identify the device if they are aware of the port mapping.

In some situations, the User Equipment may have multiple IP

addresses, while still satisfying all of the recommended properties.

This raises some challenges to the components of the network. For

example, if the User Equipment tries to access the network with

multiple IP addresses, should the Enforcement Device and API Server

treat each IP address as a unique User Equipment, or should it tie

the multiple addresses together into one view of the subscriber? An

implementation MAY do either. Attention should be paid to IPv6 and

the fact that it is expected for a device to have multiple IPv6

addresses on a single link. In such cases, identification could be

performed by subnet, such as the /64 to which the IP belongs.

3.5. Context-free URI

A Captive Portal API needs to present information to clients that is

unique to that client. To do this, some systems use information from

¶

¶

¶

¶

¶

¶

the context of a request, such as the source address, to identify

the UE.

Using information from context rather than information from the URI

allows the same URI to be used for different clients. However, it

also means that the resource is unable to provide relevant

information if the UE makes a request using a different network

path. This might happen when UE has multiple network interfaces. It

might also happen if the address of the API provided by DNS depends

on where the query originates (as in split DNS [RFC8499]).

Accessing the API MAY depend on contextual information. However, the

URIs provided in the API SHOULD be unique to the UE and not

dependent on contextual information to function correctly.

Though a URI might still correctly resolve when the UE makes the

request from a different network, it is possible that some functions

could be limited to when the UE makes requests using the captive

network. For example, payment options could be absent or a warning

could be displayed to indicate the payment is not for the current

connection.

URIs could include some means of identifying the User Equipment in

the URIs. However, including unauthenticated User Equipment

identifiers in the URI may expose the service to spoofing or replay

attacks.

4. Solution Workflow

This section aims to improve understanding by describing a possible

workflow of solutions adhering to the architecture.

4.1. Initial Connection

This section describes a possible workflow when User Equipment

initially joins a Captive Network.

The User Equipment joins the Captive Network by acquiring a

DHCP lease, RA, or similar, acquiring provisioning information.

The User Equipment learns the URI for the Captive Portal API

from the provisioning information (e.g., [RFC7710bis]).

The User Equipment accesses the Captive Portal API to receive

parameters of the Captive Network, including web-portal URI.

(This step replaces the clear-text query to a canary URI.)

If necessary, the User navigates the web portal to gain access

to the external network.

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

The Captive Portal API server indicates to the Enforcement

Device that the User Equipment is allowed to access the

external network.

The User Equipment attempts a connection outside the captive

network

If the requirements have been satisfied, the access is

permitted; otherwise the "Expired" behavior occurs.

The User Equipment accesses the network until conditions

Expire.

4.2. Conditions About to Expire

This section describes a possible workflow when access is about to

expire.

Precondition: the API has provided the User Equipment with a

duration over which its access is valid

The User Equipment is communicating with the outside network

The User Equipment's UI indicates that the length of time left

for its access has fallen below a threshold

The User Equipment visits the API again to validate the expiry

time

If expiry is still imminent, the User Equipment prompts the

user to access the web-portal URI again

The User extends their access through the web-portal

The User Equipment's access to the outside network continues

uninterrupted

4.3. Handling of Changes in Portal URI

A different Captive Portal API URI could be returned in the

following cases:

If DHCP is used, a lease renewal/rebind may return a different

Captive Portal API URI.

If RA is used, a new Captive Portal API URI may be specified in a

new RA message received by end User Equipment.

5.

¶

6.

¶

7.

¶

8.

¶

¶

1.

¶

2. ¶

3.

¶

4.

¶

5.

¶

6. ¶

7.

¶

¶

*

¶

*

¶

Whenever a new Portal URI is received by end User Equipment, it

SHOULD discard the old URI and use the new one for future requests

to the API.

5. Acknowledgments

The authors thank Lorenzo Colitti for providing the majority of the

content for the Captive Portal Signal requirements.

The authors thank various individuals for their feedback on the

mailing list and during the IETF98 hackathon: David Bird, Erik

Kline, Alexis La Goulette, Alex Roscoe, Darshak Thakore, and Vincent

van Dam.

6. IANA Considerations

This memo includes no request to IANA.

7. Security Considerations

7.1. Trusting the Network

When joining a network, some trust is placed in the network

operator. This is usually considered to be a decision by a user on

the basis of the reputation of an organization. However, once a user

makes such a decision, protocols can support authenticating that a

network is operated by who claims to be operating it. The

Provisioning Domain Architecture [RFC7556] provides some discussion

on authenticating an operator.

Given that a user chooses to visit a Captive Portal URI, the URI

location SHOULD be securely provided to the user's device. E.g., the

DHCPv6 AUTH option can sign this information.

If a user decides to incorrectly trust an attacking network, they

might be convinced to visit an attacking web page and unwittingly

provide credentials to an attacker. Browsers can authenticate

servers but cannot detect cleverly misspelled domains, for example.

7.2. Authenticated APIs

The solution described here assumes that when the User Equipment

needs to trust the API server, server authentication will be

performed using TLS mechanisms.

7.3. Secure APIs

The solution described here requires that the API be secured using

TLS. This is required to allow the User Equipment and API Server to

exchange secrets which can be used to validate future interactions.

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

The API MUST ensure the integrity of this information, as well as

its confidentiality.

7.4. Risks Associated with the Signaling Protocol

If a Signaling Protocol is implemented, it may be possible for any

user on the Internet to send signals in attempt to cause the

receiving equipment to communicate with the Captive Portal API. This

has been considered, and implementations may address it in the

following ways:

The signal only informs the User Equipment to query the API. It

does not carry any information which may mislead or misdirect the

User Equipment.

Even when responding to the signal, the User Equipment securely

authenticates with API Servers.

Accesses to the API Server are rate limited, limiting the impact

of a repeated attack.

7.5. User Options

The Captive Portal Signal could inform the User Equipment that it is

being held captive. There is no requirement that the User Equipment

do something about this. Devices MAY permit users to disable

automatic reaction to Captive Portal Signals indications for privacy

reasons. However, there would be the trade-off that the user doesn't

get notified when network access is restricted. Hence, end-user

devices MAY allow users to manually control captive portal

interactions, possibly on the granularity of Provisioning Domains.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

*

¶

*

¶

*

¶

¶

[RFC2818]

[RFC7556]

[RFC7710bis]

[RFC8174]

[I-D.ietf-capport-api]

[I-D.pfister-capport-pvd]

[RFC3986]

[RFC8499]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/

RFC2818, May 2000, <https://www.rfc-editor.org/info/

rfc2818>.

Anipko, D., Ed., "Multiple Provisioning Domain

Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,

<https://www.rfc-editor.org/info/rfc7556>.

Kumari, W. and E. Kline, "Captive-Portal Identification

in DHCP / RA", Work in Progress, Internet-Draft, draft-

ietf-capport-rfc7710bis-01, 12 January 2020, <https://

tools.ietf.org/html/draft-ietf-capport-rfc7710bis-01>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

Pauly, T. and D. Thakore, "Captive Portal

API", Work in Progress, Internet-Draft, draft-ietf-

capport-api-06, 31 March 2020, <https://tools.ietf.org/

html/draft-ietf-capport-api-06>.

Pfister, P. and T. Pauly, "Using Provisioning Domains for

Captive Portal Discovery", Work in Progress, Internet-

Draft, draft-pfister-capport-pvd-00, 30 June 2018,

<http://www.ietf.org/internet-drafts/draft-pfister-

capport-pvd-00.txt>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS

Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,

January 2019, <https://www.rfc-editor.org/info/rfc8499>.

Appendix A. Existing Captive Portal Detection Implementations

Operating systems and user applications may perform various tests

when network connectivity is established to determine if the device

is attached to a network with a captive portal present. A common

method is to attempt to make a HTTP request to a known, vendor-

hosted endpoint with a fixed response. Any other response is

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc7556
https://tools.ietf.org/html/draft-ietf-capport-rfc7710bis-01
https://tools.ietf.org/html/draft-ietf-capport-rfc7710bis-01
https://www.rfc-editor.org/info/rfc8174
https://tools.ietf.org/html/draft-ietf-capport-api-06
https://tools.ietf.org/html/draft-ietf-capport-api-06
http://www.ietf.org/internet-drafts/draft-pfister-capport-pvd-00.txt
http://www.ietf.org/internet-drafts/draft-pfister-capport-pvd-00.txt
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc8499

interpreted as a signal that a captive portal is present. This check

is typically not secured with TLS, as a network with a captive

portal may intercept the connection, leading to a host name

mismatch. This has been referred to as a "canary" request because,

like the canary in the coal mine, it can be the first sign that

something is wrong.

Another test that can be performed is a DNS lookup to a known

address with an expected answer. If the answer differs from the

expected answer, the equipment detects that a captive portal is

present. DNS queries over TCP or HTTPS are less likely to be

modified than DNS queries over UDP due to the complexity of

implementation.

The different tests may produce different conclusions, varying by

whether or not the implementation treats both TCP and UDP traffic,

and by which types of DNS are intercepted.

Malicious or misconfigured networks with a captive portal present

may not intercept these requests and choose to pass them through or

decide to impersonate, leading to the device having a false

negative.

Authors' Addresses

Kyle Larose

Agilicus

Email: kyle@agilicus.com

David Dolson

Email: ddolson@acm.org

Heng Liu

Google

Email: liucougar@google.com

¶

¶

¶

¶

mailto:kyle@agilicus.com
mailto:ddolson@acm.org
mailto:liucougar@google.com

	CAPPORT Architecture
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Terminology

	2. Components
	2.1. User Equipment
	2.2. Provisioning Service
	2.2.1. DHCP or Router Advertisements
	2.2.2. Provisioning Domains

	2.3. Captive Portal API Server
	2.4. Captive Portal Enforcement Device
	2.5. Captive Portal Signal
	2.6. Component Diagram

	3. User Equipment Identity
	3.1. Identifiers
	3.2. Recommended Properties
	3.2.1. Uniquely Identify User Equipment
	3.2.2. Hard to Spoof
	3.2.3. Visible to the API Server
	3.2.4. Visible to the Enforcement Device

	3.3. Evaluating Types of Identifiers
	3.4. Example Identifier Types
	3.4.1. Physical Interface
	3.4.2. IP Address

	3.5. Context-free URI

	4. Solution Workflow
	4.1. Initial Connection
	4.2. Conditions About to Expire
	4.3. Handling of Changes in Portal URI

	5. Acknowledgments
	6. IANA Considerations
	7. Security Considerations
	7.1. Trusting the Network
	7.2. Authenticated APIs
	7.3. Secure APIs
	7.4. Risks Associated with the Signaling Protocol
	7.5. User Options

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Existing Captive Portal Detection Implementations
	Authors' Addresses

