
CAT Working Group Russell Housley (SPYRUS)
<draft-ietf-cat-ftpdsaauth-00.txt> William A. Nace (NSA)
Updates: RFC 959 Peter Yee (SPYRUS)
Internet-Draft Expire in six months
July 1997

FTP Authentication Using DSA

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working doc-
 uments of the Internet Engineering Task Force (IETF), its areas, and
 its working groups. Note that other groups may also distribute work-
 ing documents as Internet-Drafts.

 Internet-Drafts are Draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference mate-
 rial or to cite them other than as ''work in progress.''

 To learn the current status of any Internet-Draft, please check the
 "1id-abstRacts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

 Distribution of this memo is unlimited. Please send comments to the
 <cat-ietf@mit.edu> mailing list.

Abstract

 This document defines a method to secure file transfers using the FTP
 specification RFC 959, "FILE TRANSFER PROTOCOL (FTP)" (October 1985)
 and the work in progress document "FTP Security Extensions" <Draft-
 ietf-cat-ftpsec-09.txt>[1]. This method will use the extensions pro-
 posed in the "FTP Security Extensions" Draft document along with a
 public/private digital signature.

1 Introduction

 The File Transfer Protocol (FTP) provides no protocol security except
 for a user authentication password which is transmitted in the clear.
 In addition, the protocol does not protect the file transfer session
 beyond the original authentication phase.

Housley, Nace & Yee [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-cat-ftpdsaauth-00.txt
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc959

INTERNET DRAFT July 18, 1997

 The Internet Engineering Task Force (IETF) Common Authentication
 Technology (CAT) Working Group has specified security extensions to
 FTP. These extensions allow the protocol to use more flexible secu-
 rity schemes, and in particular allows for various levels of protec-
 tion for the FTP command and data connections. This document
 describes a profile for the FTP Security Extensions by which these
 mechanisms may be provisioned using the DSA[2] and SHA-1[3] algo-
 rithms. The FTP Security Extensions do not attempt to provide for
 security when FTP is used in proxy mode. The profile proposed in
 this document does not remove this limitation.

2 FTP Security Extensions

 The IETF CAT Working Group has produced an Internet Draft that seeks
 to improve the security of FTP. This Internet Draft is likely to
 become a standards track RFC in 1997. It provides:

 * user authentication -- augmenting the normal password mechanism;

 * server authentication -- normally done in conjunction with user
 authentication;

 * session parameter negotiation -- in particular, encryption keys
 and attributes;

 * command connection protection -- integrity, confidentiality, or
 both;

 * data transfer protection -- same as for command connection
 protection.

 In order to support the above security services, the two FTP entities
 negotiate a mechanism. This process is open-ended and completes when
 both entities agree on an acceptable mechanism or when the initiating
 party (always the client) is unable to suggest an agreeable mecha-
 nism. Once the entities agree upon a mechanism, they may commence
 authentication and/or parameter negotiation.

 Authentication and parameter negotiation occur within an unbounded
 series of exchanges. At the completion of the exchanges, the enti-
 ties will either be authenticated (unilateral or mutually), and may
 be ready to protect FTP commands and data.

 Following the exchanges, the entities negotiate the size of the
 buffers they will use in protecting the commands and data that fol-
 low. This process is accomplished in two steps: the client offers a
 suggested buffer size and the server may either refuse it, counter

Housley, Nace & Yee [Page 2]

INTERNET DRAFT July 18, 1997

 it, or accept it.

 At this point, the entities may issue protected commands within the
 bounds of the parameters negotiated through the security exchanges.
 Protected commands are issued by applying the protection services
 required to the normal commands and Base64 encoding the results. The
 encoded results are sent as the data field within a MIC (integrity).
 Base64 is an encoding for mapping binary data onto a textual charac-
 ter set that is able to pass through 7-bit systems without loss. The
 server sends back responses in new result codes which allow the iden-
 tical protections and Base64 encoding to be applied to the results.
 Protection of the data transfers can be specified via the PROT com-
 mand which supports the same protections as those afforded the other
 FTP commands. PROT commands may be sent on a transfer-by-transfer
 basis, however, the session parameters may not be changed within a
 session.

3 Use of Digital Signature Algorithm (DSA)

 This paper a profile in which DSA may be used to achieve certain
 security services when used in conjunction with the FTP Security
 Extensions framework. As stated above, the reader should be familiar
 with the extensions in order to understand the protocol steps that
 follow. In the context of the FTP Security Extensions, we use DSA
 with SHA-1 for authentication and integrity.

3.1 DSA Profile

 FTP entities may use DSA to give either unilateral or mutual authen-
 tication as well as to provide integrity services for commands and
 data transfers. This specification follows the tokens and exchanges
 defined in FIPS PUB 196[4], including Appendix A on ASN.1 encoding of
 messages and tokens.

3.1.1 Unilateral Authentication with DSA

 A client may unilaterally authenticate its identity to a server.
 What follows are the protocol steps necessary to perform DSA authen-
 tication as specified in FIPS PUB 196 under the FTP Security Exten-
 sions framework. Where failure modes are encountered, the return
 codes follow those specified in the Extensions. They are not enumer-
 ated here as they are invariant among mechanisms. FIPS PUB 196
 employs a set of exchanges which are transferred to provide authenti-
 cation. Each exchange employs various fields and tokens, some of
 which are optional. In addition, each token has several subfields
 that are optional. A conformant subset of the fields and subfields
 for use with FTP have been selected. Therefore, the exchanges below
 do not show the FIPS PUB 196 notation indicating optional fields,

Housley, Nace & Yee [Page 3]

INTERNET DRAFT July 18, 1997

 while only the mandatory subfields are allowed. The tokens are ASN.1
 encoded per Appendix A of FIPS PUB 196, and each token is named to
 indicate the direction in which it flows (i.e., TokenBA flows from
 Party B to Party A). In Figure 1, the client binds the last trans-
 mission (token identifier, certificate, and token) together as an
 ASN.1 sequence.

 The exchanges detailed below presume a knowledge of FIPS PUB 196 and
 the FTP Security Extensions. The client is Party A, while the server
 is Party B. The notation for concatenation is " || ". The pseudo-
 function Sequence is used to indicate that its parameters are to be
 joined as an ASN.1 SEQUENCE. Verification of signed data, and in
 particular certification path verification is implicitly assumed, but
 is not shown.

 Client Server

 AUTH DSS-CLIENT-UNILATERAL -->
 <-- 334 ADAT=Base64(Sequence(
 TokenID || TokenBA))
 ADAT Base64(Sequence(TokenID ||
 CertA || TokenAB ||
 absigValue)) -->
 <-- 234

 Figure 1

 With this example, the client is now authenticated to the server.
 Additional functionality available to client and server includes the
 use of MIC protected commands and the ability to send signed data.
 The Sign function used in the figures below appends a nonce to the
 end of the parameter, and then computes a DSA with SHA-1 signature
 over the parameter followed by a nonce. The 40 octet signature
 value, as described in FIPS PUB 186, is composed of two 20 octet val-
 ues, r followed by s. The nonce is comprised of a two octet command
 counter and the Ra value from TokenAB. Since both the client and
 server have the Ra value from TokenAB and both can calculate the com-
 mand counter, the nonce is not transmitted. The command counter is
 initialized to the least significant two octets of the Ra value from
 TokenAB, and it is incremented each time the client issues a command.
 The Sign function output is composed of the 40 octet signature value
 followed by the parameter. An example follows:

Housley, Nace & Yee [Page 4]

INTERNET DRAFT July 18, 1997

 Client Server

 MIC Base64(Sign("PBSZ 65535")) -->
 <-- 200 PBSZ=32767
 MIC Base64(Sign("USER yee")) -->
 <-- 331
 MIC Base64(Sign("PASS fortezza")) -->
 <-- 230
 MIC Base64(Sign("PROT S")) -->
 <-- 200
 MIC Base64(Sign("STOR foo.bar")) -->
 <-- 150

 Figure 2

 Data now flows from the client to the server as specified in the
 Extensions. Specifically, the file is broken up into blocks of data
 of less than the negotiated protection buffer size (32768 bytes in
 the example exchanges). Each protection buffer contains a safe token
 followed by file data. A common safe token structure is used for
 unilateral and mutual authentication. The safe token structure is
 described in section 3.1.3.

3.1.2 Mutual Authentication with DSA

 The PDU flow for mutual authentication is slightly more complex, as
 shown:

 Client Server

 AUTH DSS-MUTUAL -->
 <-- 334 ADAT=Base64(Sequence(
 TokenID || TokenBA1))
 ADAT Base64(Sequence(TokenID ||
 CertA || TokenAB ||
 absigValue)) -->
 <-- 235 ADAT=Base64(Sequence(
 TokenID || CertB ||
 TokenBA2 || ba2sigValue))

 Figure 3

 Data retrieval and other FTP operations can now be performed with
 signature protection. As before, the FTP entities negotiate a pro-
 tection buffer size. Likewise, a two octet command counter combined
 with the Ra value from TokenAB is used as a nonce in the Sign

Housley, Nace & Yee [Page 5]

INTERNET DRAFT July 18, 1997

 function.

 Client Server

 MIC Base64(Sign("PBSZ 65535")) -->
 <-- 631 Base64(Sign
 ("200 PBSZ=32767"))
 MIC Base64(Sign("USER yee")) -->
 <-- 631 Base64(Sign("331"))
 MIC Base64(Sign("PASS fortezza")) -->
 <-- 631 Base64(Sign("230"))
 MIC Base64(Sign("PROT S")) -->
 <-- 631 Base64(Sign("200"))
 MIC Base64(Sign("RETR foo.bar")) -->

 Figure 4

 Data now flows from the client to the server as well as the server to
 the client as specified in the Extensions. Specifically, the file is
 broken up into blocks of data of less than the negotiated protection
 buffer size. Each protection buffer contains a safe token followed
 by file data. A common safe token structure is used for unilateral
 and mutual authentication. The safe token structure is described in

section 3.1.3.

3.1.3 File Protection with DSA

 The next figure shows the structure of the safe token and file data.

 Signature 40 octets
 Buffer Size 4 octets
 Nonce 8 octets
 File Count 2 octets
 Buffer Count 4 octets
 File Data Buffer Buffer Size

 Figure 5

 The safe token is comprised of the signature value, buffer size,
 nonce, file count, and buffer count. The signature covers the buffer
 size, nonce, file count, buffer count, and the file data buffer.
 Buffer size is the number of octets contained in file data buffer.
 This buffer size must be less than the negotiated PBSZ value, and the
 maximum buffer size is PBSZ minus 58. If the buffer size is not
 equal to PBSZ minus 58, then this buffer is the final buffer of the
 file. If the file ends on a full buffer boundary, a buffer with the

Housley, Nace & Yee [Page 6]

INTERNET DRAFT July 18, 1997

 buffer size set to zero will be sent. The nonce is the least signif-
 icant 64 bits of the Rb field of TokenBA1. File count is a sequence
 counter of protected files transferred, starting at zero. Buffer
 count is the number of protected buffers sent for this file, starting
 at zero.

4.0 Security Considerations

 This entire memo is about security mechanisms. For DSA to provide
 the authentication discussed, the implementation must protect the
 private key from disclosure.

5.0 Acknowledgements

 I would like to thank Todd Horting for insights gained during imple-
 mentation of this specification.

6.0 References

 [1] - M. Horowitz and S. J. Lunt. FTP Security Extensions.
 Internet-Draft <draft-ietf-cat-ftpsec-09.txt>,
 November, 1996.

 [2] - Digital Signature Standard (DSS). FIPS Pub 186.
 May 19, 1994.

 [3] - Secure Hash Standard. FIPS Pub 180-1. April 17, 1995.

 [4] - Standard for Entity Authentication Using Public Key
 Cryptography. FIPS Pub 196. February 18, 1997.

https://datatracker.ietf.org/doc/html/draft-ietf-cat-ftpsec-09.txt

Housley, Nace & Yee [Page 7]

INTERNET DRAFT July 18, 1997

7.0 Author's Address

 Russell Housley
 SPYRUS
 PO Box 1198
 Herndon, VA 20172
 USA

 Phone: +1 703 435-7344
 Email: housley@spyrus.com

 DIRNSA
 Attn: X22 (W. Nace)
 9800 Savage Road
 Fort Meade, MD 20755-6000
 USA

 Phone: +1 410 859-4464
 Email: WANace@missi.ncsc.mil

 Peter Yee
 SPYRUS
 2460 N. First Street
 Suite 100
 San Jose, CA 95131-1023
 USA

 Phone: +1 408 432-8180
 Email: yee@spyrus.com

Housley, Nace & Yee [Page 8]

