
CAT Working Group Russell Housley (SPYRUS)
<draft-ietf-cat-ftpkeasj-01.txt> William A. Nace (NSA)
Updates: RFC 959 Peter Yee (SPYRUS)
Internet-Draft
Expire in six months January 1999

Encryption using KEA and SKIPJACK

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ''work in progress.''

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

 Distribution of this memo is unlimited. Please send comments to the
 <cat-ietf@mit.edu> mailing list.

Abstract

 This document defines a method to encrypt a file transfer using the
 FTP specification RFC 959, 'FILE TRANSFER PROTOCOL (FTP)' (October
 1985) and the work in progress document 'FTP Security Extensions'
 <draft-ietf-cat-ftpsec-09.txt>[1]. This method will use the Key
 Exchange Algorithm (KEA) to give mutual authentication and establish
 the data encryption keys. SKIPJACK is used to encrypt file data and
 the FTP command channel.

1.0 Introduction

 The File Transfer Protocol (FTP) provides no protocol security except
 for a user authentication password which is transmitted in the clear.
 In addition, the protocol does not protect the file transfer session
 beyond the original authentication phase.

 The Internet Engineering Task Force (IETF) Common Authentication

Housley, Nace & Yee [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-cat-ftpkeasj-01.txt
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/draft-ietf-cat-ftpsec-09.txt

INTERNET DRAFT January 8, 1999

 Technology (CAT) Working Group has proposed security extensions to
 FTP. These extensions allow the protocol to use more flexible
 security schemes, and in particular allows for various levels of
 protection for the FTP command and data connections. This document
 describes a profile for the FTP Security Extensions by which these
 mechanisms may be provisioned using the Key Exchange Algorithm (KEA)
 in conjunction with the SKIPJACK symmetric encryption algorithm.

 The FTP Security Extensions are likely to become a standards track
 RFC in 1997. It provides:

 * user authentication -- augmenting the normal password mechanism;

 * server authentication -- normally done in conjunction with user
 authentication;

 * session parameter negotiation -- in particular, encryption keys
 and attributes;

 * command connection protection -- integrity, confidentiality, or
 both;

 * data transfer protection -- same as for command connection
 protection.

 In order to support the above security services, the two FTP entities
 negotiate a mechanism. This process is open-ended and completes when
 both entities agree on an acceptable mechanism or when the initiating
 party (always the client) is unable to suggest an agreeable
 mechanism. Once the entities agree upon a mechanism, they may
 commence authentication and/or parameter negotiation.

 Authentication and parameter negotiation occur within an unbounded
 series of exchanges. At the completion of the exchanges, the
 entities will either be authenticated (unilateral or mutually), and
 may, additionally, be ready to protect FTP commands and data.

 Following the exchanges, the entities negotiate the size of the
 buffers they will use in protecting the commands and data that
 follow. This process is accomplished in two steps: the client offers
 a suggested buffer size and the server may either refuse it, counter
 it, or accept it.

 At this point, the entities may issue protected commands within the
 bounds of the parameters negotiated through the security exchanges.
 Protected commands are issued by applying the protection services
 required to the normal commands and Base64 encoding the results. The
 encoded results are sent as the data field within a ENC (integrity

Housley, Nace & Yee [Page 2]

INTERNET DRAFT January 8, 1999

 and confidentiality) command. Base64 is an encoding for mapping
 binary data onto a textual character set that is able to pass through
 most 7-bit systems without loss. The server sends back responses in
 new result codes which allow the identical protections and Base64
 encoding to be applied to the results. Protection of the data
 transfers can be specified via the PROT command which supports the
 same protections as those afforded the other FTP commands. PROT
 commands may be sent on a transfer-by-transfer basis, however, the
 session parameters may not be changed within a session.

2.0 Key Exchange Algorithm (KEA) Profile

 This paper profiles KEA with SKIPJACK to achieve certain security
 services when used in conjunction with the FTP Security Extensions
 framework. FTP entities may use KEA to give mutual authentication
 and establish data encryption keys. We specify a simple token format
 and set of exchanges to deliver these services. Functions that may
 be performed by the Fortezza Crypto Card.

 The reader should be familiar with the extensions in order to
 understand the protocol steps that follow. In the context of the FTP
 Security Extensions, we suggest the usage of KEA with SKIPJACK for
 authentication, integrity, and confidentiality.

 A client may mutually authenticate with a server. What follows are
 the protocol steps necessary to perform KEA authentication under the
 FTP Security Extensions framework. Where failure modes are
 encountered, the return codes follow those specified in the
 Extensions. They are not enumerated in this document as they are
 invariant among the mechanisms used. The certificates are ASN.1
 encoded.

 The exchanges detailed below presume a working knowledge of the FTP
 Security Extensions. The notation for concatenation is " || ".
 Decryption of encrypted data and certification path validation is
 implicitly assumed, but is not shown.

 Client Server

 AUTH KEA-SKIPJACK -->
 <-- 334 ADAT=Base64(Certb || Rb)
 ADAT Base64(Certa || Ra ||
 WMEK || IV || Encrypt(
 Label-Type || Label-Length ||
 Label-List || pad || ICV)) -->
 <-- 235 ADAT=Base64(IV)

Housley, Nace & Yee [Page 3]

INTERNET DRAFT January 8, 1999

 Figure 1

 The server and client certificates contain KEA public keys. The
 client and server use KEA to generate a shared SKIPJACK symmetric
 key, called the TEK. The client uses the random number generator to
 create a second SKIPJACK key, called the MEK. The MEK is wrapped in
 the TEK for transfer to the server. An initialization vector (IV)
 associated with the MEK is generated by the client and transferred to
 the server. A list of security labels that the client wants to use
 for this FTP session may be transferred to the server encrypted in
 the MEK. As shown in Figure 2, the security label data is formatted
 as a one octet type value, a four octet label length, the security
 label list, padding, followed by an eight octet integrity check value
 (ICV). Figure 3 lists the label types. If the label type is absent
 (value of zero length), then the label size must be zero.

 In order to ensure that the length of the plain text is a multiple of
 the cryptographic block size, padding shall be performed as follows.
 The input to the SKIPJACK CBC encryption process shall be padded to a
 multiple of 8 octets. Let n be the length in octets of the input.
 Pad the input by appending 8 - (n mod 8) octets to the end of the
 message, each having the value 8 - (n mod 8), the number of octets
 being added. In hexadecimal, he possible pad strings are: 01, 0202,
 030303, 04040404, 0505050505, 060606060606, 07070707070707, and
 0808080808080808. All input is padded with 1 to 8 octets to produce
 a multiple of 8 octets in length. This pad technique is used
 whenever SKIPJACK CBC encryption is performed.

 An ICV is calculated over the plaintext security label and padding.
 The ICV algorithm used is the 32-bit one's complement addition of
 each 32-bit block followed by 32 zero bits. This ICV technique is
 used in conjunction with SKIPJACK CBC encryption to provide data
 integrity.

 Label Type 1 Octet
 Label Length 4 octets
 Label List variable length
 Pad 1 to 8 octets
 ICV 8 octets

 Figure 2

Housley, Nace & Yee [Page 4]

INTERNET DRAFT January 8, 1999

 Label Type Label Syntax Reference
 0 Absent Not applicable
 1 MSP SDN.701[1]
 2-255 Reserved for Future Use To Be Determined

 Figure 3

 FTP command channel operations are now confidentiality protected. To
 provide integrity, the command sequence number, padding, and ICV are
 appended to each command prior to encryption.

 Sequence integrity is provided by using a 16-bit sequence number
 which is incremented for each command. The sequence number is
 initialized with the least significant 16-bits of Ra. The server
 response will include the same sequence number as the client command.

 An ICV is calculated over the individual commands (including the
 carriage return and line feed required to terminate commands), the
 sequence number, and pad.

 Client Server

 ENC Base64(Encrypt("PBSZ 65535"
 || SEQ || pad || ICV)) -->
 <-- 632 Base64(Encrypt("200" ||
 SEQ || pad || ICV))
 ENC Base64(Encrypt("USER yee"
 || SEQ || pad || ICV)) -->
 <-- 632 Base64(Encrypt("331" ||
 SEQ || pad || ICV))
 ENC Base64(Encrypt("PASS
 fortezza" || SEQ ||
 pad || ICV)) -->
 <-- 631 Base64(Sign("230"))

 Figure 4

 After decryption, both parties verifying the integrity of the PBSZ
 commands by checking for the expected sequence number and correct
 ICV. The correct SKIPJACK key calculation, ICV checking, and the
 validation of the certificates containing the KEA public keys
 provides mutual identification and authentication.

Housley, Nace & Yee [Page 5]

INTERNET DRAFT January 8, 1999

 Client Server

 ENC Base64(Encrypt("PROT P" ||
 SEQ || pad || ICV)) -->
 <-- 632 Base64(Encrypt("200" || SEQ
 || pad || ICV))

 Figure 5

 At this point, files may be sent or received with encryption and
 integrity services in use. If encryption is used, then the first
 buffer will contain the token followed by enough encrypted file
 octets to completely fill the buffer (unless the file is too short to
 fill the buffer). Subsequent buffers contain only encrypted file
 octets. All buffers are completely full except the final buffer.

 Client Server

 ENC Base64(Encrypt(
 ("RETR foo.bar") ||
 SEQ || pad || ICV)) -->
 <-- 632 Base64(Encrypt("150" ||
 SEQ || pad || ICV))

 Figure 6

 The next figure shows the header information and the file data.

 Plaintext Token IV 24 octets
 WMEK 12 octets
 Hashvalue 20 octets
 IV 24 octets
 Label Type 1 octets
 Label Length 4 octets
 Label Label Length octets
 Pad 1 to 8 octets
 ICV 8 octets

 Figure 7

2.1 Pre-encrypted File Support

 In order to support both on-the-fly encryption and pre-encrypted
 files, a token is defined for carrying a file encryption key (FEK).
 To prevent truncation and ensure file integrity, the token also

Housley, Nace & Yee [Page 6]

INTERNET DRAFT January 8, 1999

 includes a hash computed on the complete file. The token also
 contains the security label associate with the file. This FEK is
 wrapped in the session TEK. The token is encrypted in the session
 TEK using SKIPJACK CBC mode. The token contains a 12 octet wrapped
 FEK, a 20 octet file hash, a 24 octet file IV, a 1 octet label type,
 a 4 octet label length, a variable length label value, a one to 8
 octet pad, and an 8 octet ICV. The first 24 octets of the token are
 the plaintext IV used to encrypt the remainder of the token. The
 token requires its own encryption IV because it is transmitted across
 the data channel, not the command channel, and ordering between the
 channels cannot be guaranteed. Storage of precomputed keys and
 hashes for files in the file system is a local implementation matter;
 however, it is suggested that if a file is pre-encrypted, then the
 FEK be wrapped in a local storage key. When the file is needed, the
 FEK is unwrapped using the local storage key, and then rewrapped in
 the session TEK. Figure 8 shows the assembled token.

 --
 Plaintext Token IV 24 octets
 Wrapped FEK 12 octets
 Hashvalue 20 octets
 IV 24 octets
 Label Type 1 octet
 Label Length 4 octets
 Label Label Length octets
 Pad 1 to 8 octets
 ICV 8 octets
 --
 Figure 8

3.0 Table of Key Terminology

 In order to clarify the usage of various keys in this protocol,
 Figure 9 summarizes key types and their usage:

 --
 Key Type Usage
 TEK Encryption of token at the beginning of each
 file, also wraps the MEK
 MEK Encryption of command channel
 FEK Encryption of the file itself (may be done out
 of scope of FTP)
 --
 Figure 9

Housley, Nace & Yee [Page 7]

INTERNET DRAFT January 8, 1999

4.0 Security Considerations

 This entire memo is about security mechanisms. For KEA to provide
 the authentication and key management discussed, the implementation
 must protect the private key from disclosure. For SKIPJACK to
 provide the confidentiality discussed, the implementation must
 protect the shared symmetric keys from disclosure.

5.0 Acknowledgements

 I would like to thank Todd Horting for insights gained during
 implementation of this specification.

6.0 References

 [1] - M. Horowitz and S. J. Lunt. FTP Security Extensions.
RFC 2228. October 1997.

 [2] - Message Security Protocol 4.0 (MSP), Revision A. Secure Data
 Network System (SDNS) Specification, SDN.701,
 February 6, 1997.

https://datatracker.ietf.org/doc/html/rfc2228

Housley, Nace & Yee [Page 8]

INTERNET DRAFT January 8, 1999

7.0 Author's Address

 Russell Housley
 SPYRUS
 381 Elden Street
 Suite 1120
 Herndon, VA 20170
 USA

 Phone: +1 703 707-0696
 Email: housley@spyrus.com

 DIRNSA
 Attn: X22 (W. Nace)
 9800 Savage Road
 Fort Meade, MD 20755-6000
 USA

 Phone: +1 410 859-4464
 Email: WANace@missi.ncsc.mil

 Peter Yee
 SPYRUS
 5303 Betsy Ross Drive
 Santa Clara, CA 95054
 USA

 Phone: +1 408 327-1901
 Email: yee@spyrus.com

Housley, Nace & Yee [Page 9]

