
INTERNET-DRAFT Tatyana Ryutov
CAT Working Group Clifford Neuman
Expires April 2001 Laura Pearlman
draft-ietf-cat-gaa-cbind-05.txt USC/Information Sciences Institute
 November 22, 2000

Generic Authorization and Access control Application Program Interface
 C-bindings

0. Status Of this Document

This document is an Internet-Draft and is in full conformance
with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as
"work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

To view the entire list of current Internet-Drafts, please check
the "1id-abstracts.txt" listing contained in the Internet-Drafts
Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net
(Northern Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au
(Pacific Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu
(US West Coast).

1. Abstract

The Generic Authorization and Access control Application Programming
Interface (GAA-API) provides access control services to calling
applications. It facilitates access control decisions for
applications and allows applications to discover access control
policies associated with a targeted resource. The GAA-API is usable by
multiple applications supporting different kinds of protected objects.
The GAA-API design supports:

- a variety of security mechanisms based on public or secret key
 cryptosystems
- different authorization models
- heterogeneous security policies
- various access rights

https://datatracker.ietf.org/doc/html/draft-ietf-cat-gaa-cbind-05.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

This document specifies C language bindings for the GAA-API, which
is described at a language-independent conceptual level in
draft-ietf-cat-acc-cntrl-frmw-05.txt

2. GAA-API concepts and typical usage

A simple GAA application will do the following:

a) Perform some initialization at the beginning to create a gaa control
 structure and security context.

 The gaa control structure (type gaa_ptr) includes information about
 callback routines (to be used to evaluate conditions, find policy
 information, etc.). Callback routines may be installed in this structure
 by the GAA-API implementation itself (when the gaa_ptr structure is
 created) or explicitly by the application (at any time).

 The security context (type gaa_sc_ptr) contains information about the
 current user's credentials. Credentials may be added to this structure
 by the GAA-API implementation itself (in the course of evaluating
 conditions) or explicitly by the application (at any time).

b) Each time the application receives a request, it will determine
 what rights are necessary to fulfill that request and then call
 GAA-API routines to create a list of requested rights, find the
 relevant policy, and determine whether or not the policy grants
 those rights.

 Each requested right is of type gaa_request_right, which includes
 a value and defining authority (the authority determines the namespace
 of the value). The list of requested rights is created with the
 gaa_new_req_rightlist function, and rights are added to the list with
 gaa_add_request_right. A request right may also include a list
 of options (additional information about the request, to be used
 as hints when evaluating conditions); the gaa_add_option function
 may be used to add options to a request right.

 A policy is an ordered list of policy rights. A policy right
 consists of a type (pos_access_right for a right that's explicitly
 allowed; neg_access_right for a right that's explicitly denied),
 a value and defining authority, and a list of conditions under
 which the policy right applies.

 A condition consists of a type (e.g,. user identity, time of day, etc.),
 a value and a defining authority (which determines the namespace of the
 value). In a typical request, the policy will be retrieved with
 gaa_get_object_policy_info.

 The gaa_check_authorization function is used to determine whether the
 requested rights are granted or denied by the policy. This function
 evaluates each requested right (finding the relevant policy rights and

https://datatracker.ietf.org/doc/html/draft-ietf-cat-acc-cntrl-frmw-05.txt

 calling the appropriate condition-evaluation callback routines to see
 whether they apply) and then aggregates the results: if all requested
 rights are granted, gaa_check_authorization returns GAA_C_YES; if any
 requested right is denied, it returns GAA_C_NO; otherwise, it returns
 GAA_C_MAYBE. A detailed answer structure is also returned, including
 the relevant policy information.

c) When the application is finished using GAA-API, it will call cleanup
 routines to release resources.

3. GAA-API data types

3.1. Character data

Certain data items used by the GAA-API may be regarded as a character
strings, e.g., string-encoded tokens for passing object and
authorization database identifiers. The data of this kind is passed
between the GAA-API and caller using the gaa_string_data data type,
which is a pointer to a null-terminated character array:

 typedef char *gaa_string_data;

3.2. GAA-API status codes

Most GAA-API functions return a value of type gaa_status:

 unsigned long gaa_status;

Encapsulated in the returned status code are major and minor status
codes. Each of them has a value range equivalent to 16 bit unsigned
integer values. The major code is in low 16 bits, the minor code is
in high 16 bits. The major codes indicate errors that are independent
of the underlying mechanisms. The errors that can be indicated via a
GAA-API major status code are generic API routine errors (errors that
are defined in this specification).

The minor code is implementation-dependent and is used to indicate
specialized errors from the underlying mechanisms or provide
additional information about the GAA-API errors.

A list of GAA-API status codes and their values appears in
section 5 of this document.

3.3. Application-opaque data types

3.3.1. The gaa control structure

The gaa control structure (which includes information about the behavior
of GAA-API) is opaque to the application:

 typedef struct gaaint_gaa *gaa_ptr;

and is maintained using the callback-registering functions described
in section 4.3.

3.3.2. The security context

The gaa security context (which includes information about a user's
credentials) is opaque to the application:

 typedef struct gaaint_sc *gaa_sc_ptr;

and is maintained using the credential-handling functions described in
section 4.1.2.

3.3.3. List data structures

Certain data items used by the GAA-API may be regarded as an ordered list of
data items, e.g., a list of request rights. These lists are represented
by the opaque gaa_list_ptr data type; individual entries in these lists
are represented by the opaque gaa_list_entry_ptr data type:

 typedef struct gaaint_list *gaa_list_ptr;
 typedef struct gaaint_list_entry *gaa_list_entry_ptr;

The functions described in section 4.6 are used to examine and free
lists and list entries.

3.4 Policy data structures

3.4.1 gaa_policy

The gaa_policy structure describes a policy:

 struct gaa_policy_struct {
 void *raw_policy; /* raw policy representation */
 gaa_list_ptr entries; /* list of gaa_policy_entry_ptr */
 gaa_freefunc freeraw; /* function to free raw_policy */
 struct gaaint_policy *intrl; /* internal data */
 };
 typedef struct gaa_policy_struct gaa_policy, *gaa_policy_ptr;

The raw_policy field is an application-specific representation of the
policy. It may be null, or it may contain, for example, a textual
representation of the policy or the address of a policy server to
query. The entries field is an ordered list of GAA-API policy rights.
If freeraw field is non-null, that function is called to free the
raw_policy entry when the policy structure is freed. The intrl field
is internal to the GAA-API implementation and should be ignored by the
application.

3.4.2 gaa_policy_entry

The gaa_policy_entry structure describes a policy entry:

 struct gaa_policy_entry_struct {
 int priority; /* entry priority */
 int num; /* entry number (for order within priority) */
 gaa_policy_right_ptr right; /* what this entry grants (or denies) */
 };
 typedef struct gaa_policy_entry_struct gaa_policy_entry,
 *gaa_policy_entry_ptr;

The priority and num fields are used to order the entries in a policy
(lower-numbered priorities come before higher-numbered priorities;
within a priority, lower-numbered entries come before higher-numbered
ones). The right field indicates the right that is granted or denied
by this policy entry.

3.4.3. gaa_policy_right and gaa_right_type

The gaa_right_type enumeration distinguishes positive policy rights
(rights which are explicitly granted) from negative policy rights
(rights which are explicitly denied):

 typedef enum {
 pos_access_right,
 neg_access_right
 } gaa_right_type;

The gaa_policy_right structure describes a policy right:

 struct gaa_policy_right_struct {
 gaa_right_type type; /* positive or negative */
 gaa_string_data authority; /* defining authority */
 void *value; /* within namespace defined by authority */
 gaa_list_ptr conditions; /* list of gaa_condition_ptr describing
 the conditions that must be met */
 struct gaaint_policy_right *intrl; /* internal data */
 };

 typedef struct gaa_policy_right_struct gaa_policy_right,
 *gaa_policy_right_ptr;

The type field defines the type of the policy (pos_access_right
indicates that the policy grants this right; neg_access_right
indicates that the policy denies it).

The authority field indicates the authority responsible for defining
the value. The value field is a representation of the value (or values) of
the right, within the namespace defined by the authority.

The conditions field is a pointer to an ordered list of elements of
type gaa_condition_ptr. It contains a list of pointers to conditions
associated with the right.

The intrl field is internal to the GAA-API implementation and should
be ignored by the application.

3.4.4. gaa_condition

The gaa_condition structure describes a condition:

 struct gaa_condition_struct {
 gaa_string_data type; /* condition type */
 gaa_string_data authority; /* defining authority */
 gaa_string_data value; /* within namespace defined by authority
*/
 unsigned long status; /* GAA_COND_EVALUATED, GAA_COND_MET, etc.
*/
 struct gaaint_cond *intrl; /* internal data */
 };
 typedef struct gaa_condition_struct gaa_condition, *gaa_condition_ptr;

The type field defines the type of condition (e.g. user_id, time, etc.).
The authority field indicates the authority responsible for defining the
value (e.g. kerberos, x509, etc.). The value field is the condition value
(e.g. a username) within the namespace defined by the authority.

The status field contains flags indicating whether the condition has
been evaluated and/or met.

The intrl field is internal to the GAA-API implementation and should
be ignored by the application.

3.5 Request rights

Request rights are similar to, but different from, policy rights.
Request rights do not have a "type" element (as it makes no sense
to request a negative right) or conditions. And while the value of
a policy right can represent multiple rights, the value of a request
right can represent only a single right.

3.5.1. gaa_request_right

The gaa_request_right structure describes a requested right:

 struct gaa_request_right_struct {
 gaa_string_data authority;/* defining authority */
 void *value; /* within namespace defined
 by authority */
 gaa_list_ptr options; /* list of gaa_request_option */
 struct gaaint_request_right *intrl; /* internal data */
 };

 typedef struct gaa_request_right_struct gaa_request_right,
 *gaa_request_right_ptr;

The authority field indicates the authority responsible for defining
the value. The value field is a representation of the value of the right,
within the namespace defined by the authority.

The options field is a list of elements of type gaa_request_option.
It contains a list of pointers to parameters associated with the
request right.

The intrl field is internal to the GAA-API implementation and should
be ignored by the application.

3.5.2 gaa_request_option

The gaa_request_option stucture is used to provide hints for condition
evaluation functions. When an authorization request is made to
GAA-API, the condition-evaluation functions are passed a pointer to
the requested right, which may contain a list of options. The
condition-evaluation function can then look through the list of
options to find any that are relevant. For example, if a condition
requires that "file size must be less than 10k", then a
condition-evaluation function for that condition could check to see
whether there was a "file size" option in the request (if there was,
the function can return yes or no based on the option's value; if
there wasn't, that function must return maybe).

 struct gaa_request_option {
 gaa_string_data type; /* option type */
 gaa_string_data authority; /* defining authority */
 gaa_string_data value; /* within namespace defined
 by authority */
 struct gaaint_request_option *intrl; /* internal data */
 };

The type field defines the type of the option. The authority field
indicates the authority responsible for defining the value, and the
value indicates the value of the token (within the namespace defined
by the authority field).

The intrl field is internal to the GAA-API implementation and should
be ignored by the application.

3.6 Credentials

GAA-API recognizes several types of credentials, which it maintains
in a common credential structure.

3.6.1. gaa_cred_type

The gaa_cred_type enumeration describes the different types of
credentials:

 typedef enum {

 GAA_IDENTITY, /* user identity */
 GAA_GROUP_MEMB, /* group membership */
 GAA_GROUP_NON_MEMB, /* group non-membership */
 GAA_AUTHORIZED, /* authorized credential (capability) */
 GAA_ATTRIBUTES, /* attribute credential */
 GAA_UNEVAL, /* unevaluated (raw) credential */
 GAA_ANY
 } gaa_cred_type;

3.6.2. gaa_principal

The gaa_principal structure describes a principal (an authenticated
entity):

 struct gaa_principal_struct {
 gaa_cred_type type; /* credential type */
 gaa_string_data authority; /* defining meaning of token value */
 gaa_string_data value; /* value (in namespace defined
 by authority) */
 };
 typedef struct gaa_principal_struct gaa_principal, *gaa_principal_ptr;

The type entry indicates the credential type (identity, group, etc.).
The authority field indicates the defining authority (e.g. kerberos,
x509), and the value field indicates the value within the namespace
defined by the authority.

3.6.3 gaa_cred

The gaa_cred structure is the GAA-API credential data type:

 struct gaa_cred_struct {
 gaa_cred_type type;
 gaa_principal_ptr grantor;
 gaa_principal_ptr principal;
 void *mech_spec_cred; /* raw credential */
 struct gaaint_mechinfo *mechinfo; /* functions to handle raw creds */
 union {
 gaa_identity_info_ptr id_info;
 gaa_authr_info_ptr authr_info;
 gaa_attribute_ptr attr_info;
 } info;
 };

 typedef struct gaa_cred_struct gaa_cred, *gaa_cred_ptr;

The type field indicates the type of credential. The grantor field
should list the entity that granted the credential. The principal
field should list the entity that the credential is for. The
mech_spec_cred field is the raw, mechanism-specific credential.
The mechinfo field is a pointer to an application-opaque list of

callback functions to be used on this credential and should be ignored
by the application. The meaning of the info field depends on the
credential type; if the type is GAA_IDENTITY, GAA_GROUP_MEMB, or
GAA_GROUP_NON_MEMB, then the id_info field should be filled in. If
the type is GAA_AUTHORIZED, then the authr_info field should be filled
in. If the type is GAA_ATTRIBUTES, the attr_info field should be filled in.

3.6.4. gaa_identity_info

The gaa_identity_info structure is composed of information specific to
identity credentials:

 struct gaa_identity_info_struct {
 gaa_list_ptr conditions; /* list of gaa_condition_ptr describing
 validity constraints */
 };

 typedef struct gaa_identity_info_struct gaa_identity_info,
 *gaa_identity_info_ptr;

The conditions field is a pointer to an ordered list of elements of
the type gaa_condition_ptr, which lists restrictions placed on the
identity, e.g., validity time periods.

Note: the gaa_identity_info structure doesn't contain any "identity"
information, because that information is kept in the common area
of the gaa_cred structure.

3.6.5. gaa_authr_info

The gaa_authr_info structure contains information specific to
authorized credentials (capabilities):

 struct gaa_authr_info_struct {
 void *objects;
 gaa_list_ptr /* gaa_policy_right_ptr */ access_rights;
 gaa_freefunc free_objects;
 };
 typedef struct gaa_authr_info_struct gaa_authr_info, *gaa_authr_info_ptr;

The objects field is a list of object references to the application-level
objects accessible by the grantee, e.g. files or hosts. Object references
are from the application-specific name space.

The access_rights field is a pointer to a list of elements of the
type gaa_right_ptr. Each element indicate granted or denied access rights.

The free_objects field is a pointer to a function to be called to free
the objects field when the gaa_authr_info structure is freed. This
field may be 0, in which case no function will be called.

3.6.6 gaa_attribute_info

The gaa_attribute_info structure contains information specific to
attribute credentials (credentials that certify that the bearer
has some specific attribute):

 struct gaa_attribute_info_struct {
 gaa_string_data type;
 gaa_string_data authority;
 gaa_string_data value;
 gaa_list_ptr /* gaa_condition_ptr */ conditions;
 };

 typedef struct gaa_attribute_info_struct gaa_attribute_info,
 *gaa_attribute_info_ptr;

The type entry indicates the attribute type (e.g. height, birthdate,
etc.). The authority field indicates the defining authority, and the
value field indicates the value within the namespace defined by the
authority. The conditions field is a list of conditions that must be
met in order for the credential to be considered valid.

3.7 Authorization answer structure

The gaa_check_authorization function fills in a detailed answer structure.

3.7.1 gaa_time_period

The gaa_time_period structure describes a time period:

 struct gaa_time_period_struct {
 time_t start_time; /* NULL for unconstrained start time */
 time_t end_time; /* NULL for unconstrained end time */
 };
 typedef struct gaa_time_period_struct gaa_time_period,
 *gaa_time_period_ptr;

3.7.2 gaa_answer

The gaa_answer structure is the detailed answer from gaa_check_authorization:

 struct gaa_answer_struct
 {
 gaa_time_period_ptr valid_time;
 gaa_list_ptr /* gaa_right_ptr */ rights;
 };
 typedef struct gaa_answer_struct gaa_answer, *gaa_answer_ptr;

If the answer was GAA_C_YES, valid_time is the time period for which
the answer is valid. The rights field is a list of policy rights that
were relevant to the request, with the appropriate evaluated/met flags
filled in.

3.8 Function and callback types

GAA-API makes heavy use of callback functions. The GAA-API callback
registration model includes three things for each type of callback: a
function (or set of related functions), an application-controlled
parameter (opaque to the GAA implementation) that is passed to the
function(s) each time they are called (to be used to provide operating
parameters and/or maintain state information), and a function to be
used to free that application-controlled parameter when the
application determines that the callback will no longer be needed.

3.8.1 gaa_freefunc

The gaa_freefunc type is used for a function to be used to free arbitrary data.

 typedef void (*gaa_freefunc)(void *data);

3.8.2 Condition-evaluation callbacks

3.8.2.1. gaa_cond_eval_func

typedef gaa_status (*gaa_cond_eval_func)(gaa_ptr gaa,
 gaa_sc_ptr sc,
 gaa_condition_ptr condition,
 gaa_time_period_ptr valid_time,
 gaa_list_ptr req_options,
 gaa_status *output_flags,
 void *params);

A function of this type should accept the gaa, sc, and condition
arguments as input (the condition argument being the condition to
evaluate, and the gaa and sc arguments used to find other callback
functions and credentials). The req_options argument is an input
list of gaa_request_option options that the condition may examine
if it chooses to, and the params argument is the optional callback
parameter (see gaa_new_cond_eval_callback in section 4.3.1.1).

The output_flags and valid_time arguments are output parameters.
The function should set output_flags to the appropriate combination of
the GAA_COND_FLG_EVALUATED, GAA_COND_FLG_MET, and GAA_COND_FLG_ENFORCE
flags.
It should interpret the valid_time
pointer as an output parameter (if the condition imposes time
restrictions, the callback function should set the beginning and
ending times to whatever the condition restricts them to).

Functions of this type are used by gaa_check_authorization (see
section 4.2.3.1), gaa_check_condition (see section 4.4.3.1), and
gaa_inquire_policy_info (see section 4.2.3.2).

3.8.2.2. gaa_cond_eval_callback_ptr

 typedef struct gaaint_cond_eval_callback *gaa_cond_eval_callback_ptr;

This is an application-opaque structure to represent a condition evaluation
callback.

Note: section 4.3.1 describes functions to create and register
condition-evaluation callbacks.

3.8.3 Functions to manipulate raw (mechanism-specific) credentials

3.8.3.1. gaa_cred_pull_func type

 typedef int (*gaa_cred_pull_func)(gaa_ptr gaa,
 gaa_sc_ptr sc,
 gaa_cred_type which,
 void *params);

A function of this type should pull raw credentials of the type
specified by "which" (or all types, if "which" is GAA_ANY) and add
them to the security context sc. The function may use the gaa to find
other callbacks if appropriate. The params argument is the optional
callback-specific parameter (see gaa_add_mech_info in section 4.3.2).
Functions of this type are called by gaa_pull_creds (see section 4.4.3.2).

3.8.3.2. gaa_cred_eval_func type

 typedef int (*gaa_cred_eval_func)(gaa_ptr gaa,
 gaa_sc_ptr sc,
 gaa_cred_ptr cred,
 void *raw,
 void *params);

A function of this type should take a raw mechanism-specific credential
and fill in the appropriate values in the credential cred (in the process,
it should create one of the credential entries in the cred->info union).
The gaa and sc arguments are input arguments, and "params" is the optional
callback-specific parameter (see gaa_add_mech_info in section 4.3.2).
Functions of this type are called by gaa_new_cred (see section 4.1.2.2) to
evaluate credentials.

3.8.3.3. gaa_cred_verify_func type

 typedef int (*gaa_cred_verify_func)(gaa_cred_ptr cred,
 void *params);

A function of this type should take an evaluated gaa credential and
verify that it is still valid (i.e. that the raw credential is still
valid and still corresponds to the values listed for its grantor,
principal, etc.). The "params" argument is the optional
callback-specific parameter (see gaa_add_mech_info in section 4.3.2).
Functions of this type are used by gaa_verify_cred (see section 4.4.3.3).

3.8.4. Callback to get policy information

 typedef int (*gaa_getpolicy_func)(gaa_ptr gaa,
 gaa_policy_ptr *policy,
 gaa_string_data object,
 void *params);

A function of this type should take a gaa pointer, an object name, and an
optional pointer to application-specific parameters, and create an output
policy structure containing all the policy information that relates to
that object.

The getpolicy callback is registered with gaa_set_getpolicy_callback
(see section 4.3.3) and used by gaa_get_object_policy_info (see section
4.2.2).

3.8.5 Functions to override GAA default behavior

Each GAA-API implementation has default internal representations of
policy right values and request right values and a default function to
determine which policy rights match a request right. Most
applications can simply use these defaults (and ignore everything in
this section); however, GAA-API provides callbacks to override them.

3.8.5.1 Callback to find the subset of a policy that applies to
a requested right.

 typedef int (*gaa_matchrights_func)(gaa_ptr gaa,
 gaa_policy_ptr inpolicy,
 gaa_request_right_ptr right,
 gaa_policy_ptr outpolicy,
 void *params);

A function of this type should take a gaa pointer, an input policy
(inpolicy), and an input requested right, and fill in an output
policy with those entries from the input policy (in the same order)
that apply to the requested right. The gaa_set_matchrights_callback
function (see section 4.3.4) is used to set this callback.

3.8.5.2. Function types associated with the internal representation
of right values ("valinfo" functions). These callbacks are registered
using gaa_add_authinfo (see section 4.3.5).

3.8.5.2.1. gaa_copyval_func

 typedef gaa_status (*gaa_copyval_func)(void **newval,
 gaa_string_data authority,
 void *oldval,
 void *params);

Functions of this type should take a defining authority, a right value

("oldval"), and optional callback parameters ("params"), and create a
new value ("newval") that's a duplicate of the original value ("oldval").

3.8.5.2.2. gaa_string2val_func

 typedef gaa_status (*gaa_string2val_func)(void **val,
 gaa_string_data authority,
 gaa_string_data valstr,
 void *params);

Functions of this type should take a defining authority, an input
string ("valstr"), and optional callback parameters ("params"), and
create a new value ("val") containing an internal representation of
that string.

3.8.5.2.3. gaa_val2string_func

 typedef char *(*gaa_val2string_func)(gaa_string_data authority,
 void *val,
 gaa_string_data buf,
 int bsize,
 void *params);

Functions of this type should take a defining authority, a right value
("val"), a buffer ("buf") of size bsize, and optional callback
parameters ("params"), and return a character-string representation of
that value. These functions are not required to write the
character-string representation into the supplied buffer.

3.8.5.2.4. gaa_valmatch_func

 typedef int (*gaa_valmatch_func)(gaa_string_data authority,
 void *rval,
 void *pval,
 void *params);

Functions of this type should take a defining authority, an input
request right ("rval"), and input policy right ("pval"), and optional
callback parameters ("params"), and return 1 if the request right
matches the policy right and 0 otherwise.

3.8.5.2.5. gaa_valinfo_ptr

The gaa_valinfo_ptr is an application-opaque data type used to register
functions of the types described in this section as callbacks:

 typedef struct gaaint_valinfo *gaa_valinfo_ptr;

4. GAA-API functions

Unless otherwise noted, all GAA-API routines return GAA_S_SUCCESS on
success and one of the error codes defined in section 5 on failure.

4.1 Initialization functions

4.1.1 gaa_initialize

The gaa_initialize function must be called before any other GAA-API function.
It initializes the GAA-API structures and sets up the default behavior
of GAA-API routines. (The default behaviors can be modified later using
the GAA-API callback registration routines in section 4.3).

 gaa_status
 gaa_initialize(gaa_ptr *gaa, /* OUT */
 void *params /* IN & OUT, OPTIONAL */);

 Parameters:
 gaa
 A pointer to the gaa structure that will be allocated an initialized.

 params
 A handle to an implementation-specific structure, containing
 initialization information. Can be used to return
 implementation-specific output information.

A gaa structure created with gaa_initialize should later be freed
using gaa_cleanup (see section 4.8).

4.1.2 Routines to keep track of credentials

The security context contains information about credentials. An
application will typically create a security context with gaa_new_sc,
then create credentials with gaa_new_cred and add them to the
security context with gaa_add_cred.

4.1.2.1. gaa_new_sc

The gaa_new_sc routine allocates an empty gaa_sc data structure.

 gaa_status
 gaa_new_sc(gaa_sc_ptr *sc /* OUT */);

 Parameters:
 sc
 A pointer to the security context to be allocated.

A structure created using this function should be freed using gaa_free_sc
(see section 4.8).

4.1.2.2. gaa_new_cred

The gaa_new_cred routine creates a new credential and fills it in with

appropriate values.

 gaa_status gaa_new_cred (gaa_ptr gaa,
 gaa_sc_ptr sc,
 gaa_cred_ptr *cred,
 gaa_string_data mech_type,
 void *mech_spec_cred,
 gaa_cred_type cred_type,
 int evaluate,
 gaa_status *estat)

 Parameters:
 gaa input gaa pointer
 sc input security context
 mech_type input credential mechanism type
 mech_spec_cred input raw credential
 cred_type input credential type (identity, group, etc.).
 evaluate input flag -- if nonzero, the credential is
 evaluated (i.e. the appropriate cond_eval callback
 is called)
 estat output -- if evaluate and estat are both nonzero,
 then estat is set to the return value of the
 cond_eval function.

A credential created using this function should be freed with
gaa_free_cred (see section 4.8).

4.1.2.3 gaa_add_cred

The gaa_add_cred routine adds a credential to a security context.

 gaa_status gaa_add_cred (gaa_ptr gaa,
 gaaint_sc_ptr sc,
 gaa_cred_ptr cred)

 Add a credential to a security context.

 Parameters:
 gaa input gaa pointer
 sc input/output security context.
 cred input credential to add

4.2. Functions to evaluate an authorization request.

There are three steps to checking an authorization request: creating
a list of requested rights to represent the request, finding the
policy relevant to the request, and calling a routine to check the
requested rights against the policy.

4.2.1. Functions to build the list of requested rights

4.2.1.1. gaa_new_req_rightlist

The gaa_new_req_rightlist function creates an empty list of requested
rights:

 gaa_list_ptr gaa_new_req_rightlist (int freerights)

 Parameters:
 freerights input flag to control the behavior of gaa_list_free
 when (and if) it is called to free this list. If
 this flag is 0, then gaa_list_free will free only
 the list itself, not any of the rights in the list.
 If freerights is nonzero, then both the list and all
 the rights contained in it will be freed.

 Return values:
 on success, returns an empty list.
 on failure, returns 0.

4.2.1.2. gaa_new_request_right

The gaa_new_request_right function allocates a new request right
structure and fill it in with the specified values.

 gaa_status gaa_new_request_right (gaa_ptr gaa,
 gaa_request_right_ptr *right,
 gaa_string_data authority,
 gaa_string_data val)

 Parameters:
 right output right pointer
 authority input authority
 val input string representation of value

Request rights created with this routine should be freed with
gaa_free_request_right().

Note: some applications that use callbacks to override the GAA-API
implementation's default internal representation of right values
may wish to use gaa_new_request_right_rawval (see section 4.7.7)
instead of this function.

4.2.1.3. gaa_add_option

The gaa_add_option function adds an option to a request right. It
may be called several times to add more than one option to a right.

 gaa_status gaa_add_option (gaa_request_right_ptr right,
 gaa_string_data type,
 gaa_string_data authority,
 void *value,
 gaa_freefunc freeval)

 Add an option to a request right.

 Parameters:
 right input/output right
 type input option type
 authority input option authority
 value input option value
 freeval optional input function to free value when the option
 is freed (which will happen automatically when right is
 freed with gaa_free_request_right().

4.2.1.4. gaa_add_request_right

The gaa_add_request_right function adds a request right to a list.

 gaa_status gaa_add_request_right (gaa_list_ptr rightlist,
 gaa_request_right_ptr right)

 Parameters:
 rightlist input/output list to add right to
 right input right to add.

4.2.2. Function to retrieve policy information

The gaa_get_object_policy_info function retrieves policy information
for an object. This function calls the installed getpolicy callback.

 gaa_status gaa_get_object_policy_info (gaa_string_data object,
 gaa_ptr gaa,
 gaa_policy_ptr *policy)

 Parameters:
 object input object to get policy for
 gaa input gaa pointer
 policy output policy to create

4.2.3. Functions to make access control decisions.

4.2.3.1. gaa_check_authorization

The gaa_check_authorization function checks whether the requested
rights are authorized under the specified policy.

 gaa_status gaa_check_authorization (gaa_ptr gaa,
 gaa_sc_ptr sc,
 gaa_policy_ptr policy,
 gaa_list_ptr req_rights,
 gaa_answer_ptr answer)

 Parameters:

 gaa input gaa pointer
 sc input security context
 policy input policy
 req_rights input list of requested rights
 answer output detailed answer -- lists all matching policy
 rights and associated conditions, with flags set to
 indicate whether each condition was evaluated and/or
 met. If the result is GAA_C_YES, then the answer
 includes the time period for which the result is valid
 (if the start or end time is 0, that time is
 indefinite). Before being passed to this function, the
 answer structure should be created with
 gaa_new_answer (see section 4.7.3).

 Return values:
 GAA_C_YES Access is granted to all requested
 rights.
 GAA_C_NO Access is denied for at least one
 requested right.
 GAA_C_MAYBE Access is not explicitly denied for any
 requested right, but there is at least
 one requested right that GAA cannot
 decide.
 GAA_S_INVALID_ARG sc, policy, answer, or gaa is null
 GAA_S_NO_MATCHING_ENTRIES The list of requested rights is empty.

This function makes use of several callback routines -- the GAA-API
matchrights callback to determine the subset of the policy that applies
to the requested rights, and cond_eval callbacks to evaluate specific
conditions. The matchrights callback is also likely to use the valmatch
function from the appropriate authinfo callback(s) to determine whether
a specific request right matches a specific policy right.

4.2.3.2. gaa_inquire_policy_info

The gaa_inquire_policy_info function returns the subset of the input
policy that applies to the individual identified with the specified
security context. This is the union of the set of rights that do not
have any identity conditions with the set of rights whose identity
conditions all match the individual.

 gaa_status gaa_inquire_policy_info (gaa_ptr gaa,
 gaa_sc_ptr sc,
 gaa_policy_ptr policy,
 gaa_list_ptr *out_rights)

 Parameters:
 gaa input gaa pointer
 sc input security context
 policy input policy
 out_rights output list of policy rights

The list returned in out_rights should be freed with gaa_list_free
(see section 4.6.4).

4.3. Functions to register callbacks with GAA-API.

4.3.1. Functions to register condition-evaluation callbacks.

A condition-evaluation callback is created using
gaa_new_cond_eval_callback and associated with a condition
type/authority pair using gaa_add_cond_eval_callback.

See section 3.8.2 for descriptions of the data types used by these
functions.

4.3.1.1. gaa_new_cond_eval_callback

The gaa_new_cond_eval_callback function creates a condition evaluation
callback. If the callback is later installed with
gaa_add_cond_eval_callback(), then it will be used (when appropriate)
by gaa_check_authorization() and gaa_inquire_policy_info() to evaluate
conditions.

 gaa_status gaa_new_cond_eval_callback (gaa_cond_eval_callback_ptr *cb,
 gaa_cond_eval_func func,
 void params,
 gaa_freefunc
freeparams)

 Parameters:
 cb output callback to create.
 func input callback function.
 params input callback params -- will be passed to func whenever
 it's called.
 freeparams input function to free params when cb is freed.

A callback created with this function should be freed with
gaa_free_cond_eval_callback(). If a callback is added to a gaa
structure with gaa_add_cond_eval_callback(), it will be freed
automatically when the gaa structure is freed with gaa_free_gaa().

4.3.1.2. gaa_add_cond_eval_callback

The gaa_add_cond_eval_callback function adds a condition evaluation
callback, associated with the specified type and authority.

 gaa_status gaa_add_cond_eval_callback (gaa_ptr gaa,
 gaa_cond_eval_callback_ptr cb,
 gaa_string_data type,
 gaa_string_data authority,
 int is_idcred)

 Parameters:
 gaa input/output gaa pointer
 cb input condition evaluation callback (should be a
 callback created with gaa_new_cond_eval_callback()).
 type input condition type to associate this callback with
 authority input condition authority to associate this callback
 with
 is_idcred input flag -- if nonzero, then
 gaa_inquire_policy_info (see section 4.2.3.2) will
 interpret conditions with this type and authority
 as identity conditions.

When gaa_check_authorization() or gaa_inquire_policy_info()
searches for a callback routine for a condition, it first looks for
a callback that was installed with the same type and authority as
the condition. If no match is found, it searches for a callback
with the same authority and a null type. If no match is found, it
searches for a callback with the same type and a null authority. If
no match is found, it searches for a callback with null type and
authority.

4.3.2. Function to register callbacks to deal with mechanism-specific
credentials.

The gaa_add_mech_info function creates and adds a mechinfo callback,
which consists of routines to pull additional credentials, evaluate
raw credentials, verify credentials, and free raw credentials. This
callback can either be associated with a specific mechanism type, or
can be installed as a default to be used when no other mechinfo
callback matches the requested mechanism type.

See section 3.8.3 for descriptions of the data types used by this
function.

gaa_status gaa_add_mech_info (gaa_ptr gaa,
 gaa_string_data mech_type,
 gaa_cred_pull_func cred_pull,
 gaa_cred_eval_func cred_eval,
 gaa_cred_verify_func cred_verify,
 gaa_freefunc cred_free,
 void *params,
 gaa_freefunc freeparams)

 Parameters:
 gaa input/output gaa pointer
 mech_type input mechanism type
 cred_pull input cred_pull callback. Used by gaa_pull_creds() to
 pull additional credentials.
 cred_eval input cred_eval callback. Used by gaa_new_cred() to
 evaluate a raw credential (translate it into a gaa
 identity, group, etc. credential).

 cred_verify input cred_verify callback. Used by gaa_verify_cred()
 to verify the raw credential (check that it's still
 valid).
 cred_free input cred_free callback. Used by gaa_free_cred() to
 free the raw credential.
 params input mechinfo parameter -- passed as an argument to
 cred_pull, cred_eval, and cred_verify whenever
 they're called.
 freeparam input freeparam function -- called to free params when
 the gaa pointer is freed.

4.3.3. Function to set the callback routine to get object policy information.

The gaa_set_getpolicy_callback function sets the gaa getpolicy
callback, which is used by gaa_get_object_policy_info (see section
4.2.2) to create a policy structure containing the policy information
associated with an object.

 gaa_status gaa_set_getpolicy_callback (gaa_ptr gaa,
 gaa_getpolicy_func func,
 void *param,
 gaa_freefunc freefunc)

 Parameters:
 gaa input/output gaa pointer
 func input getpolicy function
 param input getpolicy parameter (to be passed to func whenever
 it's called).
 freefunc input function to be used to free param when the gaa
 pointer is freed.

4.3.4. Function to override GAA-API's internal function to determine
what subset of a policy is relevant to a request.

Each GAA-API implementation has an internal function to
compare a list of requested rights with a policy to determine
which policy entries are relevant to the request. The
gaa_set_matchrights_callback function is used to replace this
internal function with one specified by the application. See
section 3.8.5 for a description of the gaa_matchrights_func
data type.

 gaa_status gaa_set_matchrights_callback (gaa_ptr gaa,
 gaa_matchrights_func func,
 void *param,
 gaa_freefunc freefunc)

 Parameters:
 gaa input/output gaa pointer
 func input matchrights function

 param input getpolicy parameter (to be passed to func whenever
 it's called).
 freefunc input function to be used to free param when the gaa
 pointer is freed.

4.3.5. Functions to override the default internal representation of
policy right and request right values.

Each GAA-API implementation has internal functions to translate string
representations of policy right and request right values into its own
internal representation, to compare policy right and request right
values, to copy those values, and to express them as character
strings. An application may replace those internal functions
by using gaa_new_valinfo (to create callback structures consisting
of groups of functions) and gaa_add_authinfo (to associate these
callback structures with specific authorities).

See section 3.8.5 for descriptions of the data types used in
these functions.

4.3.5.1. gaa_new_valinfo

The gaa_new_valinfo function allocates a new valinfo structure and
fill it in with the specified callback functions.

 gaa_status gaa_new_valinfo (gaa_valinfo_ptr *valinfo,
 gaa_copyval_func copyval,
 gaa_string2val_func newval,
 gaa_freefunc freeval,
 gaa_val2string_func val2str)

 Parameters:
 valinfo output valinfo pointer
 copyval input copyval callback function. This callback is used by
 gaa_check_authorization() and gaa_inquire_policy_info()
 to create new policy entries.
 newval optional input newval callback function. This callback is
 used by gaa_new_policy_right() and
 gaa_new_request_right() to translate a string value into
 the appropriate internal representation.
 freeval optional input freeval callback function. This callback
 is used by gaa_free_request_right() and
 gaa_free_policy_right() to free right values.
 val2str optional input val2str callback function. This callback
 is used by gaa_request_rightval_string() and
 gaa_policy_rightval_string() to translate a right value
 into a string.

4.3.5.2. gaa_add_authinfo

The gaa_add_authinfo function adds an authinfo callback. This callback

will be used to interpret and compare policy right values for rights
with the specified defining authority.

 gaa_status gaa_add_authinfo (gaa_ptr gaa,
 char *authority,
 gaa_valinfo_ptr pvinfo,
 gaa_valinfo_ptr rvinfo,
 gaa_valmatch_func match,
 void *params,
 gaa_freefunc freeparams)
 gaa_add_authinfo().

 Parameters:
 gaa input/output gaa pointer
 authority optional input authority that this callback applies
 to. If authority is null, this is considered the
 default authinfo callback for any authority that does
 not have a specific authinfo callback.
 pvinfo input valinfo callback (see gaa_new_valinfo()) to be
 used for policy rights with this authority.
 rvinfo input valinfo callback (see gaa_new_valinfo()) to be
 used for request rights with this authority.
 match input callback function that takes a policy right and
 a request right, and determines whether the values
 match.
 params optional input callback parameters passed to
 pvinfo->copyval, rvinfo->copyval, pvinfo->newval,
 rvinfo->newval, pvinfo->val2str, rvinfo->val2str, and
 match whenever they're called.
 freeparams optional input function to free params when the gaa
 structure is freed.

4.4. Functions used primarily within GAA-API callback routines.

4.4.1. Functions used to build credentials (used primarily
within mechanism-specific cred_eval callback routines -- see sections
3.8.3.2 and 4.3.2).

4.4.1.1. gaa_new_principal

The gaa_new_principal creates a new gaa_principal (for use within a
gaa_cred structure) and fills it in with the specified values.

 gaa_status gaa_new_principal (gaa_sec_principal_ptr *princ,
 gaa_cred_type type,
 gaa_string_data authority,
 gaa_string_data value)

 Parameters:
 princ output gaa_principal to create
 type input credential type

 authority input authority
 value input value

A gaa_principal created using this function should be freed with
gaa_free_principal(). This will happen automatically if it's part
of a credential freed with gaa_free_cred().

4.4.1.2. gaa_new_identity_info

The gaa_new_identity_info function creates an identity_info structure
(to be used as part of a GAA_IDENTITY, GAA_GROUP_MEMB, or
GAA_GROUP_NON_MEMB credential -- see section 3.6).

 gaa_status gaa_new_identity_info (gaa_ptr gaa,
 gaa_identity_info_ptr *info)

 Parameters:
 gaa input
 info output identity info to create.

A gaa_identity_info created using this function should be freed with
gaa_free_identity_info(). This will happen automatically if it's part
of a credential freed with gaa_free_cred().

4.4.1.3. gaa_new_attribute_info

The gaa_new_attribute_info function creates a new attribute_info
structure (to be used as part of a GAA_ATTRIBUTES credential -- see
section 3.6).

gaa_status gaa_new_attribute_info (gaa_ptr gaa,
 gaa_attribute_info_ptr *info,
 gaa_string_data type,
 gaa_string_data authority,
 gaa_string_data value)
 Parameters:
 gaa input gaa pointer
 info output structure to create
 type input attribute type
 authority input attribute authority
 value input attribute value

A structure created using this routine should be freed with
gaa_free_attribute_info(). This will happen automatically if this
structure is part of a credential freed with gaa_free_cred().

4.4.1.4. gaa_new_authr_info

The gaa_new_authr_info function creates a new attribute_info
structure (to be used as part of a GAA_AUTHORIZED credential -- see
section 3.6).

gaa_status gaa_new_authr_info (gaa_ptr gaa,
 gaa_authr_info_ptr *info,
 void *objects,
 gaa_freefunc free_objects)
 Parameters:
 gaa input gaa pointer
 info output structure to create
 objects input objects to store in info
 free_objects input function to be used to free objects when info
 is freed.

A gaa_authr_info created using this function should be freed with
gaa_free_authr_info(). This will happen automatically if it's part
of a credential freed with gaa_free_cred().

4.4.1.5. gaa_add_authr_right

The gaa_add_authr_right function adds a right to a GAA_AUTHORIZED credential

 gaa_status gaa_add_authr_right (gaa_cred_ptr cred,
 gaa_policy_right_ptr right)

 Parameters:
 cred input/output condition to add right to
 right input right

If cred is freed with gaa_free_cred, the right will be be freed at
the same time.

4.4.1.6 gaa_add_cred_condition

The gaa_add_cred_condition function adds a condition to a credential.
The credential must be one of the credential types that accepts
conditions (see section 3.6).

gaa_status gaa_add_cred_condition (gaa_cred_ptr cred,
 gaa_condition_ptr cond)
 Parameters:
 cred input/output credential to add condition to
 cond input condition to add.

Note: If the credential is freed with gaa_free_cred(), the condition will
be freed at the same time.

4.4.2. Functions used to build policies (used primarily within
gaa_getpolicy callback functions -- see sections 3.8.4 and 4.2.2).

To build a policy, first create it (with gaa_new_policy), then
create policy rights (with gaa_new_policy_right, possibly
adding conditions with gaa_add_condition) and add them with
gaa_add_policy_entry.

4.4.2.1. gaa_new_policy

The gaa_new_policy function creates a new policy structure.

 gaa_status gaa_new_policy (gaa_policy_ptr *policy,
 void *raw_policy,
 gaa_freefunc freeraw)

 Parameters:
 policy output policy to create
 raw_policy optional input raw policy
 freeraw optional input function to free raw_policy when
 policy is freed.

A policy structure allocated by this function should be freed with
gaa_free_policy().

4.4.2.2. gaa_new_policy_right

The gaa_new_policy_right function creates a new policy right.

 gaa_status gaa_new_policy_right (gaa_ptr gaa,
 gaa_policy_right_ptr *right,
 gaa_right_type type,
 gaa_string_data authority,
 gaa_string_data val)

 Parameters:
 gaa input gaa pointer
 right output policy right to create
 type input right type (pos_access_right or neg_access_right)
 authority input right authority
 val input string representation of right value

Note: some applications that use callbacks to override the GAA-API
implementation's default internal representation of right values
may wish to use gaa_new_policy_right_rawval (see section 4.7.6)
instead of this function.

4.4.2.3. gaa_add_condition

The gaa_add_condition function adds a condition to a policy right.

 gaa_status gaa_add_condition (gaa_policy_right_ptr right,
 gaa_condition_ptr condition)

 Parameters:
 right input right to add
 condition input/output condition to add right to.

4.4.2.4. gaa_add_policy_entry

The gaa_add_policy_entry function adds a policy entry to a policy.

 gaa_status gaa_add_policy_entry (gaa_policy_ptr policy,
 gaa_policy_right_ptr right,
 int priority,
 int num)
 Parameters:
 policy input/output policy
 right input right to add
 priority input entry priority
 num input entry number (for order within priority)

4.4.3. Functions used primarily in condition-evaluation callbacks.

4.4.3.1. gaa_check_condition

The gaa_check_condition function checks a single condition. This
utility function is meant to be used in cond_eval callbacks, when
evaluating conditions recursively.

 gaa_status gaa_check_condition (gaa_ptr gaa,
 gaa_sc_ptr sc,
 gaa_condition_ptr cond,
 gaa_time_period_ptr vtp,
 int *ynm,
 gaa_list_ptr option)

 Parameters:
 gaa input gaa pointer
 cond input condition to evaluate
 vtp output valid time period
 ynm output answer -- set to GAA_C_YES, GAA_C_NO, or
 GAA_C_MAYBE
 options optional input list (of type gaa_request_option) of
 request options

4.4.3.2. gaa_pull_creds

The gaa_pull_creds function locates and call the appropriate callback
function to pull additional credentials for the specified mechanism
type (or if no mechanism type was specified, call the cred_pull
callback functions for all mechanism types), and add the new
credentials to the security context.

 gaa_status gaa_pull_creds (gaa_ptr gaa,
 gaa_sc_ptr sc,
 gaa_cred_type which,
 gaa_string_data mech_type)

 Parameters:
 gaa input gaa pointer
 sc input/output security context

 which input what type of credential to pull (identity, group,
 etc.)
 mech_type which mechanism type to pull (or all of them, if 0)

4.4.3.3. gaa_verify_cred

The gaa_verify_cred function calls the appropriate mechanism-specific
cred_verify function to verify the credential.

 gaa_status gaa_verify_cred (gaa_cred_ptr cred)

 Parameters:
 cred input credential to verify

4.4.3.4. gaa_getcreds

The gaa_getcreds function finds credentials of the specified type in
the security context.

 gaa_status gaa_getcreds (gaa_ptr gaa,
 gaa_sc_ptr sc,
 gaa_list_ptr *credlist,
 gaa_cred_type which)

 Parameters:
 gaa input gaa pointer
 sc input security context
 credlist input/output credential list
 which input desired credential type

4.4.4. Functions for use in gaa_matchrights callback functions.

4.4.4.1. gaa_match_rights

 gaa_status gaa_match_rights (gaa_ptr gaa,
 gaa_request_right_ptr rright,
 gaa_policy_right_ptr pright,
 int *match)

 Determines whether a request right matches a policy right. If the two
 rights do not have the same authority, they don't match. If they do,
 then the valmatch callback appropriate to that authority is called to
 determine whether they match or not. This utility function is meant to
 be used in GAA matchrights callback functions.

 Parameters:
 gaa input gaa pointer
 rright input request right
 pright input policy right
 match output -- set to 1 if they match, 0 if they don't

4.4.5. Function for use by all callback functions

 gaa_status gaa_set_callback_err (gaa_string_data err)

 Set the gaa thread-specific callback error string.

 Parameters:
 err input string to set the callback error to.

4.5. String functions

These functions return character string representations of values.

4.5.1 gaa_get_err

The gaa_get_err function returns the gaa thread-specific error string.

 gaa_string_data gaa_get_err ()

4.5.2. gaa_get_callback_err

The gaa_get_callback_err function returns the gaa thread-specific
callback error string.

 gaa_string_data gaa_get_callback_err ()

4.5.3. gaa_request_rightval_string

The gaa_request_rightval_string function converts the value of a
request right into a string.

 gaa_string_data gaa_request_rightval_string (gaa_ptr gaa,
 gaa_string_data authority,
 void *val,
 char *buf,
 int bsize)

 Parameters:
 gaa input gaa pointer
 authority input authority
 val input value
 buf input buffer -- should be large enough to hold the
 resulting string
 bsize input size of buf

Note: If a val2str callback function was installed for this authority
(see section 4.3.5), then that function is used to do the conversion.
Calling gaa_request_rightval_string may or may not result in the
result string being written into buf, depending on the behavior of the
callback function.

4.5.4 gaa_policy_rightval_string

The gaa_policy_rightval_string function converts the value of a
policy right into a string.

 gaa_string_data gaa_policy_rightval_string (gaa_ptr gaa,
 gaa_string_data authority,
 void *val,
 char *buf,
 int bsize)

 Parameters:
 gaa input gaa pointer
 authority input authority
 val input value
 buf input buffer -- should be large enough to hold the
 resulting string

 bsize input size of buf

Note: If a val2str callback function was installed for this authority
(see section 4.3.5), then that function is used to do the conversion.
Calling gaa_request_rightval_string may or may not result in the
result string being written into buf, depending on the behavior of the
callback function.

4.6. List functions

4.6.1. gaa_list_first

The gaa_list_first function finds the first entry in a list.

 gaa_list_entry_ptr gaa_list_first (gaa_list_ptr list)

 Parameters:
 list input list

 Return values:
 <list_entry> first list entry
 0 list was null

4.6.2. gaa_list_next

The gaa_list_next function finds the next entry in a list.

 gaa_list_entry_ptr gaa_list_next (gaa_list_entry_ptr entry)

 Parameters:
 entry input list entry

 Return values:
 <list_entry> next list entry

 0 entry was null

4.6.3. gaa_list_entry_value

The gaa_list_entry_value function finds the data in a list entry.

 void * gaa_list_entry_value (gaa_list_entry_ptr entry)

 Parameters:
 entry input list entry

 Return values:
 <data> data from list entry
 0 entry was null

4.6.4. gaa_list_free

The gaa_list_free function frees a list and all its entries.

 void gaa_list_free (gaa_list_ptr list)

 Parameters:
 list list to free

 Note:
 If, when the list was created, a function was specified to free
 the list's entries, that function will be called to free the
 data associated with each list entry.

4.7. Miscellaneous functions

4.7.1. gaa_new_condition

The gaa_new_condition function allocates a new gaa_condition structure
and fills in the specified values.

 gaa_status gaa_new_condition (gaa_condition_ptr *cond,
 gaa_string_data type,
 gaa_string_data authority,
 gaa_string_data value)

 Parameters:
 cond output condition
 type input condition type
 authority input condition authority
 value input condition value

Conditions allocated with this function should be freed with
gaa_free_condition().

4.7.2. gaa_new_gaa

The gaa_new_gaa function creates a new gaa structure.

 gaa_status gaa_new_gaa (gaa_ptr * gaa)

 Parameters:
 gaa output gaa pointer to create.

A gaa structure created using this function should be freed with
gaa_free_gaa.

4.7.3. gaa_new_answer

The gaa_new_answer function creates a new answer structure (suitable
for use in a call to gaa_check_authorization()).

 gaa_status gaa_new_answer (gaa_answer_ptr *answer)

 Parameters:
 answer output answer structure to create

A structure created with this function should be freed with
gaa_free_answer().

4.7.4. gaa_clear_policy

The gaa_clear_policy function clears a policy structure (and free all
its entries).

 void gaa_clear_policy (gaa_policy_ptr policy)

 Parameters:
 policy input/output policy to clear

4.7.5. gaa_init_policy

The gaa_init_policy function initializes a policy structure.

 gaa_status gaa_init_policy (gaa_policy_ptr policy)

 Parameters:
 policy input/output policy to initialize

4.7.6. gaa_new_policy_right_rawval

The gaa_new_policy_right_rawval function is an alternative form of
gaa_new_policy_right. It's intended for use by applications that
have overriden the default GAA-API internal representation of
right values and that wish to set those values directly rather
than translating them from character strings.

 gaa_status gaa_new_policy_right_rawval (gaa_ptr gaa,
 gaa_policy_right_ptr *right,

 gaa_right_type type,
 gaa_string_data authority,
 void *val)

 Parameters:
 gaa input gaa pointer
 right output right pointer
 type input right type (pos_access_right or neg_access_right)
 authority input authority
 val input value

Policy rights created with this routine should be freed with
gaa_free_policy_right().

4.7.7. gaa_new_request_right_rawval

The gaa_new_request_right_rawval function is an alternative form of
gaa_new_request_right. It's intended for use by applications that
have overriden the default GAA-API internal representation of
right values and that wish to set those values directly rather
than translating them from character strings.

 gaa_status gaa_new_request_right_rawval (gaa_ptr gaa,
 gaa_request_right_ptr *right,
 gaa_string_data authority,
 void *value)

 Parameters:
 gaa input gaa pointer
 right output right pointer
 authority input authority
 val input value

Request rights created with this routine should be freed with
gaa_free_request_right().

4.8. Functions to release resources.

The functions in this section free GAA-API data structures.

 void gaa_free_answer (gaa_answe_ptrr answer)
 Frees an answer structure and its component policy rights.

 void gaa_free_policy (gaa_policy_ptr policy)
 Frees a policy structure and all its entries.

 void gaa_free_policy_entry (gaa_policy_entry_ptr ent)
 Frees a policy entry and its associated right.

 Note: If a policy was created using gaa_new_policy() or
 initialized using gaa_init_policy(), then this function will be

 called by gaa_free_policy() when the policy is freed.

 void gaa_free_policy_right (gaa_policy_right_ptr right)
 Free a policy right.

 Note: If a policy was created with gaa_new_policy() or initialized
 with gaa_init_policy() and is freed with gaa_free_policy(), then this
 function will be called to free all associated policy rights when
 the policy is freed.

 void gaa_free_cred (gaa_cred_ptr cred)
 Free a credential and its components.

 Note: This function calls the mechanism-specific cred_free callback
 function to free the raw credential.
 This function is automatically called to free any credential that's part
 of a security context being freed with gaa_free_sc().

 void gaa_free_principal (gaa_principal_ptr princ)
 Frees a gaa_principal.

 Note: If a gaa_principal structure is the principal or grantor in
 a gaa_cred structure, then this gaa_free_cred will call this function
 to free that gaa_pricincipal structure when the credential is
 freed.

 void gaa_free_attribute_info (gaa_attribute_info_ptr info)
 Free an attribute_info structure and its components.

 Note: If a GAA_ATTRIBUTE credential is freed with gaa_free_cred(),
 this function will be called automatically to free the associated
 attribute info.

 void gaa_free_authr_info (gaa_authr_info_ptr info)
 Free a gaa_authr_info structure (and its components).

 Note: If a GAA_AUTHORIZED credential is freed with gaa_free_cred(),
 this function will be called automatically to free the associated
 authorization info.

 void gaa_free_identity_info (gaa_identity_info_ptr info)
 Free a gaa_identity_info structure (and its components).

 Note: If a GAA_IDENTITY, GAA_GROUP_MEMB, or GAA_GROUP_NON_MEMB
 credential is freed with gaa_free_cred(), this function will be
 called automatically to free the associated identity info.

 void gaa_free_condition (gaa_condition_ptr cond)
 Free a condition (and all its components).

 void gaa_free_gaa (gaa_ptr gaa)

 Free a gaa structure and its components.

 void gaa_free_request_right (gaa_request_right_ptr right)
 Free a request right (and all its components).

 void gaa_free_sc (gaa_sc_ptr sc)
 Free a gaa security context and its components.

 void gaa_free_cond_eval_callback (gaa_cond_eval_callback_ptr cb)
 Free a condition evaluation callback structure.

 Note: if a callback is installed in a gaa structure, then gaa_free()
 will call this function to free the callback when the gaa structure
 is free.

 void gaa_free_valinfo (gaa_valinfo_ptr valinfo)
 Free a valinfo structure and its components.

 Note:
 If a valinfo structure is installed in a gaa structure as
 a callback, then this function will be called automatically
 to free that valinfo structure when the gaa structure is freed.

 void gaa_cleanup (gaa_ptr gaa, void *params)
 Cleans up internal GAA API structures allocated and initialized
 using the gaa_initialize function. The gaa and params arguments
 should be the same as those passed to gaa_initialize.

5. Status codes

The GAA-API routines return a status code of type gaa_status.

Encapsulated in the returned status code are major and minor status
codes. Each of them has a value range equivalent to 16 bit unsigned
integer values. The major code is in low 16 bits, the minor code is
in high 16 bits. The major codes indicate errors that are independent
of the underlying mechanisms. The errors that can be indicated via a
GAA-API major status code are generic API routine errors (errors that
are defined in this specification).

The minor code is implementation-dependent and is used to indicate specialized
errors from the underlying mechanisms or provide additional information about
the GAA-API errors.

 GAA_S_SUCCESS 0 Successful completion.

 GAA_C_YES 0 An authorization request is granted.

 GAA_C_NO 1 An authorization request is denied.

 GAA_C_MAYBE 2 An authorization request has not

 been evaluated.

 GAA_S_FAILURE 3 The underlying mechanism detected an
 error for which no specific GAA-API
 status code is defined.

 GAA_S_INVALID_STRING_DATA_HNDL 4 The handle supplied does not point
 to a valid gaa_string_data structure.

 GAA_S_INVALID_LIST_HNDL 5 The handle supplied does not point
 to a valid gaa_list structure.

 GAA_S_INVALID_GAA_HNDL 6 The handle supplied does not point
 to a valid gaa structure.

 GAA_S_INVALID_POLICY_ENTRY_HNDL 7 The handle supplied does not point
 to a valid gaa_policy_entry structure.

 GAA_S_INVALID_POLICY_HNDL 8 The handle supplied does not point
 to a valid gaa_policy structure.

 GAA_S_INVALID_SC_HNDL 9 The handle supplied does not point
 to a valid gaa_sc structure.

 GAA_S_INVALID_ANSWER_HNDL 10 The handle supplied does not point
 to a valid gaa_answer structure.

 GAA_S_INVALID_REQUEST_RIGHT_HNDL 11 The handle supplied does not point
 to a valid gaa_request_right
 structure.

 GAA_S_INVALID_POLICY_RIGHT_HNDL 12 The handle supplied does not point
 to a valid gaa_policy_right
 structure.

 GAA_S_INVALID_CONDITION_HNDL 13 The handle supplied does not point
 to a valid gaa_condition structure.

 GAA_S_INVALID_OPTIONS_HNDL 14 The handle supplied does not point
 to a valid gaa_options structure.

 GAA_S_INVALID_IDENTITY_INFO_HNDL 15 The handle supplied does not point
 to a valid gaa_uneval_cred structure.

 GAA_S_INVALID_AUTHR_INFO_HNDL 16 The handle supplied does not point
 to a valid gaa_authr_cred structure.

 GAA_S_INVALID_PRINCIPAL_HNDL 17 The handle supplied does not point
 to a valid gaa_principal structure.

 GAA_S_INVALID_ATTRIBUTE_HNDL 18 The handle supplied does not point
 to a valid gaa_attribute structure.

 GAA_S_UNIMPLEMENTED_FUNCTION 19 The function is not supported by
 the underlying implementation.

 GAA_S_NO_MATCHING_ENTRIES 20 No matching policy entries have been
 found for the requested right.

 GAA_S_POLICY_PARSING_FAILURE 21 Indicates an error during policy
 parsing.

 GAA_S_POLICY_RETRIEVING_FAILURE 22 Indicates an error during policy
 retrieval process.

 GAA_S_INVALID_ARG 23 One or more arguments was invalid.

 GAA_S_UNKNOWN_CRED_TYPE 24 The cred_type of a credential is
 invalid

 GAA_S_UNKNOWN_MECHANISM 25 No mechanism-specific callback
 functions were found for this
 credential mechanism

 GAA_S_NO_CRED_PULL_CALLBACK 26 An attempt was made to pull
 credentials, but no cred_pull
 callback had been registered
 for this mechanism.

 GAA_S_NO_AUTHINFO_CALLBACK 27 No authinfo callback has been
 registered for this authority.

 GAA_S_NO_NEWVAL_CALLBACK 28 No newval callback has been
 registered for this authority.

 GAA_S_NO_GETPOLICY_CALLBACK 29 No getpolicy callback has been
 registered.

 GAA_S_NO_MATCHRIGHTS_CALLBACK 30 No matchrights callback has been
 registered.

 GAA_S_INVALID_IDENTITY_CRED 31 The credential's cred_type and
 principal's cred_type do not match.

 GAA_S_BAD_CALLBACK_RETURN 32 A callback routine returned an error.

 GAA_S_INTERNAL_ERR 33 There was a GAA internal error.

 GAA_S_SYSTEM_ERR 34 There was a system error.

 GAA_S_CRED_PULL_FAILURE 35 There was a problem pulling
 credentials.

 GAA_S_CRED_EVAL_FAILURE 36 There was a problem evaluating
 credentials

 GAA_S_CRED_VERIFY_FAILURE 37 There was a problem verifying
 credentials.

 GAA_S_CONFIG_ERR 38 There was a configuration error.

6. The GAA-API flags

Flags are 32 bits.

Condition flags:

 COND_FLG_EVALUATED 0x01 condition has been evaluated
 COND_FLG_MET 0x10 condition has been met
 COND_FLG_ENFORCE 0x100 condition has to be enforced

7. The GAA-API usage example

This section provides an example of a simple application which
calls the GAA-API routines.

 #include "gaa.h"

 struct my_right {
 char *authority;
 char *value;
 };

 struct my_request {
 char *object;
 struct my_right *my_rights;
 };

 main()
 {
 gaa_ptr gaa = 0;
 void *client_raw_creds;
 char *cred_mechanism;

 gaa_init(&gaa, 0);
 ...
 process_session(gaa, client_raw_creds, cred_mechanism);
 ...
 gaa_cleanup(&gaa, 0);
 }

 /*
 * process_session() -- sample function to process several gaa
 * requests under the same credentials.

 * Arguments:
 * gaa - input gaa pointer
 * client_raw_creds - input raw credentials of client.
 * cred_mechanism - name of mechanism for client credentials
 * (e.g. gss-api).
 * Return values:
 * 0 success
 * -1 failure
 *
 * This function calls two application-specific functions:
 * get_my_request, to get a request from the client, and
 * process_request, to do whatever the request is if
 * authorization has been granted.
 *
 * Note: this example function doesn't clean up after itself on errors.
 */
 process_session(gaa_ptr gaa, void *client_raw_creds, char *cred_mechanism)
 {
 gaa_status status;
 gaa_sc_ptr sc = 0;
 gaa_policy_ptr policy = 0;
 struct my_request *myreq;
 struct my_right *myright;
 gaa_list_ptr list = 0;
 gaa_cred_ptr cred = 0;
 gaa_answer_ptr answer = 0;
 gaa_request_right_ptr right = 0;

 /* First initialize the security context */
 if (gaa_new_sc(&sc) != GAA_S_SUCCESS)
 return(-1);
 if (gaa_new_cred(gaa, sc, &cred, cred_mechanism, client_raw_creds,
 GAA_IDENTITY, 1, 0) != GAA_S_SUCCESS)
 return(-1);
 if (gaa_add_cred(gaa, sc, cred) != GAA_S_SUCCESS)
 return(-1);

 while (myreq = get_my_request()) {
 /* Find the appropriate policy for the object specified in the request
*/
 if ((status = gaa_get_object_policy_info(myreq->object, gaa,
 &policy)) != GAA_S_SUCCESS)
 return(-1);

 /* Next, build the list of requested rights */
 if ((list = gaa_new_req_rightlist()) == 0)
 return(-1);
 for (myright = myreq->my_rights; myright->value; myright++) {
 if ((status = gaa_new_request_right(gaa, &right, myright-
>authority,
 myright->value)) !=

GAA_S_SUCCESS)
 return(-1);
 if ((status = gaa_add_request_right(list, right)) != GAA_S_SUCCESS)
 return(-1);
 }

 /* Now check to see whether the request is authorized */
 if ((status = gaa_new_answer(&answer)) != GAA_S_SUCCESS)
 return(-1);

 switch (gaa_check_authorization(gaa, sc, policy, list, answer))
 {
 case GAA_C_YES:
 printf("request authorized\n");
 process_request(myreq);
 break;
 case GAA_C_NO:
 printf("request denied\n");
 break;
 case GAA_C_MAYBE:
 printf("request undetermined\n");
 break;
 default:
 fprintf(stderr, "error determining request authorizaton: %s\n",
 gaa_get_err());
 break;
 }

 /* Finally, clean up after this request. */
 gaa_list_free(list);
 gaa_free_answer(answer);
 }
 gaa_free_sc(sc);
 return(0);
 }

8. References

[1] Linn, J., "Generic Security Service Application Program
 Interface", RFC 1508, Geer Zolot Associate, September 1993.

[2] Wray, "Generic Security Service Application Program
 Interface V2 - C bindings", Internet draft, May 1997.

[3] T J Hudson, E A Young
 SSLeay http://www.livjm.ac.uk/tools/ssleay/

[4] DASCOM Authorization API draft 1.0
http://www.dascom.com

9. Acknowledgments

https://datatracker.ietf.org/doc/html/rfc1508
http://www.livjm.ac.uk/tools/ssleay/
http://www.dascom.com

Carl Kesselman and Douglas Engert have contributed to discussion
of the ideas and material in this specification.

10. Authors' Addresses

Tatyana Ryutov
Clifford Neuman
Laura Pearlman
USC/Information Sciences Institute
4676 Admiralty Way Suite 1001
Marina del Rey, CA 90292-6695
Phone: +1 310 822 1511
E-Mail: {tryutov, bcn, laura}@isi.edu

