
Internet-Draft M. Smith
Common Authentication technology WG TIAA-CREF
<draft-ietf-cat-gssv2-javabind-spi-02.txt> October 1999

Expires: January 2000

A Service Provider API for GSS mechanisms in Java

1. Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

2. Abstract

 This document specifies a "provider API" by which GSS mechanisms
 implemented in Java can be accessed through an intermediate "broker"
 or "shim" layer.

3. Acknowledgments

 This document is the result of work done in the Common Authentication
 Technology (CAT) working group of the IETF. Special thanks are due to
 Mayank Upadhyay and Jack Kabat. Thanks also are due to John Linn for
 helpful comments on a preliminary version of this document. Dave
 Arnold's eagle eyes detected several errors and inconsistencies in an

Smith Document Expiration: January 2000 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-cat-gssv2-javabind-spi-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Java-GSS Service Provider API October 1999

 earlier version. All errors and imbecilities, of course, remain the
 author's own.

4. Introduction

 The Generic Security Service API (GSS-API)[1], a product of the CAT
 working group, specifies a language- and mechanism-independent
 interface by which application programs can use security services
 (e.g. authentication and privacy). Companion documents specify
 "language bindings" of the abstract GSS-API to particular languages.

 For the Java language binding, it seems appropriate to define a type
 of GSS implementation consisting of a "shim" or "broker" layer,
 providing no security services itself. Actual security services would
 be provided by mechanism implementations (MIs). These MIs would
 register themselves with the "shim" layer, and be accessed by the
 shim layer through a "provider" API.

 This document specifies the interface between "shim" layer
 implementations and MIs; means for registering the latter with the
 former; and means for controlling the "default mechanism" behavior of
 shims. The interface exposed by the shim layer to application
 programs consists of the interfaces defined for the Java GSS binding,
 as described in [2], plus the additional methods specified in the
 interface org.ietf.jgss-spi.MechanismManager, defined in this
 document (see section 10 below). Note that the interfaces of the
 Java-GSS binding remain the object of ongoing work; this document
 will be aligned with the final state of those interfaces. It is not
 expected that this alignment will involve changes to this document
 above the level of minor detail.

5. Components of this specification

 This specification defines a java "package", to be named
 org.ietf.jgss-spi. This package contains the following interfaces:

 org.ietf.jgss-spi.GSSMechanismManager extends
 org.ietf.jgss.GSSManager
 org.ietf.jgss-spi.GSSMechanism

6. The shim layer and the mechanism implementation layer

 A "shim" implementation consists of a class implementing the
 interface org.ietf.jgss-spi.GSSMechanismManager (which in turn
 extends the interface org.ietf.jgss.GSSManager defined in [2]).

Smith Document Expiration: January 2000 [Page 2]

Java-GSS Service Provider API October 1999

7. Mechanism implementations and providers

 A mechanism implementation (MI) consists of a class implementing the
 interface org.ietf.jgss-spi.GSSMechanism described in section 9.2
 below. It is instances of classes implementing GSSMechanism which
 are "registered" by the "shim" as providers of security services.

 Various means are provided for making MIs available to shim
 implementations. An array of names of classes implementing
 GSSMechanism may be listed in instances of java.security.Provider,
 indexed by a well-known property name (see 10 below). As part of its
 initialization, a shim implementation may query
 java.security.Security's getProviders() method and register any MIs
 found in installed java.security.Providers under this property name.

 Providers containing this property name can also be passed to shim
 instances after their initialization, and any MIs which they contain
 added dynamically with instance scope (see 10.1.5).

 Or the name of a single class may be listed in an instance of
 java.security.Provider, under a property name containing a dotted-
 decimal representation of an Oid. GSSMechanismManager provides
 methods which will permit such a Provider instance to be passed in
 and the GSSMechanisms it contains to be added dynamically with
 instance scope (see 10.1.4 below).

 Alternatively, instances of classes implementing GSSMechanism can be
 passed directly (without being encapsulated in an instance of
 java.security.Provider) to GSSMechanismManager's
 insertMechImplementation() method, and inserted in the shim's list of
 implementations, with shim instance scope (see 10.1.3 below).

 Besides providing methods to manage the repertoire of MIs,
 GSSMechanismManager also provides means to control the default
 behavior of shim instances (see sections 10.1.2 and 10.1.3 below).

8. Names, credentials, and contexts

 MIs must implement the interfaces GSSName, GSSCredential, and
 GSSContext (defined in [2]). Note, however, that these interfaces
 incorporate some degree of multi-mechanism functionality; since MIs
 are not multi-mechanism, the functionality of some of the methods of
 these interfaces, as implemented by MIs, will be circumscribed. These
 limitations of functionality are described in detail in section 9.1
 below.

 Shim layers must also provide implementations of these three
 interfaces; each "shim" name or credential will serve as containers

Smith Document Expiration: January 2000 [Page 3]

Java-GSS Service Provider API October 1999

 for one or several MI names and credentials, and a shim context will
 serve as a container for precisely one MI context. What follows here
 is a general discussion of the relationship between (on the one hand)
 names, credentials, and contexts created by the shim and used by
 calling applications, and (on the other hand) those created by MIs.
 For more detail, see the discussion of MIs' implementations of
 individual methods of the three interfaces (below, sections 9.1.1,
 9.1.2, and 9.1.3).

8.1. Names

 The shim's version of createName() will produce a GSSName which
 includes mechanism-specific names for as many of its registered
 mechanisms as possible; a shim createName(), if no mechanism
 parameter is provided, will successively call the createName() method
 of each of its registered MIs. If an MI can generate a name
 corresponding to the parameters provided, its createName() method
 will return a GSSName (guaranteed, of course, to be a "name for
 mechanism") based on those parameters; otherwise, it will throw an
 exception, which will be caught internally by the shim's
 createName(). When the shim's createName() has finished going through
 its list of currently registered MIs, it will return an instance of a
 class implementing GSSName and containing all the GSSName instances
 successfully returned by the calls it made to the various MIs'
 createName() methods. If no mechanisms were registered or if none
 could successfully create a name from the parameters provided, the
 shim's createName() will throw an exception. (See 11.5 below for
 further considerations on this topic.)

8.2. Credentials

 The shim's createCredential methods will in turn call the
 createCredential methods of one or more registered MIs. If the
 requesting application specified Oid(s) for specific mechanisms, only
 MIs implementing the requested mechanisms will be called; otherwise,
 the shim should call the createCredential methods of as many
 registered MIs as possible. If the requesting application provided a
 GSSName parameter, this must be a "container" name returned by the
 shim as decribed in the previous section. The shim must pass to each
 MI's createCredential call the MI-specific component of the shim's
 container name object that was created by that MI; if a given MI was
 unable to provide a component for this name, then it should not be
 called. Each MI so called will attempt to obtain and return an object
 implementing GSSCredential (with circumscribed, i.e. single-
 mechanism, functionality as described more fully in section 9.1
 below.) The shim's credential implementation, as returned to the
 calling application, will act as a container for these various MI-

Smith Document Expiration: January 2000 [Page 4]

Java-GSS Service Provider API October 1999

 specific credentials. If no mechanisms were registered or if none
 could successfully create a credential from the parameters provided,
 the shim's createName() will throw an exception. (See 11.5 below for
 further considerations on this topic.)

 The shim's implementation of the add() method of GSSCredential will
 call the createCredential method of the MIs (if any) registered for
 the Oid specified in the add() call, provided that the GSSName holder
 (if any) associated with this GSSCredential holder contains a
 component for that MI. If this process successfully returns a
 credential, that credential will be added to the set contained in the
 shim's GSSCredential implementation.

 If there is no MI registered for this Oid, the shim will throw a
 GSSException with status BAD_MECH. If a GSSName holder was provided
 and it contained no GSSName element for any of the MIs implementing
 this mech, a GSSException will be thrown with status BAD_NAME. If MIs
 for this mech and appropriate GSSNames are found, but none of the
 MIs' createCredential() methods succeeds, the shim will throw an
 exception. (See 11.5 below for further considerations on this topic.)

8.3. Contexts

 Contexts are created, in [2], by two versions of the createContext
 call: one which takes an interprocess token and reconstitutes a
 "freeze-dried" context, and others which take various optional
 parameters and are used to establish a new context ab ovo (either on
 the initiating or accepting side). Behavior of the first version
 (with the interprocess token) is implementation-dependent and will
 not be specified here. Behavior of the second version is, generally,
 as follows (see 9.2 below for more detail):

 The shim's createContext call will return an object created by the
 shim and implementing GSSContext from [2]; this is referred to as the
 "context holder." Any parameters (names, credentials, etc.) supplied
 by the calling application will be stored away in this context
 holder, but no MIs will yet be called; an initiating application may
 still want to set various other context parameters, using the set()
 methods of GSSContext, which may affect the choice of a mechanism,
 and an accepting application has not yet provided an input context-
 establishment token.

 When the requesting application finally calls the context holder's
 initSecContext() or acceptSecContext() methods, the shim will call
 one or more appropriate MI(s) in an attempt to see whether any of
 them can establish the context with the requested parameters. (If an
 Oid specifying a mechanism is provided, of course, only MIs
 implementing that mechanism will be called). As with the

Smith Document Expiration: January 2000 [Page 5]

Java-GSS Service Provider API October 1999

 createCredential call (above), if name or credential parameters are
 provided by the calling application, these must be the shim's
 container implementations of these interfaces, and the shim will
 provide, to each MI, only those name or credential components of the
 name or credential container that were originally provided by that
 MI.

9. The provider layer: details

 Generally speaking, a mechanism implementation (MI) at the provider
 layer looks very much like a single-mechanism GSS implementation,
 with certain limitations and extensions. Such an implementation must
 implement the interface org.ietf.jgss-spi.GSSMechanism described
 below (section 9.2), and the interfaces

 GSSName
 GSSCredential
 GSSSecurityContext

 from [2].

 Note, however, that these three GSS interfaces are designed, in
 general, to encapsulate multiple mechanisms, and the interfaces at
 the provider layer are designed only to encapsulate a single
 mechanism. Thus, some versions of the methods defined in these three
 interfaces are superfluous for MIs. These differences are described
 in the following subsections.

 For the sake of brevity, and to avoid duplication, the semantics of
 methods in the MI version of these interfaces will be described only
 to the extent that they differ from those defined in [2]. Methods
 which do not differ as to signature, functionality, or exception
 generation will not be re-described here.

 (For some second thoughts on this subject, see 11.4 below).

9.1. Functional limitations in MIs

9.1.1. GSSName

 MI implementations of GSSName can only be "names-for-mechanism" (MNs)
 as defined in [1].

9.1.1.1. canonicalize()

 The canonicalize() method in MI implementations of GSSName will throw
 a GSSException with major status of BAD_MECH if the Oid parameter is

Smith Document Expiration: January 2000 [Page 6]

Java-GSS Service Provider API October 1999

 not the one for the mechanism supported by this MI.

9.1.2. GSSCredential

9.1.2.1. add()

 The method add() in MIs throws a GSSException with major status of
 BAD_MECH, since MIs are not multi-mechanism.

9.1.2.2. getName(GSSOIDString mechoid)

 This version of the getName method, which takes an OID designating
 the mechanism, will throw a GSSException with major status of
 BAD_MECH unless the Oid is the one for the mechanism supported by
 this MI.

9.1.2.3. getUsage(GSSOIDString mechoid)

 This version of the getUsage method which takes an OID designating
 the mechanism wil throw a GSSException with major status of BAD_MECH
 unless the Oid is the one for the mechanism supported by this MI.

9.1.2.4. getRemainingAcceptLifetime()

 This method will throw a GSSException with major status of BAD_MECH
 unless the Oid parameter is the one for the mechanism supported by
 this MI.

9.1.2.5. getRemainingInitLifetime()

 This method will throw a GSSException with major status of BAD_MECH
 unless the Oid parameter is the one for the mechanism supported by
 this MI.

9.1.3. GSSContext

 MIs handle context initiation off the getContextForInit() method of
 GSSMechanism (q.v., 9.2 below). This method takes parameters
 representing the services being requested of this context, and
 therefore, MI implementations of GSSContext no-op the various pre-
 initiation methods of GSSContext, sc.

 requestMutualAuth
 requestReplayDet
 requestSequenceDet
 requestCredDeleg
 requestAnonymity

Smith Document Expiration: January 2000 [Page 7]

Java-GSS Service Provider API October 1999

 requestConf
 requestInteg
 requestLifetime
 setChannelBinding

9.2. The interface GSSMechanism

 For MIs, the interface GSSMechanism in effect replaces the interface
 GSSManager defined in [2], and it has a certain family resemblance to
 that interface, since it constitutes the factory class that MIs use
 to create credentials, names, and contexts. Since an MI is single-
 mechanism, however, and because this interface is not intended to be
 used by application programmers, this interface can be somewhat
 stripped-down as compared with GSSManager, for performance reasons
 inter alia.

9.2.1. Constants

 GSSMechanism defines the following bit-mappings of a short integer
 field, to be used in indicating the services requested for a context:

 public static short GSSServiceDelegReq = 1 << 0; // Delegation
 public static short GSSServiceMutualReq = 1 << 1; // Mutual
 authentication
 public static short GSSServiceReplayDetReq = 1 << 2; // Replay
 detection
 public static short GSSServiceSequenceReq = 1 << 3; // Sequence
 enforcement
 public static short GSSServiceAnonReq = 1 << 4; // Anonymity
 public static short GSSServiceConfReq = 1 << 5; // Confidentiality
 public static short GSSServiceDelegReq = 1 << 6; // Integrity

9.2.2. Methods

9.2.2.1. No-parameter constructor

 Classes that implement GSSProviderImplementation must provide a no-
 parameter constructor.

9.2.2.2. acceptable()

 The full signature of this method is:

Smith Document Expiration: January 2000 [Page 8]

Java-GSS Service Provider API October 1999

 public boolean acceptable
 (Object token,
 GSSCredential cred,
 Object[] channelBindings) throws GSSException;

 This method indicates whether the Object passed as 'token' is usable
 by the implementing mechanism as a context-establishment token, with
 the credential in the second parameter and the channel bindings in
 the third. The "cred" parameter may be null; this value requests
 default credential behavior. If provided, 'cred' must be a
 GSSCredential object returned by this MI; if not, a GSSException will
 be thrown with major status of DEFECTIVE_CREDENTIAL. The
 channelBindings parameter may be null, in which case the context will
 not be bound to a channel.

 This method is intended to be used by the acceptor-side version of
 the createContext() method of the shim's GSSManager implementation to
 determine which of the registered mechanism implementations to use
 when a context-establishment token is submitted and a context is to
 be initially created for acceptance.

9.2.2.3. getContextForAccept()

 The full signature of this method is:

 public GSSContext getContextForAccept
 (Object token,
 GSSProviderCredential cred,
 Object[] channelBindings)
 throws GSSException;

 This method creates a security context using the MI's mechanism,
 using the "token" parameter as a context-establishment token, with
 the credential in the second parameter and the channel bindings in
 the third. 'cred' may be null; this requests default behavior. If
 non-null, 'cred' must be a GSSCredential object returned by this MI.
 The channelBindings parameter may be null, in which case the context
 will not be bound to a channel.

 This method is intended to be used by the acceptor-side version of
 the createContext() method of the shim's GSSManager implementation
 when a context is to be initially created for acceptance.

9.2.2.4. getContextForInit()

 The full signature of this method is:

 public GSSContext getContextForInit

Smith Document Expiration: January 2000 [Page 9]

Java-GSS Service Provider API October 1999

 (GSSCredential cred,
 GSSName targname,
 int lifetimeReq,
 Object[] channelBindings,
 short servicesRequested)
 throws GSSException;

 This method requests the provider to create and return a GSSContext
 object for the mechanism this MI implements, suitable for use on the
 initiating side of the context. The "cred" parameter may be null;
 this value requests default credential behavior. If non-null, "cred"
 must be a GSSCredential object returned by this MI's
 createCredential() method. "targname" is a GSSName obtained from this
 MI's createName() method designating the intended acceptor of the
 context. "lifetimeReq" is the requested lifetime of the context (see
 the relevant section of [1]); zero requests a mechanism-specific
 default. "channelBindings" may be null and if so, the context will
 not be bound to a channel. "servicesRequested" is a bit-mapped field
 whose bits have the meanings described in 9.2.1 above.

 This method is intended to be used by the initiator-side version of
 createContext() in the shim layer.

9.2.2.5. initable()

 The full signature of this method is:

 public boolean initable
 (GSSCredential cred,
 GSSName targname,
 int lifetimeReq,
 Object[] channelBindings,
 short servicesRequested);

 This method requests the provider to determine whether a GSSContext
 object can be created for the mechanism this provider implements,
 suitable for use on the initiating side of the context, with the
 parameters supplied. The "cred" parameter may be null; this requests
 default credential behavior. "targname" is a GSSName obtained from
 this MI's createName() designating the intended acceptor of the
 context. "lifetimeReq" is the requested lifetime of the context (see
 the relevant section of [1]); zero requests a mechanism-specific
 default. "channelBindings" may be null and if so, the context will
 not be bound to a channel. "servicesRequested" is a bit-mapped field
 whose bits have the meanings described in 9.2.1 above.

 This method is intended to be used by the initiating side's version
 of the createContext() method of GSSManager in the shim layer, in

Smith Document Expiration: January 2000 [Page 10]

Java-GSS Service Provider API October 1999

 determining which of the mechanisms available to use when initiation
 of a security context is requested.

9.2.2.6. createCredential

 The full signature of this method is:

 public GSSCredential createCredential
 (GSSName aName,
 int lifetimeReq,
 int usage)
 throws GSSException;

 This method is functionally equivalent to the method of the same name
 in GSSManager (see [2], section 6.1.13), except that it does not
 permit an Oid parameter to be provided (since MIs are single-
 mechanism). 'aName' may be null, in which case default principal
 credentials are being requested; otherwise, 'aName' must be a GSSName
 returned by the createName() method of this MI.

9.2.2.7. GSSName createName(byte[] externalrep, Oid nameSpace)

 This method is functionally identical to the method of the same name
 in GSSManager ([2], 6.1.7), except that the 'name' object returned is
 an MI-specific "name for mechanism" (MN).

9.2.2.8. Oid[] getNames()

 Similar to getNamesForMech of GSSManager([2], 6.1.5) but takes no Oid
 parameter identifying the mechanism (since MIs are single-
 mechanism).

9.2.2.9. Oid[] getMech()

 Returns an Oid identifying the mechanism implemented by this MI.

9.2.2.10. short getServices()

 This method returns a bit-mapped short integer indicating to
 services available from this MI (see 9.2.1 above).

Smith Document Expiration: January 2000 [Page 11]

Java-GSS Service Provider API October 1999

10. The shim's management API

 The interface org.ietf.jgss-spi.GSSMechanismManager (which in turn
 extends the interface org.ietf.jgss.GSSManager defined in [2])
 defines both the application-related services of GSS itself, derived
 from GSSmanager, and an additional set of management functions which
 permit the repertoire of MIs available to be changed, and default
 behavior to be specified. These management functions are the subject
 of this section.

 Conceptually, the shim maintains an ordered list of GSSMechanism
 implementation instances (MIIs) known to it, and a corresponding
 ordered list of Oids implemented by these MIIs; that is, a given MII,
 and the Oid of the mechanism it implements, occur at the same ordinal
 position on their respective lists. A shim's getMechs() method must
 return Oids in the order in which they occur on this internal list.

 Default behavior depends, in part, on the ordering of the internal
 MII list. Versions of GSSManager methods (createName,
 createCredential, createContext) which do not specify a mechanism Oid
 will cause the list of installed MIIs to be "visited" in the order
 defined by this internal list. Context creation, in particular, will
 use the first MII on the list for which the following conditions are
 satisfied:

 1) Credential and/or name elements exist, provided by this MII, in
 any instances of the shim's container credential or name classes
 provided as parameters to the context-creation call; and

 2) The MII can satisfy the services (e.g. anonymity, mutual
 authentication, privacy, etc.) requested in the context creation
 call.

 Various means exist for adding MIIs to the list:

 1) An array of names of classes implementing GSSMechanism may be
 listed in instances of java.security.Provider, indexed by the
 property name "GSSMechanism". As part of its initialization, a shim
 implementation may query java.security.Security's getProviders()
 method, call the constructor for each class listed under this
 property name, and add each GSSMechanism instance so obtained to its
 list of MIIs. The shim's MII list will then (after initialization)
 hold all the GSSMechanism implementations listed in installed system-
 wide Providers, in the order in which those providers were installed.

 2) After initalization, GSSMechanismManager's
 addProvider(java.security.Provider prov) method may be called; the
 'prov' parameter will be searched for a property named

Smith Document Expiration: January 2000 [Page 12]

Java-GSS Service Provider API October 1999

 "GSSMechanism," and MIIs installed from the class list associated
 with that property, as described in the previous paragraph. This
 method adds MIIs from providers to a specific instance of the shim
 (not system-wide). Shim implementors may check with the local
 SecurityManager or AccessController if it is considered necessary to
 restrict this operation to privileged code.

 3) The name of a single class may be listed in an instance of
 java.security.Provider, under a property name of the form
 "GSSMechanism-x.y.z...", where 'x.y.z...' is the dotted-decimal
 representation of the Oid of the mechanism implemented by that class.
 GSSMechanismManager's addProvider(Oid mech, Provider prov) method
 will call the constructor for a class whose name is found in such a
 property, and add the resulting GSSMechanism instance to the MII
 list. This version of addProvider, like the previous one, operates on
 a particular instance of the shim, rather than system-wide. Shim
 implementors may check with the local SecurityManager or
 AccessController if it is considered necessary to restrict this
 operation to privileged code.

 4) Finally, entries may be inserted directly into the list, or
 removed from it, by the methods removeMechImplementation() and
 insertMechImplementation(), defined below (section 10.1.1. and
 10.1.2). These methods operate on a particular shim instance, not
 system-wide, and additionally offer means to change the ordering of
 MIIs on the internal list. Shim implementors may check with the
 local SecurityManager or AccessController if it is considered
 necessary to restrict these operations to privileged code.

 All the methods discussed above, of course, affect the list of Oids
 as well as the list of MIIs.

10.1. Methods of the management API

10.1.1. GSSMechanism[] getMechImplementations();

 This method returns the list of the GSSMechanism instances registered
 in this instance of the shim, in the same order as the corresponding
 Oids would be returned by the getMechs() method defined in
 GSSmanager. This order will correspond to the order in which the shim
 will call its registered GSSMechanisms when it handles a method to
 which a default mechanism parameter has been provided.

10.1.2. GSSMechanism removeMechImplementation(int position);

 This method removes the MII at position 'position' from this instance
 of the shim's internal MII list, and returns a reference to it. This

Smith Document Expiration: January 2000 [Page 13]

Java-GSS Service Provider API October 1999

 method will throw an array index out of bounds exception if
 'position' is out of bounds.

10.1.3. void insertMechImplementation
 (GSSMechanism mii, int position);

 This method will insert 'mii' at 'position' in the internal list of
 MIIs maintained by this instance of the shim, and will move the
 former occupant of 'position' and all its successors one step down
 the list. The Oid of the mechanism implemented by 'mii' will be
 inserted in the corrresponding position in this instance's Oid list
 (i.e. the list of Oids that would be returned by getMechs()). This
 method will not throw an index out of bounds exception; if 'position'
 is past the end of the current list, this method will add 'mii' at
 the end. If 'position' is negative, 'mii' will be added at the
 beginning.

10.1.4. void addProvider(Oid mech, java.security.Provider prov)
 throws GSSException;

 This method permits MIs "contained" in java.security.Provider objects
 to be added dynamically to shim instances.

 The Provider 'prov' will be queried for a property with the name
 "GSSMechanism-x.y.z...", where "x.y.z..." is the dotted-decimal
 representation of the Oid in 'mech'. The value of this property
 should be the name of a class implementing GSSMechanism. An instance
 of the class will be created and added at the end of this shim
 instance's current list of MIIs.

 This version of addprovider() will throw a GSSException with major
 status of BAD_MECH if no property with the appropriate name was
 found, a GSSException with status UNAVAILABLE if the class denoted by
 the property value could not be loaded, and a GSSException with
 status FAILURE if the class denoted by the property value was
 available but did not implement GSSMechanism.

10.1.5. boolean addProvider(java.security.Provider prov)

 The Provider 'prov' will be queried for a property with the name
 "GSSMechanism". The value of this property should be an array of
 names of classes implementing GSSMechanism. An instance of each
 class will be created and added at the end of this shim instance's
 current list of MIIs. No exceptions will be thrown by this version of
 addProvider(); it will return 'true' if any MIIs were successfully
 added, 'false' otherwise.

Smith Document Expiration: January 2000 [Page 14]

Java-GSS Service Provider API October 1999

11. Topics for further discussion

11.1. SPNEGO

 One reader of an early version of this document has raised the
 question whether SPNEGO should be regarded as "just another mechanism
 provider," or be included in the shim implementation. Either approach
 is possible with the interfaces defined in this document. In favor of
 including SPNEGO in the shim are arguments from performance and
 interoperability. On the opposite side of the question is the desire
 to minimize the size and complexity of the shim. The author sees no
 clear-cut case for either approach; comments are sought from
 interested parties.

11.2. A concrete class?

 This document specifies interfaces only and leaves open the
 possibility of multiple "shim" implementations. Some participants in
 the Working Group have expressed the view that either in this
 document or in the Java-GSS bindings document [2], a concrete class
 ought to be specified which would have shim functionality and
 consitute the "vanilla" or "default" or "reference" implementation of
 GSS for Java.

11.3. SecurityManager/AccessController

 Shim implementors may wish to use the authorization services of the
 Java environment to control access to the management functions
 defined in section 10.1 above. The Working Group may wish to consider
 whether the means by which such checks are made should be
 standardized, and if so, how: e.g. do we prefer to use some existing
 type of Permission object and standardize its parameters for use by
 shims, or define a new Permission object type, as part of this
 specification?

11.4. New interfaces, or function limitation?

 This document at present specifies that MIs implement the standard
 GSS-API interfaces (defined in [2]) for name, credential, and
 context; but by virtue of the inherently single-mechanism nature of
 MIs, this document specifies certain limitations of function in these
 interfaces as implemented by MIs. Perhaps it might be preferable to
 define separate interfaces for MIs, modeled on the standard GSS
 interfaces but with inherently single-mechanism semantics and
 suitably adjusted parameters and exception repertoires.

Smith Document Expiration: January 2000 [Page 15]

Java-GSS Service Provider API October 1999

11.5. Comprehensive failure

 It will sometimes occur that none of the registered MIs will be able
 to establish a context or create a name or credential successfully;
 but they may all fail for different reasons. What exception(s) should
 the shim report in this case?

11.6. Diagnostic information from initable() and acceptable()

 Do the methods initable() and acceptable() in GSSMechanism (sections
 9.2.2.2 and 9.2.2.5) need to return more detailed diagnostic
 information?

12. Security Considerations

 This entire document deals with security.

13. Conclusion

 This document specifies a "provider API" by which GSS mechanisms
 implemented in Java can be accessed through an intermediate "broker"
 or "shim" layer, and an API by which the repertoire of mechanisms and
 default behavior can be managed.

14. References

[1] J. Linn, "Generic Security Service Application Program Interface,
 Version 2, Update 1," Internet-Draft, <draft-ietf-cat-

rfc2078bis-08.txt>, December 1998

[2] Jack Kabat, "Generic Security Service API Version 2 : Java
 bindings," Internet-Draft, <draft-ietf-cat-gssv2-javabind-02.txt>,
 August 1998

15. Author's Address

 Michael Smith
 TIAA-CREF
 730 Third Avenue
 Mailstop 485-27-02
 New York, NY 10017

https://datatracker.ietf.org/doc/html/draft-ietf-cat-rfc2078bis-08.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cat-rfc2078bis-08.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cat-gssv2-javabind-02.txt

Smith Document Expiration: January 2000 [Page 16]

Java-GSS Service Provider API October 1999

 USA

 Phone: 212 490 9000 x 1760
 Email: ms@gf.org

Smith Document Expiration: January 2000 [Page 17]

