
CAT Working Group Michael M. Swift
INTERNET-DRAFT Microsoft
<draft-ietf-cat-iakerb-00.txt >
Expires April 30, 1998 October, 31, 1997

 Initial Authentication with Kerberos and the GSS-API
 (IAKERB)

STATUS OF THIS MEMO

 This document is an Internet-Draft. Internet-Drafts are
 working documents of the Internet Engineering Task Force
 (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum
 of six months and may be updated, replaced, or obsoleted
 by other documents at any time. It is inappropriate to
 use Internet-Drafts as reference material or to cite them
 other than as "work in progress".

 To learn the current status of any Internet-Draft, please
 check the "1id-abstracts.txt" listing contained in the
 Internet-Drafts Shadow Directories on ftp.is.co.za
 (Africa), nic.nordu.net (Europe), munnari.oz.au (Pacific
 Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US
 West Coast).

 Distribution of this document is unlimited. Please send
 comments to the CAT working group at cat-ietf@mit.edu or
 the authors.

ABSTRACT

 This draft proposes a new Kerberos authentication
 mechanism for use when the client computer is unable to
 contact a Key Distribution Center (KDC). Instead, the
 client will send Authentication Service (AS) and Ticket
 Granting Service (TGS) requests to the server, which will
 then forward them to the appropriate KDC.

Table of Contents

1. Introduction 2

https://datatracker.ietf.org/doc/pdf/draft-ietf-cat-iakerb-00.txt

2. Basic Protocol 2

3. Addresses in Tickets 3

4. Generating Initial Credentials 3

5. Sample Usage Scenarios 3

5.1 Case 1: Client and Server are in same realm 3

5.2 Case 2: Client and Server in different realm 4

5.3 Case 3: Client and Server in different realms with a
 TGT 4

6. Combining IAKERB with other Kerberos Extensions 5

7. Security Considerations 5

8. References 5

1. Introduction

 The standard Kerberos mechanism works well in a LAN
 environment where clients are well connected and can
 quickly locate and communicate with network services such
 as the KDC. Unlike many other authentication protocols,
 Kerberos requires that the client do most of the work of
 authentication by locating and calling a KDC to obtain
 tickets. All a server must do is to decrypt the AP
 request and verify that it is not a replay

 However, in certain circumstances this is not a good use
 of computer resources. On the Internet, for example,
 servers tend to be far better connected and more able to
 locate a KDC then clients are. Similarly, when dialing up
 to an Internet Service Provider (ISP) the client computer
 is essentially unconnected while the ISP's computer are
 well connected to the Internet as well as other servers
 locally. Hence, it makes sense in these situations to
 allow the client to forward KDC requests to the server
 and let the server communicate with the KDC.

2. Basic Protocol

 The mechanism ID for user to user GSS-API Kerberos, in

 accordance with the mechanism proposed by SPNEGO for
 negotiating protocol variations, is:

 {iso(1) member-body(2) United States(840) mit(113554)
 infosys(1) gssapi(2) krb5(2) initialauth(4)}

 The basic protocol is the existing exchanges between
 clients and the KDC detailed in RFC1510 [1]. The first
 context message is an AS request, to which the server
 responds with an AS reply. The client may either request
 a TGT during the AS request or directly request a session
 ticket if the connection is for a short period, only one
 service will be contacted, and the service principal and
 client principal are both in the same realm. Otherwise,
 the client will use the TGT it initially obtained and use
 it to create further TGS requests which will also be sent
 to the server as context messages.

 As with all Kerberos GSS-API messages, the following
 tokens are encapsulated in the GSS-API framing. In
 addition, the innerContextToken field of the context
 establishment tokens contain the context message preceded
 by a 2-byte TOK_ID field. The messages and their
 respective IDs are listed below.

 Message TOK_ID

 KRB-AS-REQ 05 00
 KRB-AS-REP 05 01
 KRB-TGS-REQ 05 02
 KRB-TGS-REP 05 03

3. Addresses in Tickets

 In IAKERB, the machine sending requests to the KDC is the
 server and not the client. As a result, the client should
 not include its addresses in any KDC requests for two
 reasons. First, the, the KDC may reject the forwarded
 request as being from the wrong client. Second, in the
 case of initial authentication for a dial-up client, the
 client machine may not yet possess a network address.
 Hence, as allowed by RFC1510 [1], the addresses field of
 the AS and TGS requests should be blank and the caddr
 field of the ticket should similarly be left blank.

4. Generating Initial Credentials

https://datatracker.ietf.org/doc/pdf/rfc1510
https://datatracker.ietf.org/doc/pdf/rfc1510

 As this flavor of authentication uses AS requests, the
 client name, realm, and password must be available to the
 mechanism implementation. The GSS-API does not support
 passing in credentials to the GSS_acquire_cred_handle,
 and credentials are by their nature extemely package
 specific. Hence, it is left to the implementation to add
 an interface for setting the initial credentials.

5. Sample Usage Scenarios

 Below are detailed three different scenarios using IAKERB
 and the messages sent in each case. In the first two
 cases the client never procures a ticket granting ticket.
 This is useful for an environment where communication is
 slow and the TGT would not later be used. In the third
 scenario the client procures a TGT first and uses it to
 request a ticket to the service. It is up to the
 implementation which variety to implement.

5.1 Case 1: Client and Server are in same realm

 In this case, the first call to gss_init_sec_context() on
 the client generates an AS request with the client name
 set to the client's principal name and the server name
 set to the server's principal name. The client
 application sends this to the server application, which
 then calls gss_accept_sec_context(). The GSS runtime on
 the server forwards the request to the KDC, which
 responds with an AS reply. The runtime returns the AS
 reply from gss_accept_sec_context() and the service
 returns it to the client application.

 The client application passes the AS reply to
 gss_init_sec_context(), which creates an AP request and
 packages it up identically to the format in RFC 1964 [2].
 The client application then sends the AP request to the
 server, which calls gss_accept_sec_context() to verify
 the AP request.

 Client Server KDC

 AS-REQ(cname,sname,realm)--> forwards -->
 <-- forwards <-- AS-REP

 AP-REQ --> Verifies AP request

https://datatracker.ietf.org/doc/pdf/rfc1964

5.2 Case 2: Client and Server in different realm

 In this case, the client GSS runtime analyzes the target
 name and determines that it is from a different realm
 than the client. It then generates an AS request for a
 cross-realm TGT for the server's realm. The server
 runtime forwards the request to the client's KDC (C.KDC)
 and returns the AS reply containing a TGT for the
 server's realm. The client runtime then generates a TGS
 request for a ticket to the server with the cross-realm
 TGT. The server runtime forwards this to the server's KDC
 (S.KDC), which returns a session ticket to the server.
 The client runtime then generates a normal AP request for
 the server using this ticket.

 Client Server S.KDC C.KDC

 AS-REQ(cname,krbtgt/srealm,crealm)
 forwards --------------->
 <-- forwards <------ AS-REP

 TGS-REQ(krbtgt/srealm,server) forwards ---->
 <-- forwards <-- TGS-REP

 AP-REQ --> Verifies AP request

5.3 Case 3: Client and Server in different realms with a TGT

 In this case, the client plans on contacting additional
 services after authenticating with the server so it wants
 to obtain a TGT. The transaction is very similar to the
 previous example, but in this case the client obtains a
 TGT in its own realm before obtaining a cross-realm TGT
 for the server's realm.

 Client Server S.KDC C.KDC

 AS-REQ(cname,krbtgt/crealm,crealm)
 --> forwards --------------->
 <-- forwards <------ AS-REP

 TGS-REQ(krbtgt/crealm,krbtgt\srealm)
 --> forwards --------------->
 <-- forwards <------ TGS-REP

 TGS-REQ(krbtgt/srealm,server)
 --> forwards ---->
 <-- forwards <-- TGS-REP

 AP-REQ --> Verifies AP request

6. Combining IAKERB with other Kerberos Extensions

 This protocol is usable with other proposed Kerberos
 extensions such as PKINIT (Public Key Cryptography for
 Initial Authentication in Kerberos [3]) or User-to-User
 Kerberos [4]. In both cases, the messages which would
 normally be sent to the KDC by the GSS runtime are
 instead sent by the client application to the server,
 which then forwards them to a KDC.

7. Security Considerations

 This variation on the Kerberos protocol does not change
 its security characteristics much. The biggest difference
 is the lack of addresses in the tickets. As addresses
 cannot be relied on to provide security but are at best
 make it more difficult to break a protocol, this is not a
 serious threat.

8. References

 [1] J. Kohl, C. Neuman. The Kerberos Network
 Authentication Service(V5). Request for Comments 1510.

 [2] J. Linn. The Kerberos Version 5 GSS-API Mechanism.
 Request for Comments 1964

 [3] B. Tung, C. Neuman, J. Wray, A. Medvinsky, M. Hur, J.
 Trostle, Public Key Cryptography for Initial
 Authentication in Kerberos, draft-ietf-cat-kerberos-pk-
 init-04.txt.

 [4] M. Swift, User to User Kerberos Authentication using
 GSS-API, draft-ietf-cat-user2user-01.txt.

 Author's address

 Michael Swift
 Microsoft

https://datatracker.ietf.org/doc/pdf/draft-ietf-cat-kerberos-pk-init-04.txt
https://datatracker.ietf.org/doc/pdf/draft-ietf-cat-kerberos-pk-init-04.txt
https://datatracker.ietf.org/doc/pdf/draft-ietf-cat-user2user-01.txt

 1 Microsoft Way
 Redmond, Washington, 98052, U.S.A.

 Email: mikesw@microsoft.com

