
INTERNET-DRAFT Mike Swift
draft-ietf-cat-iakerb-07.txt University of WA
Updates: RFC 1510, 1964 Jonathan Trostle
July 2001 Cisco Systems
 Bernard Aboba
 Microsoft
 Glen Zorn
 Cisco Systems

Extending the GSS Kerberos Mechanism for Initial Kerberos Authentication
(IAKERB)
 <draft-ietf-cat-iakerb-07.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026 [6].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This draft expires in January 2002. Please send comments to the
 authors.

1. Abstract

 This document defines extensions to the Kerberos protocol
 specification (RFC 1510 [1]) and GSSAPI Kerberos mechanism (RFC 1964
 [2]) that enables a RFC 1964 client to obtain Kerberos tickets for
 services where the KDC is not accessible to the client, but is
 accessible to the application server. Some common scenarios where
 lack of accessibility would occur are when the client does not have
 an IP address prior to authenticating to an access point, the client
 is unable to locate a KDC, or a KDC is behind a firewall. The
 document specifies two protocols to allow a client to exchange KDC

https://datatracker.ietf.org/doc/html/draft-ietf-cat-iakerb-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/draft-ietf-cat-iakerb-07.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1964

 messages (which are GSS encapsulated) with an IAKERB proxy instead of
 a KDC.

Swift, Trostle, Aboba, Zorn [Page 1]

INTERNET DRAFT July 2001 Expires January 2002

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119 [7].

3. Motivation

 When authenticating using Kerberos V5, clients obtain tickets from a
 KDC and present them to services. This method of operation works well
 in many situations, but is not always applicable. The following is a
 list of some of the scenarios that this proposal addresses:

 (1) The client must initially authenticate to an access point in
 order to gain full access to the network. Here the client may be
 unable to directly contact the KDC either because it does not have an
 IP address, or the access point packet filter does not allow the
 client to send packets to the Internet before it authenticates to the
 access point.

 (2) A KDC is behind a firewall so the client will send Kerberos
 messages to the IAKERB proxy which will transmit the KDC request and
 reply messages between the client and the KDC. (The IAKERB proxy is a
 special type of Kerberos application server that also relays KDC
 request and reply messages between a client and the KDC).

4. Overview

 This proposal specifies two protocols that address the above
 scenarios: the IAKERB proxy option and the IAKERB minimal messages
 option. In the IAKERB proxy option (see Figure 1) an application
 server called the IAKERB proxy acts as a protocol gateway and proxies
 Kerberos messages back and forth between the client and the KDC. The
 IAKERB proxy is also responsible for locating the KDC and may
 additionally perform other application proxy level functions such as
 auditing.

 Client <---------> IAKERB proxy <----------> KDC

 Figure 1: IAKERB proxying

 The second protocol is the minimal messages protocol that extends the
 technique in [5]; this protocol is targetted at environments where
 the number of messages (prior to key establishment) needs to be
 minimized. Here the client sends its ticket granting ticket (TGT) to
 the IAKERB proxy (in a KRB_TKT_PUSH message) for the TGS case. The

https://datatracker.ietf.org/doc/html/rfc2119

 IAKERB proxy then sends a TGS_REQ to the KDC with the client's TGT in
 the additional tickets field of the TGS_REQ message. As a result, the
 returned ticket will list the client as the ticket's server
 principal, and will be encrypted with the session key from the
 client's TGT. The IAKERB proxy then uses this ticket to generate an

Swift, Trostle, Aboba, Zorn [Page 2]

INTERNET DRAFT July 2001 Expires January 2002

 AP request that is sent to the client (see Figure 2). Thus mutual
 authentication is accomplished with three messages between the client
 and the IAKERB proxy versus four or more (the difference is larger if
 crossrealm operations are involved). Subsequent to mutual
 authentication and key establishment, the IAKERB proxy sends a ticket
 to the client (in a KRB_TKT_PUSH message) that contains the same
 fields as the original service ticket except the client and server
 names are reversed and it is encrypted in a long term key known to
 the IAKERB proxy. Its purpose is to enable fast subsequent re-
 authentication by the client to the application server (using the
 conventional AP request AP reply exchange) for subsequent sessions.
 In addition to minimizing the number of messages, a secondary goal is
 to minimize the number of bytes transferred between the client and
 the IAKERB proxy prior to mutual authentication and key
 establishment. Therefore, the final service ticket (the reverse
 ticket) is sent after mutual authentication and key establishment is
 complete, rather than as part of the initial AP_REQ from the IAKERB
 proxy to the client.

 The AS_REQ case for the minimal messages option is similar, where the
 client sends up the AS_REQ message and the IAKERB proxy forwards it
 to the KDC. The IAKERB proxy pulls the client TGT out of the AS_REP
 message and also forwards the AS_REP message back to the client. The
 protocol now proceeds as in the TGS_REQ case with the IAKERB proxy
 including the client's TGT in the additional tickets field of the
 TGS_REQ message.

 Client --------> IAKERB proxy
 TKT_PUSH (w/ TGT)

 Client IAKERB proxy --------------------> KDC
 TGS_REQ with client
 TGT as additional TGT

 Client IAKERB proxy <-------------------- KDC
 TGS_REP with service
 ticket

 Client <-------- IAKERB proxy KDC
 AP_REQ

 Client --------> IAKERB proxy KDC
 AP_REP

 post-key establishment and application data flow phase:

 Client <-------- IAKERB proxy KDC

 TKT_PUSH (w/ticket targetted at IAKERB proxy
 to enable fast subsequent authentication)

 Figure 2: IAKERB Minimal Messages Option: TGS case

Swift, Trostle, Aboba, Zorn [Page 3]

INTERNET DRAFT July 2001 Expires January 2002

 A compliant IAKERB proxy MUST implement the IAKERB proxy protocol,
 and MAY implement the IAKERB minimal message protocol. In general,
 the existing Kerberos paradigm where clients contact the KDC to
 obtain service tickets should be preserved where possible.

 If the client has a service ticket for the target server, needs to
 authenticate to the target server, and does not have direct
 connectivity with the target server, it should use the IAKERB proxy
 protocol. If the client needs to obtain a crossrealm TGT (and the
 conventional Kerberos protocol cannot be used), then the IAKERB proxy
 protocol must be used. In a scenario where the client does not have a
 service ticket for the target server, it is crucial that the number
 of messages between the client and the target server be minimized
 (especially if the client and target server are in different realms),
 and/or it is crucial that the number of bytes transferred between the
 client and the target server be minimized, then the client should
 consider using the minimal messages protocol. The reader should see
 the security considerations section regarding the minimal messages
 protocol.

5. GSSAPI Encapsulation

 The mechanism ID for IAKERB proxy GSS-API Kerberos, in accordance
 with the mechanism proposed by SPNEGO [8] for negotiating protocol
 variations, is: {iso(1) org(3) dod(6) internet(1) security(5)
 mechanisms(5) iakerb(10) iakerbProxyProtocol(1)}. The proposed
 mechanism ID for IAKERB minimum messages GSS-API Kerberos, in
 accordance with the mechanism proposed by SPNEGO for negotiating
 protocol variations, is: {iso(1) org(3) dod(6) internet(1)
 security(5) mechanisms(5) iakerb(10)
 iakerbMinimumMessagesProtocol(2)}.

 The AS request, AS reply, TGS request, and TGS reply messages are all
 encapsulated using the format defined by RFC1964 [2]. This consists
 of the GSS-API token framing defined in appendix B of RFC1508 [3]:

 InitialContextToken ::= [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType
 -- MechType is OBJECT IDENTIFIER
 -- representing "Kerberos V5"
 innerContextToken ANY DEFINED BY thisMech
 -- contents mechanism-specific;
 -- ASN.1 usage within innerContextToken
 -- is not required
 }

 The innerContextToken consists of a 2-byte TOK_ID field (defined
 below), followed by the Kerberos V5 KRB_AS_REQ, KRB_AS_REP,

https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1508#appendix-B

 KRB_TGS_REQ, or KRB_TGS_REP messages, as appropriate. The TOK_ID
 field shall be one of the following values, to denote that the
 message is either a request to the KDC or a response from the KDC.

Swift, Trostle, Aboba, Zorn [Page 4]

INTERNET DRAFT July 2001 Expires January 2002

 Message TOK_ID

 KRB_KDC_REQ 00 03

 KRB_KDC_REP 01 03

 We also define the token ID for the KRB_TKT_PUSH message (defined
 below and used in the minimal messages variation):

 Message TOK_ID

 KRB_TKT_PUSH 02 03

 For completeness, we list the other RFC 1964 defined token ID's here:

 Message TOK_ID

 AP_REQ 01 00

 AP_REP 02 00

 KRB_ERROR 03 00

6. The IAKERB proxy protocol

 The IAKERB proxy will proxy Kerberos KDC request, KDC reply, and
 KRB_ERROR messages back and forth between the client and the KDC as
 illustrated in Figure 1. Messages received from the client must first
 have the Kerberos GSS header (RFC1964 [2]) stripped off. The
 unencapsulated message will then be forwarded to a KDC. The IAKERB
 proxy is responsible for locating an appropriate KDC using the realm
 information in the KDC request message it received from the client.
 In addition, the IAKERB proxy SHOULD implement a retry algorithm for
 KDC requests over UDP (including selection of alternate KDC's if the
 initial KDC does not respond to its requests). For messages sent by
 the KDC, the IAKERB proxy encapsulates them with a Kerberos GSS
 header before sending them to the client.

 We define two new Kerberos error codes that allow the proxy to
 indicate the following error conditions to the client:

 (a) when the proxy is unable to obtain an IP address for a KDC in the
 client's realm, it sends the KRB_IAKERB_ERR_KDC_NOT_FOUND KRB_ERROR
 (80) message to the client.

 (b) when the proxy has an IP address for a KDC in the client realm,
 but does not receive a response from any KDC in the realm (including
 in response to retries), it sends the KRB_IAKERB_ERR_KDC_NO_RESPONSE
 KRB_ERROR (81) message to the client.

https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1964

 To summarize, the sequence of steps for processing is as follows:

 Servers:

Swift, Trostle, Aboba, Zorn [Page 5]

INTERNET DRAFT July 2001 Expires January 2002

 1. For received KDC_REQ messages (with token ID 00 03)
 - process GSS framing (check OID)
 if the OID is not one of the two OID's specified in the GSSAPI
 Encapsulation section above, then process according to mechanism
 defined by that OID (if the OID is recognized). The processing
 is outside the scope of this specification. Otherwise, strip
 off GSS framing.
 - find KDC for specified realm (if KDC IP address cannot be
 obtained, send a KRB_ERROR message with error code
 KRB_IAKERB_ERR_KDC_NOT_FOUND to the client).
 - send to KDC (storing client IP address, port, and indication
 whether IAKERB proxy option or minimal messages option is
 being used)
 - retry with same or another KDC if no response is received. If
 the retries also fail, send an error message with error code
 KRB_IAKERB_ERR_KDC_NO_RESPONSE to the client.

 2. For received KDC_REP messages
 - encapsulate with GSS framing, using token ID 01 03 and the OID
 that corresponds to the stored protocol option
 - send to client (using the stored client IP address and port)

 3. For received AP_REQ and AP_REP messages
 - process locally per RFC 1964

 Clients:

 1. For sending KDC_REQ messages
 - create AS_REQ or TGS_REQ message
 - encapsulate with GSS framing (token ID 00 03 and OID
 corresponding to the protocol option).
 - send to server

 2. For received KDC_REP messages
 - decapsulate by removing GSS framing (token ID 01 03)
 - process inner Kerberos message according to RFC 1510

 3. For received AP_REQ and AP_REP messages
 - process locally per RFC 1964

7. The IAKERB minimal messages protocol

 The client MAY initiate the IAKERB minimal messages variation when
 the number of messages must be minimized (the most significant
 reduction in the number of messages can occur when the client and the
 IAKERB proxy are in different realms). SPNEGO [8] may be used to
 securely negotiate between the protocols. A compliant IAKERB server
 MAY support the IAKERB minimal messages protocol.

https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964

 (a) AS_REQ case: (used when the client does not have a TGT)

 We extend the technique used in Hornstein [5]. The client indicates
 that the minimal message sub-protocol will be used by using the
 appropriate OID as described above. The client sends the GSS

Swift, Trostle, Aboba, Zorn [Page 6]

INTERNET DRAFT July 2001 Expires January 2002

 encapsulated AS_REQ message to the IAKERB proxy, and the IAKERB proxy
 processes the GSS framing (as described above for the IAKERB proxy
 option) and forwards the AS_REQ message to the KDC.

 The IAKERB proxy will proxy the returned message (AS_REP or
 KRB_ERROR) from the KDC back to the client (after processing and
 removing the GSS framing). The protocol is complete in the KRB_ERROR
 case (from the server perspective, but the client should retry
 depending on the error type). In the AS_REP case, the IAKERB proxy
 will obtain the client's TGT from the AS_REP message before
 forwarding the AS_REP message to the client. The IAKERB proxy then
 sends a TGS_REQ message with the client's TGT in the additional
 tickets field to the client's KDC (ENC-TKT-IN-SKEY option).

 The IAKERB proxy MAY handle returned KRB_ERROR messages and retry the
 TGS request message. Ultimately, the IAKERB proxy either proxies a
 KRB_ERROR message to the client, or it sends a GSS Initial Context
 token containing an AP_REQ message to the client. (Note: although the
 server sends the initial context token, the client is the initiator.)
 The IAKERB proxy MUST set the MUTUAL AUTH flag in the Initial Context
 token in order to cause the client to authenticate as well. The
 client will reply with the GSSAPI enscapsulated AP_REP message, if
 the IAKERB proxy's authentication succeeds. If all goes well, then,
 in order to enable subsequent efficient client authentications, the
 IAKERB proxy will then send a final message of type KRB_TKT_PUSH
 containing a Kerberos ticket (the reverse ticket) that has the IAKERB
 client principal identifier in the client identifier field of the
 ticket and its own principal identity in the server identifier field
 of the ticket:

 KRB_TKT_PUSH :: = [APPLICATION 17] SEQUENCE {
 pvno[0] INTEGER, -- 5 (protocol version)
 msg-type[1] INTEGER, -- 17 (message type)
 ticket[2] Ticket
 }

 The key used to encrypt the reverse ticket is a long term secret key
 chosen by the IAKERB proxy. The fields are identical to the AP_REQ
 ticket, except the client name will be switched with the server name,
 and the server realm will be switched with the client realm. (The one
 other exception is that addresses should not be copied unless the
 IAKERB proxy has included the client's address in the TGS_REQ message
 to the KDC). Sending the reverse ticket allows the client to
 efficiently initiate subsequent reauthentication attempts with a

RFC1964 AP_REQ message. Note that the TKT_PUSH message is sent after
 mutual authentication and key establishment are complete.

 (b) TGS_REQ case: (used when the client has a TGT)

https://datatracker.ietf.org/doc/html/rfc1964

 The client indicates that the minimal messages sub-protocol will be
 used by using the appropriate OID as described above. The client
 initially sends a KRB_TKT_PUSH message (with the GSS header) to the
 IAKERB proxy in order to send it a TGT. The IAKERB proxy will obtain
 the client's TGT from the KRB_TKT_PUSH message and then proceed to

Swift, Trostle, Aboba, Zorn [Page 7]

INTERNET DRAFT July 2001 Expires January 2002

 send a TGS_REQ message to a KDC where the realm of the KDC is equal
 to the realm from the server realm field in the TGT sent by the
 client in the KRB_TKT_PUSH message. The protocol then continues as in
 the minimal messages AS_REQ case described above (see Figure 2); the
 IAKERB proxy's TGS_REQ message contains the client's TGT in the
 additional tickets field (ENC-TKT-IN-SKEY option). The IAKERB proxy
 then receives the TGS_REP message from the KDC and then sends a RFC

1964 AP_REQ message to the client (with the MUTUAL AUTH flag set -
 see AS_REQ case).

8. Addresses in Tickets

 In IAKERB, the machine sending requests to the KDC is the server and
 not the client. As a result, the client should not include its
 addresses in any KDC requests for two reasons. First, the KDC may
 reject the forwarded request as being from the wrong client. Second,
 in the case of initial authentication for a dial-up client, the
 client machine may not yet possess a network address. Hence, as
 allowed by RFC1510 [1], the addresses field of the AS and TGS
 requests SHOULD be blank and the caddr field of the ticket SHOULD
 similarly be left blank. One exception is in an AS request (where the
 request body is not integrity protected); the IAKERB proxy MAY add
 its own addresses and the addresses of the client to the AS request.

9. Combining IAKERB with Other Kerberos Extensions

 This protocol is usable with other proposed Kerberos extensions such
 as PKINIT (Public Key Cryptography for Initial Authentication in
 Kerberos [4]). In such cases, the messages which would normally be
 sent to the KDC are instead sent by the client application to the
 server, which then forwards them to a KDC.

10. Security Considerations

 In the minimal messages protocol option, the application server sends
 an AP_REQ message to the client. The ticket in the AP_REQ message
 SHOULD NOT contain authorization data since some operating systems
 may allow the client to impersonate the server and increase its own
 privileges. If the ticket from the server connotes any authorization,
 then the minimal messages protocol should not be used. Also, the
 minimal messages protocol may facilitate denial of service attacks in
 some environments; to prevent these attacks, it may make sense for
 the minimal messages protocol server to only accept a KRB_TGT_PUSH
 message on a local network interface (to ensure that the message was
 not sent from a remote malicious host).

11. Acknowledgements

 We thank Ken Raeburn for his helpful comments.

https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1510

12. References

 [1] J. Kohl, C. Neuman, "The Kerberos Network Authentication
 Service (V5)", RFC 1510.

Swift, Trostle, Aboba, Zorn [Page 8]

https://datatracker.ietf.org/doc/html/rfc1510

INTERNET DRAFT July 2001 Expires January 2002

 [2] J. Linn, "The Kerberos Version 5 GSS-API Mechanism", RFC 1964.

 [3] J. Linn, "Generic Security Service Application Program Interface",
RFC 2078.

 [4] B. Tung, C. Neuman, M. Hur, A. Medvinsky, S. Medvinsky, J. Wray,
 J. Trostle, "Public Key Cryptography for Initial Authentication in
 Kerberos", WORK IN PROGRESS Internet Draft

draft-ietf-cat-kerberos-pkinit-12.txt.

 [5] K. Hornstein, T. Lemon, B. Aboba, J. Trostle, "DHCP Authentication
 via Kerberos V", WORK IN PROGRESS Internet Draft

draft-hornstein-dhc-kerbauth-02.txt.

 [6] S. Bradner, "The Internet Standards Process -- Revision 3", BCP
9, RFC 2026, October 1996.

 [7] S. Bradner, "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [8] E. Baize, D. Pinkas, "The Simple and Protected GSS-API Negotiation
 Mechanism," RFC 2478, December 1998.

12. Author's Addresses

 Michael Swift
 University of Washington
 Seattle, WA
 Email: mikesw@cs.washington.edu

 Jonathan Trostle
 Cisco Systems
 170 W. Tasman Dr.
 San Jose, CA 95134, U.S.A.
 Email: jtrostle@cisco.com
 Phone: (408) 527-6201

 Bernard Aboba
 Microsoft
 One Microsoft Way
 Redmond, Washington, 98052, U.S.A.
 Email: bernarda@microsoft.com

 Glen Zorn
 Cisco Systems
 Bellevue, WA U.S.A.
 Email: gwz@cisco.com
 Phone: (425) 468-0955

https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/draft-ietf-cat-kerberos-pkinit-12.txt
https://datatracker.ietf.org/doc/html/draft-hornstein-dhc-kerbauth-02.txt
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2478

 This draft expires on January 31st, 2002.

Swift, Trostle, Aboba, Zorn [Page 9]

