
INTERNET-DRAFT Jonathan Trostle
draft-ietf-cat-iakerb-08.txt Cisco Systems
Updates: RFC 1510, 1964 Michael Swift
September 2001 University of WA
 Bernard Aboba
 Microsoft
 Glen Zorn
 Cisco Systems

Initial and Pass Through Authentication Using Kerberos V5 and the GSS-API
(IAKERB)
 <draft-ietf-cat-iakerb-08.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026 [5].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This draft expires in March 2002. Please send comments to the
 authors.

1. Abstract

 This document defines extensions to the Kerberos protocol
 specification (RFC 1510 [1]) and GSSAPI Kerberos protocol mechanism
 (RFC 1964 [2]) that enables a client to obtain Kerberos tickets for
 services where the KDC is not accessible to the client, but is
 accessible to the application server. Some common scenarios where
 lack of accessibility would occur are when the client does not have
 an IP address prior to authenticating to an access point, the client
 is unable to locate a KDC, or a KDC is behind a firewall. The
 document specifies two protocols to allow a client to exchange KDC

https://datatracker.ietf.org/doc/html/draft-ietf-cat-iakerb-08.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/draft-ietf-cat-iakerb-08.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964

 messages (which are GSS encapsulated) with an IAKERB proxy instead of
 a KDC.

Trostle, Swift, Aboba, Zorn [Page 1]

INTERNET DRAFT September 2001 Expires March 2002

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119 [6].

3. Motivation

 When authenticating using Kerberos V5, clients obtain tickets from a
 KDC and present them to services. This method of operation works well
 in many situations, but is not always applicable. The following is a
 list of some of the scenarios that this proposal addresses:

 (1) The client must initially authenticate to an access point in
 order to gain full access to the network. Here the client may be
 unable to directly contact the KDC either because it does not have an
 IP address, or the access point packet filter does not allow the
 client to send packets to the Internet before it authenticates to the
 access point [8].

 (2) A KDC is behind a firewall so the client will send Kerberos
 messages to the IAKERB proxy which will transmit the KDC request and
 reply messages between the client and the KDC. (The IAKERB proxy is a
 special type of Kerberos application server that also relays KDC
 request and reply messages between a client and the KDC).

4. Overview

 This proposal specifies two protocols that address the above
 scenarios: the IAKERB proxy option and the IAKERB minimal messages
 option. In the IAKERB proxy option (see Figure 1) an application
 server called the IAKERB proxy acts as a protocol gateway and proxies
 Kerberos messages back and forth between the client and the KDC. The
 IAKERB proxy is also responsible for locating the KDC and may
 additionally perform other application proxy level functions such as
 auditing. A compliant IAKERB proxy MUST implement the IAKERB proxy
 protocol.

 Client <---------> IAKERB proxy <----------> KDC

 Figure 1: IAKERB proxying

 The second protocol is the minimal messages protocol which is based
 on user-user authentication [4]; this protocol is targetted at
 environments where the number of messages, prior to key
 establishment, needs to be minimized. In the normal minimal messages
 protocol, the client sends its ticket granting ticket (TGT) to the

https://datatracker.ietf.org/doc/html/rfc2119

 IAKERB proxy (in a KRB_TKT_PUSH message) for the TGS case. The IAKERB
 proxy then sends a TGS_REQ to the KDC with the client's TGT in the
 additional tickets field of the TGS_REQ message. The returned ticket
 will list the client as the ticket's server principal, and will be
 encrypted with the session key from the client's TGT. The IAKERB

Trostle, Swift, Aboba, Zorn [Page 2]

INTERNET DRAFT September 2001 Expires March 2002

 proxy then uses this ticket to generate an AP request that is sent to
 the client (see Figure 2). Thus mutual authentication is accomplished
 with three messages between the client and the IAKERB proxy versus
 four or more (the difference is larger if crossrealm operations are
 involved).

 Subsequent to mutual authentication and key establishment, the IAKERB
 proxy sends a ticket to the client (in a KRB_TKT_PUSH message). This
 ticket is created by the IAKERB proxy and contains the same fields as
 the original service ticket that the proxy sent in the AP_REQ
 message, except the client and server names are reversed and it is
 encrypted in a long term key known to the IAKERB proxy. Its purpose
 is to enable fast subsequent re-authentication by the client to the
 application server (using the conventional AP request AP reply
 exchange) for subsequent sessions. In addition to minimizing the
 number of messages, a secondary goal is to minimize the number of
 bytes transferred between the client and the IAKERB proxy prior to
 mutual authentication and key establishment. Therefore, the final
 service ticket (the reverse ticket) is sent after mutual
 authentication and key establishment is complete, rather than as part
 of the initial AP_REQ from the IAKERB proxy to the client. Thus
 protected application data (e.g., GSS signed and wrapped messages)
 can flow before this final message is sent.

 The AS_REQ case for the minimal messages option is similar, where the
 client sends up the AS_REQ message and the IAKERB proxy forwards it
 to the KDC. The IAKERB proxy pulls the client TGT out of the AS_REP
 message; the protocol now proceeds as in the TGS_REQ case described
 above with the IAKERB proxy including the client's TGT in the
 additional tickets field of the TGS_REQ message.

 A compliant IAKERB proxy MUST implement the IAKERB proxy protocol,
 and MAY implement the IAKERB minimal message protocol. In general,
 the existing Kerberos paradigm where clients contact the KDC to
 obtain service tickets should be preserved where possible.

 For most IAKERB scenarios, such as when the client does not have an
 IP address, or cannot directly contact a KDC, the IAKERB proxy
 protocol should be adequate. If the client needs to obtain a
 crossrealm TGT (and the conventional Kerberos protocol cannot be
 used), then the IAKERB proxy protocol must be used. In a scenario
 where the client does not have a service ticket for the target
 server, it is crucial that the number of messages between the client
 and the target server be minimized (especially if the client and
 target server are in different realms), and/or it is crucial that the
 number of bytes transferred between the client and the target server
 be minimized, then the client should consider using the minimal
 messages protocol. The reader should see the security considerations

 section regarding the minimal messages protocol.

Trostle, Swift, Aboba, Zorn [Page 3]

INTERNET DRAFT September 2001 Expires March 2002

 Client --------> IAKERB proxy
 TKT_PUSH (w/ TGT)

 Client IAKERB proxy --------------------> KDC
 TGS_REQ with client
 TGT as additional TGT

 Client IAKERB proxy <-------------------- KDC
 TGS_REP with service
 ticket

 Client <-------- IAKERB proxy KDC
 AP_REQ

 Client --------> IAKERB proxy KDC
 AP_REP

 post-key establishment and application data flow phase:

 Client <-------- IAKERB proxy KDC
 TKT_PUSH (w/ticket targetted at IAKERB proxy
 to enable fast subsequent authentication)

 Figure 2: IAKERB Minimal Messages Option: TGS case

5. GSSAPI Encapsulation

 The mechanism ID for IAKERB proxy GSS-API Kerberos, in accordance
 with the mechanism proposed by SPNEGO [7] for negotiating protocol
 variations, is: {iso(1) org(3) dod(6) internet(1) security(5)
 mechanisms(5) iakerb(10) iakerbProxyProtocol(1)}. The proposed
 mechanism ID for IAKERB minimum messages GSS-API Kerberos, in
 accordance with the mechanism proposed by SPNEGO for negotiating
 protocol variations, is: {iso(1) org(3) dod(6) internet(1)
 security(5) mechanisms(5) iakerb(10)
 iakerbMinimumMessagesProtocol(2)}.

 NOTE: An IAKERB implementation does not require SPNEGO in order to
 achieve interoperability with other IAKERB peers. Two IAKERB
 implementations may interoperate in the same way that any two peers
 can interoperate using a pre-established GSSAPI mechanism. The above
 OID's allow two SPNEGO peers to securely negotiate IAKERB from among
 a set of GSS mechanisms.

 The AS request, AS reply, TGS request, and TGS reply messages are all

 encapsulated using the format defined by RFC1964 [2]. This consists
 of the GSS-API token framing defined in appendix B of [3]:

Trostle, Swift, Aboba, Zorn [Page 4]

https://datatracker.ietf.org/doc/html/rfc1964

INTERNET DRAFT September 2001 Expires March 2002

 InitialContextToken ::= [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType
 -- MechType is OBJECT IDENTIFIER
 -- representing iakerb proxy or iakerb min messages
 innerContextToken ANY DEFINED BY thisMech
 -- contents mechanism-specific;
 -- ASN.1 usage within innerContextToken
 -- is not required
 }

 The innerContextToken consists of a 2-byte TOK_ID field (defined
 below), followed by the Kerberos V5 KRB_AS_REQ, KRB_AS_REP,
 KRB_TGS_REQ, or KRB_TGS_REP messages, as appropriate. The TOK_ID
 field shall be one of the following values, to denote that the
 message is either a request to the KDC or a response from the KDC.

 Message TOK_ID

 KRB_KDC_REQ 00 03

 KRB_KDC_REP 01 03

 We also define the token ID for the KRB_TKT_PUSH token (defined below
 and used in the minimal messages variation):

 Message TOK_ID

 KRB_TKT_PUSH 02 03

 For completeness, we list the other RFC 1964 defined token ID's here:

 Message TOK_ID

 AP_REQ 01 00

 AP_REP 02 00

 KRB_ERROR 03 00

6. The IAKERB proxy protocol

 The IAKERB proxy will proxy Kerberos KDC request, KDC reply, and
 KRB_ERROR messages back and forth between the client and the KDC as
 illustrated in Figure 1. Messages received from the client must first
 have the Kerberos GSS header (RFC1964 [2]) stripped off. The
 unencapsulated message will then be forwarded to a KDC. The IAKERB
 proxy is responsible for locating an appropriate KDC using the realm

https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1964

 information in the KDC request message it received from the client.
 In addition, the IAKERB proxy SHOULD implement a retry algorithm for
 KDC requests over UDP (including selection of alternate KDC's if the
 initial KDC does not respond to its requests). For messages sent by
 the KDC, the IAKERB proxy encapsulates them with a Kerberos GSS

Trostle, Swift, Aboba, Zorn [Page 5]

INTERNET DRAFT September 2001 Expires March 2002

 header before sending them to the client.

 We define two new Kerberos error codes that allow the proxy to
 indicate the following error conditions to the client:

 (a) when the proxy is unable to obtain an IP address for a KDC in the
 client's realm, it sends the KRB_IAKERB_ERR_KDC_NOT_FOUND KRB_ERROR
 (80) message to the client.

 (b) when the proxy has an IP address for a KDC in the client realm,
 but does not receive a response from any KDC in the realm (including
 in response to retries), it sends the KRB_IAKERB_ERR_KDC_NO_RESPONSE
 KRB_ERROR (81) message to the client.

 To summarize, the sequence of steps for processing is as follows:

 Servers:

 1. For received KDC_REQ messages (with token ID 00 03)
 - process GSS framing (check OID)
 if the OID is not one of the two OID's specified in the GSSAPI
 Encapsulation section above, then process according to mechanism
 defined by that OID (if the OID is recognized). The processing
 is outside the scope of this specification. Otherwise, strip
 off GSS framing.
 - find KDC for specified realm (if KDC IP address cannot be
 obtained, send a KRB_ERROR message with error code
 KRB_IAKERB_ERR_KDC_NOT_FOUND to the client).
 - send to KDC (storing client IP address, port, and indication
 whether IAKERB proxy option or minimal messages option is
 being used)
 - retry with same or another KDC if no response is received. If
 the retries also fail, send an error message with error code
 KRB_IAKERB_ERR_KDC_NO_RESPONSE to the client.

 2. For received KDC_REP messages
 - encapsulate with GSS framing, using token ID 01 03 and the OID
 that corresponds to the stored protocol option
 - send to client (using the stored client IP address and port)

 3. For KRB_ERROR messages received from the KDC
 - encapsulate with GSS framing, using token ID 03 00 and the OID
 that corresponds to the stored protocol option
 - send to client (using the stored client IP address and port)
 (one possible exception is the KRB_ERR_RESPONSE_TOO_BIG error
 which can lead to a retry of the KDC_REQ message over the TCP
 transport by the server, instead of simply proxying the error
 to the client).

 4. For sending/receiving AP_REQ and AP_REP messages
 - process per RFC 1510 and RFC 1964; the created AP_REP message
 SHOULD include the subkey (with same etype as the session key)
 to facilitate use with other key derivation algorithms outside
 of [2]. The subkey SHOULD be created using locally generated

Trostle, Swift, Aboba, Zorn [Page 6]

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964

INTERNET DRAFT September 2001 Expires March 2002

 entropy as one of the inputs (in addition to other inputs
 such as the session key).

 Clients:

 1. For sending KDC_REQ messages
 - create AS_REQ or TGS_REQ message
 - encapsulate with GSS framing (token ID 00 03 and OID
 corresponding to the protocol option).
 - send to server

 2. For received KDC_REP messages
 - decapsulate by removing GSS framing (token ID 01 03)
 - process inner Kerberos message according to RFC 1510

 3. For received KRB_ERROR messages
 - decapsulate by removing GSS framing (token ID 03 00)
 - process inner Kerberos message according to RFC 1510
 and possibly retry the request (time skew errors lead
 to retries in most existing Kerberos implementations)

 4. For sending/receiving AP_REQ and AP_REP messages
 - process per RFC 1510 and RFC 1964; the created AP_REQ
 message SHOULD include the subsession key in the
 authenticator field.

7. The IAKERB minimal messages protocol

 The client MAY initiate the IAKERB minimal messages variation when
 the number of messages must be minimized (the most significant
 reduction in the number of messages can occur when the client and the
 IAKERB proxy are in different realms). SPNEGO [7] MAY be used to
 securely negotiate between the protocols (and amongst other GSS
 mechanism protocols). A compliant IAKERB server MAY support the
 IAKERB minimal messages protocol.

 (a) AS_REQ case: (used when the client does not have a TGT)

 We apply the Kerberos user-user authentication protocol [4] in this
 scenario (other work in this area includes the IETF work in progress
 effort to apply Kerberos user user authentication to DHCP
 authentication).

 The client indicates that the minimal message sub-protocol will be
 used by using the appropriate OID as described above. The client
 sends the GSS encapsulated AS_REQ message to the IAKERB proxy, and
 the IAKERB proxy processes the GSS framing (as described above for
 the IAKERB proxy option) and forwards the AS_REQ message to the KDC.

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964

 The IAKERB proxy will either send a KRB_ERROR message back to the
 client, or it will send an initial context token consisting of the
 GSS header (minimal messages OID with a two byte token header 01 03),
 followed by an AS_REP message. The AS_REP message will contain the
 AP_REQ message in a padata field; the ticket in the AP_REQ is a

Trostle, Swift, Aboba, Zorn [Page 7]

INTERNET DRAFT September 2001 Expires March 2002

 user-user ticket encrypted in the session key from the client's
 original TGT. We define the padata type PA-AP-REQ with type number
 25. The corresponding padata value is the AP_REQ message without any
 GSS framing. For the IAKERB minimal messages AS option, the AP_REQ
 message authenticator MUST include the RFC 1964 [2] checksum. The
 mutual-required and use-session-key flags are set in the ap-options
 field of the AP_REQ message.

 The protocol is complete in the KRB_ERROR case (from the server
 perspective, but the client should retry depending on the error
 type). If the IAKERB proxy receives an AS_REP message from the KDC,
 the IAKERB proxy will then obtain the client's TGT from the AS_REP
 message. The IAKERB proxy then sends a TGS_REQ message with the
 client's TGT in the additional tickets field to the client's KDC
 (ENC-TKT-IN-SKEY option).

 The IAKERB proxy MAY handle returned KRB_ERROR messages and retry the
 TGS request message (e.g. on a KRB_ERR_RESPONSE_TOO_BIG error,
 switching to TCP from UDP). Ultimately, the IAKERB proxy either
 proxies a KRB_ERROR message to the client (after adding the GSS
 framing), sends one of the new GSS framed KRB_ERROR messages defined
 above, or it receives the TGS_REP message from the KDC and then
 creates the AP_REQ message according to RFC 1964 [2]. The IAKERB
 proxy then sends a GSS token containing the AS_REP message with the
 AP_REQ message in the padata field as described above. (Note:
 although the server sends the context token with the AP_REQ, the
 client is the initiator.) The IAKERB proxy MUST set both the mutual-
 required and use-session-key flags in the AP_REQ message in order to
 cause the client to authenticate as well. The authenticator SHOULD
 include the subsession key (containing locally added entropy). The
 client will reply with the GSSAPI enscapsulated AP_REP message, if
 the IAKERB proxy's authentication succeeds (which SHOULD include the
 subkey field to facilitate use with other key derivation algorithms
 outside of [2]). If all goes well, then, in order to enable
 subsequent efficient client authentications, the IAKERB proxy will
 then send a final message of type KRB_TKT_PUSH containing a Kerberos
 ticket (the reverse ticket) that has the IAKERB client principal
 identifier in the client identifier field of the ticket and its own
 principal identity in the server identifier field of the ticket (see
 Figure 3):

 KRB_TKT_PUSH :: = [APPLICATION 17] SEQUENCE {
 pvno[0] INTEGER, -- 5 (protocol version)
 msg-type[1] INTEGER, -- 17 (message type)
 ticket[2] Ticket
 }

 NOTE: The KRB_TKT_PUSH message must be encoded using ASN.1 DER. The

https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1964

 key used to encrypt the reverse ticket is a long term secret key
 chosen by the IAKERB proxy. The fields are identical to the AP_REQ
 ticket, except the client name will be switched with the server name,
 and the server realm will be switched with the client realm. (The one
 other exception is that addresses should not be copied from the
 AP_REQ ticket to the reverse ticket). Sending the reverse ticket

Trostle, Swift, Aboba, Zorn [Page 8]

INTERNET DRAFT September 2001 Expires March 2002

 allows the client to efficiently initiate subsequent reauthentication
 attempts with a RFC1964 AP_REQ message. Note that the TKT_PUSH
 message is sent after mutual authentication and key establishment are
 complete.

 Client --------> IAKERB proxy --------------------> KDC
 AS_REQ AS_REQ

 Client IAKERB proxy <-------------------- KDC
 AS_REP w/ client TGT

 Client IAKERB proxy --------------------> KDC
 TGS_REQ with client
 TGT as additional TGT

 Client IAKERB proxy <-------------------- KDC
 TGS_REP with service
 ticket

 Client <-------- IAKERB proxy KDC
 AS_REP w/ AP_REQ in padata field

 Client --------> IAKERB proxy KDC
 AP_REP

 post-key establishment and application data flow phase:

 Client <-------- IAKERB proxy KDC
 TKT_PUSH (w/ticket targetted at IAKERB proxy
 to enable fast subsequent authentication)

 Figure 3: IAKERB Minimal Messages Option: AS case

 (b) TGS_REQ case: (used when the client has a TGT)

 The client indicates that the minimal messages sub-protocol will be
 used by using the appropriate OID as described above. The client
 initially sends a KRB_TKT_PUSH message (with the GSS header) to the
 IAKERB proxy in order to send it a TGT. The IAKERB proxy will obtain
 the client's TGT from the KRB_TKT_PUSH message and then proceed to
 send a TGS_REQ message to a KDC where the realm of the KDC is equal
 to the realm from the server realm field in the TGT sent by the
 client in the KRB_TKT_PUSH message. NOTE: this realm could be the
 client's home realm, the proxy's realm, or an intermediate realm. The

https://datatracker.ietf.org/doc/html/rfc1964

 protocol then continues as in the minimal messages AS_REQ case
 described above (see Figure 2); the IAKERB proxy's TGS_REQ message
 contains the client's TGT in the additional tickets field (ENC-TKT-
 IN-SKEY option). The IAKERB proxy then receives the TGS_REP message
 from the KDC and then sends a RFC 1964 AP_REQ message to the client

Trostle, Swift, Aboba, Zorn [Page 9]

https://datatracker.ietf.org/doc/html/rfc1964

INTERNET DRAFT September 2001 Expires March 2002

 (with the MUTUAL AUTH flag set - see AS_REQ case).

 To summarize, here are the steps for the minimal messages TGS
 protocol:

 Client:
 (has TGT already for, or targetted at, realm X.ORG)
 sends TKT_PUSH message to server containing client's ticket
 for X.ORG (which could be a crossrealm TGT)

 Server:
 (has TGT already targetted at realm X.ORG)
 sends to KDC (where KDC has principal id = server name,
 server realm from client ticket) a TGS_REQ:
 TGT in TGS_REQ is server's TGT
 Additional ticket in TGS_REQ is client's TGT from TKT_PUSH
 message
 Server name in TGS_REQ (optional by rfc1510) is not present
 Server realm in TGS_REQ is realm in server's TGT - X.ORG

 KDC:
 Builds a ticket:
 Server name = client's name
 Client name = server's name, Client realm = server's realm
 Server realm = client's realm
 Encrypted with: session key from client's TGT (passed in
 additional tickets field)
 Build a TGS_REP
 Encrypted with session key from server's TGT
 Sends TGS_REP and ticket to server

 Server:
 Decrypts TGS_REP from KDC using session key from its TGT
 Constructs AP_REQ
 Ticket = ticket from KDC (which was encrypted with
 client's TGT session key)
 authenticator clientname = server's name (matches
 clientname in AP-REQ ticket)
 authenticator clientrealm = server's realm
 subsession key in authenticator is present (same
 etype as the etype of the session key in the ticket)
 checksum in authenticator is the RFC 1964 checksum
 sequence number in authenticator is present (RFC 1964)
 ap-options has both use-session-key and mutual-required
 flags set
 Sends AP_REQ (with GSS-API framing) to client

 Client:

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1964

 Receives AP_REQ
 Decrypts ticket using session key from its TGT
 Verifies AP_REQ
 Builds AP_REP and sends to server (AP_REP SHOULD include
 subkey field to facilitate use with other key derivation
 algorithms outside of [2] e.g., [8] and its successors.

Trostle, Swift, Aboba, Zorn [Page 10]

INTERNET DRAFT September 2001 Expires March 2002

 Some apps may have their own message protection key
 derivation algorithm and protected message format.
 AP_REP includes the sequence number per RFC 1964.)

 Server:
 Verifies AP-REP. Builds reverse ticket as described above
 and sends reverse ticket to client using the KRB_TKT_PUSH
 message. The reverse ticket is the same as the AP_REQ
 ticket except the client name, realm are switched with the
 server name, realm fields and it is encrypted in a secret
 key known to the IAKERB proxy.

8. Addresses in Tickets

 In IAKERB, the machine sending requests to the KDC is the server and
 not the client. As a result, the client should not include its
 addresses in any KDC requests for two reasons. First, the KDC may
 reject the forwarded request as being from the wrong client. Second,
 in the case of initial authentication for a dial-up client, the
 client machine may not yet possess a network address. Hence, as
 allowed by RFC1510 [1], the addresses field of the AS and TGS
 requests SHOULD be blank and the caddr field of the ticket SHOULD
 similarly be left blank.

9. Security Considerations

 Similar to other network access protocols, IAKERB allows an
 unauthenticated client (possibly outside the security perimeter of an
 organization) to send messages that are proxied to interior servers.
 When combined with DNS SRV RR's for KDC lookup, there is the
 possibility that an attacker can send an arbitrary message to an
 interior server. There are several aspects to note here:

 (1) in many scenarios, compromise of the DNS lookup will require the
 attacker to already have access to the internal network. Thus the
 attacker would already be able to send arbitrary messages to interior
 servers. No new vulnerabilities are added in these scenarios.

 (2) in a scenario where DNS SRV RR's are being used to locate the
 KDC, IAKERB is being used, and an external attacker can modify DNS
 responses to the IAKERB proxy, there are several countermeasures to
 prevent arbitrary messages from being sent to internal servers:

 (a) KDC port numbers can be statically configured on the IAKERB
 proxy. In this case, the messages will always be sent to KDC's. For
 an organization that runs KDC's on a static port (usually port 88)
 and does not run any other servers on the same port, this
 countermeasure would be easy to administer and should be effective.

https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1510

 (b) the proxy can do application level sanity checking and filtering.
 This countermeasure should eliminate many of the above attacks.

 (c) DNS security can be deployed. This countermeasure is probably
 overkill for this particular problem, but if an organization has

Trostle, Swift, Aboba, Zorn [Page 11]

INTERNET DRAFT September 2001 Expires March 2002

 already deployed DNS security for other reasons, then it might make
 sense to leverage it here. Note that Kerberos could be used to
 protect the DNS exchanges. The initial DNS SRV KDC lookup by the
 proxy will be unprotected, but an attack here is at most a denial of
 service (the initial lookup will be for the proxy's KDC to facilitate
 Kerberos protection of subsequent DNS exchanges between itself and
 the DNS server).

 In the minimal messages protocol option, the application server sends
 an AP_REQ message to the client. The ticket in the AP_REQ message
 SHOULD NOT contain authorization data since some operating systems
 may allow the client to impersonate the server and increase its own
 privileges. If the ticket from the server connotes any authorization,
 then the minimal messages protocol should not be used. Also, the
 minimal messages protocol may facilitate denial of service attacks in
 some environments; to prevent these attacks, it may make sense for
 the minimal messages protocol server to only accept a KRB_TGT_PUSH
 message on a local network interface (to ensure that the message was
 not sent from a remote malicious host).

10. Acknowledgements

 We thank the Kerberos Working Group chair, Doug Engert, for his
 efforts in helping to progress this specification. We also thank Ken
 Raeburn for his comments and the other working group participants for
 their input.

11. References

 [1] J. Kohl, C. Neuman, "The Kerberos Network Authentication
 Service (V5)", RFC 1510.

 [2] J. Linn, "The Kerberos Version 5 GSS-API Mechanism", RFC 1964.

 [3] J. Linn, "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743.

 [4] D. Davis, R. Swick, "Workstation Services and Kerberos
 Authentication at Project Athena", Technical Memorandum TM-424,
 MIT Laboratory for Computer Science, February 1990.

 [5] S. Bradner, "The Internet Standards Process -- Revision 3", BCP
9, RFC 2026, October 1996.

 [6] S. Bradner, "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [7] E. Baize, D. Pinkas, "The Simple and Protected GSS-API Negotiation
 Mechanism," RFC 2478, December 1998.

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2478

 [8] Part 11: Wireless LAN Medium Access Control (MAC) and Physical
 Layer (PHY) Specifications, ANSI/IEEE Std. 802.11, 1999 Edition.

Trostle, Swift, Aboba, Zorn [Page 12]

INTERNET DRAFT September 2001 Expires March 2002

12. Author's Addresses

 Jonathan Trostle
 Cisco Systems
 170 W. Tasman Dr.
 San Jose, CA 95134, U.S.A.
 Email: jtrostle@cisco.com
 Phone: (408) 527-6201

 Michael Swift
 University of Washington
 Seattle, WA
 Email: mikesw@cs.washington.edu

 Bernard Aboba
 Microsoft
 One Microsoft Way
 Redmond, Washington, 98052, U.S.A.
 Email: bernarda@microsoft.com

 Glen Zorn
 Cisco Systems
 Bellevue, WA U.S.A.
 Email: gwz@cisco.com
 Phone: (425) 468-0955

 This draft expires on March 31st, 2002.

Trostle, Swift, Aboba, Zorn [Page 13]

