
Internet Draft C. Adams, Entrust Technologies
draft-ietf-cat-idup-gss-10.txt March, 1998

Independent Data Unit Protection Generic Security Service
Application Program Interface (IDUP-GSS-API)

STATUS OF THIS MEMO

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by
 other documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 To learn the current status of any Internet Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net (US East Coast), ftp.nordu.net
 (Europe), ftp.isi.edu (US West Coast) or munnari.oz.au (Pacific Rim).

 Comments on this document should be sent to "cat-ietf@mit.edu", the
 IETF Common Authentication Technology WG discussion list.

ABSTRACT

 The IDUP-GSS-API extends the GSS-API [RFC-2078] for applications
 requiring protection of a generic data unit (such as a file or
 message) in a way which is independent of the protection of any other
 data unit and independent of any concurrent contact with designated
 ''receivers'' of the data unit. Thus, it is suitable for applications
 such as secure electronic mail where data needs to be protected
 without any on-line connection with the intended recipient(s) of that
 data. The protection offered by IDUP includes services such as data
 origin authentication with data integrity, data confidentiality with
 data integrity, and support for non-repudiation services. Subsequent
 to being protected, the data unit can be transferred to the
 recipient(s) - or to an archive - perhaps to be processed
 (''unprotected'') only days or years later.

 Throughout the remainder of this document, the ''unit'' of data
 described in the above paragraph will be referred to as an IDU
 (Independent Data Unit). The IDU can be of any size (the application
 may, if it wishes, split the IDU into pieces and have the protection
 computed a piece at a time, but the resulting protection token
 applies to the entire IDU). However, the primary characteristic of
 an IDU is that it represents a stand-alone unit of data whose

https://datatracker.ietf.org/doc/html/draft-ietf-cat-idup-gss-10.txt
https://datatracker.ietf.org/doc/html/rfc2078

 protection is entirely independent of any other unit of data. If an
 application protects several IDUs and sends them all to a single

Adams Document Expiration: Sept. 1998 1

 receiver, the IDUs may be unprotected by that receiver in any order
 over any time span; no logical connection of any kind is implied by
 the protection process itself.

 As with RFC-2078, this IDUP-GSS-API definition provides security
 services to callers in a generic fashion, supportable with a range of
 underlying mechanisms and technologies and hence allowing source-
 level portability of applications to different environments. This
 specification defines IDUP-GSS-API services and primitives at a level
 independent of underlying mechanism and programming language environ-
 ment, and is to be complemented by other, related specifications:

 - documents defining specific parameter bindings for particular
 language environments;
 - documents defining token formats, protocols, and procedures to
 be implemented in order to realize IDUP-GSS-API services atop
 particular security mechanisms.

TABLE OF CONTENTS
1. IDUP-GSS-API Characteristics and Concepts 3
1.1. IDUP-GSS-API Constructs 5
1.1.1. Credentials .. 5
1.1.2. Tokens ... 5
1.1.3. Security Environment 5
1.1.4. Mechanism Types .. 6
1.1.5. Naming ... 6
1.1.6. Channel Bindings 6
1.2. IDUP-GSS-API Features and Issues 6
1.2.1. Status Reporting 6
1.2.2. Per-IDU Security Service Availability 8
1.2.3. Per-IDU Replay Detection and Sequencing 8
1.2.4. Quality of Protection 9
1.2.5. The Provision of Time 11
2. Interface Descriptions 11
2.1. Credential management calls 13
2.1.1. Relationship to GSS-API 13
2.2. Environment-level calls 13
2.2.1. Relationship to GSS-API 13
2.2.2. IDUP_Establish_Env call 13
2.2.3. IDUP_Abolish_Env call 16
2.2.4. IDUP_Inquire_Env call 17
2.3. Per-IDU protection/unprotection calls 17
2.3.1. Relationship to GSS-API 18
2.3.2. The "SE" Calls ... 18

https://datatracker.ietf.org/doc/html/rfc2078

2.3.3. The "EV" Calls ... 23
2.3.4. The "GP" Calls ... 32
2.4. Special-Purpose calls 42
2.4.1. Relationship to GSS-API 42
2.4.2. IDUP_Form_Complete_PIDU 42
2.5. Support calls .. 44
2.5.1. Relationship to GSS-API 44
2.5.2. IDUP_Acquire_Cred_With_Auth 44
2.5.3. IDUP_Get_Token_Details 45
2.5.4. IDUP_Get_Policy_Info 47
2.5.5. IDUP_Cancel_Multibuffer_Op 49

Adams Document Expiration: Sept. 1998 2

3. Related Activities ... 49
4. Acknowledgments .. 49
5. Security Considerations 49
6. References ... 50
7. Author's Address ... 50

 Appendix A Mechanism-Independent Token Format 51
 Appendix B Examples of IDUP Use 52

1. IDUP-GSS-API Characteristics and Concepts

 The paradigm within which IDUP-GSS-API operates is as follows. An
 IDUP-GSS-API caller is any application that works with IDUs, calling
 on IDUP-GSS-API in order to protect its IDUs with services such as
 data origin authentication with integrity (DOA), confidentiality with
 integrity (CONF), and/or support for non-repudiation (e.g., evidence
 generation, where "evidence" is information that either by itself, or
 when used in conjunction with other information, is used to establish
 proof about an event or action (note: the evidence itself does not
 necessarily prove truth or existence of something, but contributes to
 establish proof) -- see [ISO/IEC] for fuller discussion regarding
 evidence and its role in various types of non-repudiation). An
 IDUP-GSS-API caller passes an IDU to, and accepts a token from, its
 local IDUP-GSS-API implementation, transferring the resulting
 protected IDU (P-IDU) to a peer or to any storage medium. When a
 P-IDU is to be "unprotected", it is passed to an IDUP-GSS-API
 implementation for processing. The security services available
 through IDUP-GSS-API in this fashion are implementable over a range
 of underlying mechanisms based on secret-key and/or public-key
 cryptographic technologies.

 During the protection operation, the input IDU buffers may be
 modified (for example, the data may be encrypted or encoded in some
 way) or may remain unchanged. In any case, the result is termed a
 "M-IDU" (Modified IDU) in order to distinguish it from the original
 IDU. Depending on the desire of the calling application and the

 capabilities of the underlying IDUP mechanism, the output produced by
 the protection processing may or may not encapsulate the M-IDU.
 Thus, the P-IDU may be the contents of a single output parameter (if
 encapsulation is done) or may be the logical concatenation of an
 unencapsulated token parameter and a M-IDU parameter (if
 encapsulation is not done). In the latter case, the protecting
 application may choose whatever method it wishes to concatenate or
 combine the unencapsulated token and the M-IDU into a P-IDU, provided
 the unprotecting application knows how to de-couple the P-IDU back
 into its component parts prior to calling the IDUP unprotection set
 of functions.

 It is expected that any output buffer returned by IDUP (i.e., P-IDU
 or portion thereof) is ready for immediate transmission to the
 intended receiver(s) by the calling application, if this is desired.
 In other words, an application wishing to transmit data buffers as
 they appear from IDUP should not be unduly restricted from doing
 so by the underlying mechanism.

Adams Document Expiration: Sept. 1998 3

 The IDUP-GSS-API separates the operation of initializing a security
 environment (the IDUP_Establish_Env() call) from the operations of
 providing per-IDU protection, for IDUs subsequently protected in
 conjunction with that environment. Per-IDU protection and
 unprotection calls provide DOA, CONF, evidence, and other services,
 as requested by the calling application and as supported by the
 underlying mechanism.

 The following paragraphs provide an example illustrating the
 dataflows involved in the use of the IDUP-GSS-API by the sender and
 receiver of a P-IDU in a mechanism-independent fashion. The example
 assumes that credential acquisition has already been completed by
 both sides. Furthermore, the example does not cover all possible
 options available in the protection/unprotection calls.

 The sender first calls IDUP_Establish_Env() to establish a
 security environment. Then, for the IDU to be protected the
 sender calls the appropriate protection calls (SE, EV, or GP) to
 perform the IDU protection. The resulting P-IDU, which may
 (depending on whether or not encapsulation was chosen/available)
 be either the token itself or the logical concatenation of the
 token and the M-IDU, is now ready to be sent to the target. The
 sender then calls IDUP_Abolish_Env() to flush all
 environment-specific information.

 The receiver first calls IDUP_Establish_Env() to establish a
 security environment in order to unprotect the P-IDU. Then, for

 the received P-IDU the receiver calls the appropriate unprotection
 calls (SE, EV, or GP (known a priori, or possibly determined
 through the use of the IDUP_Get_token_details call)) to perform
 the P-IDU unprotection. The receiver then calls
 IDUP_Abolish_Env() to flush all environment-specific information.

 It is important to note that absolutely no synchronization is implied
 or expected between the data buffer size used by the sender as input
 to the protection calls, the data buffer size used by the receiver as
 input to the unprotection calls, and the block sizes required by the
 underlying protection algorithms (integrity and confidentiality).
 All these sizes are meant to be independent; furthermore, the data
 buffer sizes used for the protection and unprotection calls are
 purely a function of the local environment where the calls are made.

 The IDUP-GSS-API design assumes and addresses several basic goals,
 including the following.

 Mechanism independence: The IDUP-GSS-API defines an interface to
 cryptographically implemented security services at a generic level
 which is independent of particular underlying mechanisms. For
 example, IDUP-GSS-API-provided services can be implemented by
 secret-key technologies or public-key approaches.

Adams Document Expiration: Sept. 1998 4

 Protocol environment independence: The IDUP-GSS-API is independent
 of the communications protocol suites which may be used to
 transfer P-IDUs, permitting use in a broad range of protocol
 environments.

 Protocol association independence: The IDUP-GSS-API's security
 environment construct has nothing whatever to do with
 communications protocol association constructs, so that
 IDUP-GSS-API services can be invoked by applications, wholly
 independent of protocol associations.

 Suitability for a range of implementation placements: IDUP-GSS-API
 clients are not constrained to reside within any Trusted Computing
 Base (TCB) perimeter defined on a system where the IDUP-GSS-API is
 implemented; security services are specified in a manner suitable
 for both intra-TCB and extra-TCB callers.

1.1. IDUP-GSS-API Constructs

 This section describes the basic elements comprising the

 IDUP-GSS-API.

1.1.1. Credentials

 Credentials in IDUP-GSS-API are to be understood and used as
 described in GSS-API [RFC-2078].

1.1.2. Tokens

 Tokens in IDUP-GSS-API are to be understood and used as described in
 GSS-API [RFC-2078] with the exception that there are no context-level
 tokens generated by IDUP-GSS-API. The IDUP-GSS-API token
 may (depending on the underlying mechanism) encapsulate the M-IDU or
 may be logically concatenated with the M-IDU prior to transfer to a
 target; furthermore, for some evidence services the token may be sent
 independently of any other data transfer.

1.1.3. Security Environment

 The "security environment" in IDUP-GSS-API is entirely different from
 the concept of security contexts used in GSS-API [RFC-2078]. Here, a
 security environment exists within a calling application (that is, it
 is purely local to the caller) for the purpose of protecting or
 unprotecting one or more IDUs using a particular caller credential or
 set of credentials. In GSS-API, on the other hand, a security
 context exists between peers (the initiator and the target) for the
 purpose of protecting, in real time, the data that is exchanged
 between them. Although they are different concepts, the env_handle
 in IDUP-GSS-API is similar to the context_handle in GSS-API in that
 it is a convenient way of tying together the entire process of
 protecting or unprotecting one or more IDUs using a particular
 underlying mechanism. As with the GSS-API security contexts, a
 caller can initiate and maintain multiple environments using the same
 or different credentials.

Adams Document Expiration: Sept. 1998 5

1.1.4. Mechanism Types

 Mechanism types in IDUP-GSS-API are to be understood and used as
 described in GSS-API [RFC-2078].

1.1.5. Naming

 Naming in IDUP-GSS-API is to be understood and used as described in
 GSS-API [RFC-2078].

1.1.6. Channel Bindings

 The concept of channel bindings discussed in GSS-API [RFC-2078] is

https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc2078

 not relevant to the IDUP-GSS-API.

1.2. IDUP-GSS-API Features and Issues

 This section describes aspects of IDUP-GSS-API operations and of the
 security services which the IDUP-GSS-API provides. It also provides
 commentary on design issues.

1.2.1. Status Reporting

 Status reporting in IDUP-GSS-API is to be understood and used as
 described in GSS-API [RFC-2078], with the addition of a number of
 IDUP-specific status codes. Descriptions of the major_status codes
 used in IDUP are provided in Table 1. Codes that are informatory
 (i.e., that do not cause the requested operation to fail) are
 indicated with the symbol "(I)".

 As with GSS-API, minor_status codes, which provide more detailed
 status information than major_status codes, and which may include
 status codes specific to the underlying security mechanism, are not
 specified in this document.

Table 1: IDUP-GSS-API Major Status Codes

 GSS_S_BAD_MECH indicates that a mech_type unsupported by the
 IDUP_GSS-API implementation was requested, causing the
 environment establishment operation to fail.

 GSS_S_BAD_QOP indicates that the provided qop_alg value is not
 recognized or supported for the environment.

 GSS_S_BAD_MIC indicates that the received P-IDU contains an
 incorrect integrity field (e.g., signature or MAC) for the data.

 GSS_S_COMPLETE indicates that the requested operation was
 successful.

Adams Document Expiration: Sept. 1998 6

 GSS_S_CREDENTIALS_EXPIRED indicates that the credentials associated
 with this operation have expired, so that the requested operation
 cannot be performed.

 GSS_S_DEFECTIVE_CREDENTIAL indicates that consistency checks
 performed on the credential structure referenced by

https://datatracker.ietf.org/doc/html/rfc2078

 claimant_cred_handle failed, preventing further processing from
 being performed using that credential structure.

 GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
 on the received P-IDU failed, preventing further processing
 from being performed.

 GSS_S_FAILURE indicates that the requested operation could not be
 accomplished for reasons unspecified at the IDUP-GSS-API level,
 and that no interface-defined recovery action is available.

 GSS_S_NO_CRED indicates that no environment was established,
 either because the input cred_handle was invalid or because the
 caller lacks authorization to access the referenced credentials.

 IDUP_S_BAD_DOA_KEY indicates that the key used to provide IDU
 data origin auth. / integ. has either expired or been revoked.

 IDUP_S_BAD_ENC_IDU indicates that decryption of the received IDU
 cannot be completed because the encrypted IDU was invalid/defec-
 tive (e.g., the final block was short or had incorrect padding).

 IDUP_S_BAD_KE_KEY indicates that the key used to establish a key
 for confidentiality purposes between originator and target has
 either expired or been revoked.

 IDUP_S_BAD_TARG_INFO indicates that the full set of supplied
 information regarding the target(s) is invalid or is insufficient
 for the protection of an IDU, so P-IDU cannot be created.

 IDUP_S_DEFECTIVE_VERIF indicates that consistency checks performed
 on Service_Verification_Info failed, preventing further processing
 from being performed with that parameter.

 IDUP_S_ENCAPSULATION_UNAVAIL (I) indicates that the underlying
 mechanism does not support encapsulation of the M-IDU into the
 token.

 IDUP_S_INAPPROPRIATE_CRED indicates that the credentials supplied
 do not contain the information necessary for P-IDU unprotection.

 IDUP_S_INCOMPLETE (I) indicates that the unprotection of the P-IDU
 is not yet complete (i.e., a determination cannot yet be made on
 the validity of the P-IDU). The application should call
 IDUP_Form_Complete_PIDU and then should call this function again
 with the complete P-IDU.

Adams Document Expiration: Sept. 1998 7

 IDUP_S_INCONSISTENT_PARAMS indicates that the supplied parameters
 are inconsistent (e.g., only one or the other of two parameters
 may be supplied, but both have been input).

 IDUP_S_MORE_OUTBUFFER_NEEDED (I) indicates that the output buffer
 supplied is too small to hold the generated data. The application
 should continue calling this routine (until GSS_S_COMPLETE is
 returned) in order to get all remaining output data.

 IDUP_S_MORE_PIDU_NEEDED (I) indicates that not enough of the P-IDU
 has been input yet for the completion of StartUnprotect. The
 application should call this routine again with another buffer of
 P-IDU in partial(initial)_pidu_buffer.

 IDUP_S_NO_ENV indicates that no valid environment was recognized
 for the env_handle provided.

 IDUP_S_NO_MATCH indicates that Service_Verification_Info (or
 evidence_check) and the P-IDU to be verified do not match.

 IDUP_S_REQ_TIME_SERVICE_UNAVAIL indicates that the time service
 requested (TTIME or UTIME) is not available in the environment.

 IDUP_S_SERVICE_UNAVAIL indicates that the underlying mechanism
 does not support the service requested.

 IDUP_S_SERV_VERIF_INFO_NEEDED (I) indicates that the
 Service_Verification_Info parameter bundle must be input in order
 for service verification to proceed. The output parameter
 service_verification_info_id contains an identifier which may be
 used by the calling application to locate the necessary
 information.

 IDUP_S_UNKNOWN_OPER_ID indicates that the input prot_oper_id value
 is not recognized or supported in the underlying mechanism.

1.2.2. Per-IDU Security Service Availability

 Per-IDU security service availability in IDUP-GSS-API is to be
 understood and used as described in GSS-API [RFC-2078], with the
 exception that combinations of services requested by the calling
 application and supported by the underlying mechanism may be applied
 simultaneously to any IDU (true for both the SE and the EV calls,
 but true in the fullest sense for the GP calls).

 GSS-API callers desiring per-message security services should check
 the relevant service OBJECT IDs at environment establishment time to
 ensure that what is available in the established environment is
 suitable for their security needs.

https://datatracker.ietf.org/doc/html/rfc2078

1.2.3. Per-IDU Replay Detection and Sequencing

 The concept of per-IDU replay detection and sequencing discussed
 in GSS-API [RFC-2078] is not relevant to the IDUP-GSS-API.

Adams Document Expiration: Sept. 1998 8

1.2.4. Quality of Protection

 The concept of QOP control in IDUP-GSS-API is to be understood
 essentially as described in GSS-API [RFC-2078]. However, the actual
 description and use of the QOP parameter is given as follows.

 The qop_algs parameter for IDUP is defined to be a 32-bit unsigned
 integer with the following bit-field assignments:

 31 (MSB) (LSB) 0
 --
 | U(19) | TS(5) | IA(4) | MA(4) |
 --

 where

 U is a 19-bit Unspecified field (available for future
 use/expansion) -- must be set to zero;

 TS is a 5-bit Type Specifier (a semantic qualifier whose value
 specifies the type of algorithm which may be used to protect the
 corresponding IDU -- see below for details);

 IA is a 4-bit field enumerating Implementation-specific
 Algorithms; and

 MA is a 4-bit field enumerating Mechanism-defined Algorithms.

 The interpretation of the qop_algs parameter is as follows. The MA
 field is examined first. If it is non-zero then the algorithm used
 to protect the IDU is the mechanism-specified algorithm corresponding
 to that integer value.

 If MA is zero then IA is examined. If this field value is non-zero
 then the algorithm used to protect the IDU is the implementation-
 specified algorithm corresponding to that integer value. Note that
 use of this field may hinder portability since a particular value may
 specify one algorithm in one implementation of the mechanism and may
 not be supported or may specify a completely different algorithm in
 another implementation of the mechanism.

 Finally, if both MA and IA are zero then TS is examined. A value of
 zero for TS specifies the default algorithm for the established
 mechanism. A non-zero value for TS corresponds to a particular

https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc2078

 algorithm qualifier and selects any algorithm from the mechanism
 specification which satisfies that qualifier (which actual algorithm
 is selected is an implementation choice; the calling application need
 not be aware of the choice made).

 The following TS values (i.e., algorithm qualifiers) are specified;
 other values may be added in the future.

Adams Document Expiration: Sept. 1998 9

 When qop_algs is used to select a confidentiality algorithm:

 00000 (0) = default confidentiality algorithm
 00001 (1) = IDUP_SYM_ALG_STRENGTH_STRONG
 00010 (2) = IDUP_SYM_ALG_STRENGTH_MEDIUM
 00011 (3) = IDUP_SYM_ALG_STRENGTH_WEAK
 11111 (31) = IDUP_NO_CONFIDENTIALITY

 When qop_algs is used to select a DOA/integrity algorithm:

 00000 (0) = default integrity algorithm
 00001 (1) = IDUP_INT_ALG_DIG_SIGNATURE
 (integrity provided through a digital signature)
 00010 (2) = IDUP_INT_ALG_NON_DIG_SIGNATURE
 (integrity without a dig. sig. (e.g., with a MAC))
 11111 (31) = IDUP_NO_INTEGRITY

 Clearly, qualifiers such as strong, medium, and weak are debatable
 and likely to change with time, but for the purposes of this version
 of the specification we define these terms as follows. A confiden-
 tiality algorithm is "weak" if the effective key length of the cipher
 is 40 bits or less; it is "medium-strength" if the effective key
 length is strictly between 40 and 80 bits; and it is "strong" if the
 effective key length is 80 bits or greater. ("Effective key length"
 describes the computational effort required to break a cipher using
 the best-known cryptanalytic attack against that cipher.)

 A five-bit TS field allows up to 30 qualifiers for each of confiden-
 tiality and integrity (since "0" is reserved for "default" and "31"
 is reserved for "none", as shown above). This document specifies
 three for confidentiality and two for integrity, leaving a lot of
 room for future specification. Suggestions of qualifiers such as
 "fast", "medium-speed", and "slow" have been made, but such terms are
 difficult to quantify (and in any case are platform- and processor-
 dependent), and so have been left out of this initial specification.
 The intention is that the TS terms be quantitative, environment-
 independent qualifiers of algorithms, as much as this is possible.

 Use of the qop_algs parameter as defined above is ultimately meant to
 be as follows.

 - TS values are specified at the IDUP-GSS-API level and are
 therefore portable across mechanisms. Applications which know
 nothing about algorithms are still able to choose "quality" of
 protection for their message tokens.

 - MA values are specified at the mechanism level and are therefore
 portable across implementations of a mechanism.

 - IA values are specified at the implementation level (in user
 documentation, for example) and are therefore typically non-
 portable. An application which is aware of its own mechanism
 implementation and the mechanism implementation of its intended
 P-IDU recipient, however, is free to use these values since they

Adams Document Expiration: Sept. 1998 10

 will be perfectly valid and meaningful for protecting IDUs
 between those entities.

 The receiver of a P-IDU must pass back to its calling application
 (in IDUP_Start_Unprotect()) a qop_algs parameter with all relevant
 fields set. For example, if triple-DES has been specified by a
 mechanism as algorithm 8, then a receiver of a triple-DES-protected
 P-IDU must pass to its application (TS=1, IA=0, MA=8). In this way,
 the application is free to read whatever part of the qop_algs
 parameter it understands (TS or IA/MA).

1.2.5. The Provision of Time

 IDUP mechanisms should make provision in their protocols for the
 carrying of time information from originator to target(s). That is,
 a target (a legitimate recipient) should get some indication during
 unprotection regarding the time at which the protection operation
 took place. This is particularly important if the mechanism offers
 non-repudiation services because in some cases evidence verification
 may only be achievable if the time at which the evidence was
 generated is known.

 Depending upon the platform and resources available to the
 implementation, an IDUP environment may have access to a source of
 trusted (secure) time, untrusted (local) time, both kinds of time, or
 no time. OBJECT IDs indicating such availability are returned by the
 IDUP_Establish_Env() call. When starting a protection operation, an
 application may specify which time services it wishes to have applied
 to the IDU. Similarly, for unprotection, an application may specify
 which kind of time (if any) to consult when the validity of the P-IDU

 is to be established. Specifying both kinds of time is interpreted
 to mean that the calling application does not care which kind of time
 is used.

 The IDUP calls which use a time parameter specify the type of that
 parameter to be INTEGER. This INTEGER is defined in all cases to be
 the number of seconds which have elapsed since midnight, January 1,
 1970, coordinated universal time.

2. Interface Descriptions

 This section describes the IDUP-GSS-API's operational interface,
 dividing the set of calls offered into five groups. Credential
 management calls are related to the acquisition and release of
 credentials by API callers. Environment-level calls are related to
 the management of the security environment by an API caller. Per-IDU
 calls are related to the protection or unprotection of individual
 IDUs in established security environments. Special-purpose calls
 deal with unusual or auxiliary evidence generation/verification
 requirements. Support calls provide extra functions useful to
 IDUP-GSS-API callers. Table 2 groups and summarizes the calls in
 tabular fashion.

Adams Document Expiration: Sept. 1998 11

 Table 2: IDUP-GSS-API Calls

 CREDENTIAL MANAGEMENT
 (see the calls given in Section 2.1 of GSS-API [RFC-2078])

 ENVIRONMENT-LEVEL CALLS
 IDUP_Establish_Env
 IDUP_Abolish_Env
 IDUP_Inquire_Env

 PER-IDU CALLS
 SE (SIGN,ENCRYPT) CALLS
 IDUP_SE_SingleBuffer_Protect
 IDUP_SE_SingleBuffer_Unprotect
 IDUP_SE_MultiBuffer_StartProtect
 IDUP_SE_MultiBuffer_EndProtect
 IDUP_SE_MultiBuffer_StartUnprotect
 IDUP_SE_MultiBuffer_EndUnprotect
 IDUP_SE_Process_Buffer
 EV (EVIDENCE) CALLS
 IDUP_EV_SingleBuffer_Generate
 IDUP_EV_SingleBuffer_Verify
 IDUP_EV_MultiBuffer_StartGenerate
 IDUP_EV_MultiBuffer_EndGenerate

https://datatracker.ietf.org/doc/html/rfc2078

 IDUP_EV_MultiBuffer_StartVerify
 IDUP_EV_MultiBuffer_EndVerify
 IDUP_EV_Process_Buffer
 GP (GENERAL PROTECTION) CALLS
 IDUP_Start_Protect
 IDUP_Protect
 IDUP_End_Protect
 IDUP_Start_Unprotect
 IDUP_Unprotect
 IDUP_End_Unprotect

 SPECIAL-PURPOSE CALLS (might not be supported by all mechanisms)
 IDUP_Form_Complete_PIDU

 SUPPORT CALLS
 IDUP_Acquire_cred_with_auth
 IDUP_Get_Token_Details
 IDUP_Get_Policy_Info
 IDUP_Cancel_Multibuffer_Op
 (see also the calls given in Section 2.4 of GSS-API [RFC-2078])

 In terms of conformance to this specification, IDUP-GSS-API
 implementations must support the credential management calls, the
 environment-level calls, some subset of the per-IDU calls, and the
 support calls (except where explicitly stated otherwise in Section

2.5). The subset of per-IDU calls supported will depend upon the
 underlying mechanisms supported and will typically be the SE calls,
 or the EV calls, or both. As stated in Section 2.3.2.1,
 implementations are encouraged to support the more powerful GP calls
 to anticipate the future needs of applications developers, but this
 is not required for conformance.

Adams Document Expiration: Sept. 1998 12

2.1. Credential management calls

2.1.1. Relationship to GSS-API

 Credential management in IDUP-GSS-API is to be understood and used as
 described in GSS-API [RFC-2078]. The calls given in Section 2.1 of
 GSS-API (including all associated parameters) are unchanged, although
 the interpretation of the cred_usage parameter in the GSS-API calls
 for IDUP purposes is as follows.

 ENCRYPT_ONLY 8
 DECRYPT_ONLY 16
 SIGN_ONLY 32
 VERIFY_ONLY 64

 The values above may be logically OR'ed together in any desired
 combination to restrict credential usage (where OR'ing all values

https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc2078

 results in NO_RESTRICTION). Future possible values for this
 parameter are for further study.

 The call IDUP_Acquire_cred_with_auth has been added as a support call
 in this specification to permit authenticated credential acquirement;
 see Section 2.5.2 for details.

2.2. Environment-level calls

 This group of calls is devoted to the establishment and management of
 an environment for the purpose of IDU protection and unprotection.
 Before protecting or unprotecting any IDU, an application must call
 IDUP_Establish_Env() to initialize environment information and select
 the underlying IDUP-GSS mechanism to be used. A series of protection
 or unprotection calls is made to process each IDU, the protection
 calls resulting in a P-IDU for each. Finally, IDUP_Abolish_Env()
 is called to flush all environment information.

 Semantically, acquiring credentials and establishing an environment
 is (in many cases) analogous to logging in to a system -- it
 authenticates a local user to the system and gives that user access
 to a set of operations which can be performed.

2.2.1. Relationship to GSS-API

 The set of calls described in this section is used in place of the
 calls described in Section 2.2 of GSS-API [RFC-2078], since those
 calls are specific to a session-oriented environment.

2.2.2. IDUP_Establish_Env call

 Inputs:

 o claimant_cred_handle CREDENTIAL HANDLE,
 -- NULL parameter specifies "use default"

Adams Document Expiration: Sept. 1998 13

 o req_mech_type OBJECT IDENTIFIER,
 -- NULL parameter specifies "use default"
 o req_environmentPolicies EnvironmentPolicies,
 -- NULL parameter specifies "use default"
 o req_services SET OF OBJECT IDENTIFIER,
 -- GSS_C_NO_OID_SET requests full set of services available
 -- for req_mech_type

 Outputs:

https://datatracker.ietf.org/doc/html/rfc2078

 o major_status INTEGER,
 o minor_status INTEGER,
 o env_handle ENVIRONMENT HANDLE,
 o actual_mech_type OBJECT IDENTIFIER,
 -- actual mechanism always indicated, never NULL
 o actual_environmentPolicies EnvironmentPolicies,
 -- actual values always indicated, never NULL
 o ret_services SET OF OBJECT IDENTIFIER,

 Return major_status codes:

 o GSS_S_COMPLETE
 -- environment-level information was successfully initialized,
 -- and IDU / P-IDU processing can begin.
 o GSS_S_DEFECTIVE_CREDENTIAL
 o GSS_S_NO_CRED
 o GSS_S_CREDENTIALS_EXPIRED
 -- the credentials provided through claimant_cred_handle are
 -- no longer valid, so environment cannot be established.
 o GSS_S_BAD_MECH
 o GSS_S_FAILURE

 The following structures are defined to facilitate environment policy
 input and output:

 EnvironmentPolicies ::= SEQUENCE {
 confPolicy [0] PolicyAndTime OPTIONAL,
 -- NULL parameter (on input) specifies "use default"
 integPolicy [1] PolicyAndTime OPTIONAL,
 -- NULL parameter (on input) specifies "use default"
 evidencePolicy [2] PolicyAndTime OPTIONAL
 -- NULL parameter (on input) specifies "use default"
 }

 PolicyAndTime ::= SEQUENCE {
 policy OBJECT IDENTIFIER,
 -- this environment-level policy identifier is separate from
 -- the policy provisions connected with credentials, if they exist
 time INTEGER
 -- on input: the policy rules available at the specified time
 -- on output: the time at which the policy rules came into effect
 -- (defined to be the number of seconds elapsed since midnight,
 -- January 1, 1970, coordinated universal time)
 endTime INTEGER OPTIONAL
 -- on input: unused
 -- on output: the expiration time of the given policy rules
 }
Adams Document Expiration: Sept. 1998 14

 This routine is used by an application which protects or unprotects
 IDUs. Using information in the credentials structure referenced by

 claimant_cred_handle, IDUP_Establish_Env() initializes the data
 structures required to protect or unprotect IDUs. The
 claimant_cred_handle, if non-NULL, must correspond to a valid
 credentials structure.

 This routine returns an env_handle for all future references to
 this environment; when protection, unprotection, or
 IDUP_Abolish_Env() calls are made, this handle value will be used
 as the input env_handle argument.
 It is the caller's responsibility to establish a communications path
 to the intended recipients of the P-IDU, and to transmit the P-IDU to
 those recipients over that path. This may occur subsequent to the
 IDUP_Abolish_Env() call.

 The req_services parameter may be used by the calling application to
 request that data origin authentication with integrity,
 confidentiality with integrity, evidence generation, and/or evidence
 verification services be available in the established environment.
 Requests can also be made for "trusted" or "untrusted" time services.
 Requesting evidence generation or verification indicates that the
 calling application may wish to generate or verify evidence
 information for non-repudiation purposes (note: an IDU protector may
 request that a flag be inserted into a P-IDU asking a recipient to
 provide an evidence of the type "non-repudiation of delivery";
 however, the IDUP-GSS-API cannot by itself guarantee that the
 evidence will be sent because there is no way to force a target to
 send an evidence_token back to the IDU protector).

 Not all features will be available in all underlying mech_types; the
 returned value of ret_services indicates, as a function
 of mech_type processing capabilities and the initiator-provided input
 OBJECT IDs, the set of features which will be available in the
 environment. The value of this parameter is undefined unless the
 routine's major_status indicates COMPLETE. Failure to provide the
 precise set of services desired by the caller does not cause
 environment establishment to fail; it is the caller's choice to
 abolish the environment if the service set provided is unsuitable for
 the caller's use. The returned mech_type value indicates the
 specific mechanism employed in the environment and will never
 indicate the value for "default".

 The following OBJECT IDs are defined for protection and unprotection
 services (the OBJECT ID iso.org.dod.internet.security.services,
 1.3.6.1.5.7, has been assigned by IANA, and some of the security
 services under that node are assigned as shown below). It is
 recognized that this list may grow over time.

 PER_CONF = { 1.3.6.1.5.7.1.1 }
 -- perform data confidentiality (i.e., encrypt data)
 PER_CONF_FULL = { 1.3.6.1.5.7.1.3 }
 -- perform full confidentiality (i.e., encrypt data and sig)

 -- (may be used only when PER_DOA is requested simultaneously)
 PER_DOA = { 1.3.6.1.5.7.3.1 }
 -- perform data origin authentication with data integrity

Adams Document Expiration: Sept. 1998 15

 PER_DOA_CIPH = { 1.3.6.1.5.7.3.3 }
 -- perform DOA with DI over ciphertext (rather than plaintext)
 -- (may be used only when PER_CONF is requested simultaneously)
 PER_POO = { 1.3.6.1.5.7.4.1 }
 -- perform (i.e., create) non-repudiable "proof of origin"
 PER_POD = { 1.3.6.1.5.7.4.3 }
 -- perform (i.e., create) non-repudiable "proof of delivery"
 REC_CONF = { 1.3.6.1.5.7.1.2 }
 -- receive data confidentiality (i.e., decrypt data)
 REC_CONF_FULL = { 1.3.6.1.5.7.1.4 }
 -- receive full confidentiality (i.e., decrypt data and sig)
 -- (may be used only when REC_DOA is received simultaneously)
 REC_DOA = { 1.3.6.1.5.7.3.2 }
 -- receive / verify DOA with data integrity
 REC_DOA_CIPH = { 1.3.6.1.5.7.3.4 }
 -- verify DOA with DI over ciphertext (rather than plaintext)
 -- (may be used only when PER_CONF is received simultaneously)
 REC_POO = { 1.3.6.1.5.7.4.2 }
 -- receive / verify "proof of origin"
 REC_POD = { 1.3.6.1.5.7.4.4 }
 -- receive / verify "proof of delivery"
 TTIME = { 1.3.6.1.5.7.7.1 }
 -- trusted time availability
 UTIME = { 1.3.6.1.5.7.7.2 }
 -- untrusted time availability

 The PER_CONF return value (in the ret_services paramater) indicates
 whether the environment supports confidentiality services, and so
 informs the caller whether or not a request for encryption can be
 honored. In similar fashion, the PER_DOA return value indicates
 whether DOA services are available in the established environment,
 and the PER_POO and PER_POD return values indicate whether evidence
 generation services are available. The TTIME and UTIME values
 indicate whether trusted time and untrusted time are available for
 protection / unprotection services.

 Note that, unlike a GSS "context", an IDUP environment does not have
 an explicit lifetime associated with it. Instead, it relies on the
 lifetime of the calling entity's credential (set by the caller in the
 GSS_Acquire_cred() call). When the credential expires (or is
 explicitly deleted in any other way), no new operations are allowed
 in the IDUP environment (although operations which have begun, such
 as the Protection set of calls, can be taken to completion).

2.2.3. IDUP_Abolish_Env call

 Input:

 o env_handle ENVIRONMENT HANDLE

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,

Adams Document Expiration: Sept. 1998 16

 Return major_status codes:

 o GSS_S_COMPLETE
 -- the relevant environment-specific information was flushed.
 o IDUP_S_NO_ENV
 o GSS_S_FAILURE

 This call is made to flush environment-specific information. (Once an
 environment is established, cached credential and environment-related
 info. is expected to be retained until an IDUP_Abolish_Env() call is
 made or until the cred. lifetime expires.) Attempts to perform IDU
 processing on a deleted environment will result in error returns.

2.2.4. IDUP_Inquire_Env call

 Input:

 o env_handle ENVIRONMENT HANDLE,

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o mech_type OBJECT IDENTIFIER,
 -- the mechanism supporting this environment
 o environmentPolicies EnvironmentPolicies,
 -- the environment policies in effect
 o ret_services SET OF OBJECT IDENTIFIER,

 Return major_status codes:

 o GSS_S_COMPLETE
 -- referenced environment is valid and mech_type and other return
 -- values describe the characteristics of the environment.
 o GSS_S_CREDENTIALS_EXPIRED
 o IDUP_S_NO_ENV
 o GSS_S_FAILURE

 This routine provides environment-related information to the caller.

2.3. Per-IDU calls

 This group of calls is used to perform IDU protection and
 unprotection processing on an established IDUP environment. Some of
 these calls may block pending network interactions (depending on the
 underlying mechanism in use). These calls may be invoked by an IDU's
 protector or by the P-IDU's recipient. Members of this group form
 pairs; the output from the protection types of calls is typically
 meant to be input to the unprotection types of calls.

 The per-IDU calls can support caller-requested data origin
 authentication with data integrity, confidentiality with data
 integrity, evidence, and evidence-requested-from-target services.

Adams Document Expiration: Sept. 1998 17

 The protection operations output a token which encapsulates all the
 information required to unprotect the IDU. The token is passed to
 the target (possibly separate from the M-IDU) and is processed by the
 unprotection calls at that system. Unprotection performs
 decipherment, DOA verification, evidence verification, or
 notification of evidence requested, as required.

 Each of the two main operations (protection and unprotection) may be
 separated into three parts: "Start_Operation"; "Operation" (which
 may be called once for each buffer of input data); and
 "End_Operation". This separation is available for the case where the
 IDU or P-IDU is to be processed one buffer at a time.
 "Start_Operation" allows the caller to specify or retrieve the
 appropriate "Quality" used during the processing. "Operation" is
 concerned with the processing itself, receiving a buffer of input
 data and potentially returning a buffer of output data.
 "End_Operation" performs any required clean-up and creates the
 appropriate token or states whether the input token was verified.

 If the IDU or P-IDU is wholly contained in a single buffer, the
 three-part protection/unprotection processing need not be done.
 Instead, protection or unprotection can be accomplished using only
 a single call, simplifying application code.

2.3.1. Relationship to GSS-API

 The set of calls described in this section is used in place of the
 calls GSS_GetMIC(), GSS_VerifyMIC, GSS_Wrap(), and GSS_Unwrap()
 which are specified in [RFC-2078], since those calls are specific to
 a session-oriented environment.

https://datatracker.ietf.org/doc/html/rfc2078

2.3.2. The "SE" Calls

2.3.2.1. IDUP_SE Purpose

 The "SE" group of calls provides a very simple, high-level
 interface to underlying IDUP mechanisms when application developers
 need access only to signature and encryption protection/unprotection
 services. It includes both the single-buffer and multiple-buffer IDU
 cases and can be used for signing only, encrypting only, signing and
 encrypting (in either order, and with or without visibility of the
 resulting signature), and "clear signing" (where the data is not
 modified in any way and the signature itself is returned as a
 separate item). [Note that encapsulation occurs in all cases except
 for clear signing, so that these calls provide functionality similar
 to the GSS_Wrap call.]

 Note that the term "signing" is used in its most generic sense, not
 necessarily implying the use of public-key techniques. This concept
 has also been called "sealing" in other contexts (e.g., in other
 standardization efforts).

Adams Document Expiration: Sept. 1998 18

 The SE calls may be viewed by mechanism implementors as an "API" to
 the more powerful GP calls defined later and so may be implemented
 as simple mapping functions to those calls (when those optional
 calls are supported). Application callers, on the other hand, may
 find that the SE calls are all they currently need for many
 environments. At some time in the future when they have need of
 non-repudiation or "directed receipts" types of services, they may
 consider using the EV calls (or the GP calls -- when these are
 supported -- if complex and sophisticated combinations of services
 are required). To assist in this migration path, mechanism
 implementors are encouraged to support the full set of IDUP calls
 (i.e., the SE, EV, and GP calls) even though some calling
 applications will only use the SE calls in the short term.

2.3.2.2. IDUP_SE Parameter Bundles

 The concept of "parameter bundles" is used in the calls presented in
 the following subsections in order to simplify their presentation and
 clarify their intended purpose and use. See Section 2.3.4.1 for a
 more complete description of parameter bundles.

 The following parameter bundles are used in the "SE" protection and
 unprotection sets of calls.

 o Protect_Options PARAMETER BUNDLE
 o protect_operation INTEGER {
 sign_only (0),
 encrypt_only (1),
 sign_and_encrypt (2),
 -- let mechanism choose order (and readability of signature)
 sign_then_encrypt_data (3),
 -- sign, then encrypt plaintext (leaving signature in clear)
 sign_then_encrypt_full (4),
 -- sign, then encrypt everything (including signature)
 encrypt_then_sign (5),
 -- encrypt, then sign the ciphertext
 clear_sign_only (6)
 } OPTIONAL,
 o protect_oper_oid OBJECT IDENTIFIER OPTIONAL,
 -- may be used in place of above parameter if OID is known
 o sign_qop_alg UNSIGNED INTEGER,
 o sign_qop_algID AlgorithmIdentifier, --overrides sign_qop_alg
 o enc_qop_alg UNSIGNED INTEGER,
 o enc_qop_algID AlgorithmIdentifier, --overrides enc_qop_alg
 o idu_type_string OCTET STRING,
 -- type of the IDU ("data", "e-mail doc", MIME type, etc.)
 o pidu_type_string OCTET STRING,
 o mech_indep_encap_req BOOLEAN -- (see Appendix A)

 o PIDU_Information PARAMETER BUNDLE
 o protect_options Protect_Options,
 o originator_name INTERNAL NAME,
 o protection_time INTEGER,

Adams Document Expiration: Sept. 1998 19

 o Bad_Target_Name PARAMETER BUNDLE, -- same as in Section 2.3.3.2
 o bad_targ_name INTERNAL NAME,
 o bad_targ_status INTEGER,
 -- a status flag giving the reason for rejection of the name
 -- in bad_targ_name. Specified reasons include:
 -- SYNTAX_INVALID (0) the syntax of the name is invalid;
 -- NAME_UNRECOGNIZED (1) the name is not recognized;
 -- NAME_AMBIGUOUS (2) the name cannot be resolved;
 -- ACCESS_DENIED (3) access to this target is denied;
 -- CERTIFICATE_NOT_FOUND (4) the encryption certificate of the
 target could not be found.

 o Target_Info PARAMETER BUNDLE, -- same as in Section 2.3.3.2
 o targ_names SET OF INTERNAL NAME,
 o bad_targ_count INTEGER,
 o bad_target_name Bad_Target_Name,

2.3.2.3. IDUP_SE major_status codes

 The following major_status return codes are defined for the "SE"
 calls in this section:

 o GSS_S_COMPLETE
 o IDUP_S_MORE_OUTBUFFER_NEEDED
 -- returned (by any SE call) to indicate that there is more output
 -- data than can fit into the supplied buffers. The application
 -- should save the returned data and call again to retrieve the
 -- remaining output.
 o IDUP_S_MORE_PIDU_NEEDED
 -- indicates that more PIDU data is needed for the StartUnprotect
 -- operation (e.g., so that PIDU_Information or initial_idu_buffer
 -- may be returned).
 o IDUP_S_INCONSISTENT_PARAMS
 o GSS_S_CREDENTIALS_EXPIRED
 o IDUP_S_NO_ENV
 o GSS_S_BAD_QOP
 o GSS_S_FAILURE

 If Target_Info is used as an input parameter (e.g., if an encryption
 operation is being performed), the following major_status return code
 is also defined:

 o IDUP_S_BAD_TARG_INFO

 Note for this return code that if one or more of the targets in
 targ_names cannot be used as a valid recipient of the P-IDU, these
 names will be returned in bad_targ_names (with associated status
 codes in bad_targ_status). As long as at least one of the targets
 can be used, however, this does not cause this call to fail (i.e.,
 the failure code IDUP_S_BAD_TARG_INFO is not returned); it is the
 caller's choice to discontinue IDU protection if the target set
 which can be used is unsuitable for the caller's purposes.

Adams Document Expiration: Sept. 1998 20

2.3.2.4. IDUP_SE_SingleBuffer_Protect call

 Inputs:
 o env_handle ENVIRONMENT HANDLE,
 o Protect_Options PARAMETER BUNDLE,
 o Target_Info PARAMETER BUNDLE,
 o idu_buffer OCTET STRING
 o additional_protection BOOLEAN
 -- TRUE if idu_buffer is the output of a previous protection

 -- operation (i.e., if this is the second (or higher) in a
 -- series of SE/EV protection calls)

 Outputs:
 o major_status INTEGER,
 o minor_status INTEGER,
 o pidu_buffer OCTET STRING,
 o sig_token OCTET STRING
 -- used if Protect_Options is clear_sign_only

 Using the security environment referenced by env_handle, encrypt
 and/or sign the supplied IDU. If "clear signing" is performed, the
 signature will be returned in sig_token and pidu_buffer may be empty
 (depends on underlying mechanism).

2.3.2.5. IDUP_SE_SingleBuffer_Unprotect call

 Inputs:
 o env_handle ENVIRONMENT HANDLE,
 o pidu_buffer OCTET STRING,
 -- may contain an IDU if sig_token is non-NULL (i.e., if
 -- clear_sign_only protection was applied)
 o sig_token OCTET STRING

 Outputs:
 o major_status INTEGER,
 o minor_status INTEGER,
 o idu_buffer OCTET STRING,
 -- may be empty if clear_sign_only protection was applied (depends
 -- on underlying mechanism)
 o PIDU_Information PARAMETER BUNDLE
 o additional_unprotection BOOLEAN
 -- TRUE if idu_buffer should be input to another unprotection
 -- operation (i.e., if this should not be the last in a series
 -- of SE/EV unprotection calls)

 Using the security environment referenced by env_handle, decrypt
 and/or verify the supplied PIDU and return the contained IDU along
 with all available PIDU_Information.

2.3.2.6. IDUP_SE_MultiBuffer_StartProtect call

 Inputs:
 o env_handle ENVIRONMENT HANDLE,
 o Protect_Options PARAMETER BUNDLE,
 o Target_Info PARAMETER BUNDLE,
 o additional_protection BOOLEAN -- (see Section 2.3.2.4)

Adams Document Expiration: Sept. 1998 21

 Outputs:
 o major_status INTEGER,

 o minor_status INTEGER,
 o initial_pidu_buffer OCTET STRING
 -- may be empty (depends on underlying mechanism)

 Using the security environment referenced by env_handle, initialize
 the data structures required to begin the process of signing
 and/or encrypting the IDU (which will be supplied in multiple buffers
 to the Process_Buffer call).

2.3.2.7. IDUP_SE_MultiBuffer_EndProtect call

 Inputs:
 o env_handle ENVIRONMENT HANDLE

 Outputs:
 o major_status INTEGER,
 o minor_status INTEGER,
 o final_pidu_buffer OCTET STRING,
 o sig_token OCTET STRING
 -- used if Protect_Options was clear_sign_only

 Using the security environment referenced by env_handle, complete the
 protection processing on the data and place the computed output in
 final_pidu_buffer and/or sig_token. Successful application of
 IDUP_SE_MultiBuffer_EndProtect() does not guarantee that unprotection
 can necessarily be performed successfully when the P-IDU arrives at
 the target (for example, it may be damaged in transit).

2.3.2.8. IDUP_SE_MultiBuffer_StartUnprotect call

 Inputs:
 o env_handle ENVIRONMENT HANDLE,
 o initial_pidu_buffer OCTET STRING,
 o sign_qop_alg_in UNSIGNED INTEGER,
 -- used if Protect_Options was clear_sign_only (and calling
 -- application has prior knowledge of signing alg. applied);
 -- if NULL, then sig_token must be supplied
 o sig_token OCTET STRING
 -- used if Protect_Options was clear_sign_only;
 -- if NULL, then sign_qop_alg_in must be supplied

 Outputs:
 o major_status INTEGER,
 o minor_status INTEGER,
 o PIDU_Information PARAMETER BUNDLE,
 -- returns all available information
 o initial_idu_buffer OCTET STRING
 -- may be empty

 Using the security environment referenced by env_handle, initialize
 the data structures required to begin the process of decrypting

 and/or verifying the PIDU (which will be supplied in multiple buffers
 to the Process_Buffer call).

Adams Document Expiration: Sept. 1998 22

 The parameters sign_qop_alg_in and sig_token should not both be
 supplied (i.e., they should not both be non-NULL). If they are both
 non-NULL, however, sig_token is taken to be authoritative since
 this is the token created at protection time and therefore is
 guaranteed to carry the information needed to unprotect.

2.3.2.9. IDUP_SE_MultiBuffer_EndUnprotect call

 Inputs:
 o env_handle ENVIRONMENT HANDLE,
 o sig_token OCTET STRING OPTIONAL
 -- used if Protect_Options was clear_sign_only and sig_token was
 -- not available when StartUnprotect was called

 Outputs:
 o major_status INTEGER,
 o minor_status INTEGER,
 o PIDU_Information PARAMETER BUNDLE,
 -- returns all available information
 o final_idu_buffer OCTET STRING -- may be empty
 o additional_unprotection BOOLEAN -- (see Section 2.3.2.5)

 Using the security environment referenced by env_handle, complete the
 decryption and/or verification processing on the data and place any
 residual output in final_idu_buffer.

2.3.2.10. IDUP_SE_Process_Buffer call

 Inputs:
 o env_handle ENVIRONMENT HANDLE,
 o input_buffer OCTET STRING,

 Outputs:
 o major_status INTEGER,
 o minor_status INTEGER,
 o output_buffer OCTET STRING
 -- may be zero length (depends on underlying mechanism and
 -- corresponding Start() call and Protect_Options value)

 Using the security environment referenced by env_handle, continue the
 processing on the data in input_buffer and, if it is available, put
 any resulting output data in output_buffer. The application calls
 this routine over and over again with new buffers of data until it
 has processed all the data buffers of the IDU/PIDU. It then calls
 the appropriate End() call to complete the processing.

2.3.3. The "EV" Calls

2.3.3.1. IDUP_EV Purpose

 The "EV" group of calls provides a simple, high-level interface
 to underlying IDUP mechanisms when application developers
 need to deal only with evidence but not with encryption or integrity
 services. It includes both the single-buffer and multiple-buffer
 IDU cases and can be used for the generation and verification of
 evidence tokens embodying several different types of evidences.

Adams Document Expiration: Sept. 1998 23

 The following list of evidence types is supported. This list
 is by no means exhaustive and it is anticipated that it may be
 extended in future versions of this specification.

 "Non-repudiation of Origin" prevents a message creator's
 false denial of creating and sending a message.

 "Non-repudiation of Creation" prevents a message creator's
 false denial of creating a message.

 "Non-repudiation of Sender" prevents a message creator's
 false denial of sending a message (that was not necessarily
 created by the sender).

 "Non-repudiation of Delivery" prevents a message recipient's
 false denial of having received and looked at the content of a
 message.

 "Non-repudiation of Receipt" prevents a message recipient's
 false denial of having received a message (whose content was
 not necessarily looked at by the recipient).

 "Non-repudiation of Approval" prevents a message recipient's
 false denial of having approved the content of a received
 message.

 An evidence is provided in the form of a evidence token. Two forms
 of evidence tokens are supported:

 o Tokens including the associated data,

 o Tokens without included data (but with a unique reference to
 the associated data).

 Evidence tokens may be freely distributed. Any possessor of an
 evidence token (and of the associated data, if not included in the
 token) can verify the evidence if it has the appropriate
 credentials which include the definition of security policies (i.e.,
 keys alone do not permit the verification of evidence tokens). Any

 holder of an evidence token may store it (along with the associated
 data, if not included in the token) for later verification.

 Calls that are specific to the support of evidence include:

 * Generate_token, which generates a non-repudiation token using the
 current environment. The generated token may consist of:

 1 - an evidence token

 2 - a token containing a request for an evidence, which carries
 information describing which evidence type should be generated
 by the recipient(s) and sent back to some entities (that may or
 may not include the sender).

 3 - a token containing an evidence token which is an answer to
 an evidence that has been previously requested.

Adams Document Expiration: Sept. 1998 24

 4 - a token including both an evidence and a request for another
 evidence to be provided.

 * Verify_evidence, which verifies the evidence token using the
 current environment. This operation returns a major_status code
 which can be used to determine whether the evidence contained in
 a token is complete (i.e., can be successfully verified (perhaps
 years) later). If a token's evidence is not complete, the token
 can be passed to form_complete_pidu to complete it.

 Additional useful calls for evidence services include:

 * IDUP_Get_token_details (see Section 2.5.3);
 * IDUP_Form_Complete_PIDU (see Section 2.4.2).

2.3.3.2. IDUP_EV Parameters

 The following parameter bundles are used in the "EV" protection and
 unprotection sets of calls.

 o Nr_Options PARAMETER BUNDLE
 o evidence_type INTEGER {
 no_evidence (0)
 -- used when request-only token desired
 proof_of_receipt (1),
 proof_of_delivery (2),
 proof_of_approval (3),
 proof_of_creation (4),
 proof_of_sender (5),
 proof_of_origin (6)
 } OPTIONAL,
 o evidence_type_oid OBJECT IDENTIFIER OPTIONAL,

 -- may be used in place of above parameter if OID is known
 o evidence_validity_duration INTEGER,
 -- duration_in_minutes
 -- DURATION_HOUR = 60;
 -- DURATION_DAY = 1440;
 -- DURATION_WEEK = 10080;
 -- DURATION_MONTH = 43200;// 30 days
 -- DURATION_YEAR = 525600;//365 days
 o mech_indep_encap_req BOOLEAN -- (see Appendix A)

 o Originator_Information PARAMETER BUNDLE
 o token_generator_name INTERNAL NAME,
 -- obtained from the credentials of the originator
 -- (e.g., from its public key certificate)
 o protection_time INTEGER OPTIONAL.

 o Bad_Target_Name PARAMETER BUNDLE -- same as in Section 2.3.2.2
 o bad_targ_name INTERNAL NAME,
 o bad_targ_status INTEGER
 -- a status flag giving the reason for rejection of the
 -- name in bad_targ_name

Adams Document Expiration: Sept. 1998 25

 o Target_Info PARAMETER BUNDLE -- same as in Section 2.3.2.2
 o targ_names SET OF INTERNAL NAME,
 o bad_targ_count INTEGER,
 o Bad_Target_Name PARAMETER BUNDLE

 o Request_Features PARAMETER BUNDLE
 o requested_evidence_type INTEGER {
 no_evidence (0), - used when no token desired
 proof_of_receipt (1),
 proof_of_delivery (2),
 proof_of_approval (3), },
 o nr_req_policy OBJECT IDENTIFIER,
 o evidence_from Target_Info,
 o evidence_to Target_Info,
 o include_received_token_in_evidence BOOLEAN

 The following data_type is used in the "EV" protection calls.

 o Nr_Operation INTEGER {
 evidence_and_or_evidence_request (1),
 returned_evidence (2)
 }

2.3.3.3. IDUP_EV major_status codes

 The following major_status return codes are defined for the "EV"
 calls in this section:

 o GSS_S_COMPLETE
 -- indicates that the evidence is complete
 o IDUP_S_INCOMPLETE
 o IDUP_S_MORE_OUTBUFFER_NEEDED
 -- returned (by any EV call) to indicate that there is more output
 -- data than can fit into the supplied buffers. The application
 -- should save the returned data and call again to retrieve the
 -- remaining output.
 o IDUP_S_INCONSISTENT_PARAMS
 o GSS_S_CREDENTIALS_EXPIRED
 o IDUP_S_NO_MATCH
 o IDUP_S_NO_ENV
 o GSS_S_FAILURE

 If Target_Info is used as an input parameter (i.e., if an
 evidence is being requested), the following major_status return
 code is also defined:

 o IDUP_S_BAD_TARG_INFO

 Note for this return code that if one or more of the targets in
 targ_names cannot be used as a valid recipient of the P-IDU, these
 names will be returned in bad_targ_names (with associated status
 codes in bad_targ_status). As long as at least one of the targets
 can be used, however, this does not cause this call to fail (i.e.,
 the failure code IDUP_S_BAD_TARG_INFO is not returned); it is the
 caller's choice to discontinue IDU protection if the target set
 which can be used is unsuitable for the caller's purposes.

Adams Document Expiration: Sept. 1998 26

2.3.3.4. IDUP_EV_SingleBuffer_Generate call

 Inputs:

 o env_handle ENVIRONMENT HANDLE,
 o nr_operation Nr_Operation,
 o Nr_Options PARAMETER BUNDLE,
 o idu_buffer OCTET STRING,
 o form_complete_pidu BOOLEAN,
 -- if TRUE the implementation will attempt to form a complete PIDU
 o include_data_in_token BOOLEAN,
 -- if TRUE, data provided in idu_buffer will be included in the
 -- generated token; if FALSE, the data will not be included
 o Request_Features PARAMETER BUNDLE
 -- the type of the evidence that is requested;
 -- policy under which the returned evidence should be generated;

 -- the recipients that are supposed to send back an evidence;
 -- the recipients that should receive the requested evidence;
 -- an indicator include_received_token_in_evidence:
 -- if TRUE, the evidence token incorporating the request will be
 -- included in the data for which recipients will generate
 -- evidence; if FALSE, evidence will be generated using only
 -- the data (and not the token incorporating the request).
 o additional_protection BOOLEAN -- (see Section 2.3.2.4)

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o token OCTET STRING,
 o evidence_check OCTET STRING,
 -- present only if an evidence is requested. Consists of data to
 -- be used to verify the requested token(s) (if any) when they are
 -- received.

 Description:

 This operation generates a non-repudiation token associated with the
 data passed in an input buffer. Two kinds of operations can be
 performed (using the Nr_Operation parameter):

 a) generating a token that includes either an evidence only, or
 an evidence request only, or both an evidence and an evidence
 request;

 b) generating a response token for some recipients that includes an
 evidence generated as a response to a request (in this case
 the idu_buffer is used to enter the request token that was
 received).

 It is possible to request the generation of complete evidence. This
 may succeed or fail; if it fails, a subsequent call to
 Form_Complete_PIDU can be made.

Adams Document Expiration: Sept. 1998 27

2.3.3.5. IDUP_EV_SingleBuffer_Verify call

 Inputs:

 o env_handle ENVIRONMENT HANDLE,
 o token OCTET STRING,
 o external_idu_buffer OCTET STRING,
 -- if not present within the token
 o evidence_check OCTET STRING,
 -- present only if the input token is a response to a previous

 -- request for evidence (this parameter is used to validate that
 -- evidence).

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o Nr_Options PARAMETER BUNDLE,
 o Originator_Information PARAMETER BUNDLE,
 o Request_Features PARAMETER BUNDLE,
 o trusted_time_stamping_time INTEGER OPTIONAL,
 -- present for informational purposes only
 o complete_evidence_before INTEGER OPTIONAL,
 -- if the major status code that is returned is
 -- IDUP_S_INCOMPLETE, IDUP_Form_Complete_PIDU should be called
 -- with the same token before this time.
 -- This may be required, for example, in order to insure that
 -- the time skew between the evidence generation time and
 -- the trusted time service's countersignature on the evidence
 -- falls within the interval allowed by the current NR policy.
 o complete_evidence_after INTEGER OPTIONAL,
 -- if the major status code that is returned is
 -- IDUP_S_INCOMPLETE, IDUP_Form_Complete_PIDU should be called
 -- with the same token after this time.
 -- This may be required, for example, to insure that all
 -- authorities involved in generating the evidence have passed
 -- the last time at which the current NR policy allows them to
 -- repudiate their keys.
 o encapsulated_idu_buffer OCTET STRING
 -- if the IDU was present within the token
 o additional_unprotection BOOLEAN -- (see Section 2.3.2.5)

 Description:

 Verifies the validity and discloses the content of a nr_token.

 If the token containing the evidence to be verified was provided to
 the calling application by a partner responding to the calling
 application's request, then the calling application must pass the
 evidence check it received when it generated the request as a
 parameter along with the token it received from the partner.

Adams Document Expiration: Sept. 1998 28

 Output indicators are provided which give guidance about the time or
 times at which form_complete_pidu should be called; see the
 parameter descriptions for explanations of these indicators and their

 use. Note that the time specified by complete_evidence_before may be
 earlier than that specified by complete_evidence_after; in this case
 it will be necessary to call form_complete_pidu twice.

 Because keys can be revoked or declared compromised, the return from
 verify_evidence cannot in all cases be a definitive "valid" or
 "invalid"; sometimes "conditionally valid" may be returned,
 depending upon the policy in use. IDUP_S_INCOMPLETE will be returned,
 for example, if:

 - the interval during which the generator of the evidence may
 permissibly declare his key invalid has not yet expired (and
 therefore it is possible that the evidence may be declared
 invalid in the future), or

 - trusted time is required for verification, and the time obtained
 from the token is not trusted.

2.3.3.6. IDUP_EV_MultiBuffer_StartGenerate call

 Inputs:

 o env_handle ENVIRONMENT HANDLE,
 o nr_operation Nr_Operation,
 o Nr_Options PARAMETER BUNDLE,
 o form_complete_pidu BOOLEAN,
 o include_data_in_token BOOLEAN,
 o Request_Features PARAMETER BUNDLE
 o additional_protection BOOLEAN -- (see Section 2.3.2.4)

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o initial_pidu_buffer OCTET STRING
 -- may be empty (depends on underlying mechanism)

 Description:

 Using the security environment referenced by env_handle, initialize
 the data structures required to begin the generation of a token.
 The IDU will be supplied in multiple buffers to the
 IDUP_EV_Process_Buffer call). Two kinds of operations can be
 performed (using the Nr_Operation parameter) :

 a) generating a token that includes either an evidence only, or
 an evidence request only, or both an evidence and an evidence
 request.

Adams Document Expiration: Sept. 1998 29

 b) generating a return token for some recipients that includes an
 evidence generated as a response to a request. In that case
 the received token will be passed into the subsequent
 IDUP_EV_Process_Buffer calls. The boolean include_data_in_token
 is ignored as the output will always be contained in a single
 token. The Request_Features are ignored in that case at this
 time in order to keep things simple and to avoid the piggy-
 backing that is theoretically possible.

 It is possible to request the generation of complete evidence. This
 may succeed or fail; if it fails, a subsequent call to
 Form_Complete_PIDU can be made.

2.3.3.7. IDUP_EV_MultiBuffer_EndGenerate call

 Inputs:

 o env_handle ENVIRONMENT HANDLE

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o final_pidu OCTET STRING,
 o token OCTET STRING,
 o evidence_check OCTET STRING
 -- present only if an evidence is requested.

 Description:

 Using the security environment referenced by env_handle, provide
 the requested token or the final P-IDU. A token will be generated
 if encapsulation was not requested; otherwise, the final P-IDU is
 provided.

2.3.3.8. IDUP_EV_MultiBuffer_StartVerify call

 Inputs:

 o env_handle ENVIRONMENT HANDLE,
 o token OCTET STRING,
 o evidence_check OCTET STRING,
 -- present only if an evidence has been previously requested.

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER

Adams Document Expiration: Sept. 1998 30

 Description:

 Using the security environment referenced by env_handle, initialize
 the data structures required to begin the process of verifying the
 token. The P-IDU will be supplied in multiple buffers to the
 IDUP_EV_Process_Buffer call.

2.3.3.9. IDUP_EV_MultiBuffer_EndVerify call

 Input:

 o env_handle ENVIRONMENT HANDLE

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o Nr_Options PARAMETER BUNDLE,
 o Originator_Information PARAMETER BUNDLE,
 o Request_Features PARAMETER BUNDLE,
 o trusted_time_stamping_time INTEGER OPTIONAL,
 o complete_evidence_before INTEGER OPTIONAL,
 o complete_evidence_after INTEGER OPTIONAL,
 o idu_buffer OCTET STRING
 -- if the IDU was present within the token
 o additional_unprotection BOOLEAN -- (see Section 2.3.2.5)

 Description:

 Using the security environment referenced by env_handle, complete
 the verification processing on the data and provide verified output
 parameters to the caller when the major status code is either:

 o GSS_S_COMPLETE or
 o IDUP_S_INCOMPLETE

2.3.3.10. IDUP_EV_Process_Buffer call

 Inputs:

 o env_handle ENVIRONMENT HANDLE,
 o input_buffer OCTET STRING

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o output_buffer OCTET STRING
 -- may be zero length (depends on underlying mechanism and
 -- corresponding Generate () call and options
 -- (e.g., data_included_in_token)

Adams Document Expiration: Sept. 1998 31

 Description:

 Using the security environment referenced by env_handle, continue
 the processing on the data in input_buffer and, if it is available,
 put any resulting output data in output_buffer. The application
 calls this routine over and over again with new buffers of data
 until it has processed all the data buffers of the IDU/PIDU. It
 then calls the appropriate End() call to complete the processing.

2.3.4. The "GP" Calls

 The "GP" group of calls provides a powerful interface to flexible
 and sophisticated combinations of protection and unprotection
 services. This power and flexibility, however, necessitates a
 more complex interface than either the SE or the EV calls.
 Furthermore, such combinations of services are not needed in many of
 the security mechanisms in common use today (although this is likely
 to change as time goes on). The GP calls are therefore specified to
 be OPTIONAL and need not be supported by IDUP-conformant
 implementations. Note, however, that the structure of IDUP tokens
 should be such that the SE/EV and GP calls may be used interchangably
 by the receiver.

2.3.4.1. Parameter Bundles

 The concept of "parameter bundles" is used in the calls presented in
 the following subsections in order to simplify their presentation and
 clarify their intended purpose and use (note that specific language
 bindings may or may not use parameter bundles for its actual calling
 conventions). A parameter bundle is simply a set of closely-related
 parameters of a call which are either all used by / available to the
 calling application or all not used by / unavailable to the calling
 application. These parameters may be all input parameters, all
 output parameters, or any combination of the two.

 An example use envisioned for parameter bundles in a language such as
 C would be as a structure, where individual parameters in the bundle
 are structure members. The calling application wishing to use a
 particular bundle would then allocate the appropriate structure
 variable, assign the desired input values to the appropriate members,
 and pass the address of the structure as the bundle "parameter". On
 output, the values of the appropriate output members may be read. An
 application not wishing to use a particular bundle (or one which is
 satisfied with default values for all input parameters of the bundle
 and which doesn't care about output values), can pass NULL as the
 bundle "parameter". From the mechanism implementor's perspective, if
 a parameter bundle is not supported (for example, if it represents a
 security service which is not supported by the implementation), then
 any non-NULL value passed as the bundle parameter will generate an
 error status return code.

 [Note that the parameter bundles given below are specific to the
 (optional) GP calls. Thus, these bundles need not be supported by
 IDUP-conformant implementations if the GP calls are not supported.]

Adams Document Expiration: Sept. 1998 32

 The following parameter bundles are used in the subsequent protection
 and unprotection sets of calls. A parameter preceded by "(I)" is an
 input parameter; one preceded by "(O)" is an output parameter; one
 preceded by neither is an input if the bundle itself is an input and
 is an output if the bundle itself is an output; one preceded by "(X)"
 is the opposite: an output if the bundle itself is an input and an
 input if the bundle itself is an output.

 o Mech_Specific_Info PARAMETER BUNDLE
 -- actual parameters included in this bundle are defined by (and
 -- specific to) the underlying mechanism

 o Sensitivity PARAMETER BUNDLE,
 -- actual parameters included in this bundle are defined by (and
 -- specific to) the underlying mechanism, but may include
 -- codified values for "Unclassified", "Secret", "Top Secret",
 -- and so on

 o Service_Creation_Info PARAMETER BUNDLE
 -- actual parameters included in this bundle are defined by (and
 -- specific to) the underlying mechanism, but it is mandatory
 -- that they include at least service_id and Quality

 o Service_Verification_Info PARAMETER BUNDLE
 -- actual parameters included in this bundle are defined by (and
 -- specific to) the underlying mechanism, but it is mandatory
 -- that they include at least service_id and Quality

 o Quality PARAMETER BUNDLE
 o qop_algs UNSIGNED INTEGER,
 o qop_algID AlgorithmIdentifier, --overrides qop_algs
 o validity UNSIGNED INTEGER,
 -- protection guaranteed to be valid until time specified
 o policy_id OBJECT IDENTIFIER,
 -- security policy under which protection is/was carried out
 o allow_policy_mapping BOOLEAN,
 -- determines whether mapping between policy IDs is allowed
 o actual_policy_time INTEGER
 -- time at which the above policy rules came into effect

 o Idu_Information PARAMETER BUNDLE,
 o idu_type_oid OBJECT IDENTIFIER,
 o idu_type_string OCTET STRING,
 o idu_title OCTET STRING,
 o idu_sensitivity Sensitivity,
 o pidu_type_oid OBJECT IDENTIFIER,
 o pidu_type_string OCTET STRING,
 o pidu_title OCTET STRING,
 o pidu_sensitivity Sensitivity,

 o Prot_Information PARAMETER BUNDLE,
 o originator_name INTERNAL NAME,
 o idu_information Idu_Information,
 o protection_time INTEGER,

Adams Document Expiration: Sept. 1998 33

 o Special_Conditions PARAMETER BUNDLE,
 o prot_oper_id INTEGER,
 o form_complete_pidu BOOLEAN,
 -- input to protection operations for evidence generation
 o pidu_in_solic_service BOOLEAN,
 -- in protection operations, used as input for service
 -- solicitation to request that receiver include the
 -- received PIDU when generating the response. In unprot.
 -- operations, used as output to inform receiver that PIDU
 -- should be included when generating the response.
 o use_trusted_time BOOLEAN,
 o use_untrusted_time BOOLEAN,
 o mech_indep_encap_req BOOLEAN -- (see Appendix A)

 o Bad_Target_Name PARAMETER BUNDLE,
 o (O) bad_targ_name INTERNAL NAME,
 o (O) bad_targ_status INTEGER,
 -- a status flag giving the reason for rejection of
 -- the name in bad_targ_name. Specified reasons include:

 -- SYNTAX_INVALID (0)
 -- the syntax of the name is invalid;
 -- NAME_UNRECOGNIZED (1)
 -- the name is not recognized;
 -- NAME_AMBIGUOUS (2)
 -- the name cannot be resolved;
 -- ACCESS_DENIED (3)
 -- access to this target is denied;
 -- CERTIFICATE_NOT_FOUND (4)
 -- the encryption certificate of the target could
 -- not be found.

 o Target_Info PARAMETER BUNDLE,
 o targ_names SET OF INTERNAL NAME,
 o (O) bad_targ_count INTEGER,
 o (O) bad_target_name Bad_Target_Name,

 o General_Service_Data PARAMETER BUNDLE,
 o target_info Target_Info,
 o (X) unencapsulated_token OCTET STRING,
 -- zero length if encapsulation_request is TRUE
 o (O) minor_status INTEGER,

 Three types of protection services are defined in IDUP. These are

 1. perform unsolicited service (i.e., act on a locally-generated
 service request),
 2. perform solicited service (i.e., act on a remotely-generated
 service request), and
 3. perform service solicitation (i.e., send a service request to
 the remote end).

Adams Document Expiration: Sept. 1998 34

 As an originator, applying data confidentiality with data integrity,
 or data origin authentication with data integrity, or proof of origin
 evidence is an example of service type 1. As a target, creating a
 proof of delivery (i.e., receipt) evidence token as the result of a
 request received from the originator is an example of service type 2.
 Finally, as an originator, submitting a request that one or more
 targets return a receipt for the data sent is an example of service
 type 3.

 The first four parameters in the Prot_Service parameter bundle
 pertain to all service types; the fifth parameter is used if and only
 if service type 2 is desired; parameters 6-8 are used if and only if
 service type 3 is desired.

 o Prot_Service PARAMETER BUNDLE
 o (I) prot_service_type INTEGER,
 o (I) service_id OBJECT IDENTIFIER,
 o (I) quality Quality, -- NULL specifies default Quality
 o (I) general_service_data General_Service_Data,
 o (I) service_creation_info Service_Creation_Info,
 o (I) service_to SET OF INTERNAL NAME,
 o (O) service_verification_info Service_Verification_Info,
 o (O) service_verification_info_id INTEGER,

 Also, three types of unprotection services are defined. These are

 1. receive unsolicited service (i.e., process unrequested
 remotely-generated service),
 2. receive solicited service (i.e., process remotely-generated
 response to locally-generated request), and
 3. receive service solicitation (i.e., process req. from rem. end)

 As a target, unprotecting an encrypted message, or verifying the
 originator's proof of origin is an example of service type 1. As an
 originator, verifying a proof of delivery which you requested from a
 target is an example of service type 2. Finally, as a target,
 receiving a request from an originator for a proof of delivery is an
 example of service type 3.

 The first four parameters in the Unprot_Service parameter bundle
 pertain to all service types; parameters 5-6 are used if and only if
 service type 2 is required; parameters 7-8 are used only if service
 type 3 is required.

 o Unprot_Service PARAMETER BUNDLE
 o (O) unprot_service_type INTEGER,
 o (O) service_id OBJECT IDENTIFIER,
 o (O) quality Quality,
 -- actual Quality specified (never NULL)
 o (O) general_service_data General_Service_Data,
 o (O) service_verification_info_id INTEGER,
 o (I) service_verification_info Service_Verification_Info,
 o (O) service_to SET OF INTERNAL NAME,
 o (O) service_creation_info Service_Creation_Info,

Adams Document Expiration: Sept. 1998 35

2.3.4.2. IDUP_Start_Protect call

 Inputs:

 o env_handle ENVIRONMENT HANDLE,
 o Mech_Specific_Info PARAMETER BUNDLE,

 -- NULL selects the mechanism-defined default values
 o Idu_Information PARAMETER BUNDLE,
 o Special_Conditions PARAMETER BUNDLE,
 o encapsulation_request BOOLEAN,
 o single_idu_buffer OCTET STRING,
 -- non-zero length for this buffer means that Protect/End_Protect
 -- won't be called (i.e., entire IDU is contained in this buffer)
 o Target_Info PARAMETER BUNDLE,
 o Services_to_Perform SET OF Prot_Service,

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o midu_buffer OCTET STRING,
 -- zero length if encapsulation_request is TRUE;
 -- may be zero length otherwise (depends on underlying mechanism)
 o pidu_buffer OCTET STRING,
 -- zero length if encapsulation_request is FALSE;
 -- may be zero length otherwise (depends on underlying mechanism)

 Return major_status codes:

 o GSS_S_COMPLETE
 -- the protection process can begin (or has completed, if
 -- single_idu_buffer has non-zero length).
 o IDUP_S_MORE_OUTBUFFER_NEEDED
 o GSS_S_CREDENTIALS_EXPIRED
 o IDUP_S_NO_ENV
 o IDUP_S_ENCAPSULATION_UNAVAIL
 o IDUP_S_SERVICE_UNAVAIL
 o IDUP_S_REQ_TIME_SERVICE_UNAVAIL
 o IDUP_S_UNKNOWN_OPER_ID
 o GSS_S_BAD_QOP
 o IDUP_S_BAD_TARG_INFO
 o GSS_S_FAILURE

 Using the security environment referenced by env_handle, initialize
 the data structures required to begin the process of protecting the
 IDU buffers. The caller requests specific protection services by
 supplying the appropriate Prot_Service parameter bundles in
 Services_to_Perform. Each service is able to return a minor status
 code to the calling application, if necessary.

Adams Document Expiration: Sept. 1998 36

 The calling application, knowing the size of the IDU it wishes to
 protect and the buffer size which it has available to it, can choose
 to input the entire IDU in a single buffer and omit the subsequent
 IDUP_Protect() and IDUP_End_Protect() calls. Furthermore, the
 application can request that the resulting M-IDU be encapsulated in
 the token -- so that the token contains the entire P-IDU -- rather
 than having it be returned separately in midu_buffer. Encapsulation,
 however, may not be supported by all underlying mechanisms or
 implementations; if this is the case, the
 IDUP_S_ENCAPSULATION_UNAVAIL major status code will be returned and
 M-IDU will be returned in midu_buffer.

 For those mechanisms which allow or require multiple stages of
 processing, each producing a different aspect of protection for the
 IDU, the operation identifier prot_oper_id is used to specify
 which stage is currently being requested by the application. An
 example where this would be useful is a mechanism which implements
 the signed Message Security Protocol [MSP]. As another example, a
 mechanism may choose to do a digital signature in two stages: one
 for the hashing of the message and another for the signature on the
 hash. The calling application would therefore use the protection set
 of calls on the IDU in stage 1 and then use the protection set of
 calls on the token (from stage 1) in stage 2.

 Note that prot_oper_id is simply an integer (1, 2, 3, ..., n, where
 "n" is the number of stages as defined by the mechanism (typically 1
 or 2)). The calling application uses this parameter to indicate to
 the underlying mechanism whether it wishes to do stage 1 of
 protection / unprotection processing, or stage 2, and so on. Portable
 applications may pass "0" to let the mechanism choose the stage (note
 that mechanism implementers may still iterate when prot_oper_id = 0
 (e.g., use output as next input, et cetera).

 If one or more of the targets in targ_names cannot be used as a valid
 recipient of the P-IDU, these names will be returned in
 bad_targ_names (with associated status codes in bad_targ_status). As
 long as at least one of the targets can be used, this does not cause
 this call to fail; it is the caller's choice to discontinue IDU
 protection if the target set which can be used is unsuitable for the
 caller's purposes. Note that each Prot_Service parameter bundle can
 also input a list of targ_names; this is used if a separate list is
 to be used for that service only (the general list of targets is to
 be used for all services unless overridden in this way).

2.3.4.3. IDUP_Protect call

 Inputs:

 o env_handle ENVIRONMENT HANDLE,
 o input_buffer OCTET STRING,

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,

Adams Document Expiration: Sept. 1998 37

 o output_buffer OCTET STRING
 -- may be zero length if encapsulation_request was set to TRUE in
 -- IDUP_Start_Protect() (depends on underlying mechanism)

 Return major_status codes:

 o GSS_S_COMPLETE
 o IDUP_S_NO_ENV
 o GSS_S_FAILURE

 Using the security environment referenced by env_handle, continue the
 protection processing on the data in input_buffer and, if the
 underlying mechanism defines this, put any resulting P-IDU/M-IDU data
 in output_buffer. The application calls this routine over and over
 again with new buffers of data until it has protected all the data
 buffers of the IDU. It then calls IDUP_End_Protect() to complete the
 protection processing.

2.3.4.4. IDUP_End_Protect call

 Inputs:

 o env_handle ENVIRONMENT HANDLE,

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o Services_to_Perform SET OF Prot_Service,
 o final_midu_buffer OCTET STRING,
 -- zero length if encapsulation_request was set to TRUE in
 -- IDUP_Start_Protect(), in which case pidu is used
 o final_pidu_buffer OCTET STRING,
 -- zero length if encapsulation_request was set to FALSE in
 -- IDUP_Start_Protect(), in which case token and midu are used

 Return major_status codes:
 o GSS_S_COMPLETE
 -- protection has successfully completed and the resulting P-IDU
 -- is ready for transfer. If defined by the underlying mechanism,
 -- final_midu_buffer will contain any residual M-IDU data.
 o IDUP_S_MORE_OUTBUFFER_NEEDED
 o IDUP_S_NO_ENV

 o GSS_S_FAILURE

 Using the security environment referenced by env_handle, complete the
 protection processing on the data and place the computed output in
 final_pidu_buffer (or final_midu_buffer and the unencapsulated_token
 parameter for each Prot_Service). If a service was requested from
 one or more targets in Start_Protect() - and if this is supported by
 the underlying mechanism - Service_Verification_Info will hold
 whatever data is necessary for the mechanism to verify a service
 returned by a target (unprotector) of the P-IDU. Successful
 application of IDUP_End_Protect() does not guarantee that the
 corresponding unprotection set of calls can necessarily be performed
 successfully when the P-IDU arrives at the target (for example, it
 may be damaged in transit).
Adams Document Expiration: Sept. 1998 38

2.3.4.5. IDUP_Start_Unprotect call

 Inputs:

 o env_handle ENVIRONMENT HANDLE,
 o Mech_Specific_Info PARAMETER BUNDLE,
 -- NULL selects the mechanism-defined default values
 o single_pidu_buffer OCTET STRING,
 -- non-zero length for this buffer means that IDUP_Unprotect() and
 -- IDUP_End_Unprotect() will not be called (i.e., the entire P-IDU
 -- (if encapsulation is used) or M-IDU (if encap. is not used)
 -- is contained in this buffer)
 o partial_pidu_buffer OCTET STRING,
 -- may be an arbitrary-sized piece of the full pidu (if the
 -- application's buffer isn't large enough to hold entire pidu).
 -- Used if pidu_buffer will be input a buffer at a time (except
 -- that the final buffer must be passed in final_pidu_buffer
 -- rather than partial_pidu_buffer). Only one of
 -- single_pidu_buffer and partial(final)_pidu_buffer can have
 -- nonzero length.
 o final_pidu_buffer OCTET STRING,
 o Special_Conditions PARAMETER BUNDLE,

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o Services_to_Receive SET OF Unprot_Service,
 o Prot_Information PARAMETER BUNDLE,
 o single_idu_buffer OCTET STRING,
 -- if this buffer has non-zero length, then service processing has
 -- been completed on the data in single_pidu_buffer
 o initial_idu_buffer OCTET STRING,
 -- holds any data from partial(final)_pidu_buffer which has been

 -- unprotected; remaining data will be returned by Unprotect and
 -- End_Unprotect as they are called with successive buffers of
 -- pidu
 o Service_Verification_Info PARAMETER BUNDLE,
 -- used only if target is on "service_to" list in Unprot_Service
 o service_verification_info_id INTEGER,
 -- used only if target is on "service_to" list in Unprot_Service

 Return major_status codes:

 o GSS_S_COMPLETE
 -- unprotection processing can begin (or has completed, if
 -- single_idu_buffer has non-zero length).
 o IDUP_S_INCOMPLETE
 -- used only if single_idu_buffer has non-zero length.
 o IDUP_S_MORE_OUTBUFFER_NEEDED
 o IDUP_S_MORE_PIDU_NEEDED
 o GSS_S_DEFECTIVE_TOKEN
 o IDUP_S_INAPPROPRIATE_CRED
 o IDUP_S_INCONSISTENT_PARAMS

Adams Document Expiration: Sept. 1998 39

 o IDUP_S_DEFECTIVE_VERIF
 o IDUP_S_NO_MATCH
 o IDUP_S_SERVICE_UNAVAIL
 o IDUP_S_REQ_TIME_SERVICE_UNAVAIL
 o IDUP_S_SERV_VERIF_INFO_NEEDED
 o GSS_S_CREDENTIALS_EXPIRED
 o IDUP_S_NO_ENV
 o IDUP_S_UNKNOWN_OPER_ID
 o GSS_S_BAD_QOP
 -- the qop_algs value specified in P-IDU for at least one of the
 -- services is unavailable in the local mechanism, so processing
 -- cannot continue.
 o GSS_S_BAD_MIC
 o IDUP_S_BAD_DOA_KEY
 o IDUP_S_BAD_KE_KEY
 o IDUP_S_BAD_ENC_IDU
 o GSS_S_FAILURE

 Using the security environment referenced by env_handle, initialize
 the data structures required to begin the process of unprotecting a
 P-IDU. The caller will be alerted as to which services were applied
 to the P-IDU in the returned Services_to_Receive set of parameters.

 If encapsulation was not used by the originator, it is the receiving
 application's responsibility to separate the received P-IDU into a
 M-IDU and one or more unencapsulated_token buffers (the latter being

 input in separate Unprot_Service bundles in the Services_to_Receive
 parameter). These unencapsulated_token buffers should be input
 before the M-IDU (i.e., in IDUP_Start_Unprotect) or after the M-IDU
 (i.e., in IDUP_End_Unprotect) as appropriate; this order may be
 dictated, for example, by their placement in the in-coming message.

 If unprotection will be applied more than once to a given P-IDU, it
 is the responsibility of the calling application to remember if a
 service solicitation has been responded to previously (i.e., if the
 requested service has already been generated / sent for that P-IDU)
 and thus ignore subsequent solicitations on unprotect.

 The time flags indicate whether to consult trusted, untrusted, or no
 time (if both flags are FALSE) during the unprotection operation. If
 the current time is not to be checked, then unprotection may be
 successful even if the protector's key has expired since the P-IDU
 was generated (that is, if the Validity period -- as specified in
 the Quality parameter bundle -- has expired).

 If the underlying mechanism supports it and if this information is
 contained in the P-IDU, information regarding the originator (that
 is, the entity which used the protection set of calls to generate
 this P-IDU) is returned in the Prot_Information parameter bundle.

Adams Document Expiration: Sept. 1998 40

2.3.4.6. IDUP_Unprotect call

 Inputs:

 o env_handle ENVIRONMENT HANDLE,
 o input_buffer OCTET STRING

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o output_buffer OCTET STRING

 Return major_status codes:

 o GSS_S_COMPLETE
 o IDUP_S_NO_ENV
 o GSS_S_FAILURE

 Using the security environment referenced by env_handle, continue the

 unprotection processing on the data in input_buffer, putting any
 resulting IDU data in output_buffer (if required).

2.3.4.7. IDUP_End_Unprotect call

 Inputs:

 o env_handle ENVIRONMENT HANDLE,

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o Prot_Information PARAMETER BUNDLE,
 o Services_to_Receive SET OF Unprot_Service,
 o final_idu_buffer OCTET STRING,
 o Service_Verification_Info PARAMETER BUNDLE,
 -- used only if target is on "service_to" list in Unprot_Service
 o service_verification_info_id INTEGER,
 -- used only if target is on "service_to" list in Unprot_Service

 Return major_status codes:

 o GSS_S_COMPLETE
 -- residual IDU data will be returned in final_idu_buffer.
 o IDUP_S_INCOMPLETE
 o IDUP_S_MORE_OUTBUFFER_NEEDED
 o GSS_S_BAD_MIC
 o IDUP_S_BAD_DOA_KEY
 o IDUP_S_BAD_KE_KEY
 o IDUP_S_BAD_ENC_IDU
 o IDUP_S_NO_ENV
 o GSS_S_FAILURE

Adams Document Expiration: Sept. 1998 41

 Using the security environment referenced by env_handle, complete the
 unprotection processing on the data and return the appropriate status
 code. If there is any residual IDU data it will be returned in
 final_idu_buffer.

 If the IDUP_S_INCOMPLETE major status value is returned, all output
 parameters are conditionally valid; the unprotection set of functions
 will have to be called again (perhaps with a complete P-IDU, as
 produced by IDUP_Form_Complete_PIDU) in order to get valid values for
 all parameters. "Conditional validity" may arise, for example, if
 all relevant certificates verify correctly, but it is not yet past
 the time up to which the current policy allows the authorities
 involved to repudiate their keys.

 If the underlying mechanism supports it and if this information is
 contained in the token, information regarding the originator (that
 is, the entity which used the protection set of calls to generate
 this token) is returned in the Prot_Information parameter bundle.
 This information may or may not be omitted if it was returned by the
 IDUP_Start_Unprotect() call.

 Note that, unlike GSS-API, IDUP-GSS-API does not incorporate the
 concept of error tokens transferred between sender and recipient
 since the protection and unprotection of an IDU may be separated by
 an indefinite amount of time and may or may not be performed by the
 same entity.

2.4. Special-Purpose Calls

2.4.1. Relationship to GSS-API

 The special-purpose call described in this section has no analog
 in GSS-API [RFC-2078]. This call is used to complete a P-IDU (that
 is, to generate a P-IDU which can be unprotected successfully with
 no additional data at any time during its validity period). This
 call may not be supported by all underlying IDUP mechanisms or
 implementations.

2.4.2. IDUP_Form_Complete_PIDU call

 Inputs:

 o env_handle ENVIRONMENT HANDLE,
 o single_pidu_buffer OCTET STRING,
 o partial_pidu_buffer OCTET STRING,
 -- an arbitrary-sized piece of the full pidu token. Used if pidu
 -- will be input a buffer at a time (except that the final buffer
 -- must be passed in final_pidu_buffer rather than
 -- partial_pidu_buffer). Only one of single_pidu_buffer and
 -- partial(final)_pidu_buffer can have nonzero length.
 o final_pidu_buffer OCTET STRING,

Adams Document Expiration: Sept. 1998 42

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o pidu_token_out OCTET STRING -- the augmented PIDU; may be complete
 o call_again_before INTEGER,

https://datatracker.ietf.org/doc/html/rfc2078

 o call_again_after INTEGER,
 o trusted_time_stamping_time INTEGER -- for information only

 Return major_status codes:

 o GSS_S_COMPLETE
 o IDUP_S_MORE_OUTBUFFER_NEEDED
 o IDUP_S_INCOMPLETE
 -- generation of the P-IDU is not yet complete. The application
 -- should call this function again before the time given in
 -- call_again_before (if not NULL), or after the time given in
 -- call_again_after (if not NULL), or both (if neither are NULL).
 o IDUP_S_INCONSISTENT_PARAMS
 o IDUP_S_SERVICE_UNAVAIL
 o GSS_S_DEFECTIVE_TOKEN
 o GSS_S_FAILURE

 Form_Complete_PIDU is used primarily by the evidence services; in
 particular, when the evidence token itself does not contain all the
 data required for its verification and it is anticipated that some
 of the data not stored in the token may become unavailable during
 the interval between generation of the evidence token and
 verification unless it is stored in the token. The
 Form_Complete_PIDU operation gathers the missing information and
 includes it in the token so that verification can be guaranteed to
 be possible at any future time.

 This call generates a PIDU which can be unprotected successfully with
 no additional data at any time during its validity period. [For
 background information on the notion of "complete" evidence, see
 "CORBA Security Service v1.2 Draft D02", 18 June 1997.]

 Using the security environment referenced by env_handle, complete the
 generation of a P-IDU token and return the appropriate status value
 along with the completed token (if available). Such a call may be
 used, for example, for the purpose of batch evidence generation on an
 "evidence server". A local machine may be able to use the protection
 set of calls to fill out most of an evidence token and then send a
 number of these to a batch processor which forms the complete
 evidence tokens (perhaps by adding a certification path, or a
 timestamp and signature from a timestamping authority). As another
 example, on the receiving end an application may make such a call in
 order to collect all the information necessary to unprotect a P-IDU
 (such as all relevant certificates and Certificate Revocation Lists);
 this will ensure that the calls to the unprotection set of operations
 will be entirely local (i.e., can be performed off-line) and fast.

 Note that the complete P-IDU generated will be formed using trusted
 time if this is available in the environment referenced by env_handle
 and will use untrusted time or no time otherwise (depending on what
 is available).

Adams Document Expiration: Sept. 1998 43

2.5. Support calls

2.5.1. Relationship to GSS-API

 Support calls in IDUP-GSS-API are to be understood and used as
 described in GSS-API [RFC-2078]. The calls described in Section 2.4
 of GSS-API (including all associated parameters) are unchanged. The
 following additional calls are specified for IDUP-GSS-API.

2.5.2: IDUP_Acquire_cred_with_auth call

 Inputs:

 o desired_name INTERNAL NAME,
 -- NULL requests locally-determined default
 o authenticator OCTET STRING
 -- string which authenticates the caller claiming to be
 -- desired_name
 o lifetime_req INTEGER,
 -- in seconds; 0 requests default
 o desired_mechs SET OF OBJECT IDENTIFIER,
 -- empty set requests system-selected default
 o cred_usage BIT STRING
 -- actual values which can be used currently correspond to those
 -- given in Section 2.1.1 (i.e.,
 -- ENCRYPT_ONLY 8
 -- DECRYPT_ONLY 16
 -- SIGN_ONLY 32
 -- VERIFY_ONLY 64
 -- with the values logically OR'ed together in any desired
 -- combination to restrict credential usage; OR'ing all values
 -- results in NO_RESTRICTION).
 -- Future possible values for this parameter are for further
 -- study (note that the type of this parameter is BIT STRING
 -- (rather than INTEGER as in GSS_Acquire_cred) to facilitate
 -- such future expansion).

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o output_cred_handle CREDENTIAL HANDLE,
 o actual_mechs SET OF OBJECT IDENTIFIER,
 o actual_cred_usage BIT STRING,
 o lifetime_rec INTEGER
 -- in seconds, or reserved value for INDEFINITE

 This call (which need not be supported by all underlying mechanisms
 or implementations) is identical to the GSS_Acquire_cred call, with

https://datatracker.ietf.org/doc/html/rfc2078

 the exception of the added input parameter "authenticator" and the
 added output parameter "actual_cred_usage". The authenticator
 (typically a password, pass-phrase, or PIN) is used to
 authenticate the caller claiming to be desired_name to the
 underlying GSS (or mechanism) code. The actual_cred_usage specifies
 the actual uses available for these credentials; it is up to the
 caller to determine if this is sufficient for its purposes.

Adams Document Expiration: Sept. 1998 44

 Implementations that are able to authenticate the caller in some
 other way are encouraged to use the GSS_Acquire_cred call; those
 having no other means available to them, or wishing to explicitly
 authenticate the caller at the time of credential acquisition,
 should use the IDUP_Acquire_cred_with_auth call (if supported).

 Note that the return major status codes for this call are identical
 to those given for the GSS_Acquire_cred call. If the authentication
 fails (e.g., the wrong authenticator is supplied for the given
 desired_name), the major status GSS_S_FAILURE is returned (along with
 an appropriate minor status code).

2.5.3. IDUP_Get_token_details call

 Inputs:

 o token OCTET STRING,
 -- all the data to be returned shall be within the first 4 KB of
 -- the token; hence, a single call is needed. It is not necessary
 -- to provide the entire token when the token includes the IDU.
 o mech_type OBJECT IDENTIFIER -- input if known

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o actual_mech_type OBJECT IDENTIFIER,
 o data_included_in_token BOOLEAN,
 -- true if the data is encapsulated
 o idu_size INTEGER,
 o has_SE_protection BOOLEAN,
 o has_EV_protection BOOLEAN,
 o PIDU_Information PARAMETER BUNDLE,
 o nr_policy OBJECT IDENTIFIER,
 -- this and subsequent parameters pertain only to evidence tokens
 o Nr_Options PARAMETER BUNDLE,
 o Originator_Information PARAMETER BUNDLE,
 o time_stamping_time INTEGER OPTIONAL
 o Request_Features PARAMETER BUNDLE,
 -- describes the included request, if any.
 o requested_evidence_back BOOLEAN,

 -- true if this is an evidence generated in response to a
 -- previously-sent request
 o evidence_check OCTET STRING,
 -- meaningful if the boolean above is true

 Return major_status codes:

 o GSS_S_COMPLETE
 -- input_token could be parsed for all relevant fields.
 o GSS_S_CREDENTIALS_EXPIRED
 o GSS_S_DEFECTIVE_TOKEN
 -- the mechanism type could be parsed, but either the other fields
 -- could not be determined from the input_token, or their values
 -- did not correspond to valid values for that mechanism.
 o GSS_S_FAILURE
 -- the mechanism type was missing or corrupted.
Adams Document Expiration: Sept. 1998 45

 IDUP_Get_token_details() is used to return to an application the
 attributes that correspond to a given input token. Since
 IDUP-GSS-API tokens are meant to be opaque to the calling application,
 this function allows the application to determine information about
 the token without having to violate the opaqueness intention of IDUP.
 Of primary importance is the mechanism type, which the application can
 then use as input to the IDUP_Establish_Env() call in order to
 establish the correct environment in which to have the token
 processed.

 If all tokens are framed as suggested in Section 3.1 of [RFC-2078]
 (mandated in the Kerberos V5 GSS mechanism [RFC 1964] and in the SPKM
 GSS Mechanism [RFC 2025]), then any mechanism implementation should
 be able to return the mech_type parameter for any uncorrupted input
 token. If the mechanism implementation whose IDUP_Get_token_details()
 function is being called does recognize the token, it can return any
 further relevant information in the other token attributes, as
 specified. In particular, this function can set has_SE_protection
 if the SE calls may be used to unprotect it, or has_EV_protection
 if the EV calls may be used to unprotect it, or both if both kinds
 of protection have been applied (so that SE or EV calls may be used
 in any order for unprotection) [note that GP calls, when supported,
 should be usable for unprotection of any IDUP token].

 IDUP_Get_token_details (which need not be supported by all underlying
 mechanisms or implementations) gives only a hint about the content of
 the token, there is no integrity check of any kind performed.
 Regardless of the token type, it is possible to check that this
 information is correct only by doing a proper unprotection of the
 token. It is recommended that IDUP callers supply a token buffer
 at least 4 KB in length in order to ensure that the desired data can
 easily flow across this interface.

https://datatracker.ietf.org/doc/html/rfc2078#section-3.1
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2025

 The OID of the mechanism and whether the token contains the
 associated data is returned. In addition the size of the associated
 data, whether inside or outside the token, is included if known.
 [Note: data size will typically be unknown if the data was protected
 using multibuffer calls. A value of "-1" may be used to indicate
 "UNKNOWN".]

 When the input token contains only an evidence generated
 spontaneously, the following is returned:

 - the evidence type;
 - the Non-Repudiation policy under which the evidence was generated;
 - the name of the generator of the evidence;
 - the date and time when the evidence was generated (if available);
 - the date and time when it was time stamped (if available).

 When the input token contains only an evidence generated in response
 to a request from another entity, the following additional
 information is returned:

 - an indicator to state that this evidence relates to a request;
 - a string significant for the requester that will allow him to
 check whether the answer corresponds to the requested evidence.

Adams Document Expiration: Sept. 1998 46

 When the input token only contains a request, the following is
 returned:

 - the name of the requestor of the evidence,
 - the date and time when the request was made,
 - the evidence type to send back,
 - the non-repudiation policy under which the evidence to send back
 should be generated,
 - the names of the recipients which should generate and distribute
 the requested evidence,
 - the names of the recipients to whom the requested evidence should
 be sent after it has been generated.

 When the input token contains both evidence and a request, an
 indicator is returned describing whether the new evidence should be
 generated using only the data in the input token, or using both the
 data and the evidence in the input token.

 When the input token contains only CONF and DOA services, the
 PIDU_Information bundle is returned. Other relevant parameters
 (such as idu_size and time_stamping_time) may also be returned if
 this data is available.

2.5.4. IDUP_Get_policy_info call

 Inputs:

 o policy_id OBJECT IDENTIFIER

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o policy_version INTEGER,
 o policy_effective_time INTEGER,
 o policy_expiry_time INTEGER,
 o supported_services SET OF Service_Descriptor,
 o supported_mechanisms SET OF Mechanism_Descriptor

 Return major_status codes:

 o GSS_S_COMPLETE
 -- policy_id recognized; all relevant fields have been returned.
 o GSS_S_FAILURE
 -- the policy_id was not recognized.

 This call (which need not be supported by all underlying mechanisms
 or implementations) allows the application to retrieve information
 pertaining to a given policy_id. Policies define the following:

 - rules for the protection of IDUs, such as trusted third
 parties which may be involved in P-IDU generation, the roles
 in which they may be involved, and the duration for which the
 generated P-IDU is valid;

Adams Document Expiration: Sept. 1998 47

 - rules for the unprotection of P-IDUs, such as the interval
 during which a trusted third party may legitimately declare its
 key to have been compromised or revoked; and

 - rules for adjudication, such as which authorities may be used
 to adjudicate disputes.

 The policy itself may be used by an adjudicator when resolving a
 dispute. For example, the adjudicator might refer to the policy to
 determine whether the rules for generation of the P-IDU have been
 followed.

 The following parameter bundles are associated with this call.

 o Service_Descriptor PARAMETER BUNDLE,
 o service_type OBJECT IDENTIFIER,
 o service_validity_duration INTEGER,
 o must_use_trusted_time BOOLEAN

 o Mechanism_Descriptor PARAMETER BUNDLE,
 o mechanism_type OBJECT IDENTIFIER,
 o Authority_List PARAMETER BUNDLE,
 o maximum_time_skew INTEGER
 -- maximum permissible difference between P-IDU generation
 -- time and the time of countersignature from a time
 -- service (if required). This parameter is unused if
 -- trusted time is not required.

 o Authority_List PARAMETER BUNDLE,
 o authority_name INTERNAL NAME,
 o authority_role OCTET STRING,
 o last_revocation_check_offset INTEGER
 -- may be 0, greater than 0, or less than 0. The value of
 -- this parameter is added to P-IDU generation time to
 -- get latest time at which the mechanism will check to
 -- see if this authority's key has been revoked.

 An example of the use of the last parameter in Authority_List is as
 follows. If an authority has a defined last_revocation_check_offset
 of negative one hour, then all revocations taking effect earlier than
 one hour before the generation of a P-IDU will render that P-IDU
 invalid; no revocation taking place later than one hour before the
 generation of the P-IDU will affect the P-IDU's validity.

 Note that both the maximum_time_skew and the
 last_revocation_check_offset values are given in minutes.

Adams Document Expiration: Sept. 1998 48

2.5.5. IDUP_Cancel_multibuffer_op call

 Inputs:

 o env_handle ENVIRONMENT HANDLE,

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,

 Return major_status codes:

 o GSS_S_COMPLETE
 -- operation cancelled; state purged.
 o GSS_S_FAILURE
 -- unable to cancel operation; state retained.

 This call (which need not be supported by all underlying mechanisms
 or implementations) allows the application to cancel a multibuffer
 operation prior to normal completion (e.g., subsequent to calling
 Start_operation and zero or more Process_operation, but prior to
 calling End_operation). When successful, this call purges any
 internal state information which would have been used to continue
 processing for the full set of multibuffer calls.

3. Related Activities

 In order to implement the IDUP-GSS-API atop existing, emerging, and
 future security mechanisms, the following is necessary:

 - object identifiers must be assigned to candidate IDUP-GSS-API
 mechanisms and the name types which they support; and

 - concrete data element (i.e., token and parameter bundle) formats
 must be defined for candidate mechanisms.

 Calling applications must implement formatting conventions which will
 enable them to distinguish IDUP-GSS-API P-IDUs from other
 IDUs in their environment.

 Concrete language bindings are required for the programming
 environments in which the IDUP-GSS-API is to be employed.

4. Acknowledgments

 Many thanks are due to Tim Moses and Dhanya Thakkar of Entrust
 Technologies, Denis Pinkas of Bull, and David Kurn of Tandem
 Computers for a number of helpful comments and contributions.

5. Security Considerations

 Security issues are discussed throughout this memo.

Adams Document Expiration: Sept. 1998 49

6. REFERENCES

 [MSP]: U.S. National Security Agency, "Message Security
 Protocol", Secure Data Network System SDN.701, March 1994.

 [RFC-1421]: J. Linn, "Privacy Enhancement for Internet Electronic

https://datatracker.ietf.org/doc/html/rfc1421

 Mail: Part I: Message Encryption and Authentication Procedures",
RFC 1421.

 [RFC-2078]: J. Linn, "Generic Security Service Application Program
 Interface, Version 2", RFC 2078.

 [RFC 1964]: J. Linn, "The Kerberos Version 5 GSS-API Mechanism",
RFC 1964.

 [RFC 2025]: C. Adams, "The Simple Public-Key GSS-API Mechanism
 (SPKM)", RFC 2025.

 [ISO/IEC]: 2nd ISO/IEC CD 13888-1, "Information technology -
 Security techniques - Non-repudiation - Part 1: General Model",
 ISO/IEC JTC 1/SC 27, May 30, 1995

7. Author's Address

 Carlisle Adams
 Entrust Technologies
 750 Heron Road, Suite E08,
 Ottawa, Ontario, CANADA K1V 1A7

 Phone: +1 613.247.3180
 E-mail: cadams@entrust.com

Adams Document Expiration: Sept. 1998 50

APPENDIX A: MECHANISM-INDEPENDENT TOKEN FORMAT

https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2025
https://datatracker.ietf.org/doc/html/rfc2025

 This appendix specifies the use, for IDUP-GSS-API tokens, of the
 mechanism-independent level of encapsulating representation for
 tokens given in Section 3.1 of GSS-API [RFC-2078]. The
 representation given there incorporates an identifier of the
 mechanism type to be used when processing the associated tokens.
 Use of that octet format is recommended to the designers of
 IDUP-GSS-API implementations based on various mechanisms so that
 tokens can be interpreted unambiguously at IDUP-GSS-API peers. It is
 recognized, however, that for interoperability purposes with peers
 not using IDUP for specific IDU protection/unprotection protocols,
 the encapsulating representation may need to be omitted. (In such
 a case it is necessary that the underlying mechanism provides some
 sort of internal or external identification that allows it to
 recognize its own tokens.) When the mechanism-independent level of
 encapsulating representation is not desired, callers SHOULD set
 mech_indep_encap_req to FALSE (note that some underlying mechanisms
 may default this parameter to FALSE).

 For purely descriptive purposes, the following simple ASN.1 structure
 is used to illustrate the structural relationships among token and
 tag objects. For interoperability purposes, token and tag encoding
 shall be performed using the concrete encoding procedures described
 in Section 3.1 of GSS-API [RFC-2078].

 -- top-level token definition to frame different mechanisms

 IDUP-GSS-API DEFINITIONS ::=
 BEGIN
 MechType ::= OBJECT IDENTIFIER

 Token ::= [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType,
 token ANY DEFINED BY thisMech
 -- contents mechanism-specific
 }
 END

https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc2078

Adams Document Expiration: Sept. 1998 51

APPENDIX B: EXAMPLES OF IDUP USE

 This appendix provides examples of the use of IDUP to do IDU protec-
 tion and unprotection. It should not be regarded as constrictive to
 implementations or as defining the only means through which
 IDUP-GSS-API functions can be realized with particular underlying
 technology, and does not demonstrate all IDUP-GSS-API features.

 Most of the examples below only illustrate the use of CONF/DOA
 protection services. Note that when both CONF/DOA and Evidence
 services are required, calling applications may use a series of
 SE and EV calls, or may use the GP calls (when these are supported).
 Using the former approach implies multiple calls (e.g., the SE calls
 are used to protect some data and the resulting token is then input
 to the EV calls to add evidence information), but some callers may
 find this to be more attractive than coding to the GP calls because
 of the simpler SE/EV interface. Depending upon the underlying
 mechanism, the series of SE/EV calls may result in a single token
 that can be unprotected using the SE and EV calls in any order (for
 example, because it is a single ASN.1 SEQUENCE that incorporates
 all the specified protection services at one level), or
 the series may result in a token that can only be unprotected in the
 reverse order of protection (for example, because each SE/EV output
 token was effectively embedded in the token of the subsequent call).
 The IDUP_Get_token_details call can assist callers in determining
 how to unprotect any received token.

B.1. Simple Mechanism, Single Buffer

 To illustrate the simplest possible case, consider an underlying IDUP
 mechanism which does straightforward encryption/decryption and
 signing/verification only using public-key techniques; none of the
 other possible services, such as creation of proof-of-origin
 evidence, requests for proof-of-delivery evidence, or use of trusted
 time, are supported. PEM[RFC-1421] is one example of a mechanism
 which fits this description. Furthermore (again for simplicity),
 assume that encapsulation is chosen by the calling application during
 IDU protection.

 Such a mechanism would likely use the "SE" set of IDUP-GSS-API calls.
 The following parameter bundle uses and defaults would therefore be
 specified in the relevant IDUP mechanism document.

 SENDER:

 Set
 env_handle = environment handle in use;
 idu_buffer = data buffer;
 Target_Info.targ_names = receiver names;
 Protect_Options = as necessary;

 Call
 IDUP_SE_SingleBuffer_Protect() with above input parameters

Adams Document Expiration: Sept. 1998 52

 Check
 major_status. If not GSS_S_COMPLETE, check
 minor_status,
 Target_Info.Bad_Targ_Name,
 (as required) for more detailed information.

 Send
 Output parameter pidu_buffer to receiver.

 RECEIVER (any parameters not listed below are given the value NULL):

 Set
 env_handle = environment handle in use;
 pidu_buffer = received data buffer;

 Call
 IDUP_SE_SingleBuffer_Unprotect() with above input parameters
 Check
 major_status. If not GSS_S_COMPLETE, check
 minor_status,
 (as required) for more detailed information

 Utilize
 PIDU_Information.Protect_Options.Protect_Operation,
 (to determine which services were applied by the originator)
 PIDU_Information.Protect_Options.sign_qop_alg / enc_qop_alg,
 (to determine the corresponding qualities of the services)
 Prot_Information.originator_name,
 (to determine the name of the originator)
 Prot_Information.protection_time,
 (to determine when the IDU was protected)
 idu_buffer
 (to retrieve the unprotected data).

B.2. Simple Mechanism, Single Buffer (Again)

 To illustrate a slight variation on the simplest possible case,
 assume that everything is as in the previous scenario except that

 the "GP" calls are used.

 The following parameter bundle uses and defaults would therefore be
 specified in the relevant IDUP mechanism document.

 Mech_Specific_Info
 - NOT USED (the only acceptable input, therefore, is NULL)

 Idu_Sensitivity
 - NOT USED (the only acceptable input, therefore, is NULL)

 Service_Creation_Info
 - NOT USED (the only acceptable input, therefore, is NULL)

 Service_Verification_Info
 - NOT USED (the only acceptable input, therefore, is NULL)

Adams Document Expiration: Sept. 1998 53

 Quality
 - the qop_algs parameter must be supported, with a suitable
 DEFAULT value specified;
 - suitable DEFAULT values for validity, policy_id, and
 allow_policy_mapping must be specified (it may be an
 implementation option as to whether these parameters are
 explicitly modifiable by the calling application, or whether
 NULLs are the only acceptable input)

 Idu_Information
 - the idu_type parameter must have a value representing a suitable
 IDU type (for example, in PEM a value representing the string
 "RFC822" or some other valid "Content-Domain" would be used),
 with a suitable DEFAULT value specified;
 - the idu_title parameter is NOT USED (the only acceptable input,
 therefore, is NULL)

 Prot_Information
 - the originator_name and idu_type (in Idu_Information) parameters
 are read from the encapsulating information and output by
 IDUP_Start_Unprotect;
 - all other parameters are NOT USED (and therefore NULL)

 Special_Conditions
 - NOT USED (the only acceptable input, therefore, is NULL)

 Target_Info
 - this bundle is used as described in IDUP; no DEFAULT values are
 specified

 General_Service_Data
 - the unencapsulated_token parameter is used if
 encapsulation_request is FALSE;

https://datatracker.ietf.org/doc/html/rfc822

 - the minor_status parameter is used to return minor status values
 as specified by the mechanism document

 Prot_Service
 - the prot_service_type parameter may have a value of "1"
 ("perform unsolicited service") or NULL (which specifies the
 DEFAULT value of "1");
 - the service_id parameter must have a value representing
 "PER_CONF" or "PER_DOA";
 - the parameters Service_Creation_Info, service_to,
 Service_Verification_Info, and service_verification_info_id are
 NOT USED (and therefore NULL)

 Unprot_Service
 - the unprot_service_type parameter will always have a value of
 "1" ("receive unsolicited service");
 - the service_id parameter will have a value representing
 "REC_CONF" or "REC_DOA";
 - the parameters service_verification_info_id,
 Service_Verification_Info, service_to, and
 Service_Creation_Info, are NOT USED (and therefore NULL)

Adams Document Expiration: Sept. 1998 54

 Assuming that the calling application has only a single buffer of
 data to protect/unprotect, the following sequence of operations must
 be performed by the sender and receivers (subsequent to environment
 establishment).

 SENDER (any parameters not listed below are given the value NULL):

 Set
 env_handle = environment handle in use;
 encapsulation_request = TRUE;
 single_idu_buffer = data buffer;
 Target_Info.targ_names = receiver names;
 P_Services.Prot_Service_1.service_id = PER_CONF;
 P_Services.Prot_Service_2.service_id = PER_DOA;

 Call
 IDUP_Start_Protect() with above input parameters
 Check
 major_status. If not GSS_S_COMPLETE, check
 minor_status,
 Target_Info.bad_targ_names / Target_Info.bad_targ_status,
 P_Services.Prot_Service_1.General_Service_Data.minor_status,
 P_Services.Prot_Service_2.General_Service_Data.minor_status
 (as required) for more detailed information.

 Send
 Output parameter pidu_buffer to receiver.

 RECEIVER (any parameters not listed below are given the value NULL):

 Set
 env_handle = environment handle in use;
 single_pidu_buffer = received data buffer;

 Call
 IDUP_Start_Unprotect() with above input parameters
 Check
 major_status. If not GSS_S_COMPLETE, check
 minor_status,
 R_Services.Unprot_Service_1.General_Service_Data.minor_status,
 R_Services.Unprot_Service_2.General_Service_Data.minor_status
 (as required) for more detailed information

 Utilize
 R_Services.Unprot_Service_1/2.service_id,
 (to determine which services were applied by the originator)
 R_Services.Unprot_Service_1/2.Quality,
 (to determine the corresponding qualities of the services)
 Prot_Information.originator_name,
 (to determine the name of the originator)
 single_idu_buffer
 (to retrieve the unprotected data).

Adams Document Expiration: Sept. 1998 55

B.3. Simple Mechanism, Multiple Buffers

 To illustrate the next step up in complexity, consider the use of the
 simple IDUP mechanism described in B.2 above with multiple data
 buffers. In particular, consider the case in which a large data file
 is to be signed. For this example, assume that the calling
 application does not wish to use encapsulation.

 Note that the parameter bundle uses and defaults are as specified in
 B.2. above.

 SENDER (any parameters not listed below are given the value NULL):

 Set
 env_handle = environment handle in use;
 encapsulation_request = FALSE;
 P_Services.Prot_Service.service_id = PER_DOA;

 Call
 IDUP_Start_Protect() with above input parameters
 Check
 major_status. If not GSS_S_COMPLETE, check
 minor_status,
 P_Services.Prot_Service.General_Service_Data.minor_status
 (as required) for more detailed information.

 For each buffer of input data:
 Set
 input_buffer = buffer
 Call
 IDUP_Protect() with above input parameter
 Check
 major_status. If not GSS_S_COMPLETE, check
 minor_status

 Call
 IDUP_End_Protect()
 Check
 major_status. If not GSS_S_COMPLETE, check
 minor_status,
 P_Services.Prot_Service.General_Service_Data.minor_status
 (as required) for more detailed information.

 Send
 P_Services.Prot_Service.General_Service_Data.unencapsulated_token,
 and the file for which the signature was calculated (if required),
 to receiver.

Adams Document Expiration: Sept. 1998 56

 RECEIVER (any parameters not listed below are given the value NULL):

 Set
 env_handle = environment handle in use;
 R_Services.Unprot_Service_1.General_Service_Data.
 unencapsulated_token = received unencapsulated token;

 Call
 IDUP_Start_Unprotect() with above input parameters
 Check
 major_status. If not GSS_S_COMPLETE, check
 minor_status,

 R_Services.Unprot_Service_1.General_Service_Data.minor_status,
 (as required) for more detailed information

 For each buffer of input data:
 Set
 input_buffer = buffer
 Call
 IDUP_Unprotect() with above input parameter
 Check
 major_status. If not GSS_S_COMPLETE, check
 minor_status

 Call
 IDUP_End_Unprotect()
 Check
 major_status. If not GSS_S_COMPLETE, check
 minor_status,
 R_Services.Unprot_Service_1.General_Service_Data.minor_status,
 (as required) for more detailed information.

 Utilize
 R_Services.Unprot_Service_1.service_id,
 (to determine which service was applied by the originator; note
 that Unprot_Service_2 will have NULL in unprot_service_type
 to indicate that it is not used)
 R_Services.Unprot_Service_1.Quality,
 (to determine the corresponding quality of the service)
 Prot_Information.originator_name, (from IDUP_Start_Unprotect)
 (to determine the name of the signer)
 major_status (from IDUP_End_Unprotect)
 (to determine pass/fail status of signature verification).

Adams Document Expiration: Sept. 1998 57

B.4. More Sophisticated Mechanism, Small Application Buffers

 To illustrate a higher level of complexity, consider the use of a
 more sophisticated IDUP mechanism and a calling application with
 small data buffers. In particular, consider the case in which a very

 small e-mail message is to be encrypted for a relatively large
 receiver list (R), some subset of whom (r) will be asked to send
 proofs of receipt of the message to some other subset (L) (which
 includes the originator). So that the example is not unnecessarily
 complicated, assume again that the originating application uses
 encapsulation.

 The uses and defaults for the various parameter bundles for this
 mechanism would be specified in the relevant IDUP mechanism document
 as follows.

 Mech_Specific_Info
 - NOT USED (the only acceptable input, therefore, is NULL)

 Idu_Sensitivity
 - NOT USED (the only acceptable input, therefore, is NULL)

 Service_Creation_Info
 - used to create "proof of delivery" evidence (but actual
 structure is opaque to calling application)

 Service_Verification_Info
 - used to verify "proof of delivery" evidence (but actual
 structure is opaque to calling application)

 Quality
 - the qop_algs parameter must be supported, with a suitable
 DEFAULT value specified;
 - suitable DEFAULT values for validity, policy_id, and
 allow_policy_mapping must be specified (it may be an
 implementation option as to whether these parameters are
 explicitly modifiable by the calling application, or whether
 NULLs are the only acceptable input)

 Idu_Information
 - the idu_type parameter must have a value representing a suitable
 IDU type, with a suitable DEFAULT value specified;
 - the idu_title parameter must have a value representing a
 suitable IDU title, with a suitable DEFAULT value specified

 Prot_Information
 - the originator_name, protection_time, and idu_type / idu_title
 (in Idu_Information) parameters are read from the contained
 header information and output by IDUP_Start_Unprotect;

 Special_Conditions
 - the parameter prot_oper_id is NOT USED (the only acceptable
 input, therefore, is NULL);
 - trusted or untrusted time may be selected by the calling
 application, with a suitable DEFAULT value specified

Adams Document Expiration: Sept. 1998 58

 Target_Info
 - this bundle is used as described in IDUP; no DEFAULT values are
 specified

 General_Service_Data
 - the unencapsulated_token parameter is used if
 encapsulation_request is FALSE;
 - the minor_status parameter is used to return minor status values
 as specified by the mechanism document

 Prot_Service
 - the prot_service_type parameter may have a value of "1"
 ("perform unsolicited service"), "2" ("perform solicited
 service"), "3" (perform service solicitation), or NULL (which
 specifies the DEFAULT value of "1");
 - the service_id parameter must have a value representing
 "PER_CONF", "PER_DOA", "PER_POO", or "PER_POD";
 - the parameters Service_Creation_Info, service_to,
 Service_Verification_Info, and service_verification_info_id are
 used when required by the IDUP operation

 Unprot_Service
 - the unprot_service_type parameter may have a value of "1"
 ("receive unsolicited service"), "2" ("receive solicited
 service"), or "3" (receive service solicitation);
 - the service_id parameter will have a value representing
 "REC_CONF", "REC_DOA", "REC_POO", or "REC_POD";
 - the parameters service_verification_info_id,
 Service_Verification_Info, service_to, and
 Service_Creation_Info, are used when required by the IDUP
 operation

 SENDER (any parameters not listed below are given the value NULL):

 Set
 env_handle = environment handle in use;
 Idu_Information.idu_type = value for "e-mail document";
 Idu_Information.idu_title = "Contract 1234";
 Special_Conditions.use_trusted_time = TRUE;
 encapsulation_request = TRUE;
 single_idu_buffer = very small e-mail message;
 Target_Info.targ_names = receiver names (R);
 Prot_Service_1.prot_service_type = "1";
 Prot_Service_1.service_id = PER_CONF;
 Prot_Service_2.prot_service_type = "3";
 Prot_Service_2.service_id = PER_POD;
 Prot_Service_2.General_Service_Data.Target_Info.targ_names
 = "receipts from" list (r);

 Prot_Service_2.service_to = "receipts to" list (L);
 P_Services.Prot_Service_1 = Prot_Service_1;
 P_Services.Prot_Service_2 = Prot_Service_2;

Adams Document Expiration: Sept. 1998 59

 Call
 IDUP_Start_Protect() with above input parameters
 Check
 major_status. If not GSS_S_COMPLETE,
 while major_status == IDUP_S_MORE_OUTBUFFER_NEEDED
 Save
 pidu_buffer,
 Call
 IDUP_Start_Protect() (to get next portion of pidu_buffer)
 Check
 major_status,
 minor_status,
 Target_Info.bad_targ_names / Target_Info.bad_targ_status,
 P_Services.Prot_Service_1.General_Service_Data.minor_status,
 P_Services.Prot_Service_2.General_Service_Data.minor_status
 (as required) for more detailed information.

 Save
 Prot_Service_2.Service_Verification_Info,
 Prot_Service_2.service_verification_info_id

 Send
 All saved buffers of pidu_buffer to receiver list (R).

 RECEIVER (ON RECEIVER LIST (R)):
 (any parameters not listed below are given the value NULL)

 Set
 env_handle = environment handle in use;
 partial_pidu_buffer = initial buffer of received p-idu;

 Call
 IDUP_Start_Unprotect() with above input parameters
 While major_status == IDUP_S_MORE_PIDU_NEEDED,
 Set
 partial_pidu_buffer = next buffer of p-idu
 Call
 IDUP_Start_Unprotect()
 Check
 major_status,
 minor_status,

 R_Services.Unprot_Service_1.General_Service_Data.minor_status,
 R_Services.Unprot_Service_2.General_Service_Data.minor_status,
 (as required) for more detailed information

 Save
 initial_idu_buffer (if non-empty)

Adams Document Expiration: Sept. 1998 60

 Set
 input_buffer = remaining p-idu buffer
 Call
 IDUP_Unprotect() with above input parameter
 Check
 major_status. If not GSS_S_COMPLETE, check
 minor_status
 Save
 output_buffer

 Call
 IDUP_End_Unprotect()
 Check
 major_status. If not GSS_S_COMPLETE, check
 minor_status,
 R_Services.Unprot_Service_1.General_Service_Data.minor_status,
 R_Services.Unprot_Service_2.General_Service_Data.minor_status,
 (as required) for more detailed information.

 Utilize
 R_Services.Unprot_Service_1/2.service_id,
 (to determine which services were applied by the originator)
 R_Services.Unprot_Service_1/2.Quality,
 (to determine the corresponding qualities of the service)
 Prot_Information.originator_name/protection_time and
 Prot_Information.Idu_Information.idu_type/idu_title,
 (from IDUP_Start_Unprotect) (to determine originator info.)
 R_Services.Unprot_Service_2.General_Service_Data.Target_Info.
 targ.names, (to determine if rec. is in "receipts from" (r))
 Service_Verification_Info/service_verification_info_id
 (to determine if receiver is in "receipts to" list (L))

 If receiver is in "receipts from" list (r)
 Save
 R_Services.Unprot_Service_2.service_to,

 R_Services.Unprot_Service_2.Service_Creation_Info

 If receiver is in "receipts to" list (L)
 Save
 Service_Verification_Info,
 service_verification_info_id

Adams Document Expiration: Sept. 1998 61

 RECEIVER (ON "RECEIPTS FROM" LIST (r)):
 (procedure to generate receipt)

 Set
 env_handle = environment handle in use;
 Target_Info.targ_names = service_to
 Prot_Service_1.prot_service_type = "2";
 Prot_Service_1.service_id = "PER_POD";
 Prot_Service_1.Service_Creation_Info = Service_Creation_Info;
 P_Services.Prot_Service_1 = Prot_Service_1

 Call
 IDUP_Start_Protect() with above input parameters
 Check
 major_status. If not GSS_S_COMPLETE, check
 minor_status,
 P_Services.Prot_Service_1.General_Service_Data.minor_status
 (as required) for more detailed information.

 Send
 pidu_buffer to "receipts to" list (L)

 RECEIVER (ON "RECEIPTS TO" LIST (L)):
 (procedure to process received receipt)

 Set
 env_handle = environment handle in use;
 single_pidu_buffer = received p-idu buffer (if it fits in a single

 buffer; otherwise use partial_pidu_buffer and make multiple
 calls, as above)

 Call
 IDUP_Start_Unprotect() with above input parameters
 If major_status == IDUP_S_SERV_VERIF_INFO_NEEDED
 Utilize
 R_Services.Unprot_Service_1.service_verification_info.id
 (to assist in locating necessary Service_Verification_Info)
 Set
 R_Services.Unprot_Service_1.Service_Verification_Info
 = Service_Verification_Info
 Call
 IDUP_Start_Unprotect() with above input parameters
 Check
 major_status,
 minor_status,
 R_Services.Unprot_Service_1.General_Service_Data.minor_status
 (as required) for more detailed information.

 Utilize
 R_Services.Unprot_Service_1.service_id,
 (to determine that this is a "proof of delivery" evidence)
 R_Services.Unprot_Service_1.Quality,
 Prot_Information.originator_name, (for evidence generator info.)
 major_status (to determine pass/fail status of evi. verif.).

Adams Document Expiration: Sept. 1998 62

